ABSTRACT

The development of robots is growing rapidly from year to year. One

example is the Segway Personal Transporter. A variety of techniques in the

movement of the robot in the dynamic environment became more numerous,

including Pole-Placement Controller, Fuzzy Logic, Proportional Integrated

Derivative Controller (PID control).

In this final project, FUZZY LOGIC will be used as an inverted pendulum

robot controller, because with this control, the level of stability and controllability

better. In this system, used two sensors (accelerometer and gyroscope) to obtain

data readout is stable and reliable. Then the stable data reading can improve

performance to move the position of the robot to be balanced at the point

imbangnya.

Analysis will be done is how to balance robot can stand upright at the point

balance and accurate sensor readings. Where Fuzzy Logic input parameters of this

will have a direct impact on the performance of this control system. From the

experimental of Kalman filter, obtained the optimal parameter values of Kalman

filter are Q_accelerometer = 0.001; Q_gyroscope = 0.003 and R_pengukuran =

0.03.

Keywords: Fuzzy Logic, Kalman Filter, Self-balancing Control

iv