
3

ABSTRACT

Health care access and affordability is a problem all around the world with large

numbers of individuals.Technical roadblocks make medical health care process more

challenging than it needs to be, and it is not easy to get the right information from the

hands of caregivers. When the right information is hard to find or access, doctors and

nurses often doing redundant test to gather information they need to determine the

clinical outcome. This approach has grown too expensive and the data is hardly to be

accurate. Through health application, there are avenues through which health care

delivery can be improved especially using mobile health applications and Personal

Health Record (PHR). Creative use of new mobile health and PHR has the potential

to reduce the cost of health care and improve health care.PHR application had a long

held appeal as a way to empower patients by providing them with lifetime access and

accurate information about their health.

This study will research about developing PHR applications in mobile device

usingtest-driven development method and HealthVault framework to cover all the

main characteristics and features in designing the mobile applicationbased on four

PHR characteristics: comprehensive, interactive, patient-controlled and

secure.Analyzing and model in this application using UML and C# programming

language. The rest result show that the system is built accordance with the system

design and user requirements.

The result of this research is to create mobile health application that expected to help

and facilitate the patient in controlling their own medical record easily and

comprehensively.

Keyword: Personal Health Records, Mobile Application, Test Driven Development,

HealthVault.

Development of Integrated Mobile Application Personal Health Record – Microsoft HealthVault using Agile Methodology and Test Driven-Development

Final Project

by

Alfi Hanif Noor

1106090030

[image:]

Study Program of Information Systems

Department of Industrial Engineering

Faculty of Engineering

Telkom University

Bandung

25

Pengembangan Aplikasi Integrasi Mobile Personal Health Record – Microsoft HealthVault dengan menggunakan Agile Metodologi dan Test-Driven Development

TUGAS AKHIR

Diajukan untuk memenuhi Salah Satu Kelulusan Program Studi

Strata-1 Sistem Informasi Fakultas Rekayasa Industri

Universitas Telkom

Oleh

Alfi Hanif Noor

1106090030

[image:]

Program Studi Sistem Informasi

Fakultas Rekayasa Industri

Telkom University

Bandung

APPROVAL SHEET

The final project entitled:

Development of Integrated Mobile Application Personal Health Record – Microsoft HealthVault using Agile Methodology and Test Driven-Development

Is approved and submitted in partial fulfillment of the requirements in Final Project

Study Program of Information System Department of Industrial Engineering

Telkom University

by:

ALFI HANIF NOOR

1106090030

Bandung, January 2014

Approved,

 Research Adviser I					Research Adviser II

Yuli Adam Prasetyo, ST., MT.				 Bayu Munajat, ST.

 NIP. 10790604-2 					 NIP. 10870713-3

Declaration of Originality Form

	Name		: Alfi Hanif Noor

	NIM		: 1106090030

	Address	: Gg Walangi 01/01 Cipaisan 42

 			 Purwakarta, 41113

	HP		: 085720364258

	Email		: alfihanifnoor@hotmail.com

I hereby declare that this submission is my own work and to the best of my knowledge it contains no materials previously published or written by another person, except where due acknowledgement is made in the research. I also declare that the intellectual content of this research is the product of my own work, except where indicated by referencing, the extent that assistance from others in the project design, presentation and linguistic expression is acknowledged.

Bandung, January 2014

Alfi Hanif Noor

ABSTRACT

Health care access and affordability is a problem all around the world with large numbers of individuals. Technical roadblocks make medical health care process more challenging than it needs to be, and it is not easy to get the right information from the hands of caregivers. When the right information is hard to find or access, doctors and nurses often doing redundant test to gather information they need to determine the clinical outcome. This approach has grown too expensive and the data is hardly to be accurate. Through health application, there are avenues through which health care delivery can be improved especially using mobile health applications and Personal Health Record (PHR). Creative use of new mobile health and PHR has the potential to reduce the cost of health care and improve health care. PHR application had a long held appeal as a way to empower patients by providing them with lifetime access and accurate information about their health.

This study will research about developing PHR applications in mobile device using test-driven development method and HealthVault framework to cover all the main characteristics and features in designing the mobile application based on four PHR characteristics: comprehensive, interactive, patient-controlled and secure. Analyzing and model in this application using UML and C# programming language. The rest result show that the system is built accordance with the system design and user requirements.

The result of this research is to create mobile health application that expected to help and facilitate the patient in controlling their own medical record easily and comprehensively.

Keyword:	Personal Health Records, Mobile Application, Test Driven Development, HealthVault.

ABSTRAK

Sulitnya jangkauan dan akses kesehatan menjadi banyak masalah di hampir seluruh wilayah dunia. Hambatan teknis membuat proses perawatan medis lebih sulit dari yang dibayangkan, dan tidak mudah untuk mendapatkan informasi yang tepat dari tangan pengasuh. Ketika suatu informasi yang tepat sulit untuk ditemukan atau diakses, dokter dan perawat sering melakukan tes berulang-ulang untuk menemukan hasil secara klinis. Pendekatan ini tumbuh terlalu mahal, dan sulit untuk mendapatkan hasil yang akurat. Melalui aplikasi kesehatan, terdapat suatu kesempatan dimana penyediaan layanan kesehatan dapat ditingkatkan terutama dalam hal penggunaan aplikasi mobile dan PHR (Personal Health Record). Penggunaan dari aplikasi mobile ini memiliki potensi untuk mengurangi biaya perawatan kesehatan dan meningkatkan kualitas pelayanan kesehatan. Aplikasi PHR memiliki daya tarik yang tinggi sebagai cara untuk memberdayakan pasien dengan menyediakan akses seumur hidup akan informasi tentang kesehatan mereka.

Penelitian ini akan fokus tentang pengembangan aplikasi PHR di dalam perangkat mobile dengan menggunakan metoda Test Driven Development dan HealthVault framework untuk mencakup semua karakteristik utama dan fitur fitur yang ada berdasarkan empat karakteristik utama PHR: komprehensif, interaktif, patient-controlled, dan aman. Analisa dan model yang digunakan dalam aplikasi ini adalah UML dan bahasa pemrograman C#. Hasil pengujian menunjukan bahwa sistem yang dibangun sudah sesuai dengan perancangan sistem dan kebutuhan user.

Hasil dari penelitian ini adalah untuk membuat aplikasi kesehatan mobile yang diharapkan dapat membantu memfasilitasi pasien dalam mengontrol rekam medis mereka sendiri dengan mudah dan komprehensif.

Kata Kunci:	Personal Health Records, Mobile Application, Test Driven Development, HealthVault.

ACKNOWLEDGEMENT

First and above all I praise to Allah, the Almighty, for providing me the opportunity this opportunity and granting e the capability to proceed successfully. This final project appears in its current form due to the assistance and guidance of several people. I would therefore like to offer my sincere thanks to all of them.

I warmly thank and appreciate my family, mom, sister, brother, and brother in law for their material and spiritual support in all aspects of my life.

· Yuli Adam Prasetyo, my esteemed adviser, my cordial thanks for accepting me as your student whilst allowing me the room to work in my own way, your encouragement, thoughtful guidance, critical comments, and correction of the research.

· I want to express my deep thanks to my friend and also esteemed co-adviser Bayu Munajat for the trust, the insightful discussion and offering valuable advice for me in the research.

· Thanks a lot for Ms Warih Puspitasari for being a faculty trustee for 4 years and the guidance all this time.

· Many thanks to Ms Ima Nurmalia, my literature adviser, thanks for your support in translation many hard words and guidance especially during the writing process.

· Thanks also to all the members of RPL GDC Laboratory Wisnu, Buchori, Erlangga, Bayu, Laura, Jati, Muh, Lydia, Icha, Faisal, Gino, Fandy, Fandry, Amin, Dwiana, Chandra for providing me a great atmosphere in our lab and for the entertainment. Don’t forget the –fun

· Thanks to all my close friends, Ladies and Gentlemen Galih, Acuy, Chanan, Junet, Marina, Zee, Cemcem, Synta, Vina, Zulma, Friesca, and Putri for the joyful gatherings and all their supports.

· Thanks to TEDxTelkomU and TEDxBandung great volunteers Vanessa, Arfan, Jaka, Widya, Reza, Mail, Ghulam, Hendry, Abeng, Molan, Freddy, Febby, Ifa, Rian, Umar, Azet, Shelby, Fanni, Zakina, Hani for the support you give me all the time.

· Thanks to Eka Sanvadita Orchestra family Cameng, Ola, Citra, Isti, Rifqi, Zahra, Ratih, Niken, Carol, Dami, Kevin, Yodia, Mita, Aris, Cani, Kenny for the warmth and allowing me to be in the big happy family.

· Thanks to DTC guys, Pikochip, ByanJati, Aul, Nisa, Ocha, Permagate, Wahyu, Ryan, Septian, Rafi, Timo for the knowledge, entertainment, and the time you give.

· Dear Hilda Mardiana, although we lived far from each other, but communication with you, provided emotional atmosphere for me. I can just say thanks for everything and may Allah give you all the best in return.

· Many thanks too for all those who helped, that I can’t specify one by one.

Author realizes that this research is not infallible, that’s why criticism and suggestions are encouraged. Hopefully this research can be useful for his readers.

