PENGEMBANGAN SISTEM MONITORING INDIKATOR KINERJA SUSTAINABLE DISTRIBUTION BERBASIS MODEL SCOR PADA INDUSTRI PENYAMAKAN KULIT

DEVELOPMENT OF PERFORMANCE INDICATOR SUSTAINABLE DISTRIBUTION MONITORING SYSTEM BASED ON SCOR MODEL ON LEATHER TANNERY INDUSTRY

Jeremia Andar Yorikho Siahaan¹, Ari Yanuar Ridwan², Mohammad Deni Akbar³

^{1,2,3}Program Studi S1 Teknik Industri, Fakultas Rekayasa Industri, Universitas Telkom

 ${}^{1}\underline{\textbf{jersiahaan@students.telkomuniversity.ac.id}} \\ {}^{2}\underline{\textbf{ariyanuar@telkomuniversity.ac.id}}, \\ {}^{3}\underline{\textbf{denimath@telkomuniversity.ac.id}}$

Abstrak

Industri penyamakan kulit dikategorikan sebagai Industri Besar dan Sedang di Indonesia. Berdasarkan data Kementrian Perindustrian, industri penyamakan kulit memiliki trend peningkatan 25,89% tahun 2010-2013. Data tersebut mengindikasikan industri penyamakan kulit memiliki potensi besar dibidang perindustrian Indonesia. Aktivitas-aktivitas rantai pasok seperti distribusi pada industri penyamakan kulit mempengaruhi peningkatan potensi tersebut. Untuk mewujudkan potensi tersebut perlu diperhatikan aspek lingkungan, ekonomi, dan sosial yang merupakan dasar rantai pasok berkelanjutan (sustainable supply chain). Namun, industri penyamakan kulit sampai saat ini belum menerapkan rantai pasok berkelanjutan. Kondisi tersebut salah satunya diakibatkan oleh tidak ada sistem yang menyimpan data perusahaan yang menjadi dasar untuk pengukuran kinerja distribusi pada rantai pasok dan improvement dalam mewujudkan rantai pasok berkelanjutan. Oleh karena itu, perlu ada sistem untuk memonitor proses distribusi kulit secara lebih akurat untuk menerapkan rantai pasok berkelanjutan. Penelitian ini bertujuan mengembangkan sistem monitoring distribusi kulit pada salah satu industri di Garut, Jawa Barat. Sistem dibangun dengan basis model Supply Chain Operations Reference (SCOR), kemudian dipilih Key Performance Indicator (KPI) sesuai dengan proses bisnis perusahaan dengan objektif reliability, responsiveness, dan cost, menggunakan Analytical Hierarchy Process (AHP) tingkat kepentingan dari 8 KPI terverifikasi ditentukan. Monitoring system menyajikan performansi 8 KPI terverifikasi untuk membantu evaluasi KPI demi menerapkan sustainable distribution.

Kata Kunci: Sustainable Supply Chain, SCOR, KPI, AHP, Distribusi

Abstract

Leather tanning industry categorized as Large and Medium Industry in Indonesia. Based on data from Ministry of Industry, leather tanning industry has an increasing trend 25.89% in 2010-2013. This indicate that leather tanning industry has great potential. Supply chain activities such as distribution this potential increase. To realize this potential, it is important to consider the environmental, economic, and social aspects, the basis of sustainable supply chain. However, leather industry has not yet implemented sustainable supply chain. This condition caused by no system that records the company data which become the basis for the measurement of distribution performance and improvement to become sustainable supply chain. Therefore, a monitoring system is needed to monitor distribution process more accurately to implement sustainable supply chain. This study aims to develop distribution monitoring system in one industry in Garut, West Java. The system built based on Supply Chain Operations Reference (SCOR) model, and then Key Performance Indicator (KPI) selected in accordance with the business processes with objective reliability, responsiveness, and cost, using Analytical Hierarchy Process (AHP) determined the importance weight from 8 verifed KPI. Monitoring system presents 8 KPI verified performance to assist evaluation in order to apply sustainable distribution.

