ISSN: 2442-5826

Pembuatan Modul Pengukuran dan Analisis Loss Fiber Optik Menggunakan Software OptiSystem

(Studi Kasus: PT. Telkom Wahidin Perumahan Arjuna Bandung Barat)

Agustin Purwantiningsih

Mia Rosmiati, S.Si., MT.

Tafta zani, M.T.

TelkomUniversity

Telkom University

Telkom University

agustinp@students.telkomuniversity.ac.id mia@tass.telkomuniversity.ac.id tafta@tass.telkomuniversity.ac.id

Abstrak

Proses pembelajaran Fiber Optik pada mata kuliah Jaringan Serat Optik dalam mengukur loss pada jaringan FTTH diperlukan adanya sebuah alat bantu berupa OTDR pada pengoprasianya yang membutuhkan waktu yang tidak efisien. Oleh karena itu pembuatan modul pengukuran dan analisis loss fiber optik menggunakan software OptiSystem ini adalah bertujuan untuk mempermudah dalam proses pembelajaran serta mengetahui tingkat keakuratan OptiSystem dengan sebuah alat OTDR. Proses untuk mendapatkan tingkat keakuratan pada software OptiSystem ini dimulai dengan melakukan pengukuran menggunakan OTDR pada jalur Fiber To The Home (FTTH) diarea perumahan Arjuna Bandung Barat, dengan data pengukuran yang diperoleh akan menjadi input untuk pengukuran di OptiSystem. Dengan membandingkan loss jaringan FTTH yang menggunakan pengukuran OTDR dan pengukuran loss OptiSystem maka diperoleh tingkat keakuratan OptiSystem maksimal 78%

Kata Kunci: OptiSystem,OTDR

Abstract

A learning process in a course called optical fiber fiber optic network in measuring loss to the tissues ftth there needs to be an instrument help in the form of otdr in pengoprasianya that takes time that is inefficient. Hence making the measurement and analysis module loss optical fiber using software this optisystem was aiming to ease in the process of learning and knowing the accuracy of the optisystem otdr with a contrivance. The process to obtain the accuracy of the on the software optisystem began with otdr take measurements of use on a track fiber to the home (ftth) area housing arjuna west bandung, with the data of measurement obtained will be input to optisystem measurements in .By comparing loss ftth network that uses the measurement of otdr and measurement of loss optisystem then obtained the accuracy of the maximum optisystem 78 %

Keyword: Loss, OTDR, OptiSystem.

1. Pendahuluan

2. Pendahuluan

Perkembangan Jaringan Fiber To The Home (FTTH) pada saat ini sangat berkembang dengan cepat. Berdasarkan hal ini maka dibutuhkan SDM yang handal dibidangnya. Sehingga proses pembelajaran fiber optik diperkuliah yang didukung oleh kelengkapan alat praktikum menjadi hal yang sangat penting, dalam memberikan pemahaman dan keterampilan dalam menguasai jaringan berbasis fiber

Akibat adanya keterbatasan perangkat dan peralatan penunjang praktikum pada mata kuliah Jaringan Serat Optik di Falkultas Ilmu Terapan Universitas Telkom , maka dibutuhkan sebuah alat bantu dimana salah satunya adalah OTDR.

OTDR merupakan kepanjangan dari *Optical Time Domain Reflectometry* adalah sebuah alat yang dapat mengetahui posisi kerusakan atau gangguan serta *loss* yang dialami oleh serat optik dalam domain waktu tertentu. Oleh karena itu dibuatlah sebuah Modul Pengukuran Loss pada jaringan FTTH menggunakan simulasi OptiSystem.

OptiSystem merupakan sebuah software simulator yang digunakan untuk mendesain jaringan Fiber Optik yang belum diimplementasikan secara real.

Perhitungan dan Analisis *Loss* dan *Power Budget*. menggunakan OptiSystem. OptiSystem merupakan sebuah software simulator yang digunakan untuk mendesain dan jaringan fiber optik sebelum diimplementasikan secara real..

