
Implementation of Real Value Genetic Algorithm To

Determine Three PID Parameter

M Yusuf A A Agung N J Unang S

School Of Electrical Engineering

Telkom University Bandung,

Indonesia
mochamadyusufabdulaziz@gmail.com

School Of Electrical Engineering

Telkom University Bandung,

Indonesia
agungnj@telkomuniversity.ac.id

School Of Applied Science

Telkom University

Bandung, Indonesia
unangsunarya@telkomuniversity.ac.id

Abstract—This work is about generating optimum combination

for PID parameter using genetic algorithm method. While genetic

algorithm use evolutionary theorem like crossover and mutation,

this work proposed modified fitness function by using Integral

Time Weighted Absolute Error (ITAE) criterion, multiplying it

with α as ITAE gain, summarize it with Mean Squared Error

(MSE), multiplying with β as MSE gain, last its summarize with

maximum overshoot error and multiplying with γ for overshoot

gain. The result of this work will give you the best combination of

Kp, Ki, and Kd as PID parameter gain with best performance in

error sampling plant in the system.

Index Terms—PID, ITAE Criterion, MSE, Maximum
Overshoot, modified fitness.

I. INTRODUCTION

Usual method used for tuning PID could be done by Ziegler-

Nichols method, but demands field experience in the control

system to get the best output. Manual tuning using trial and error

will also be needed in the control system areas, PID tuning

experience will play a good part too for getting better output in

the plant system. Actually, there are many method that could be

used such as in [1] which contain Ziegler-Nicholes, Ziegler

Nicholes Modified, Cohen Coon Method, Tyrus Liben Method,

Error Criterion and show comparison between those method.

This work is done by using Genetic Algorithm application to

search the best combination of proportional gain, integral gain,

and derivative gain in PID. Some modification in genetic

algorithm were applied in this work, like the implementation of

weighted multi objective Fitness calculation to get importance

priority of the objective. Result of this work gave a self-tuning

PID with optimum performance in error sampling for your plant

system. Self-tuning PID concept have existed decade ago like

Autonomous Underwater Vehicle based on Taguchi Method [2],

Self-tuning of Proportional-Integral speed controller gains using

fuzzy logic controller [3], Self-tuning Proportional-Integral-

Derivative control structures [4], Determine Proportional-

Integral-Derivative using Genetic Algorithm [5].

This work contains design system of a genetic algorithm

implementation used in PID tuning and modified fitness

function used in genetic algorithm described in second section.

Third section describe system implementation of the design as

described in second section. Fourth section are the result of this

genetic algorithm implemented in PID. Last section in this paper

show conclusion and references used by this work.

II. SYSTEM DESIGN METHODOLOGY

First and foremost, Genetic Algorithm design should have

been adapted and implemented in PID. [6] explained in the book

that “the chromosomes in a Genetic Algorithm population

typically take the form of bit strings. Each locus in the

chromosome has two possible alleles: 0 and 1. Each

chromosome can be thought of as a point in the search space of

candidate solutions. The Genetic Algorithm processes

populations of chromosomes, successively replacing one such

population with another. The Genetic Algorithm most often

requires a fitness function that assigns a score (fitness) to each

chromosome in the current population. The fitness of a

chromosome depends on how well that chromosome solves the

problem at hand ”.

Define variables

Initial Population

Decode Chromosom

Chromosome

Fitness Calcula tion

Elitism Parent

Selection

Crossover

Mutation

New Population

Fig. 1 General Binary String Genetic Algorithm

ISSN : 2355-9365 e-Proceeding of Engineering : Vol.2, No.2 Agustus 2015 | Page 3737

 1

Typical bit strings form usually used in most genetic

algorithm implementation, but [7] shows that “if the number of

variables is large, the size of the chromosome is also large. Of

course, 1s and 0s are not the only way to represent a variable.

