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Abstract—This work is about generating optimum combination 

for PID parameter using genetic algorithm method. While genetic 

algorithm use evolutionary theorem  like crossover and mutation, 

this work proposed modified fitness function by using Integral 

Time Weighted Absolute Error (ITAE) criterion, multiplying it 

with α as ITAE gain, summarize it with Mean Squared Error 

(MSE), multiplying with β as MSE gain, last its summarize with 

maximum overshoot error and multiplying with γ for overshoot 

gain. The result of this work will give you the best combination of 

Kp, Ki, and Kd as PID parameter gain with best performance in 

error sampling plant in the system. 
 

Index    Terms—PID,    ITAE    Criterion,    MSE,    Maximum 
Overshoot, modified fitness. 

 

I. INTRODUCTION 

Usual method used for tuning PID could be done by Ziegler- 

Nichols method, but demands field experience in the control 

system to get the best output. Manual tuning using trial and error 

will also be needed in the control system areas, PID tuning 

experience will play a good part too for getting better output in 

the plant system. Actually, there are many method that could be 

used such as in [1]   which contain Ziegler-Nicholes, Ziegler 

Nicholes Modified, Cohen Coon Method, Tyrus Liben Method, 

Error Criterion and show comparison between those method. 

This work is done by using Genetic Algorithm application to 

search the best combination of proportional gain, integral gain, 

and derivative gain in PID. Some modification in genetic 

algorithm were applied in this work, like the implementation of 

weighted multi objective Fitness calculation to get importance 

priority of the objective. Result of this work gave a self-tuning 

PID with optimum performance in error sampling for your plant 

system. Self-tuning PID concept have existed decade ago like 

 
Autonomous Underwater Vehicle based on Taguchi Method [2], 

Self-tuning of Proportional-Integral speed controller gains using 

fuzzy logic  controller [3],  Self-tuning Proportional-Integral- 

Derivative control structures [4], Determine Proportional- 

Integral-Derivative using Genetic Algorithm [5]. 

This work contains design system of a genetic algorithm 

implementation used in PID tuning and modified fitness 

function used in genetic algorithm described in second section. 

Third section describe system implementation of the design as 

described in second section. Fourth section are the result of this 

genetic algorithm implemented in PID. Last section in this paper 

show conclusion and references used by this work. 
 

II. SYSTEM DESIGN METHODOLOGY 

First and foremost, Genetic Algorithm design should have 

been adapted and implemented in PID. [6] explained in the book 

that “the chromosomes in a Genetic Algorithm population 

typically take the form of bit strings. Each locus in the 

chromosome has two possible alleles: 0 and 1. Each 

chromosome can be thought of as a point in the search space of 

candidate solutions. The Genetic Algorithm processes 

populations of chromosomes, successively replacing one such 

population with another. The Genetic Algorithm most often 

requires a fitness function that assigns a score (fitness) to each 

chromosome in the current population. The fitness of a 

chromosome depends on how well that chromosome solves the 

problem at hand ”. 
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Fig. 1 General Binary String Genetic Algorithm
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Typical bit strings form usually used in most genetic 

algorithm implementation, but [7] shows that “if the number of 

variables is large, the size of the chromosome is also large. Of 

course, 1s and 0s are not the only way to represent a variable. 

One could, in principle, use any representation conceivable for 

encoding the variables. When the variables are naturally 

quantized, the binary Genetic Algorithm fits nicely. However, 

when the variables are continuous, it is more logical to represent 

them by floating-point numbers. In addition, since the binary 

Genetic Algorithm has its precision limited by the binary 

representation of variables, using floating point numbers instead 

easily allows representation to the machine precision”. 

The continuous Genetic Algorithm known as Real Value 

Genetic Algorithm are implemented in this work. So, typical 

crossover used in bit string form will not work. Arithmetical 

Crossover as shown in [8] use weighted arithmetic mean of two 

parents. Children are feasible with respect to linear constraints 

and bounds. δ is random value between 0 and 1 with. If A as first 

parent and B as second parent, then A has better fitness after 

calculation, the function from A returned to the child. 

���������� =  � ∗ � + (1 − �) ∗ �                     (1)

 
Mutation used in typical bit string form Genetic Algorithm 

will also not work in this case, so other mutation method will be 

used. Most people implement Real Valued Genetic Algorithm 

using add, a normally distributed random number to variable 

selected mutation. 