Proyek akhir ini menggunakan software simulator Optisystem yang bertujuan untuk memudahkan perhitungan *loss* tanpa menggunakan alat OTDR. Software OptiSystem ini lebih mudah diperoleh sehingga semua orang dapat mensimulasikan dan menghitung *loss* pada perangkat optik tanpa mengelurkan biaya yang tinggi, dan mendapatkan tingkat keakuratan perhitungan menggunakan software OptiSystem. Dalam mendapatkan tingkat keakuratan ini memerlukan perbandingan nilai data real yang diperoleh melalui pengukuran pada perumahan Arjuna Bandung Barat

Rumusan Masalah

A. Rumusan masalah yang akan dibahas pada proyek akhir ini adalah bagaimana cara melakukan pengukuran dan analisa loss pada jaringan FTTH dan bagaimana membandingkan hasil pengukuran loss power budget dengan menggunakan OTDR dan OptiSystem.

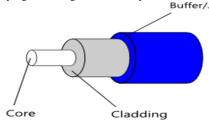
B. Tujuan

Tujuan dari proyek akhir ini adalah mendapatkan nilai loss pada jaringan FTTH sesuai dengan standar dan membandingkan tingkat keakuratan hasil pengukuranantara OTDR dan OptiSystem

ISSN: 2442-5826

C. Batasan Masalah

Adapun yang akan menjadi batasan dalam proyek akhir ini adalah sebagai berikut:


- Pada proyek akhir ini ruang lingkup hanya akan terfokus pada pengukuran loss, power budget pada jaringan FTTH menggunakan OTDR dan OptiSytem
- Dalam pengukuran loss dan power budget ini hanya berada dalam wilayah Bandung Barat untuk cangkupan PT.Telkom Wahidin Bandung
- Pengukuran loss dilakukan mulai dari OLT sampai dengan ODP yang berada diwilayah Bandung Barat pada kawasan perumahan Arjuna

2. Tinjauan Pustaka

2.1 Fiber Optik

2.2 Serat Optik

Serat optik merupakan helaian optik murni yang sangat tipis dan dapat membawa data informasi digital untuk jarak jauh. Helaian tipis ini tersusun dalam bundelan yang dinamakan kabel serat optik dan berfungsi mentransmisikan cahaya yang berhasil dikirim dari suatu tempat ke tempat lainnya hanya mengalami kehilangan sinyal dalam jumlah sangat sedikit. Serat optik membentuk kabel yang sedemikian halus hingga ketebalan mencapai 1 mm untuk dua puluh helai serat. Sinyal listrik dari transmitter (pengirim) digunakan untuk memodulasi berkas laser yang kemudian dikirimkan lewat kabel serat. Serat juga dapat dipakai untuk mengirimkan bayangan, dengan memberikan cahaya pada salah satu ujung kabel sementara ujung yang lain dihadapkan pada kamera. Bagian-bagian sebuah kabel serat optik tunggal terdiri dari inti (core), pembungkus(cladding),serta jaket penyangga(buffer/jacket) yang melindungi serat dari temperatur dan kerusakan[1].

Secara umum struktur serat optik terdiri dari 3 bagian, yaitu : 1. Inti (core)

Terbuat dari bahan silica (SiO_2) atau plastik dan merupakan tempat merambatnya cahaya. Diameternya berkisar antara 8 sampai 50 micron.

2. Selubung (cladding)

Terbuat bahan gelas atau plastik tapi memiliki indeks bias yang lebih kecil dari core agar cahaya tetap berada pada inti fiber optik.

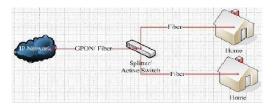
3. Jaket (*coating*)

Jaket berfungsi sebagai pelindung mekanis yang melindungi fiber optic dari kotoran, goresan, dan kerusakan lainnya.