Bandung, January 2014

Alfi Hanif Noor

Contents

1.	Introduction	13
1.1	Background	14
1.2	Problem Formulation	16
1.3	Research Purpose	17
1.4	Research Benefit	17
1.5	Problem Limitation	17
1.6	Writing Systematics	17
2.	Scientific Literature	19
2.1	PHR (Personal Health Record)	19
2.1.1	Personal Health Record	19
2.1.2	Tethered PHR	20
2.1.3	Untethered PHR	21
2.1.4	PHR Benefits	21
2.1.5	PHR Architecture	22
2.1.6	PHR Architecture	22
2.2	Medical Record	24
2.2.1	Medical Record Scope	25
2.2.2	Form of Service	25
2.3	Microsoft HealthVault	26
2.4	Agile Methodology	26
2.5	Test-driven Development	27
2.5.1	Testing Frameworks	28
2.5.2	Test-driven Development Cycle	28
2.5.3	Testing Methods	30
2.5.4	Testing Levels	30
2.5.5	Testing Approach	32
2.5.6	Objective Testing	32
2.5.7	Benefits	35
2.6	Mobile Application Development	36
3.	Research Methodology	37
3.1	Conceptual Model	37
3.2	Systematics Research	38
3.2.1	Initial Requirement	39
3.2.2	Initial Architecture and Design	40
3.2.3	Iteration modeling and implementation TDD	41
3.3	System Requirement	42
4.	Requirement Analysis and System Design	43
4.1	Use Case Diagram (Persona Health System)	43
4.2	Activity Diagram (Persona Health System)	46
4.3	Class Diagram (Persona Health Library)	51
4.4	Software Requirement	51
4.4.1	Functional Requirement	52
4.4.2	Non Functional Requirement	56
4.4.3	Data Requirement	57
4.5	Design Pattern	58
4.6	Data Implementation	60
4.7	UI Flow Diagram	60
4.8	UI Flow Design	61
5.	Development	66
5.1	Implementation	66
5.1.1	Registration	66
5.1.2	Main Panorama and News	70
5.1.3	Personal Info	73
5.1.4	Illnesses & Current Medication	75
5.1.5	Doctor	77
5.1.6	Application Bar	79
5.2	Usability Testing Result	81
5.2.1	Homepage	82
5.2.2	User Interface and User Experience	83
5.2.3	Forms	83
5.2.4	Accessibility	84
5.3	Interaction Between Components	84
6.	Conclusion and Suggestion	86
6.1	Conclusion	86
6.2	Suggestion	86
7.	References	87
APPENDIX A	88

LIST OF TABLES

Table 1. 1 Patient Reaction Using PHR	6

Table 3. 1 Existing Condition	29

Table 4. 1 Registration Functional Requirement	43

Table 4. 2 Medication Functional Requirement	44

Table 4. 3 List Of Doctor Functional Requirement	45

Table 4. 4 List Of Illness Functional Requirement	46

Table 4. 5 Personal Info Functional Requirement	46

Table 4. 6 Search Nearest Hospital Functional Requirement	47

Table 4. 7 Dosage Reminder Functional Requirement	47

Table 5. 1 Registration Test Result	56

Table 5. 2 Main Panorama and News Test Result	60

Table 5. 3 Personal Info Test Result	62

Table 5. 4 Illnesses & Current Medication Test Result	65

Table 5. 5 Doctor Test Result	67

Table 5. 6 Application Bar Test Result	68

LIST OF FIGURES

Figure 1. 1 Smartphone and Mobile Phone Users Statistics	8

Figure 2. 1 Agile Methodology	20

Figure 2. 2 Test-driven Development Cycle	22

Figure 3. 1 PHR Model	30

Figure 3. 2 Systematics Research	32

Figure 3. 3 Test Driven Development	33

Figure 4. 1 Use Case Diagram Register	38

Figure 4. 2 Use Case Diagram Current Medication	39

Figure 4. 3 Use Case Diagram Personal Info (General)	39

Figure 4. 4 Use Case Diagram List Of Doctor	40

Figure 4. 5 Use Case Diagram List Of Illnesses	40

Figure 4. 6 Activity Diagram Registration	41

Figure 4. 7 Activity Diagram Current Medication	42

Figure 4. 8 Activity Diagram Personal Info	43

Figure 4. 9 Activity Diagram List Of Doctors	44

Figure 4. 10 Activity Diagram List Of Illnesses	45

Figure 4. 11 Class Diagram Persona Health Library	46

Figure 4. 12 Class Diagram Main Page	47

Figure 4. 13 Class Diagram Main Panorama	48

Figure 4. 14 MVVM Design Pattern for Windows Phone	55

Figure 4. 15 Microsoft Blend view of PHR application for designer	55

Figure 4. 16 Microsoft Visual Studio view of PHR application for programmer	56

Figure 4. 17 Flow Diagram	57

Figure 4. 18 Persona Health Icon & Logo	57

Figure 4. 19 Registration View	58

Figure 4. 20 Main Panorama and News view	59

Figure 4. 21 Personal Info View	60

Figure 4. 22 Illnesses View	60

Figure 4. 23 Current Medication View	60

Figure 4. 24 Doctor View	61

Figure 5. 1 General Testing Result	62

Figure 5. 2 Registration Testing Result	65

Figure 5. 3 Screenshot Registration View	66

Figure 5. 4 Main Panorama Testing Result	67

Figure 5. 5 Screenshot Main Panorama	68

Figure 5. 6 Personal Info Testing Result	70

Figure 5. 7 Screenshot Personal Info View	72

Figure 5. 8 Illnesses and Current Medication Testing Result	73

Figure 5. 9 Screenshot Illnesses and Current Medication View	74

Figure 5. 10 Doctor Testing Result	75

Figure 5. 11 Screenshot Doctor View	76

Figure 5. 12 Application Bar Testing Result	77

Figure 5. 13 Screenshot Application Bar View	78

Figure 5. 14 General chart result	79

Figure 5. 15 Chart result about Homepage	79

Figure 5. 16 Chart result about UI/UX	80

Figure 5. 17 Chart result about Forms	80

Figure 5. 18 Chart result about Accessibility	81

[bookmark: _Toc378551790]Introduction

[bookmark: _Toc378551791]Background

Far too often, technical roadblocks make medical system process more challenging than it needs to be. It isn’t easy to get the right information and record into the hands of caregivers, because most of this information is still in paper form or can’t be distributed. Complicating matters further, healthcare is a high-intensity environment that demands precision and grace under pressure. When historical information is difficult to find or access, doctors and nurses often order redundant tests to gather the information they need to determine the best course of treatment and achieve the desired clinical outcome. This approach has grown too expensive, wastes precious time and resources.

One of the solution that usually use to alleviate this problem is to make Personal Health Record (PHR). PHR is is a health record where health data and information related to the care of a patient is maintained by the patient. PHR are not the same as Electronic Health Record (EHR). Like the data recorded in paper-based medical records, the data in EHRs are legally mandated notes on the care provided by clinicians to patients in some health care providers. There are two models of PHR, tethered and untethered. PHRs tethered are typically populated with accurate information, but the information is usually just from a single source from EHR of some provider. Different with tethered, untethered PHR is under the control of the patient. The patient controls access and must grant privileges to others for them to use the PHR.

There were still a lot of problem that comes in PHR development. Despite the continued buzz and some well-publicized initiatives, the reality is that we are still no closer to a true personal health record than were 5 or 10 years ago. There are still inherent barriers to all PHR models. A tethered PHR model might not provide information related to care delivered by another physician; a typical tethered PHR might list the last time a test had been performed based on claims data, but not the actual result. The main problem of this model is patients usually have limited control over the information included, and access is often contingent on remaining a member of provider. An unthetered PHR also have their own problem. In this PHR, patient must enter manually all information or arrange for the information to be transferred from a specific source like a laboratory or pharmacy, and the data may not be as accurate as tethered PHR. Because the most reliable source of data and information is from EHR provider or hospitals, the one who know the real condition of patient.

Despite form the fact and condition above, many people still use PHR for their own safety now. According to the 2010 study sponsored by the California HealthCare Foundation, more than half of PHR users said that using a PHR made them feel like they know more about their health and less than a third said using a PHR actually led them to do something to improve their health.

[bookmark: _Toc378252740]Table 1. 1 Patient Reaction Using PHR

[image:]

This problem actually can be solved but something have to change before a true personal health record is possible to create. There are minimum 4 characteristics that needs to be included in a PHR: comprehensive, interactive, patient-controlled, and secure. This means clinical information needs to be available electronically, accurate, interactive, complete and secure from vast majority of providers. Providers also need to think of PHRs as more than just repositories for information. The PHR should be viewed not only as a vehicle to provide patients with health information, but also as a source of data. The data that come from PHR also have to be easy and flexible for patient to read like using mobile phone. Mobile phone is one of the device that greatly sped and its users is increases from one year to another year. The data from eMarketer (2011) shows that almost half of population in 2013 is mobile phone users.

[image: C:\Users\inform\Desktop\Mobile-Internet-Use-Stats-via-eMarketer.png]

[bookmark: _Toc378322341]Figure 1. 1 Smartphone and Mobile Phone Users Statistics

Therefore, this research will implement and develop a PHR applications based on two models of untethered and tethered by taking advantages of both models using test-driven development method to cover all the main characteristics and features in designing the mobile application. This application is expected to help and facilitate the patient in controlling their own medical record easily and comprehensively.

[bookmark: _Toc378551792]Problem Formulation

From the background describe above, the problem statement that will be discussed is how to develop personal health record for patient in order to control their own medical record based on four main characteristic of PHR, comprehensive, interactive, patient-controlled and secure.

[bookmark: _Toc378551793]Research Purpose

The purpose of this research is to develop integrated mobile-based personal health record for patient in order to control their medical record based on four main characteristic of PHR, comprehensive, interactive, patient-controlled and secure

[bookmark: _Toc378551794]Research Benefit

The benefits of this research are:

a. To create health application that can help users to control and access their own information.

b. To improve patient access and control to a wide array of health information, data, and knowledge.

[bookmark: _Toc378551795]Problem Limitation

Limitations of the problem in this study include:

a. The list of information that will be included in this PHR application focuses only on emergency contact, regular doctors, search hospitals, medical conditions, news, make an appointment, and date of last illnesses.

b. The result of this application will not be tested until beta test.

[bookmark: _Toc378551796]Writing Systematics

The preparation of this study consists of 6 (six) chapters where each chapter is divided into several sections.

[bookmark: _Toc316684056]CHAPTER 1	Introduction

This chapter explains about the background of selection topic, research scope, objectives and benefits of the research, methodology used in the study as well as systematic that explain the main points of discussion of each chapter.

		

CHAPTER 2	Scientific Literature	

This chapter explains about theoretical foundation used as basis to discuss the problems at this study. Some of them are basic theory, general theory, and theory of particular relevance with PHR and test-driven development framework.

 CHAPTER 3	 Research Methodology

This chapter explains about research methodology that will be used to create PHR application and analyzing the current system in both PHR model.

CHAPTER 4	Proposed System Design

This chapter explains about design of a new application system which includes explanation about software requirement, design pattern, data implementation, and user interface design.

CHAPTER 5	Implementation

This chapter explains about an overview of the conclusions obtained from the results of the analysis based on the facts and truth. Suggestions are very useful for the development in the future.

CHAPTER 6	Conclusion And Suggestion

This chapter explains about an overview of the conclusions obtained from the results of the analysis based on the facts and truth. Suggestions are very useful for the development in the future.

[bookmark: _Toc378551797][bookmark: _Toc316684057]Scientific Literature

[bookmark: _Toc378551798]PHR (Personal Health Record)

[bookmark: _Toc378551799]Personal Health Record

Personal Health Record (PHR) is a technology where patient can collect, track, and share their current information about their health or the health or someone in your care. The term "PHR" has been applied to both research-based and computerized systems, current usage usually implies an electronic application used to collect and store health data. PHR is almost similar with EHR, but there is some difference between them. EHR (Electronic Health Record) is built to share information with other health care providers, such as laboratories and specialists. They contain information from all the clinicians involved in the patient’s care and authorized clinicians can access the information they need, to provide care to that patient. But, EHR aren’t designed to be set up and accessed by patients themselves. So EHR is more like PHR that can’t be fully controlled by patient.