����������′  =  ���������� + 𝜎  ∗ �𝑛 (0,1)              (2)

 

Where  𝜎       symbolize  standard  deviation  of  the  normal
 

distribution, and �𝑛 (0,1) is the standard normal  distribution
 

(mean=0, and variance = 1). But [7] didn’t use that technique 
because good value for 𝜎    must be chosen, the addition of the

 
random number cause the variable exceed its bounds, and it 
might have longer computing time. 

Another method using Gaussian mutation operator like [9]. 

Let 𝑥   ∈ [�, �] be a real variable.
 

�𝐺  ∶= min(max(�(��, ��), �) , �)                        (3)

 
�  ∶= b − a                                            (4)

 

Offspring created by genetic algorithm operation after 

crossover and mutation will be included in next population and 

this process will loop until it reach maximum generation. 

In genetic algorithm there some important guidelines 

introduced by [6] for setting crossover probability (pc) and 

mutation probability (pm) based population size use in genetic 

algorithm. These guidelines are shown by Tab. 1. 
 

Tabel 1 Probability Guidelines 
 
 

population size 
crossover 

probability (pc) 
mutation 

probability (pm) 

30 (small population) 0.9 0.01 

100 (large population) 0.6 0.001 

 
As genetic algorithm will need fitness function for assesing 

how good a chromosome is, therefore this work proposed 

weighted multi objective fitness function that use Integral Time 

Weighted Absolute Error  (ITAE), Mean Squared Error (MSE) 

and Maximum Overshoot. The proposed function shown in 

equation 6. 

� = max(                                                                                      )              (6) 
(( � ∗ ������) + (� ∗ ����) + (� ∗ ��)) ∗ 100

 

Where �, �, and � is real number [0,1] and � + � + � = 1.

 

III. IMPLEMENTATION 

Based on the system design methodology, this work used 

real value genetic algorithm or  some known as  continuous 

genetic algorithm. Because of the search variable in genetic 

algorithm use float number for proportional controller gain (Kp), 

integral controller gain (Ki), and derivative controller gain (Kd). 

Every parameter has minimum and maximum value, and it’s not 

limited to be the similar for each parameter. Every parameter 

will be evaluated with equation (6) and returned as a fitness 

function for its parameter combination. 

As real value genetic algorithm, we cannot use typical 

crossover and mutation, so this work used an Arithmetic 

crossover as shown in equation (1) for pairing up after 

tournament selection process twice for getting two parent. 

Arithmetical crossover operation or pairing up parent  are done 

in order to get new offspring and can only be done if generated

𝜎                  1 
= �                10

 
∗ �𝐺

 

(5) number are below the defined crossover probability. Likewise 
arithmetical crossover operation and  mutation use Gaussian 
mutation operator as used in equation (6). Note that it can only

Then the Gaussian mutation operator MG changes x defined 
in equation (3) where σ may depend on length �    defined in

 
equation (4). Then the interval and typically used as equation (4) 
might be applied. The value of σ may also depend on time, i.e., 

the number of current generation, and σ usually decreases with 

time. The reason for a decreasing σ is that stronger mutation 

supports the sampling of the search space and smaller 

displacements towards the end aid in fine tuning extreme values 

during the beginning part of an optimization. 

be done if generated number are below the defined mutation 
probability. 

As a typical genetic algorithm, this work use elitism method 

to  copy best chromosome or  solution to  a  new population 

without genetic algorithm operation.
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Variable Name Value 

Minimum Kp, Ki, and Kd 0 

Maximum Kp 10 

Maximum Ki 5 

Maximum Kd 3 

Population Size 100 

Elitism Number 1 

Crossover probability (pc) 0.6 

Mutation probability (pm) 0.001 

Maximum Generation 1000 

� (ITAE Weight) 0.4 

� (MSE Weight) 0.4 

� (Max. OS Weight) 0.2 

 

Tabel 2 Used Variables Defined The offspring or child comes from Arithmetic Crossover 

Operation  will go through Gaussian Mutation Operation to get 

an mutation offspring. The new offspring will be placed in new 

population. The genetic algorithm operation will be repeated 

until new population reached defined population size. 

All step will be repeated from the second step by evaluating 

chromosome until creates new population. The generation 

number will be added by one after new population created and 

the genetic algorithm will stop after the generation reached 

defined maximum generation as shown in the table 2. 

The best chromosome in the last population after reach 

maximum generation is the best three parameter PID that genetic 

algorithm can get as an optimum combination.