Adapun dua jenis kabel optik yaitu:

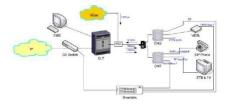
1. Multimode

Kabel fiber optik multimode adalah tipe yang digunakan untuk tujuan komersial. Inti lebih besar dari Serat single-mode memungkinkan ratusan modus cahaya tersebar melalui serat secara bersamaan. Selain itu diameter multimode memiliki serat inti lebih besar (diameter 0.0025 inch atau 62.5 micron) dan berfungsi mengirimkan sinar laser inframerah (panjang gelombang 850-1300 nm). [1]


Single mode

Kabel fiber optik *single mode* memiliki inti yang lebih kecil (berdiameter 0.00035 inch atau 9 micron) dan berfungsi mengirimkan sinar laser inframerah (panjang gelombang 1300-1550 nm) yang memungkinkan hanya satu mode menyebarkan cahaya melalui inti pada suatu waktu. Seart single mode dikembangkan untuk mempertahankan integritas data spasial dan spectrum dari masing-masing sinyal optik jarak yang lebih jauh. [1]

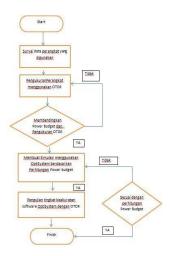
2.3 Arsitektur Jaringan yang digunakan


Sistem Jaringan Lokal Fiber (JARLOKAF) setidaknya memiliki 2 buah perangkat opto elektronik, yaitu satu perangkat opto elektronik di sisi sentral dan satu perangkat opto elektronik di sisi pelanggan. Lokasi perangkat opto elektronik di sisi pelanggan selanjutnya disebut Titik Konversi Optik (TKO). Secara praktis TKO berarti batas terakhir kabel optik ke arah pelanggan yang berfungsi sebagai lokasi konversi sinyal optik ke sinyal elektronik. [3]

2.4 GPON (Gigabit Passive Optical Network)

GPON merupakan singkatan dari Gigabit Passive Optikal Network. Merupakan salah satu teknologi yang dikembangkan oleh ITU-T via G.984 dan hingga kini bersaing dengan GEPON (Gigabit Ethernet PON). GEPON adalah PON versi IEEE yang berbasiskan teknologi Ethernet. Prinsip kerja GPON yaitu ketika data atau sinyal dikirimkan dari OLT, makan ada bagian yang bernama

splittter yang berfungsi untuk memungkinkan serat optik tunggal dapat mengirim sinyal ke berbagai ONT.



Standar GPON yang di gunakan

Karakteristik	GPON		
Standardization	ITU - T G.984		
Frame	ATM / GEM		
Speed Upstream	1.2G / 2.4 G		
Speed Downstream	Data, Voice, Video		
Service	10 km / 20 km		
Transmission Distance	64		
Number of Branches	1310 nm		
Wavelength Down	1490 nm		
Splitter	Passive		

3. Analisis dan perancangan

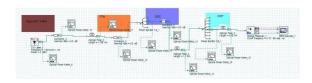
3.1 Alur dan perancangan sistem

Proses analisis perancangan berawal dari tahap survai terhadap perangkat apasaja yang memyebabkan loss (hilang daya). Survai ini mulai dari perangkat OLT (server), ODC (distribusi cabinet) dan ODP (distribusi point) yang berada di dekat dengan titik rumah ONT. Tahap yang kedua adalah pengukuran loss terhadap tiap perangkat. Tahap ketiga adalah analisis perhitungan *loss power budget* berdasarkan dari survai yang didapat kemudian di simulasikan menggunakan software OptiSystem. Tahap yang keempat adalah membandingkan hasil simulasi pada software OptiSystem dengan pengukuran menggunakan alat OTDR untuk mendapatkan tingkat keakuratan software OptiSystem.