The information in PHR in its electronic version can be entered in many format and from many different sources, personally entered by the owner of the PHR, and professionally by the health care provider, manually or automatically when integrating with other professional healthcare systems and applications. The PHR serves as a core repository for personal health information that identifies the patient clinical data - similar to information in the provider version of electronic medical record - utilized by the individual or health care provider to perform actions and/or help in the joint decision making process. However, there are some key pieces of information that should be included in every PHR :

a. Personal identification, including name, birth date, and Social Security number

b. People to contact in case of emergency

c. Names, addresses, and phone numbers of physician, dentist, and other specialists

d. Health insurance information

e. Living wills and advance directives

f. Organ donor authorization

g. A list and dates of significant illnesses and surgeries

h. Current medications and dosages

i. Immunizations and their dates

j. Allergies

k. Important events, dates, and hereditary conditions in family history

l. A recent physical examination

m. Opinions of specialists

n. Important tests results

o. Eye and dental records

p. Correspondence with providers

q. Permission forms for release of information, operations, and other medical procedures

r. Any other miscellaneous information about patient health such as exercise regimen, herbal medications, and any counseling

[bookmark: _Toc378551800]Tethered PHR

There are two models by which data can arrive in a PHR, untethered PHR and tethered PHR. Tethered PHR is PHR that integrated only with health care organization EHR (Electronic Health Record) but offer benefits to individuals and provider who participate. Individuals like having easy access to their clinical data, especially test results, and secure messaging with their collaborating clinicians is also seen as very valuable. Care management activities including medication refill requests and making visit appointments may add convenience for users. Caregiver access to children’s or other dependent’s information and provider team is likewise seen as valuable.Although the tethered PHR has been called a dead end, perpetuating the siloing of patient medical and health data, it is at least useful to help individuals and their health care providers gain experience in sharing information and decision making. These enhanced patient portals help shift the locus of control toward the informed, engaged individuals trying to manage their health in the context of their life and values.

[bookmark: _Toc378551801]Untethered PHR

Untethered PHR are controlled by the patient rather than by the provider, employer or health plan. The American Health Information Management Association (AHIMA) defines the PHR as “an electronic, universally available, lifelong resource of health information needed by individuals to make health decisions. Individuals own and manage the information in the PHR that is collected from healthcare providers or entered by the individual. The PHR is maintained in a secure and private environment with the individual determining rights of access, it is separate from and does not replace the legal record of any provider. This definition empathizes on the importance of the individual’s ability to maintain and update data as well as the PHR universal availability as accessed from anywhere and the sustainability of the tool as a lifelong dynamic resource of the individual health related information. Untethered PHR is also allows patient to integrate third-party solutions into their record and more flexible than tethered PHR. There are two most well-known untethered PHR application, Google Health (2008) and Microsoft HealthVault (2007).

[bookmark: _Toc378551802]PHR Benefits

PHRs grant patients access to a wide range of health information sources, best medical practices and health knowledge. All of an individual’s medical records are stored in one place instead of paper-based files in various doctors’ offices. Upon encountering a medical condition, a patient’s health information is only a few clicks away.

Moreover, PHRs can benefit clinicians. PHRs offer patients the opportunity to submit their data to their clinicians' EHRs. This helps clinicians make better treatment decisions by providing more continuous data.PHRs have the potential to help analyze an individual’s health profile and identify health threats and improvement opportunities based on an analysis of drug interaction, current best medical practices, gaps in current medical care plans, and identification of medical errors. Patient illnesses can be tracked in conjunction with healthcare providers and early interventions can be promoted upon encountering deviation of health status. PHRs also make it easier for clinicians to care for their patients by facilitating continuous communication as opposed to episodic. Eliminating communication barriers and allowing documentation flow between patients and clinicians in a timely fashion can save time consumed by face-to-face meetings and telephone communication. Improved communication can also ease the process for patients and caregivers to ask questions, to set up appointments, to request refills and referrals, and to report problems. Additionally, in the case of an emergency a PHR can quickly provide critical information to proper diagnosis or treatment.

[bookmark: _Toc378551803]PHR Architecture

PHR architecture consists of three primary components: Data, Infrastructure and Applications.

a. Data refers to the information that is collected, analyzed, exchanged and stored by different information technologies. Examples include medical history, laboratory and imaging results, list of medical problems, medication history, etc.

b. Infrastructure is the computing platform which processes or exchanges healthcare data, such as software packages and websites.

c. Applications include the data exchange, transactional, analytical and content delivery capabilities of the system, such as appointment scheduling, medication renewal, patient decision support system and disease education materials.

Since no particular architecture has been unanimously agreed upon as being the most effective, researching the benefits of various architectural models is a high priority. Regardless of the PHR paradigm, interoperability of PHRs with other entities should be the key component of PHR architecture. If PHRs serve only as a repository for an individual’s health information, it is unlikely that individuals who are not highly motivated will maintain their health records and find PHRs to be useful.

[bookmark: _Toc378551804]PHR Architecture

One of the principal distinguishing features of a PHR is the platform by which it is delivered. The types of platforms include: paper, electronic device, and web.

2.1.6.1 Paper-based PHR

Personal health information is recorded and stored in paper format. Printed laboratory reports, copies of clinic notes, and health histories created by the individual may be parts of a paper-based PHR. This method is low cost, reliable, and accessible without the need for a computer or any other hardware. Probably the most successful paper PHR is the hand-held pregnancy record, developed in Milton Keynes in the mid-1980s and now in use throughout the United Kingdom.

Paper-based PHRs may be difficult to locate, update, and share with others. Paper-based PHRs are subject to physical loss and damage, such as can occur during a natural disaster. Paper records can also be printed from most electronic PHRs. However, Fawdry et al. have shown that paper records are extremely flexible and do have distinct advantages over rigid electronic systems.

2.1.6.2 Electronic device-based PHR

Personal health information is recorded and stored in personal computer-based software that may have the capability to print, backup, encrypt, and import data from other sources such as a hospital laboratory. The most basic form of a PC-based PHR would be a health history created in a word-processing program. The health history created in this way can be printed, copied, and shared with anyone with a compatible word processor.

PHR software can provide more sophisticated features such as data encryption, data importation, and data sharing with health care providers. Some PHR products allow the copying of health records to a mass-storage device such as a CD-ROM, DVD, smart card, or USB flash drive. PC-based PHRs are subject to physical loss and damage of the personal computer and the data that it contains. Some other methods of device solution may entail cards with embedded chips containing health information that may or may not be linked to a personal computer application or a web solution.

2.1.6.3 Web-based PHR

Web-based PHR solutions are essentially the same as electronic device PHR solution, however, web-based solutions have the advantage of being easily integrated with other services. For example, some solutions allow for import of medical data from external sources. Solutions including HealthVault, PatientsLikeMe and onpatient allow for data to be shared with other applications or specific people. Mobile solutions often integrate themselves with web solutions and use the web-based solution as the platform.A large number of companies have emerged to provide consumers the opportunity to develop online PHRs. Some have been developed by non-profit organizations, while others have been developed by commercial ventures. These web-based applications allow users to directly enter their information such as diagnosis, medications, laboratory tests, immunizations and other data associated with their health. They generate records that can be displayed for review or transmitted to authorized receivers.

[bookmark: _Toc378551805]Medical Record

Medical Record isthe collection of information concerning a patient and his or her health care that is created, maintained, and made by a person who has knowledge of the acts, events, opinions or diagnoses relating to the patient, and made at or around the time indicated in the documentation.

a. The medical record may include records maintained in an electronic medical record system like PHR or EHR that integrates data from multiple sources, captures data at the point of care, and supports caregiver decision making.

b. The medical record excludes health records that are not official business records of provider, such as personal health records managed by the patient.

Each Medical Record shall contain sufficient, accurate information to identify the patient, support the diagnosis, justify the treatment, document the course and results, and promote continuity of care among health care providers. The information may be from any source and in any format, including, but not limited to print medium, audio/visual recording, and/or electronic display.

[bookmark: _GoBack]

[bookmark: _Toc378551806]Medical Record Scope

Collecting, integrating, analyzing the data of primary and secondary health care, presenting and disseminating information, managing resources for the benefit of research, planning, monitoring, and evaluation of health services. This scope also include developing standards and guidelines for health information management include legal aspects of the confidential, security, privacy and integrity of data.

[bookmark: _Toc378551807]Form of Service

· Paper-based Document

Paper based document is a medical record that contains a sheet of medical administration processed and stored manually.

· Manual Medical Record Service and Computerize Registration

Based on computerized medical records, but still limited to the registration system, patient data entry, and exit, including patients died. Treatment is limited to the computerized registration system. While administrative and medical sheets are processed manually.

· Limited Information Management Services

Medical record services that processed into a computerized management information and running in one system automatically in health information management unit.

· Integrated Information Systems Services

Computerized Patient Record (CPR), which is compiled by taking the documents directly from the system image and document system structure has changed.

· Services with an Electric Health Record

System services that have been changed from the Electronic Medical Record (EMR) to Electronic Patient Record(EPR) and up to the final level of the development of Health Information System, EHR (Electronic Health Record).

[bookmark: _Toc378551808]Microsoft HealthVault

Microsoft HealthVault is a web-based platform from Microsoft to store and maintain health and fitness information. Started in October 2007, the website is accessible at www.healthvault.com and addresses both individuals and healthcare professionals. A HealthVault record stores an individual's health information. An individual interacts with their HealthVault record through the HealthVault site, or, more typically, through an application that talks to the HealthVault platform. When an individual first uses a HealthVault application, they are asked to authorize the application to access a specific set of data types, and those data types are the only ones the application can use. An individual can also share a part (some data types) or the whole of their health record with another interested individual such as a doctor, a spouse, a parent, etc. Access to a record is through a HealthVault account, which may be authorized to access records for multiple individuals, so that a mother may manage records for each of her children or a son may have access to his father's record to help the father deal with medical issues. Authorization of the account can be through Windows Live ID, Facebook or a limited set of OpenID providers. Microsoft HealthVault also allows health and fitness data to be transferred from devices (such as heart rate watches and blood pressure monitors) into an individual's HealthVault record. It can also be used to find and download drivers for medical devices.

[bookmark: _Toc378551809]Agile Methodology

Agile methodology is a practice-based methodology for effective modeling and documentation of software engineering. This models usually based on iterative and incremental development, where requirements and solutions evolve through collaboration between self-organizing, cross-functional teams. Agile model also encourages rapid and flexible response easier to change. There are many specific agile development methods. Most promote development, teamwork, collaboration, and process adaptability throughout the life-cycle of the project.