One could, in principle, use any representation conceivable for

encoding the variables. When the variables are naturally

quantized, the binary Genetic Algorithm fits nicely. However,

when the variables are continuous, it is more logical to represent

them by floating-point numbers. In addition, since the binary

Genetic Algorithm has its precision limited by the binary

representation of variables, using floating point numbers instead

easily allows representation to the machine precision”.

The continuous Genetic Algorithm known as Real Value

Genetic Algorithm are implemented in this work. So, typical

crossover used in bit string form will not work. Arithmetical

Crossover as shown in [8] use weighted arithmetic mean of two

parents. Children are feasible with respect to linear constraints

and bounds. δ is random value between 0 and 1 with. If A as first

parent and B as second parent, then A has better fitness after

calculation, the function from A returned to the child.

���������� = � ∗ � + (1 − �) ∗ � (1)

Mutation used in typical bit string form Genetic Algorithm

will also not work in this case, so other mutation method will be

used. Most people implement Real Valued Genetic Algorithm

using add, a normally distributed random number to variable

selected mutation.

����������′ = ���������� + 𝜎 ∗ �𝑛 (0,1) (2)

Where 𝜎 symbolize standard deviation of the normal

distribution, and �𝑛 (0,1) is the standard normal distribution

(mean=0, and variance = 1). But [7] didn’t use that technique
because good value for 𝜎 must be chosen, the addition of the

random number cause the variable exceed its bounds, and it
might have longer computing time.

Another method using Gaussian mutation operator like [9].

Let 𝑥 ∈ [�, �] be a real variable.

�𝐺 ∶= min(max(�(��, ��), �) , �) (3)

� ∶= b − a (4)

Offspring created by genetic algorithm operation after

crossover and mutation will be included in next population and

this process will loop until it reach maximum generation.

In genetic algorithm there some important guidelines

introduced by [6] for setting crossover probability (pc) and

mutation probability (pm) based population size use in genetic

algorithm. These guidelines are shown by Tab. 1.

Tabel 1 Probability Guidelines

population size
crossover

probability (pc)
mutation

probability (pm)

30 (small population) 0.9 0.01

100 (large population) 0.6 0.001

As genetic algorithm will need fitness function for assesing

how good a chromosome is, therefore this work proposed

weighted multi objective fitness function that use Integral Time

Weighted Absolute Error (ITAE), Mean Squared Error (MSE)

and Maximum Overshoot. The proposed function shown in

equation 6.

� = max() (6)
((� ∗ ������) + (� ∗ ����) + (� ∗ ��)) ∗ 100

Where �, �, and � is real number [0,1] and � + � + � = 1.

III. IMPLEMENTATION

Based on the system design methodology, this work used

real value genetic algorithm or some known as continuous

genetic algorithm. Because of the search variable in genetic

algorithm use float number for proportional controller gain (Kp),

integral controller gain (Ki), and derivative controller gain (Kd).

Every parameter has minimum and maximum value, and it’s not

limited to be the similar for each parameter. Every parameter

will be evaluated with equation (6) and returned as a fitness

function for its parameter combination.

As real value genetic algorithm, we cannot use typical

crossover and mutation, so this work used an Arithmetic

crossover as shown in equation (1) for pairing up after

tournament selection process twice for getting two parent.

Arithmetical crossover operation or pairing up parent are done

in order to get new offspring and can only be done if generated

𝜎 1
= � 10

∗ �𝐺

(5) number are below the defined crossover probability. Likewise
arithmetical crossover operation and mutation use Gaussian
mutation operator as used in equation (6). Note that it can only

Then the Gaussian mutation operator MG changes x defined
in equation (3) where σ may depend on length � defined in

equation (4). Then the interval and typically used as equation (4)
might be applied. The value of σ may also depend on time, i.e.,

the number of current generation, and σ usually decreases with

time. The reason for a decreasing σ is that stronger mutation

supports the sampling of the search space and smaller

displacements towards the end aid in fine tuning extreme values

during the beginning part of an optimization.

be done if generated number are below the defined mutation
probability.

As a typical genetic algorithm, this work use elitism method

to copy best chromosome or solution to a new population

without genetic algorithm operation.