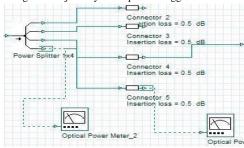
a. Gambaran Sistem Saat ini

simulasi:

Kebutuhan Perangkat Lunak

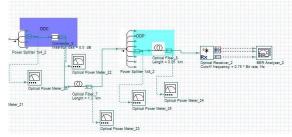

No	Perangkat Lunak	Spesifikasi
1	Google Earth	Versi 2013
2	Google Sketchup	Versi.8 2014
3	AutoCad	Semua Versi
4	Microsoft Office	Versi 2013

Kebutuhan Perangkat Keras


No	Perangkat Keras	Spesifikasi
1	Komputer/Laptop	OS: Windows 7/8, RAM : 4 GB, Core i5, Graphic: Radeon
2	OTDR (Optical Time Domain Reflektometer)	Yokogawa Model: AQ7275-735032
3	Fiber Optik Tools	ı

4. Simulasi dan Pengujian

4.1 Simulasi menggunakan daya 3 dBm



Desain ODC (Optikal Distributor Cabinet) yang berada di dalam ruang STO Rajawali yaitu tiap rak menggunakakan 1:4 spliter

Dari ODC diteruskan ke ODP yaitu Optical Ditributor Point yang peneempatanya di jarak $1.3~{\rm km}$.

ODP tersusun dari Spliter yang menggunakan 1:8 spliter

dari ODP kemudian masuk ke ONT (Optikal Network Terminal) yang merupakan sebuah modem yang berfungsi mengubah signal analog ke digital dan disini terdapat 3 port layanan yaitu ip tv, telepon, dan internet

4.2 Skenario Pengujian

Setelah desain dibuat dengan data yang ada dilapangan kemudian dilakukan perhitungan loss power budget dengan skenario membandingkan hasil perhitungan yang real dilakukan dilapangan

ISSN: 2442-5826

dengan menggunakan software simulasi OptiSystem dengan menggunakan daya 3 dBm $\,$

- 1. Perhitungan loss budget pertama dilakukan di OLT (sentral) STO Rajawali
 - a. OLT sentral cabinet FTM untuk jarak 2267 KM

Redaman kabel G 625 D = 2267 x 0,35
=
$$793,45 : 1000 = 7,9 \text{ dBm}$$

a. Redaman konektor

Konetor yang di gunakan sc/upc = 2×0.25 = 0.50 dBm

Redaman splicing

Batas yang dianjurkan oleh PT. Telkom splicing $0,1~\mathrm{dB}$

 $3 \times 0.1 = 0.3 \text{ dbM}$

Total keseluruhan: 7.9 + 0.50 + 0.3 = 1.59

Pengukuran loss menggunakan software OptiSystem dari OLT sentral STO Rajawali

Setelah di calculate dan di cek menggunakan OPM (Optical Power Meter) hasil yang di peroleh 2.154 dBm

 Perhitungan loss budget kedua di lakukan di OLT (sentral) dengan ODC yang berada di luar STO Rajawali dengan spliter 1:4 dengan mengunakan alat OTDR

	OLT - OD	C FDA STO	RAJAWAI	
NO	RAK 1	RAK 2	RAK 3	RAK 4
1	01,64	00,06	01,20	01,43
2	00,44	00,92	02,08	00,56
3	00,73	00,95	00,96	00,45
4	01,18	01,79	01,07	01,38
5	02,06	01,69	01,20	00,90
6	02,05	01,71	01,58	00,99
7	00,17	01,33	01,81	01,02
8	01,67	02,08	01,41	01,40
9	02,15	00,96	01,73	00,62
10	01,85	01,07	01,96	

a. Redaman kabel G 6252 D

 $0.35 \text{ dB/km} \times 1.726 = 0.6 \text{ dB}$

b. Redaman splicing + pigtail

0.2 dB x 2 = 0.4 dB

- c. Redaman splitter 1:4 = 7,35 dB
- d. Redaman adaptor

Konektor yang digunakan $SC = 2 \times 0.5 = 1$ dB

e. Total keseluruhan = 0.6 + 0.4 + 1 + 7.35

 $= 9,35 \, dB$

Pengukuran loss menggunakan software OptiSystem dimulai dari OLT sampai ODC

 Pengukuran loss lakukan di OLT ke ODP dengan menggunakan spliter 1:8 ODC FDA di jalan cibereum