[image: http://www.wedigtech.com/img/process-methodologies/agilechart.png]

[bookmark: _Toc378322351]Figure 2. 1 Agile Methodology

This method break tasks into small increments with minimal planning and do not directly involve long-term planning. Iterations are short time frames that typically last from one to four or seven weeks, based on each project. Each iteration involves a cross functional team working in all functions: requirements, analysis, designs, coding, and testing. At the end of the iteration a working product is demonstrated to stakeholders. This minimizes overall risk and allows the project to adapt to changes quickly. An iteration might not add enough functionality to warrant a market release, but the goal is to have an available release (with minimal bugs) at the end of each iteration. Multiple iterations might be required to release a product or new features.

[bookmark: _Toc378551810]Test-driven Development

Test-driven development (TDD) is a software development process that relies on the repetition of a very short development cycle: first the developer writes an (initially failing) automated test case that defines a desired improvement or new function, then produces the minimum amount of code to pass that test and finally refactors the new code to acceptable standards. In this software developments model, developers have more portions to do testing, before it reaches a formal team of testers. But, in a more traditional model, most of the test execution occurs after the requirements have been defined and the coding process has been completed.

[bookmark: _Toc378551811]Testing Frameworks

Developers often use testing frameworks, such as xUnit, to create and automatically run sets of test cases. Xunit frameworks provide assertion style test validation capabilities and result reporting. These capabilities are critical for automation as they move the burden of execution validation from an independent post-processing activity to one that is included in the test execution. Many popular xUnit frameworks are openly available:

a. JUnit

b. cppUnit

c. UnitTest++

d. Unity (for C)

e. NUnit

This concept of built in test oracles helps to reduce unit test maintenance burden by requiring maintenance on only one artifact and eliminating the independent validation of often complex and fragile output. Additionally, the execution framework provided by these test frameworks allows for the automatic execution of all system test cases or various subsets along with other features.

[bookmark: _Toc378551812]Test-driven Development Cycle

[image:]

[bookmark: _Toc378322352]

Figure 2. 2 Test-driven Development Cycle

In test-driven development, each new feature begins with writing a test. This test must inevitably fail because it is written before the feature has been implemented. To write a test, the developer must clearly understand the feature's specification and requirements. The developer can accomplish this through use cases and user stories that cover the requirements and exception conditions. This could also imply a variant, or modification of an existing test. This is a differentiating feature of test-driven development versus writing unit tests after the code is written: it makes the developer focus on the requirements before writing the code, a subtle but important difference.

After writing a test, developer have to run all tests and see if the new one fails. This validates that the test harness is working correctly and that the new test does not mistakenly pass without requiring any new code. This step also tests the test itself, in the negative: it rules out the possibility that the new test will always pass, and therefore be worthless. The new test should also fail for the expected reason. This increases confidence (although it does not entirely guarantee) that it is testing the right thing, and will pass only in intended cases.

The next step is to write some code that will cause the test to pass. The new code written at this stage will not be perfect and may, for example, pass the test in an inelegant way. That is acceptable because later steps will improve and hone it.If all test cases now pass, the programmer can be confident that the code meets all the tested requirements. This is a good point from which to begin the final step of the cycle.

Now the code can be cleaned up as necessary. By re-running the test cases, the developer can be confident that code refactoring is not damaging any existing functionality. The concept of removing duplication is an important aspect of any software design. In this case, however, it also applies to removing any duplication between the test code and the production code.Starting with another new test, the cycle is then repeated to push forward the functionality. The size of the steps should always be small, with as few as 1 to 10 edits between each test run. If new code does not rapidly satisfy a new test, or other tests fail unexpectedly, the programmer should undo or revert in preference to excessive debugging.

[bookmark: _Toc378551813]Testing Methods

2.5.3.1 White Box Testing

White-box testing (also known as clear box testing, glass box testing, transparent box testing, and structural testing) tests internal structures or workings of a program, as opposed to the functionality exposed to the end-user. In white-box testing an internal perspective of the system, as well as programming skills, are used to design test cases. The tester chooses inputs to exercise paths through the code and determine the appropriate outputs.

2.5.3.2 Black Box Testing

Black-box testing treats the software as a "black box", examining functionality without any knowledge of internal implementation. The tester is only aware of what the software is supposed to do, not how it does it. Black-box testing methods include: equivalence partitioning, boundary value analysis, all-pairs testing, state transition tables, decision table testing, fuzz testing, model-based testing, use case testing, exploratory testing and specification-based testing.

[bookmark: _Toc378551814]Testing Levels

2.5.4.1 Unit Testing

Unit testing, also known as components testing, refers to tests that verify the functionality of a specific section of code, usually at the function level. In an object-oriented environment, this is usually at the class level, and the minimal unit tests include the constructors and destructors.These types of tests are usually written by developers as they work on code (white-box style), to ensure that the specific function is working as expected. One function might have multiple tests, to catch corner cases or other branches in the code. Unit testing alone cannot verify the functionality of a piece of software, but rather is used to assure that the building blocks the software uses work independently of each other.

2.5.4.2 Integration Testing

Integration testing using any type of software testing that seeks to verify the interfaces between components against a software design. Software components may be integrated in an iterative way or all together ("big bang"). Normally the former is considered a better practice since it allows interface issues to be localized more quickly and fixed. Integration testing works to expose defects in the interfaces and interaction between integrated components (modules). Progressively larger groups of tested software components corresponding to elements of the architectural design are integrated and tested until the software works as a system.

2.5.4.3 System Testing

System testing of software or hardware is testing conducted on a complete, integrated system to evaluate the system's compliance with its specified requirements. System testing falls within the scope of black box testing, and as such, should require no knowledge of the inner design of the code or logic.

As a rule, system testing takes, as its input, all of the "integrated" software components that have successfully passed integration testing and also the software system itself integrated with any applicable hardware system. The purpose of integration testing is to detect any inconsistencies between the software units that are integrated together (called assemblages) or between any of the assemblages and the hardware. System testing is a more limited type of testing; it seeks to detect defects both within the "inter-assemblages" and also within the system as a whole.

2.5.4.4 Acceptance Testing

Acceptance Testing is a test conducted to determine if the requirements of a specification or contract are met. It may involve chemical tests, physical tests, or performance tests.In systems engineering it may involve black-box testing performed on a system (for example: a piece of software, lots of manufactured mechanical parts, or batches of chemical products) prior to its delivery.

Software developers often distinguish acceptance testing by the system provider from acceptance testing by the customer (the user or client) prior to accepting transfer of ownership. In the case of software, acceptance testing performed by the customer is known as user acceptance testing (UAT), end-user testing, site (acceptance) testing, or field (acceptance) testing.

[bookmark: _Toc378551815]Testing Approach

There are two kind of approach in testing, top-down and bottom-up. Bottom Up Testing is an approach to integrated testing where the lowest level components—modules, procedures or functions— are tested first, then integrated and used to facilitate the testing of higher level components. After the integration testing of lower level integrated modules, the next level of modules will be formed and can be used for integration testing. The process is repeated until the components at the top of the hierarchy are tested. This approach is helpful only when all or most of the modules of the same development level are ready.This method also helps to determine the levels of software developed and makes it easier to report testing progress in the form of a percentage.

[bookmark: _Toc378551816]Objective Testing

2.5.6.1 Installation Testing

Installation testing is a kind of quality assurance work in the software industry that focuses on what customers will need to do to install and set up the new software successfully. The testing process may involve full, partial or upgrades install/uninstall processes. This testing is typically done by the software testing engineer in conjunction with the configuration manager. Implementation testing is usually defined as testing which places a compiled version of code into the testing or pre-production environment, from which it may or may not progress into production. This generally takes place outside of the software development environment to limit code corruption from other future or past releases (or from the use of the wrong version of dependencies such as shared libraries) which may reside on the development environment.

The simplest installation approach is to run an install program, sometimes called package software. This package software typically uses a setup program which acts as a multi-configuration wrapper and which may allow the software to be installed on a variety of machine and/or operating environments. Every possible configuration should receive an appropriate level of testing so that it can be released to customers with confidence.

2.5.6.2 Compatibility Testing

A common cause of software failure (real or perceived) is a lack of its compatibility with other application software, operating systems (or operating system versions, old or new), or target environments that differ greatly from the original (such as a terminal or GUI application intended to be run on the desktop now being required to become a web application, which must render in a web browser). For example, in the case of a lack of backward compatibility, this can occur because the programmers develop and test software only on the latest version of the target environment, which not all users may be running. This result in the unintended consequence that the latest work may not function on earlier versions of the target environment, or on older hardware that earlier versions of the target environment was capable of using. Sometimes such issues can be fixed by proactively abstracting operating system functionality into a separate program module or library.

2.5.6.3 Smoke and Sanity Testing

A sanity test or sanity check is a basic test to quickly evaluate whether a claim or the result of a calculation can possibly be true. It is a simple check to see if the produced material is rational (that the material's creator was thinking rationally, applying sanity). The point of a sanity test is to rule out certain classes of obviously false results, not to catch every possible error. A rule-of-thumb may be checked to perform the test. The advantage of a sanity test, over performing a complete or rigorous test, is speed.

Smoke testing refers to physical tests made to closed systems of pipes to test for leaks. By metaphorical extension, the term is also used for the first test made after assembly or repairs to a system, to provide some assurance that the system under test will not catastrophically fail. After a smoke test proves that "the pipes will not leak, the keys seal properly, the circuit will not burn, or the software will not crash outright" the system is ready for more stressful testing.

2.5.6.4 Regression Testing

Regression testing focuses on finding defects after a major code change has occurred. Specifically, it seeks to uncover software regressions, or old bugs that have come back. Such regressions occur whenever software functionality that was previously working correctly stops working as intended. Typically, regressions occur as an unintended consequence of program changes, when the newly developed part of the software collides with the previously existing code. Common methods of regression testing include re-running previously run tests and checking whether previously fixed faults have re-emerged. The depth of testing depends on the phase in the release process and the risk of the added features. They can either be complete, for changes added late in the release or deemed to be risky, to very shallow, consisting of positive tests on each feature, if the changes are early in the release or deemed to be of low risk.

2.5.6.5 Acceptance Testing

Acceptance testing is a test conducted to determine if the requirements of a specification or contract are met. It may involve chemical tests, physical tests, or performance tests.

In systems engineering it may involve black-box testing performed on a system (for example: a piece of software, lots of manufactured mechanical parts, or batches of chemical products) prior to its delivery.

Software developers often distinguish acceptance testing by the system provider from acceptance testing by the customer (the user or client) prior to accepting transfer of ownership. In the case of software, acceptance testing performed by the customer is known as user acceptance testing (UAT), end-user testing, site (acceptance) testing, or field (acceptance) testing.