ISSN : 2355-9365 e-Proceeding of Engineering : Vol.2, No.2 Agustus 2015 | Page 3738

Variable Name Value

Minimum Kp, Ki, and Kd 0

Maximum Kp 10

Maximum Ki 5

Maximum Kd 3

Population Size 100

Elitism Number 1

Crossover probability (pc) 0.6

Mutation probability (pm) 0.001

Maximum Generation 1000

� (ITAE Weight) 0.4

� (MSE Weight) 0.4

� (Max. OS Weight) 0.2

Tabel 2 Used Variables Defined The offspring or child comes from Arithmetic Crossover

Operation will go through Gaussian Mutation Operation to get

an mutation offspring. The new offspring will be placed in new

population. The genetic algorithm operation will be repeated

until new population reached defined population size.

All step will be repeated from the second step by evaluating

chromosome until creates new population. The generation

number will be added by one after new population created and

the genetic algorithm will stop after the generation reached

defined maximum generation as shown in the table 2.

The best chromosome in the last population after reach

maximum generation is the best three parameter PID that genetic

algorithm can get as an optimum combination.

Sta rt

Genetic algorithm used in this work are shown step-by step

and by following Fig. 3.

First, an initial population will create chromosomes by

randomly generating a float number between minimum-

maximum defined value for Kp, Ki, and Kd. Generated float

number will fill three PID parameter and repeated until total

chromosome reach its population size.

Each chromosome or solution will be evaluated by setting

plant with the three PID parameter and record the error. After

that fitness function will asses recorded error and return the

fitness value of chromosome and repeated until all chromosome

in the population have fitness value. Simple real plant used in

this work is control the height of a swinging arm by varying the

torque on a motor [10].

Fig. 2 Swinging arm plant

Yes

Yes

Define variables

Random [min,max]

fill Kp, Ki, and Kd

Chromosome <
population size

Fitness Asses ment

Sort Chromosome

Elitism > 0

No

Tournament
Selection

Parent 1 =
parent 2

No

Yes

Yes

Copy best
chromosome

No

Copy = elitism

��(�) = current position
ˆ

Yes Random < pc

No

Yes
Arithmetic
Crossover

𝑥 = desired position

ˆ

Random < pm Yes Gaus sian Mutatioin

�(�) = ��(�) − ��error signal

������ = −�𝑝 ⋅ �(�) − �𝑖 ⋅ ∫ � (�)�� − �𝑑 ⋅

∂�(�)
∂�

(7)

No

New population
< population size

No

Current population should be sorted descending by fitness

value. And the first chromosome that the best chromosome in

the population copied to next population as much as defined

elitism number.

Tournament selection used in this work repeated twice to get

two parent. If first parent chromosome same as second parent,

then tournament selection run again until second parent got a

different chromosome.

generation <
max. generation

No

End

Fig. 3 Implementation Genetic Algorithm in PID

ISSN : 2355-9365 e-Proceeding of Engineering : Vol.2, No.2 Agustus 2015 | Page 3739

IV. RESULT

As result of real value genetic algorithm for proportional-

integral-derivative controller gain,

A. Fitness value to generation

Fig. 4 Fitness to Generation first experiment

Fig. 5 Fitness to Generation second experiment

Fig. 6 Fitness to Generation third experiment

From the figure 4, figure 5, and figure 6 both look as same

figure, it is caused from population size, elitism number,

crossover probability and mutation probability use the same

variable in table 2. All figure have improved by generation, in

fifth generation fitness value improved to 0.35 from 0.3 and has

better fitness in the last generation 0.364.

B. Maximum Overshoot to Generation

Fig. 7 Maximum Overshoot to Generation first experiment

Fig. 8 Max. Overshoot to Generation second experiment

Fig. 9 Max. Overshoot to Generation third experiment

From the figure 7, figure 8 and figure 9 shown improved

maximum overshoot from best proportional-integral-derivative

gain controller. Second generation both all figure show highest

overshoot all the time that has 19.9, its almost 100% error from

the target position. But, from generation 15th until last

generation, maximum overshoot shown steady in 10,5.