Spliterr ke	Core ODP ke	OLT sampai ODP
1	1	17,53
	2	17,52
	3	17,24
	4	17,61
	5	16,70
	6	16,04
	7	17,44
	8	17,02
2	9	17,58
	10	17,00
	11	17,10
	12	17,20
	13	17,58
	14	17,44
	15	16,90
	16	16,74

a. Redaman kabel G 652 D

 $0.35 \text{ dB/km} \ 1.318 = 0.45 \text{ dB}$

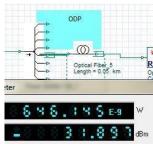
b. Redaman splicing + pigtail

0.2 dB x 2 = 0.4 dB

c. Redaman Connector

0.5 dB x 2 = 1 dB

d. Redaman Spliter 1:4 = 7,35


e. Redaman Spliter 1: 8 = 10,38

f. Total keseluruhan = 0,45 + 0,4 + 1 + 10,38+9,35

= 21,58 dB

Perhitungan menggunakan software Opti System dimulai da
ari OLT sampai ke ODC

Perhitungan menggunakan software OptiSystem dimulai dari OLT sampai ke ODC

Hasil pengukuran menggunakan software OptiSystem adalah 31,897

4.3 Perhitungan Total Loss

Perhitungan loss adalah perhitungan antara sensitivitas daya input di penerima (receiver) dengan daya output pada sumber optik (transmitter). Persamaan rumus Daya Loss berdasarkan Optical System.

Total Loss = - Pt - Pr(2) Keterangan :

Pt = Daya keluaran sumber optik (dBm)

Pr = Sensitivitas daya maksimum detektor (dBm)

Table 4.3

Pengujian OTDR dan OptiSystem megunakan Daya 1.5 dBm

	OLT	FTM	ODC	ODP	ONT	
DAYA	1.5	0.15	13.2	32	33.3	
	OpSys	OTDR	Selisih optsys-otdr	Beda Presentase	Akurat	
olt-ftm	0.65	1.59	0.94	59.11949686	40.8805	
olt-odc	13.97	9.35	4.62	49.41176471	50.58824	
odc-odp	33.39	21.58	11.81	54.7265987	45.2734	
odp-ont	0	0	0	0	100	
					59.18553	72%

Perhitungan real menggunkan OTDR adalah

Pt - Pr = (21,58 dBm) - (1,59 dBm) = 19,99 dB

Sedangkan Perhitungan menggunakan OptiSystem adalah

Pt - Pr = (33.39 dBm) - (0.65 dBm) = 32,74 dB

Daya pada simulasi menggunakan kekuatan 1.5 dB dengan perbandingan dengan OTDR menghasilkan tingkat keakuratan 72%

	OLI	FIM	ODC	UUP	UNI
DAYA	3	2.5	11	33	33
	Opsys	OTDR	Selisih optsys-otdr	Beda Presentase	Akurat
olt-ftm	2.15	1.59	-0.56	-35.22012579	135.2201
olt ke odc	12.4	9.35	-3.05	-32.62032086	132.6203
odc ke odp	31.8	21.58	-10.22	-47.35866543	147.3587
odc ke ont	0	0	0	0	100
	1/2	940		12	120 7000