[bookmark: _Toc378551817]Benefits

A 2005 study found that using TDD meant writing more tests and, in turn, programmers who wrote more tests tended to be more productive. Hypotheses relating to code quality and a more direct correlation between TDD and productivity were inconclusive. Programmers using pure TDD on new ("greenfield") projects report they only rarely feel the need to invoke a debugger. Used in conjunction with a version control system, when tests fail unexpectedly, reverting the code to the last version that passed all tests may often be more productive than debugging.

Test-driven development offers more than just simple validation of correctness, but can also drive the design of a program. By focusing on the test cases first, one must imagine how the functionality will be used by clients (in the first case, the test cases). So, the programmer is concerned with the interface before the implementation. This benefit is complementary to Design by Contract as it approaches code through test cases rather than through mathematical assertions or preconceptions. Test-driven development offers the ability to take small steps when required. It allows a programmer to focus on the task at hand as the first goal is to make the test pass. Exceptional cases and error handling are not considered initially, and tests to create these extraneous circumstances are implemented separately. Test-driven development ensures in this way that all written code is covered by at least one test. This gives the programming team, and subsequent users, a greater level of confidence in the code.

While it is true that more code is required with TDD than without TDD because of the unit test code, total code implementation time is typically shorter. Large numbers of tests help to limit the number of defects in the code. The early and frequent nature of the testing helps to catch defects early in the development cycle, preventing them from becoming endemic and expensive problems. Eliminating defects early in the process usually avoids lengthy and tedious debugging later in the project.

TDD can lead to more modularized, flexible, and extensible code. This effect often comes about because the methodology requires that the developers think of the software in terms of small units that can be written and tested independently and integrated together later. This leads to smaller, more focused classes, looser coupling, and cleaner interfaces. The use of the mock object design pattern also contributes to the overall modularization of the code because this pattern requires that the code be written so that modules can be switched easily between mock versions for unit testing and "real" versions for deployment.

[bookmark: _Toc378551818]Mobile Application Development

Mobile application development is the process by which application software is developed for low-power handheld devices, such as personal digital assistants, enterprise digital assistants or mobile phones. These applications can be pre-installed on phones during manufacturing, downloaded by customers from various mobile software distribution platforms, or delivered as web applications using server-side or client-side processing (e.g. JavaScript) to provide an "application-like" experience within a Web browser. Application software developers also have to consider a lengthy array of screen sizes, hardware specifications and configurations because of intense competition in mobile software and changes within each of the platforms.

[bookmark: _Toc378551819]Research Methodology

[bookmark: _Toc378551820]Conceptual Model

This study was carried out to design and build Integrated Personal Health Record System using test-drive development method. Technology that will be used is ASP.NET for programming and SQL Server for the database.

[image:]

[bookmark: _Toc378322359]Figure 3. 1 PHR Model

Pictures 3.1 explain about PHR model that will be created in this study. The functionality at this PHR include reporting, device data upload-information, patient logs and journal, mobile version, map to health vault emergency contact information, regular doctors (appointment scheduling), preferred hospitals, medical conditions, functional status, a list of your medicines, dosages, allergies, date of last physical, and medical equipment. The functionality also divided into 7 different modules (Registration, Main Panorama and News, Personal Info, List of Illnesses, Current Medication, Doctor, and Application bar) to facilitate the code of program on implementation.

First, the data input from PHR application will be directed to Microsoft HealthVault Windows Phone Connector. After connected, the data like personal information, emergency contact, insurance, list dates and illnesses, medical condition will be stored first in Microsoft Health Vault Platform. The data will be synchronized in web and can be view again in user phone. This model also exploits some feature on windows phone platform like live tiles, toast notifications, and many more.

[bookmark: _Toc378551821]Systematics Research

Systematics research is required in conducting research because this step is useful to explain the whole point and give clear direction to solve a problem and reach the goals. In this study, author use agile and test-driven development method to analyze and implement integrated PHR system. Based on the above methods, the model development can be seen as follows:

[bookmark: _Toc378322360]Figure 3. 2 Systematics Research

Each box represents a development activity. The envisioning includes two main activities, initial requirement, initial architecture & design and these are done during iteration 0 (common term for the first iteration before you start into development iterations). For the first release of a system, it takes several days to weeks to identify some requirement as well as the scope of the model. For initial requirement and architecture, this application use UML as a model to explore how users will work with system, the relationship between them, and to create user initial interface model which explores UI and usability issues. The goal is to build understanding between the requirement and architecture, it isn’t to write detailed documentation. After finishing first iteration, every requirement had to be estimated accurately and this is where iteration modeling comes in. In TDD, test case and test scenario are the initial modeling for the development phase. A test case is a set of conditions or variables under which a tester will determine whether the application is working as it was originally modeled for it to do. A test scenario is a software testing activity that uses scenario and test case to help work through test system. Both of them are important to TDD methods.

[bookmark: _Toc378551822]Initial Requirement

At its most basic, an initial requirement is a property which must be exhibited by software developed or adapted to solve problem. The problem may be to automate past of task of someone who will use the software, to control a device, or to correct shortcomings of existing software. There are two types of requirements:

a. Functional Requirements

Functional requirements describe the functions that the software is to execute, like calculations, technical details, and data manipulation. A function also describe as a set of inputs, the behavior, and outputs. The PHR current condition and the technology will be used as an input. The method, subject and object as a behavior. And the final result, integrated personal health record as an output.

b. Non-Functional Requirements

Non-functional requirements are the ones that act to constrain the solution. They can be further classified according to whether they are performance requirements, maintainability requirements, capability requirements, reliability requirements, etc. There is no widely accepted definition for what a specific capabilities a PHR needs to include, but PHR needs to at least possess the following four characteristics, comprehensive, interactive, patient-controlled and secure.

c. Analysis

This topic is concerned with the process of analyzing requirements to detect and resolve conflicts between the requirements, discover the bounds or limitations of the PHR application that will be build, and elaborate system requirements to derive software requirements. Given the current nature of healthcare and limited adoption of technology in many care settings, no PHR on the market now possesses all the characteristics of a true PHR. A closer look at existing condition of PHR and its solution:

[bookmark: _Toc378252754]Table 3. 1 Existing Condition

		No

		Existing Condition

		Solution

		1

		The current PHR market remains fairly fragmented with multiple models still in use.

		Create integrated personal health record (PHR) based on four main characteristic of PHR, comprehensive, interactive, patient-controlled and secure.

		2

		No PHR model in use today could accurately be described as having all the characteristics of a true PHR.

		

[bookmark: _Toc378551823]Initial Architecture and Design

Software design plays an important role in developing software. It allows software engineers to produce various models that form a kind of blueprint of the solution to be implemented. Creating UML and test scenario, the models is analyzed and evaluated to determine whether or not they will fulfill the various requirements. The UML model that will be used first is use case diagram, activity diagram, and class diagram. It’s different with test scenario. Test scenario using scenario: hypothetical stories as activity to help the tester work through a complex problem or test system. And finally, the resulting models will be used as an input and the starting point of construction and testing.

[bookmark: _Toc378551824]Iteration modeling and implementation TDD

At the beginning of modeling iterations, the team explores what they need to build the PHR application so the work can be estimated for the iteration run effectively. The implementation process conducted to build code program using C# as a language and SQL or Windows Azure as repository data.

[bookmark: _Toc378322361]Figure 3. 3 Test Driven Development

In test-driven development, each new feature begins with writing a test. This test must inevitably fail because it is written before the feature has been implemented. Three big stages can be conceptually distinguished, namely Unit, Integration, and System.

a. Unit testing

Unit testing verifies the functioning in isolation of software pieces which are separately testable. This testing stage refers to class diagram that have been built in UML design. These testing are more like individual subprograms or a larger component made of tightly related units.

b. Integration testing

Integration testing is the process of verifying the interaction between software components. This testing stage refers to activity and sequential diagram that have been built in UML design. This testing implies integrating the software components that have been tested in unit testing.

c. System testing

System testing is concerned with the behavior of a whole system. The majority of functional failures should already have been identified during unit and integration testing. This testing stage refers to use-case diagram that have been built in UML design. This testing usually considered appropriate for comparing the system to the non-functional requirements.

[bookmark: _Toc378551825]System Requirement

Following here is the specification of system requirements needed in the design of Integrated Personal Health System that author made:

a. Hardware: 1.4 GHz single core, Adreno 205 GPU, 512 MB RAM, Internal Memory 16 GB

b. Operating System: Windows Phone 7.8

c. Software: Expression Blend 2012, Visual Studio C# 2012

[bookmark: _Toc378551826]Requirement Analysis and System Design

[bookmark: _Toc378551827]Use Case Diagram (Persona Health System)

Use case diagram is created based on model architecture that had been built in conceptual model. In this diagram, use case is split into five main parts: register, current medication, personal info, list of doctor, and list of illnesses.

a. Use Case Diagram Register

The figure below is the detail of the register use case that used in this application. In this use case user have two main activities, register and login. User can login using facebook, Hotmail, and also OpenID.

[image:]

[bookmark: _Toc378322364]Figure 4. 1 Use Case Diagram Register

b. Use Case Diagram Current Medication

In figure 4.2, the use case is explains about managing current medication tab in application. User can edit and delete the medication about himself.

[image:]

[bookmark: _Toc378322365]Figure 4. 2 Use Case Diagram Current Medication

c. Use Case Diagram Personal Info (General)

The figure below is the detail use case about personal information in general all application. User can manage their own personal info, view their health logs and analysis, search nearest hospital using bing maps, and recent news about health.

[image:]

[bookmark: _Toc378322366]Figure 4. 3 Use Case Diagram Personal Info (General)

d. Use Case Diagram List of Doctor

In figure 4.4, the use case is explains about list of doctor in this application. User can make an appointment with the doctor, and managing the list of doctor that user used for medication.

[image:]

[bookmark: _Toc378322367]Figure 4. 4 Use Case Diagram List Of Doctor

e. Use Case Diagram List of Illnesses

The figure below is the detail use case about list of illnesses. User can manage their own illnesses like input symptom, edit, and delete list of illnesses.