C. Rise Time to Generation

ISSN : 2355-9365 e-Proceeding of Engineering : Vol.2, No.2 Agustus 2015 | Page 3740

Fig. 10 Rise Rime to Generation first experiment

Fig. 11 Rise Time to Generation third experiment

Fig. 12 Rise Time to Generation second experiment

Figure 10, figure 11, and figure 12 has a worst rise time with
1.35 ms, but the rise time both all figure decreased to 0.25 ms
in 5th generation and have best rise time 0.225 even though last
generation has increase rise time to 0.25 ms.

D. PID Parameter Gain Output

Fig. 13 PID Response with Last Best Generation in first experiment

Fig. 14 PID Response with Last Best Generation in second experiment

Fig. 15 PID Response with Last Best Generation in third experiment

After three times experiment, with 100 generation and 30
chromosome or solution each population, both figure 13, figure
14 and figure 15 has the same proportional-integral-derivative
gain controller in the last generation with 9.839 proportional
gain, 1.977 integral gain, and 1.242 derivative gain.

V. CONCLUSION

Implementation of real value genetic algorithm for

determining PID parameter runs very well in this case. The

result especially both figure 4 and 8 described how well the

fitness value improved between generation until it reach

maximum generation. As good as fitness value to the generation,

rise time and maximum overshoot shown are also improving

faster and the result generate minimum overshoot as the

operation goes by.

This operation run three times with user defined variable, the

result showed similar PID Parameter. This work run perfectly

and gave some good result. System have faster rise time with

maximum overshoot which are minimum. Weighted fitness

function for Integral Weighted Time Absolute Error, Mean

Squared Error and Maximum overshoot gave some difference

value of the three PID parameter.

ACKNOWLEDGMENT

This work supported by Electronic and Intelligence Robotic

Research Group, School of Electrical Engineering Telkom

University. This work also supported by Ministry of Research,

Technology and Higher Education.

ISSN : 2355-9365 e-Proceeding of Engineering : Vol.2, No.2 Agustus 2015 | Page 3741

REFERENCES

[7] R. L. Haupt and S. E. Haupt, Practical Genetic

Algorithm, Second Section, New Jersey: John Wiley &

[1] M. Shahrokhi and A. Zomorrodi, "Comparison of PID

Controller Tuning Methods," 8th National Iranian

Sons, Inc., 2004.

[8] Y. KAYA, M. UYAR and R. TEKĐN, "A Novel

 Chemical Engineering Congress, 2003. Crossover Operator for Genetic Algorithms: Ring

[2] M. Santhakumar and T. Asokan, "A Self-Tuning

Proportional-Integral-Derivative Controller for an

Crossover," Cornell University, New York, 2011.

[9] C. Heitzinger, "Simulation and Inverse Modeling of

 Autonomous Underwater Vehicle, Based On Taguchi Semiconductor Manufacturing Processes," 8 05 2003.

 Method," 2010. [Online]. Available:

[3] M. Nour, O. Bouketir and C. E. Yong, "Self-Tuning of
PI Speed Controller Gains Using Fuzzy Logic

Controller," 2008.

[4] P. J. Gawthrop, "Self-tuning PID control structures,"

1996.

[5] D. Joko, A. Warsito and A. Triwiyatno, "Penalaan
parameter pengendali PID dengan Algoritma Genetik,"

2011.

[6] J. J. Grefenstette, "Optimization of controll parameter

for Genetic Algorithm," IEEE Trans Systems, Man, and

Cybernetics, vol. 16, pp. 122-128, 1986.

http://www.iue.tuwien.ac.at/phd/heitzinger/node27.html.
[Accessed 20 May 2015].

[10] D. S. Touretzky, Forward and Inverse Models,
Pittsburgh: Carnegie Mellon School of Computer

Science, 2013.

ISSN : 2355-9365 e-Proceeding of Engineering : Vol.2, No.2 Agustus 2015 | Page 3742