Perhitungan real menggunkan OTDR adalah

Pt - Pr = (21,58 dBm) - (1,59 dBm) = 19,99 dB

Sedangkan Perhitungan menggunakan OptiSystem adalah

Pt - Pr = (31.39 dBm) - (2.15 dBm) = 29,24 dB

Daya pada simulasi menggunakan kekuatan 1.5 dB dengan perbandingan dengan OTDR menghasilkan tingkat keakuratan 78%

Perhitungan real menggunkan OTDR adalah Pt - Pr = (21,58 dBm) – (1,59 dBm) = 19,99 dB

Sedangkan Perhitungan menggunakan OptiSystem adalah Pt - Pr = $(31.89~\mathrm{dBm}) - (2.58~\mathrm{dBm}) = 29.31~\mathrm{dB}$

Daya pada simulasi menggunakan kekuatan 1.5 dB dengan perbandingan dengan OTDR menghasilkan tingkat keakuratan 16%

	OLT	FTM	ODC	ODP	ONT
DAYA	5	4.15	9.71	29	29
	OpSys	OTDR	selisih optsys-otdr	Beda Presentase	Akurat
olt-ftm	2.15	1.59	0.56	35.22012579	64.77987
olt-odc	12.47	9.35	3.12	33.36898396	66.63102
odc-odp	31.89	21.58	10.31	47.77571826	52.22428
odp-ont	0	0	0	0	0
					45 00070

Adapun prosentase keuntungan apabila menggunakan software OptiSystem ini dibandingkan dengan OTDR adalah :

Perhitungan keuntungan menggunakan lisensi OptiSystem:

- Harga lisensi software OptySystem : Rp. 350.000
- Harga OTDR : Rp. 150.000.000
- Prosentase keuntungan

Harga OTDR - Harga lisensi X 100%

Harga OTDR

= 149.650.000

X 100%

150.000.000

= 99.767%

Penutup

5.1 Kesimpulan

 Pada proyek akhir ini dapat diambil kesimpulan bahwa Dari data yang ada di lapangan kemudian

- diimplementasikan menggunakan software OptiSystem mempermudah proses pembelajaran Jaringan Serat Optik
- Tingkat keakuratan OptiSystem dengan OTDR adalah 78% dengan menggunakan daya sebesar 3 dBm
- Perbedaan dari daya yang dihasilkan dari perhitungan real dengan simulasi adalah pada perhitungan real terdapat kalibrasi alat terlebih dahulu sehingga nilainya tidak tetap antara +1,5 dBm sampai 5 dBm.
- Penghematan biaya yang dikeluarkan dengan menggunakan software simulasi ini dengan cukup membeli lisensi dari OptiSystem adalah 99,767%

5.2 Saran

Sebelumnya harus mengetahui tiap perangkat optik yang di butuhkan dengan ketetapan yang telah ditentukan agar dalam proses simulasi lebih cepat dan tidak desain topologi karena ada perangkat yang belum diimplementasikan. Semoga Proyek Akhir ini dapat membatu pada matakuliah jaringan serat optik di semester 5.

Daftar Pustaka

- [1] Barry, Crisp J. 2005. "Sebuah Pengantar Serat Optik Edisi Ketiga". Erlangga
 - [2] Goff, David R. 2002. "Fiber Optics Reference Guide". Focal Press
 - [3] Palais, J. 2007. Fiber Optic Communications. New Jersey: Pearson Prentice Hall
 - [4] PT. Telekomunikasi Indonesia Tbk. 2013."Pedoman Instalasi Pemasangan Jaringan Fiber To The Home (PPJ FTTH)". Jakarta.
 - [5] PT. Telekomunikasi Indonesia Tbk. 2012."Pedoman Instalasi Pemasangan Jaringan Fiber To The Home (PPJ FTTH)". Jakarta.
 - [6] Instalasi Fiber Optic. [Online].

http://www.instalasijaringan.com/instalasi-fiber-optic.html.[Accessed 30 April 2015].

[7] Hayes, Jim. 2006. "Fiber Optics Technician". Delmar.