[image:]

[bookmark: _Toc378322368]Figure 4. 5 Use Case Diagram List Of Illnesses

[bookmark: _Toc378551828]Activity Diagram (Persona Health System)

Activity Diagram is graphical representations of workflows and step about application work within the activities. In this application, the activity diagram is divided into 5 diagrams:

a. Activity diagram Registration

[image:]

[bookmark: _Toc378322369] Figure 4. 6 Activity Diagram Registration

Figure 4.6 is activity diagram about how registration works. First, user click sign up button and the system will show display registration form. User fills the registration information if they do not have current id like Hotmail or facebook. After finishing fill the form, system will display successful message and the registration activity is done.

b. Activity Diagram Current Medication

[image:]

[bookmark: _Toc378322370]Figure 4. 7 Activity Diagram Current Medication

Figure 4.7 is activity diagram about how current medication works. After successfully sign up and login, user can edit current medication and delete current medication in main page. After change it, the system will save the data and back to main page.

c. Activity Diagram Personal Info

[image:]

[bookmark: _Toc378322371]Figure 4. 8 Activity Diagram Personal Info

Figure 4.8 is activity diagram about personal information in main page. After successfully sign up and login, user can manage their personal info, search nearest hospital using bing maps, and view news. Then the system will save the data and back to main page.

d. Activity Diagram List of Doctors

[image:]

[bookmark: _Toc378322372]Figure 4. 9 Activity Diagram List Of Doctors

Figure 4.9 is activity diagram about list of doctors. After successfully sign up and login, user can manage their list of doctors and make an appointment using email with the doctors. Then the system will save the data and back to main page.

e. Activity Diagram List of Illnesses

[image:]

[bookmark: _Toc378322373]Figure 4. 10 Activity Diagram List Of Illnesses

Figure 4.10 is activity diagram about list of illnesses. After successfully sign up and login, user can input symptom and manage their list of illnesses. Then the system will save the data and back to main page.

[bookmark: _Toc378551829]Class Diagram (Persona Health Library)

[bookmark: _Toc378249669][bookmark: _Toc378551830][image: C:\Users\inform\AppData\Local\Microsoft\Windows\INetCache\Content.Word\Untitled.png]

[bookmark: _Toc378249670][bookmark: _Toc378322374]Figure 4. 11 Class Diagram Persona Health Library

Class diagram is a static structure of diagram that show the system classes, their attributes, operations, and the relationship among objects. Figure 4.11 show a class diagram about persona health library works.

[bookmark: _Toc378551831]Software Requirement

Software requirement is an attribute specification for a software system and a statement that identifies capability, characteristic, or quality factor from a system to get a value and utility from user. There are 3 types of software requirement:

[bookmark: _Toc378551832]Functional Requirement

Functional requirement is derived from user requirements to the functions that exist in the system along with quality attributes. Input, process and output were analyzed on each functional requirement.

1. [bookmark: _Toc365060037][bookmark: _Toc367360031][bookmark: _Toc367360358][bookmark: _Toc378249676][bookmark: _Toc378551833]Registration

[bookmark: _Toc378252763]Table 4. 1 Registration Functional Requirement

		Function

		Registration

		Priority

		High

		Trigger

		-

		Initial Condition

		Actor has not been registered and authenticated

		Normal Flow

		1. Open Personal Health Application.

2. Actor pressing sign up button.

3. System open HealthVault page that will be connected to email.

4. Actor create a new HealthVault account by pressing create an account.

5. Actor performs the necessary input data to create HealthVault account.

6. Actor pressing the continue button and allow the application to access the data of actors.

7. Back to main menu.

		Alternative Flow

		-

		Final Condition

		Actor authenticated and the current page is main menu.

		Exception

		-

		Non-Functional

		Security applications. Authentication that used is username and password of each user.

2. [bookmark: _Toc365060038][bookmark: _Toc367360032][bookmark: _Toc367360359][bookmark: _Toc378249677][bookmark: _Toc378551834]Medication

[bookmark: _Toc378252764]Table 4. 2 Medication Functional Requirement

		Function

		Manage Medication

		Priority

		High

		Trigger

		-

		Initial Condition

		Actor authenticated

		Normal Flow

		1. Input early symptom

2. System receive the data and take it to database

3. Actor can edit or delete the data if necessary.

4. Process repeated until input symptom is done.

5. Actor ended the input process and triggering system to process the symptom data based on recent time.

 5.1. Actor pressed a button to end input process.

 5.2. System saves the data into HealthVault system.

6. Systems open the current medication view page.

		Alternative Flow

		-

		Final Condition

		Data symptom increases, current medication view

		Exception

		-

		Non Functional

		Security applications. Authentication that used is username and password of each user.

3. [bookmark: _Toc365060039][bookmark: _Toc367360033][bookmark: _Toc367360360][bookmark: _Toc378249678][bookmark: _Toc378551835]List of Doctor

[bookmark: _Toc378252765]Table 4. 3 List Of Doctor Functional Requirement

		Function

		Manage list of doctor

		Priority

		High

		Trigger

		-

		Initial Condition

		Actor authenticated

		Normal Flow

		1. Input doctor profile.

2. Systems receive the data and take it to database.

3. Actor can edit or delete the data if necessary.

4. Process repeated until input profile is done.

5. Actor ended the input process and can make an appointment process if it needed.

 5.1. Actor pressed a button to do appointment.

 5.2. Actor input description, date, place and the doctor data.

 5.3. Actor press make an appointment button.

 5.4. The system will transmit the data to the doctor email

6. Actor ended the input data process.

		Alternative Flow

		-

		Final Condition

		Doctor profile data increases.

		Exception

		-

		Non Functional

		Security applications. Authentication that used is username and password of each user.

4. [bookmark: _Toc365060040][bookmark: _Toc367360034][bookmark: _Toc367360361][bookmark: _Toc378249679][bookmark: _Toc378551836]List of Illness

[bookmark: _Toc378252766]Table 4. 4 List Of Illness Functional Requirement

		Function

		Manage list of illness

		Priority

		High

		Trigger

		-

		Initial Condition

		Actor authenticated

		Normal Flow

		1. Input the symptom.

2. Systems receive the data and take it to database.

3. Actor can edit or delete the data if necessary.

4. Process repeated until input symptom data is done.

5. Actor ended the input process and triggering the system to process the data based on recent time.

 5.1. Actor pressed the button to end the process input.

 5.2. System saves the data into HealthVault system.

6. Systems open the view analysis page.

		Alternative Flow

		-

		Final Condition

		Symptom data increases.

		Exception

		-

		Non Functional

		Security applications. Authentication that used is username and password of each user.

5. [bookmark: _Toc365060041][bookmark: _Toc367360035][bookmark: _Toc367360362][bookmark: _Toc378249680][bookmark: _Toc378551837]Personal Info

[bookmark: _Toc378252767]Table 4. 5 Personal Info Functional Requirement

		Function

		Manage personal info

		Priority

		High

		Trigger

		-

		Initial Condition

		Actor authenticated.

		Normal Flow

		1. Input medical record data.

2. Systems receive the data and take it to database.

3. Actor can edit or delete the data if necessary.

4. Process repeated until input medical record data is done.

5. System open the view medication page.

		Alternative Flow

		-

		Final Condition

		Medical record data increases

		Exception

		-

		Non Functional

		Security applications. Authentication that used is username and password of each user.

[bookmark: _Toc365060042][bookmark: _Toc367360036][bookmark: _Toc367360363]

6. [bookmark: _Toc378249681][bookmark: _Toc378551838]Search Nearest Hospitals

[bookmark: _Toc378252768]Table 4. 6 Search Nearest Hospital Functional Requirement

		Function

		Search Nearest Hospitals

		Priority

		High

		Trigger

		-

		Initial Condition

		Actor authenticated.

		Normal Flow

		1. The system is set on default, searching with “hospital” name on map.

2. Actors can find out more info about the hospital information via google.

3. Process repeated until searching nearest hospital is done.

		Alternative Flow

		-

		Final Condition

		Data map is open.

		Exception

		-

		Non Functional

		Security applications. Authentication that used is username and password of each user.

7. [bookmark: _Toc365060043][bookmark: _Toc367360037][bookmark: _Toc367360364][bookmark: _Toc378249682][bookmark: _Toc378551839]Dosage Reminder

[bookmark: _Toc378252769]Table 4. 7 Dosage Reminder Functional Requirement

		Function

		Input Dosage Reminder

		Priority

		High

		Trigger

		-

		Initial Condition

		Actor authenticated.

		Normal Flow

		1. Input data medication name, strength, form, and purpose.

2. Input time and quantity of the medicine.

3. Systems receive the data and take it to database.

4. Process repeated until searching nearest hospital is done.

5. System open the main panorama view.

		Alternative Flow

		-

		Final Condition

		Data dosage reminder increases

		Exception

		-

		Non Functional

		Security applications. Authentication that used is username and password of each user.

[bookmark: _Toc378551840]Non Functional Requirement

Non-functional requirement is one of the requirements that act as constrain in one solution. Here are some non-functional requirements that needed in applications:

a. Readiness

System and server should be online 1 x 24 hours and have enough storage to save the data. Persona Health use cloud technology from HealthVault to provide resources such as server, storage and networking so the system won’t easily down when accessed by many people at the same time.

b. Comprehensive

Data from Persona Health must be comprehensive, include the data that will be used in making decisions related to health care clinical information from doctors, clinics, and hospitals.

c. Interactive

Interactive here means that the information should flows in both directions, one from applications and one towards the application. The user is given feedback proactive and timely based on the information that had been given by doctors. And the doctor has the authority to know any important changes or new information that occurs on your medical records.

d. Patient-Controlled

User can login using email or social media and should be given a lifetime access to all information at this application and decide the person that can access that information.

e. Secure

Information in this application can only be accessed by user or 3rd party that received approval from users. The data is also stored on a healthvault cloud server, so the safety is assured.

[bookmark: _Toc378551841]Data Requirement

There are data that required in process of identifying and documenting an application. In this case, there are two types of data, medical records and user data.

a. Medical Record Data

These data cover information both written and recorded about the identity, anamnesis, physical determination, laboratory, diagnostic and medical measures that will be used and processed into information in the form of logs or personal medical journal that useful for user. Access rights are owned by the system to this data is read.

b. User Data

Any data that the user uses in this application is used for the purposes of the completeness of the medical record itself, and therefore every function of the data is always required. The main attribute is used is User ID, name, and their own medical record. Access rights are owned by the system to this data is read and write.

[bookmark: _Toc378551842]Design Pattern

Design pattern that will be used in Persona Health application is MVVM (Model View ViewModel). MVVM is a specific implementation targeted at UI development platforms which support the event-driven programming in silverlight on the .NET platforms using XAML and .NET languages.

[image:]

[bookmark: _Toc378322377]Figure 4. 14 MVVM Design Pattern for Windows Phone

MVVM facilitates a clear separation of the development of the graphical user interface (GUI). In this case, MVVM designed to use specific function in windows phone to make it easier for designer and programmer to create an application. XAML in windows phone is used for binding up a ViewModel. This design allows the designer to focus on the UI rather than programming or business logic. They can use Microsoft Blend to design and programmer can use Microsoft Visual Studio to add business logic.

[image:]

[bookmark: _Toc378322378]Figure 4. 15 Microsoft Blend view of PHR application for designer

[image:]

[bookmark: _Toc378322379]Figure 4. 16 Microsoft Visual Studio view of PHR application for programmer

The advantages of implementing the MVVM design pattern is a shorter development time for making business logic. Furthermore program code can be done independently without having to wait for the completion of the design of the user interface first. In addition, the maintenance process is also much easier because the program code more structured and modular.