 
Sta rt 

Genetic algorithm used in this work are shown step-by step 

and by following Fig. 3. 

First,  an  initial  population will  create  chromosomes by 

randomly generating a float number between minimum- 

maximum defined value for Kp, Ki, and Kd. Generated float 

number will fill three PID parameter and repeated until total 

chromosome reach its population size. 

Each chromosome or solution will be evaluated by setting 

plant with the three PID parameter and record the error. After 

that fitness function will asses recorded error and return the 

fitness value of chromosome and repeated until all chromosome 

in the population have fitness value. Simple real plant used in 

this work is control the height of a swinging arm by varying the 

torque on a motor [10]. 

 
 

Fig. 2 Swinging arm plant 
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������  = −�𝑝  ⋅ �(�) − �𝑖  ⋅ ∫ � (�)�� − �𝑑  ⋅
 

∂�(�) 
∂�

 

 

 
(7) 

No 
 
New population 
< population size 
 

No

Current population should be sorted descending by fitness 

value. And the first chromosome that the best chromosome in 

the population copied to next population as much as defined 

elitism number. 

Tournament selection used in this work repeated twice to get 

two parent. If first parent chromosome same as second parent, 

then tournament selection run again until second parent got a 

different chromosome. 

 

generation < 
max. generation 

 
No 

 

End 

 
 
Fig. 3 Implementation Genetic Algorithm in PID
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IV. RESULT 

As result of real value genetic algorithm for proportional- 

integral-derivative controller gain, 
 

A. Fitness value to generation 
 

 

 
 

Fig. 4 Fitness to Generation first experiment 
 

 

 
 

Fig. 5 Fitness to Generation second experiment 
 

 

 
 

Fig. 6 Fitness to Generation third experiment 
 

From the figure 4, figure 5, and figure 6 both look as same 

figure, it is caused from population size, elitism number, 

crossover probability and mutation probability use the same 

variable in table 2. All figure have improved by generation, in 

fifth generation fitness value improved to 0.35 from 0.3 and has 

better fitness in the last generation 0.364. 

B. Maximum Overshoot to Generation 
 

 
 

Fig. 7 Maximum Overshoot to Generation first experiment 
 

 
 

Fig. 8 Max. Overshoot to Generation second experiment 

 
 

 
 

Fig. 9 Max. Overshoot to Generation third experiment 
 

From the figure 7, figure 8 and figure 9 shown improved 

maximum overshoot from best proportional-integral-derivative 

gain controller. Second generation both all figure show highest 

overshoot all the time that has 19.9, its almost 100% error from 

the target position. But, from generation 15th  until last 

generation, maximum overshoot shown steady in 10,5. 
 

 
C. Rise Time to Generation
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Fig. 10 Rise Rime to Generation first experiment 
 

 
 

Fig. 11 Rise Time to Generation third experiment 

 
 

 
 

Fig. 12 Rise Time to Generation second experiment 
 

Figure 10, figure 11, and figure 12 has a worst rise time with 
1.35 ms, but the rise time both all figure decreased to 0.25 ms 
in 5th generation and have best rise time 0.225 even though last 
generation has increase rise time to 0.25 ms. 

 
 

D. PID Parameter Gain Output 
 

 
 

Fig. 13 PID Response with Last Best Generation in first experiment 

 
 

 
 

Fig. 14 PID Response with Last Best Generation in second experiment 

 
 

 
 

Fig. 15 PID Response with Last Best Generation in third experiment 
 

After three times experiment, with 100 generation and 30 
chromosome or solution each population, both figure 13, figure 
14 and figure 15 has the same proportional-integral-derivative 
gain controller in the last generation with 9.839 proportional 
gain, 1.977 integral gain, and 1.242 derivative gain. 
 
 

V. CONCLUSION 

Implementation of real value genetic algorithm for 

determining PID parameter runs very well in this case. The 

result especially both figure 4 and 8 described how well the 

fitness value improved between generation until it reach 

maximum generation. As good as fitness value to the generation, 

rise time and maximum overshoot  shown are also improving 

faster and the result generate minimum overshoot as the 

operation goes by. 

This operation run three times with user defined variable, the 

result showed similar PID Parameter. This work run perfectly 

and gave some good result. System have faster rise time with 

maximum overshoot which are  minimum. Weighted fitness 

function for Integral Weighted Time Absolute Error, Mean 

Squared Error and Maximum overshoot gave some difference 

value of the three PID parameter. 
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