ABSTRAKSI

PT.Telkom sebagai salah satu operator telekomunikasi yang mempunyai misi sebagai pemain utama di bisnis infokom di Indonesia, dalam rangka memenangkan persaingan dan memberikan garansi yang layak bagi pelanggannya, harus memperhatikan *Quality of Service* dari jaringan Flexy yang dimiliki. Salah satu bagian penting dalam arsitektur jaringan Flexy adalah BTS. Apabila BTS mengalami gangguan bahkan sampai *down*, maka akan berakibat hilangnya *potential revenue* bahkan dapat mengakibatkan hilangnya kepercayaan konsumen. Oleh karena itu dibutuhkan metode perawatan BTS yang efektif dan efisien sehingga dapat mempertahankan kondisi BTS tetap baik.

Dalam upaya meningkatkan *Quality of Service* jaringan telepon selular maka dilakukan analisis secara kualitatif dan kuantitaf. Analisis kualitatif dilakukan dengan menggunkan metode *Reliability Centered Maintenance* (RCM) untuk menentukan *preventive maintenance task* yang cocok untuk masing-masing komponen berdasarkan karakteristik *reliability*-nya . Pada metode RCM dilakukan beberapa tahap analisis yaitu pemilihan sistem dan pengumpulan informasi, deskripsi sistem, fungsi dan kegagalan fungsional, *failure mode* dan kegagalan fungsional, *logic tree analysis* dan *task selection*. Analisis kuantitatif dilakukan untuk menentukan interval waktu perawatan pencegahan. Analisis kualitatif pada penelitian ini hanya dilakukan pada komponen kritis penyusun BTS dan jenis *task* yang dilakukan berdasarkan hasil analisis kualitatif.

Hasil yang diperoleh dari analisis kualitatif dengan menggunakan metode RCM terhadap komponen penyusun BTS dalam menentukan kebijakan *preventive maintenance* adalah terdapat 10 *Condition Directed* task, 4 *failure finding*, 1 *Time directed*, dan 3 *Run to Failure*. Sedangan berdasarkan analisis kualitatif, ditentukan lima komponen terkritis yaitu *Battery*, CSM, GLI, MCB dan Router. Interval waktu perawatan pencegahan, 1 minggu untuk MCB, 2 minggu untuk *Battery*, GLI dan Router, sedangkan 1 bulan untuk CSM.

Dari hasil pengolahan data diperoleh karakteristik kegagalan dari masing-masing komponen. Battery dan MCB berdistribusi eksponensial, sedangkan CSM, GLI dan Router berdistribusi *Weibull*. Berdasarkan analisis RCM pada penelitian dihasilkan kebijakan perawatan pencegahan yang dilakukan dapat memungkinkan meningkatnya *reliability*. Nilai *reliability* yang meningkat akan menigkatkan QoS dan pada akhirnya kepuasan pelanggan juga akan meningkat.