Every business process or service logic, can be worked continously with the initial model that was created by the previous XAML. Test will be conducted at the beginning and after the business logic has been created and linked to the existing model. Basically this design combines screen interface in an application with business logic screen.

[bookmark: _Toc378551843]Data Implementation

Data maintained by this application is an input data form user stored using cloud storage technology in HealthVault account. Cloud storage technology is an information technology services that can be used or accessed via internet to provide users information needs. In this case, the application data will be stored on the cloud server and will be temporarily stored on the user’s local windows phone. Furthermore, user can access the data residing on a computer server located in the cloud through internet.

[bookmark: _Toc378551844]UI Flow Diagram

User interface flow diagram used for modeling the interaction that users have with application as defined single use case. Use case can refer to several screens and provides insight into how they are used. Based on this information, user interface-flow diagram can be created based on behavioral view on use case.

[bookmark: _Toc378322380]Figure 4. 17 Flow Diagram

[bookmark: _Toc378551845]UI Flow Design

Icon :

[image: C:\Users\inform\Dropbox\New folder\Design\icon.png]

Logo :

[image: C:\Users\inform\Dropbox\New folder\Design\logo.jpg]

[bookmark: _Toc378322381]Figure 4. 18 Persona Health Icon & Logo

Registration :

[image:][image:][image:]

[image:][image:][image:]

[bookmark: _Toc378322382]Figure 4. 19 Registration View

Main Panorama and News :

[image:][image:][image:]

[image:][image:]

[bookmark: _Toc378322383]Figure 4. 20 Main Panorama and News view

Personal Info:

[image:][image:]

[bookmark: _Toc378322384]Figure 4. 21 Personal Info View

Illnesses :

[image:][image:]

[bookmark: _Toc378322385]Figure 4. 22 Illnesses View

Current Medication :

[image:][image:][image:]

[bookmark: _Toc378322386]Figure 4. 23 Current Medication View

Doctor:

[image:][image:][image:]

[bookmark: _Toc378322387]Figure 4. 24 Doctor View

[bookmark: _Toc378551846]Development

[bookmark: _Toc378551847]Implementation

[image:]The process implementation code program in this application is divided into 7 modules: Registration, Main Panorama and News, Personal info, Illnesses, Current Medication, Doctor, and Application Bar. Using Microsoft Test Manager and Visual Studio 2012 as compiler, here is an overview of the implementation:

[bookmark: _Toc378322388]Figure 5. 1 General Testing Result

[bookmark: _Toc378551848]Registration

Table 5.1 explains about registration test result. Function like sign-up, sign-in using facebook, opened, and Hotmail are tested here. The table and screenshot can be seen in the following table and figures below.

[bookmark: _Toc378252773]Table 5. 1 Registration Test Result

		No.

		Test Scenario

		Expected Result

		Test Result

		Comment

		1

		Open Persona Health application on device

		A. Application open without error

B. Application open less than 7 seconds

		Pass

		

		2.

		Click sign up / sign in button

		A. HealthVault main web page opened, without error

B. If internet connection is off, there should be page stating that “Internet connection is off”

		Pass

		Testing internet connection

		3.

		Click create an account on HealthVault page

		A. Create new account page open.

		Pass

		

		4.

		Enter email address, (email address should be valid)

		A. Continue without error if email address is valid

B. There should be an error message stating that “The email address is not valid” if email address is not valid

C. If email is already used, there should be an error message stating that “The email address that you entered is already a Microsoft account”

		Pass

		

		5.

		Enter password, password should be 6-character minimum, case sensitive.

		A. Continue without error if password is valid

B. If password is weak, there should be recommend message stating “Weak password, consider revising”

C. If password is not valid, there should be an error message stating “Your password must be between 6 and 16 characters and contains only letters, number, or standard keyboard”

		Pass

		

		6.

		Retype password

		A. If user retype same password, continue without error

B. If password is not same, there should be error message stating “The new password and the confirmation password don’t match.”

		Pass

		

		7.

		Select country/ region

		A. If country is supported, continue without error

B. If not, there should be error message stating “This location is not supported by application”

		Pass

		

		8.

		Click continue to proceed

		A. Sign in page open without error

		Pass

		

		9.

		Click Sign in at HealthVault Page

		A. Sign in page open without error

		Pass

		

		10.

		Enter username and password at sign in page

		A. If username and password is valid, continue to main application without error.

B. If username error, there should be message stating “please type your email address in the format, someone@exam.com”

C. If username is not registered, there should be error stating “That Microsoft account doesn’t exist. Enter a different account or get a new account”

D. If password is wrong, there should be error message stating “Wrong password”

		Pass

		

		11.

		Click sign in from existing service (Facebook)

		A. Facebook request for application is open

		Pass

		Log-in using Facebook

		12.

		Click sign in from existing service (Open ID)

		A. Open ID request for application is open

		

		Log-in using Open ID

		13.

		Click allowing request for access data from application

		A. Continue to main page with a visible user name.

		

		

[image:]

[bookmark: _Toc378322389]Figure 5. 2 Registration Testing Result

[bookmark: _Toc378322390]Figure 5. 3 Screenshot Registration View

[bookmark: _Toc378551849]Main Panorama and News

[bookmark: _Toc378252774]Table 5.2 explains about main panorama and news test result. Function like sweeping between option, button in general, and news are tested here. The table and screenshot can be seen in the following table and figures below.

Table 5. 2 Main Panorama and News Test Result

		No.

		Test Scenario

		Expected Result

		Test Result

		Comment

		1.

		Click Personal Health option

		A. Main panorama page is open without error

B. Photo visible at personal info page without glitch or bug.

C. If photo not visible (no photo within user), continue the application without error or back to menu

		Pass

		

		2.

		Swipe left every page start from personal info page

		A. Illnesses page open without error or delay

B. Medication page open without error or delay

C. Doctor page open without error or delay

D. News page open without error or delay

E. Personal info page open without error or delay

		Pass

		

		3.

		Swipe right every page start from personal info page

		A. News page open without error or delay

B. Doctor page open without error or delay

C. Medication page open without error or delay

D. Illnesses page open without error or delay

E. Personal info page open without error or delay

		Pass

		

		4.

		Click load news on News page

		A. News loaded without error less than 30 sec

B. If not loaded less than 30 sec, there will be error notification.

		Pass

		

[image:]

[bookmark: _Toc378322391]Figure 5. 4 Main Panorama Testing Result

[bookmark: _Toc378322392]Figure 5. 5 Screenshot Main Panorama

[bookmark: _Toc378551850]Personal Info

[bookmark: _Toc378252775]Table 5.3 explains about personal info test result. Function like measurements, add allergy is tested here. The table and screenshot can be seen in the following table and figures below.

Table 5. 3 Personal Info Test Result

		No.

		Test Scenario

		Expected Result

		Test Result

		Comment

		1.

		Tap Health Info option on Personal Info page

		A. Health info page (Pivot) open without error

B. Photo visible at personal info page without glitch or bug.

C. If photo not visible (no photo within user), continue the application without error or back to menu

		Pass

		

		2.

		Tap Measurements option on Personal Info page

		A. Measurements page (Pivot) open without error

B. The data will be visible at measurements page.

C. If the data is not visible, there should be message stating “please try again later”

		Pass

		

		3.

		Tap allergies option on Health Info page

		A. Allergies page open without error

B. The data about allergy should be visible at allergies page (if user have it)

C. If the data is not visible, there should be message stating “please try again later”

		Pass

		

		4.

		Click add button on application bar at allergies page

		A. Edit allergies page open without error

		Pass

		

		5.

		Enter allergy data at edit allergy page

		A. Allergy name, reaction, type and first observed should be filled, except notes. If one of them is not filled, application can’t continue

		Pass

		

		6.

		Click save data on application bar at edit allergy page

		A. Data saved into server and back to allergies page.

B. The data is now visible at allergies page.

		Pass

		

		7.

		Click delete data on application bar at edit allergy page

		A. Data is deleted and not visible at allergies page

		Pass

		

		8.

		Tap conditions option on Health Info page

		A. Condition page open without error

B. The data about condition should be visible at allergies page (if user have it)

C. If the data is not visible, there should be message stating “please try again later”

		Pass

		

		9.

		Click add button on application bar at conditions page

		A. Edit conditions page open without error

		Pass

		

		10.

		Enter conditions data at edit conditions page

		A. Status, when it started, when it ended, how it ended should be filled, except notes. If one of them is Not filled, application can’t continue

		Pass

		

		11.

		Click save data on application bar at edit conditions page

		A. Data saved into server and back to conditions page.

B. The data is now visible at conditions page.

		Pass

		

		12.

		Click delete data on application bar at edit conditions page

		A. Data is deleted and not visible at conditions page

		Pass

		

[image:]

[bookmark: _Toc378322393]Figure 5. 6 Personal Info Testing Result

[bookmark: _Toc378322394]Figure 5. 7 Screenshot Personal Info View

[bookmark: _Toc378551851]Illnesses & Current Medication

[bookmark: _Toc378252776]Table 5.4 explains about illnesses and current medication test result. Function like input symptom, view illnesses is tested here. The table and screenshot can be seen in the following table and figures below.

Table 5. 4 Illnesses & Current Medication Test Result

		No.

		Test Scenario

		Expected Result

		Test Result

		Comment

		1.

		Tap Input Symptom option on Illnesses page

		A. Input symptom page is open without error

		

		

		2.

		Enter input symptom data

		A. Name of Symptom and description should be filled. If one of them is not filled, application can’t continue

		Pass

		

		3.

		Tap List of illnesses option on Illnesses page

		A. List of illnesses option open without error

B. The illnesses data will be shown

C. If there are no illnesses data, no data will be shown.

		Pass

		

		4.

		Tap Current Medication on Medication page

		A. The calendar consist of medication that user take

B. If user takes medication, there will be info about it.

C. If user didn’t take medication, there will be a message “There’s no medication for the selected day”

		Pass

		

		5.

		Tap Dosage Reminder on Medication Page

		A. Submit new page open without error

		Pass

		

		6.

		Enter submit new data

		A. Medication name, purposes, form, times in should be filled. If one of them is not filled, application can’t continue

		Pass

		

		7.

		Tap submit on submit new page

		A. The data will be saved and the Medication page will be opened

		Pass

		

[image:]

[bookmark: _Toc378322395]Figure 5. 8 Illnesses and Current Medication Testing Result

[image:][image:][image:]

[bookmark: _Toc378322396]Figure 5. 9 Screenshot Illnesses and Current Medication View

[bookmark: _Toc378551852]Doctor

[bookmark: _Toc378252777]Table 5.5 explains about doctor page test result. Function like list doctor, make an appointment, and search nearest hospital is tested here. The table and screenshot can be seen in the following table and figures below.

Table 5. 5 Doctor Test Result

		No.

		Test Scenario

		Expected Result

		Test Result

		Comment

		1.

		Tap List of Doctor option on Doctor page

		A. List Of Doctor page open and shown without any error

C. If the data is not visible, there should be message stating “please try again later”

		Pass

		

		2.

		Tap doctor name on List Of Doctors page

		A. Drop down option and detail about the doctor are shown

		Pass

		

		3.

		Tap Make an Appointment on Doctor page

		A. Email page are shown

B. Choose an account to send an email

C. Type the message, to, and the subject of appointment.

D. Users can attach data from phone

E. Message, subject should be filled. If not, there will be message stating “Message and subject should be filled”

		Pass

		

		4.

		Tap Search Nearest Hospital

		A. Bing maps are open, and shown the nearest hospital location

		Pass

		

[image:]

[bookmark: _Toc378322397]Figure 5. 10 Doctor Testing Result

[image:][image:][image: C:\Users\inform\AppData\Local\Microsoft\Windows\INetCache\Content.Word\Screen Capture (51).jpg]

[bookmark: _Toc378322398]Figure 5. 11 Screenshot Doctor View

[bookmark: _Toc378551853]Application Bar

[bookmark: _Toc378252778]Table 5.6 explains about illnesses and current medication test result. Function like search maps, emergency call, and share is tested here. The table and screenshot can be seen in the following table and figures below.

Table 5. 6 Application Bar Test Result

		No.

		Test Scenario

		Expected Result

		Test Result

		Comment

		1.

		Tap search icon on application bar

		A. Bing maps are open, and shown the nearest hospital location

		Pass

		

		2.

		Tap call button on application bar

		A. Phone will be show a notification whether user want to call or not.

B. If user select yes, application will call the emergency

C. If user select no, application will be navigate to main panorama page

		Pass

		

		3.

		Tap share button on application bar

		A. There will be an option, whether user want to share the apps via facebook, twitter, or other social media application

B. Every post will be using hash tag personal health

		Pass

		

		4.

		Tap exit option on application bar

		A. Application will close

		Pass

		

[image:]

[bookmark: _Toc378322399]Figure 5. 12 Application Bar Testing Result

[image:][image: C:\Users\inform\AppData\Local\Microsoft\Windows\INetCache\Content.Word\Screen Capture (53).jpg]

[bookmark: _Toc378322400]Figure 5. 13 Screenshot Application Bar View

[bookmark: _Toc378551854]Usability Testing Result

The usability testing employed user centered interaction design to evaluate a product, in this case the Persona Application itself. The number of users tested this application is about 40 people with IT background in Telkom University. In general, most respondents say that the applications have good or fair quality as health application. The testing components are divided into 4 parts, homepage, UI/UX, forms, and accessibility.

[bookmark: _Toc378322401]Figure 5. 14 General chart result

[bookmark: _Toc378551855]Homepage

[bookmark: _Toc378322402]Figure 5. 15 Chart result about Homepage

In homepage category, users should know what to do next and why it benefits them when they open the Persona Health application. About 52% tester say that persona health application have a good first impression and value proposition for common homepage in mobile application.

[bookmark: _Toc378551856]User Interface and User Experience

[bookmark: _Toc378322403]Figure 5. 16 Chart result about UI/UX

In this category, user experience (UX) involves a person's behaviors, attitudes, and emotions about using a personal. In this category, user is familiar with the button, navigation, and others interface in persona health application. About 40% user saying that the interaction with the persona health system is good to make user understand what is mean.

[bookmark: _Toc378551857]Forms

[bookmark: _Toc378322404]Figure 5. 17 Chart result about Forms

Information in Persona Health application come from both direction, one from applications and one towards the application. The user given forms, data and also feedback proactive and timely based on the information that they had and the information that had been given by doctors. The doctor has the authority to know any important changes or new information that occurs on user medical records. About 51% users say that the form is in good condition.

[bookmark: _Toc378551858]Accessibility

[bookmark: _Toc378322405]Figure 5. 18 Chart result about Accessibility

User is given a lifetime access to all information in Persona Health application that associated with the user itself. Almost most of user says that the accessibility in this application is trustworthy. They can also decide whether they want other person to have an access to the data or not. The data server also online 1 x 24 hours because the applications use cloud based technology from HealthVault. HealthVault provide resource such a server, storage, networking and the system will not easily down when accessed by many people at the same time. The safety of the data is also assured because the data is stored upon cloud.

From the data above it can be concluded that most of the users are quite interested with the Persona Health application, even though the data is filled by the user itself and not integrated with the hospital system. The data in Persona Health application also filled with some guidance from the doctor, so the data in making decisions related to health care has high accuracy. It can help the patient in making decisions related to health care clinical information from doctors, clinics, and hospitals.

[bookmark: _Toc378551859]Interaction Between Components

When user access Personal Health application, the one that will appear on the display screen is the result of interaction between windows phone and the HealthVault framework. Display that provided by HealthVault framework had to go through windows phone operating system first before user can view it on the device.

From HealthVault framework, system gets the data that has been entered by the user. Then, the data is sent to cloud server in Microsoft HealthVault Platform by Microsoft HealthVault Connector for windows phone. Data stored in Microsoft HealthVault Platform can be accessed at any time by the user with internet connection. When windows phone connected to Microsoft HealthVault platform, the data will be synchronized automatically.

[bookmark: _Toc378551860]Conclusion and Suggestion

[bookmark: _Toc378551861]Conclusion

This research demonstrates on developing Personal Health Record application using Test Driven Development method to create a closer of true Personal Health Records based on the four characteristics: comprehensive, interactive, patient-controlled and secure. It also identified the features that have the best potential to engage patients and health care providers even though this research is still limited into personal use. From the usability testing result we can see that there was some interest in using PHR regularly for accessing and controlling health information.

a. The function and all the feature is successfully applied to deploy Personal Health applications that can address the needs of characteristic PHR.

b. Based on the results of the feedback that has been analyzed, Persona Health has made quite able to meet the needs of users in terms of access and control of their health information.

[bookmark: _Toc378551862]Suggestion

This research focused mainly on how to develop Personal Health Record on windows phone device in general. Due to lack of data an effective method was not possible at the time. However, it would be feasible to conduct further in depth research on Personal Health Record and do a cross sectional method. Such study would further enhance the conclusions made in this report on Personal Health Record development on a whole.

The advice given suggestions for further development of the Personal Health applications are as follows:

a. Improve the appearance, UI, UX and content additions to health information such as medical equipment, allergy, blood measurement, weight goals, and others.

b. Most users never experiencing UX on windows phone, it’s hard to control the application. The application should be deployed in another OS like android.

c. Integrating with hospitals or provide health care in order to allow a user to interact with doctors and hospitals.

[bookmark: _Toc378551863]References

		[1]

		Beck, K. (2003). Test driven development—by example. Boston, Addison-Wesley.

		[2]

		Halamka, J. (2008). Early Experiences with Personal Health Records, J Am Med Assoc. 1: 1-7.	

		[3]

		Dazen, E. (2011). Personal Health Record, A True PHR?, Computer Scrience Corporation: 1-9.	

		[4]

		Janzen D, Saiedian H. (2004) ."On the influence of test-driven development on software design. In: Proceedings of the Conference on Software Engineering Education and Training”, Turtle Bay, HI.

		[5]

		Tang, P. G. (2006). "Personal Health Records: Definitions, Benefits, and Strategies for Overcoming Barriers to Adoption." American Medical Informatics Association 13: 121-127.

		[6]

		Tang, Paul; Ash, Joan; Bates, David; Overhage, J.; Sands, Daniel (2006). "Personal Health Records: Definitions, Benefits, and Strategies for Overcoming Barriers to Adoption". JAMIA 13 (2): 121–126.

		[7]

		Waegemann CP (May 2005). "Closer to reality. Personal health records represent a step in the right direction for interoperability of healthcare IT systems and accessibility of patient data". Health Manag Technol.

		

		

[bookmark: _Toc326048675][bookmark: _Toc326666910][bookmark: _Toc339582394][bookmark: _Toc339582483][bookmark: _Toc339583186][bookmark: _Toc345420527][bookmark: _Toc346221259][bookmark: _Toc350684158]

[bookmark: _Toc378551864]APPENDIX A

[bookmark: _Toc378551865]Test Manager & Windows Phone Test Documentation

[bookmark: _Toc378551866]a. Testing Center All Result

[bookmark: _Toc378551867]b. Testing Sign-In

[image:]

[bookmark: _Toc378551868]c. Testing Result Sign-In[image:]

[bookmark: _Toc378551869]d. Testing Main Page

[image:]

[bookmark: _Toc378551870]e. Testing Main Page Result

[image:]

[bookmark: _Toc378551871][image: 1]f. Windows Phone Unit Test

[bookmark: _Toc378551872][image: 2][image: 4]

[image: 3]

74	236	345	73	6	33	58	15	35	77	90	22	12	25	51	24	0	3	23	2	image84.png

image85.png

image86.png

image87.png

image88.png

image89.png

image90.png

image2.png

image3.png

image4.png

image5.png

image6.png

image7.png

image8.png

image9.emf

(Re) Write a Test

Run a Test

Check if the test

fails

Write a Code

Test Fail

Continue

Development ?

Test Succed

End

Development Stop

Development Continue

oleObject1.bin

�

�

�

(Re) Write a Test

Run a Test

Check if the test fails

Write a Code

Test Fail

Continue Development ?

Test Succed

Development Stop

End

Development Continue

image10.png

image11.png

image12.png

image13.png

image14.png

image15.png

image16.png

image17.png

image18.png

image19.png

image20.png

image21.png

image22.png

image23.png

image24.png

image25.png

image26.jpeg

image27.png

image28.png

image29.png

image30.png

image31.png

image32.png

image33.png

image34.png

image35.png

image36.png

image37.png

image38.png

image39.png

image40.png

image41.png

image42.png

image43.png

image44.png

image45.png

image46.png

image47.png

image48.png

image49.png

image50.jpeg

image51.jpeg

image52.jpeg

image53.jpeg

image54.jpeg

image55.jpeg

image56.jpeg

image57.jpeg

image58.png

image59.jpeg

image60.jpeg

image61.jpeg

image62.jpeg

image63.jpeg

image64.png

image65.jpeg

image66.jpeg

image67.png

image68.png

image69.png

image70.png

image71.png

image72.png

image73.png

image74.jpeg

image75.png

image76.png

image77.jpeg

image1.png

image78.jpeg

image79.jpeg

image80.jpeg

image82.png

image83.png