Keywords: Sustainable Supply Chain, SCOR, KPI, AHP, Distribution

1. Pendahuluan

Industri kulit merupakan industri yang memproses kulit mentah menjadi kulit siap pakai (*leather*). Industri penyamakan kulit merupakan jenis industri yang dikategorikan sebagai Industri Besar dan Sedang di Indonesia menurut Kementrian Perindustrian. Berdasarkan data Kementrian Perindustrian ditunjukkan perkembangan nilai tambah Industri Besar dan Sedang memiliki *trend* peningkatan sebesar 25,89% dari tahun 2010 sampai tahun 2013. Data *trend* menunjukkan bahwa Industri Penyamakan kulit merupakan salah satu Industri yang memiliki potensi besar dalam bidang perindustrian di Indonesia. Kemungkinan untuk dikembangkan nya potensi industri penyamakan kulit juga dipengaruhi oleh aktivitas-aktivitas rantai pasok industri. Termasuk didalamnya aktivitas pengadaan, produksi, distribusi, dan retur. Rantai pasok mendukung peningkatan potensi industri penyamakan kulit. Untuk mendukung peningkatan potensi tersebut, rantai pasok industri harus memperhatikan aspek lingkungan, ekonomi, dan sosial. Ketiga aspek ini merupakan dasar dari rantai pasok berkelanjutan (*sustainable supply chain*). Sistem *sustainable supply chain* juga mencakup *sustainable distribution*. Namun, industri penyamakan kulit sampai saat ini belum menerapkan sistem tersebut dalam proses distribusi. Kondisi tersebut salah satunya diakibatkan oleh tidak ada sistem yang menyimpan data-data perusahaan yang dapat menjadi dasar untuk pengukuran kinerja distribusi dan improvement dalam mewujudkan rantai pasok berkelanjutan.

PT. Endies Leather Company (ELCO) Indonesia (EIS) adalah industri penyamakan kulit yang berlokasi di Garut. Proses distribusi ELCO selama ini belum dapat digolongkan sebagai sustainable distribution. Akar masalah belum terjadinya sustainable distribution pada ELCO adalah belum adanya suatu tools berupa monitoring system yang menyajikan atau menampilkan informasi berguna yang membantu improvement pada pengambilan keputusan oleh top level management. Monitoring system yang menganalisis dan menyajikan data-data distribusi perusahaan seperti data terdahulu atau data historis, dan data sekarang dari kegiatan distribusi dibutuhkan sebagai langkah awal untuk identifikasi penerapan sustainable distribution. Pengembangan monitoring system ini menampilkan dan mengukur aktivitas-aktivitas acuan pada proses distribusi berdasarkan metode model Supply Chain Operations Reference (SCOR) dan penentuan bobot aktivitasnya menggunakan Analytical Hierarchy Process (AHP). Sustainable distribution diharapkan dapat diimplementasikan setelah dilakukan pengembangan monitoring system yang dapat menyajikan informasi terkait distribusi yang mempertimbangkan aspek lingkungan, ekonomi, dan sosial. Pengukuran indikator kinerja proses distribusi diperoleh dengan melakukan perancangan monitoring system berdasarkan model Supply Chain Operations Reference (SCOR). Model SCOR menyajikan kerangka proses bisnis, indikator kinerja, praktik-praktik terbaik (best practices) serta teknologi untuk mendukung komunikasi dan kolaborasi antarmitra rantai pasok, sehingga dapat meningkatkan efektivitas manajemen rantai pasok dan efektivitas penyempurnaan rantai pasok [1]. Maka dari itu, perlu dilakukan pengembangan sustainable distribution monitoring system berdasarkan model SCOR delivery yang digunakan untuk pengambilan keputusan terkait kegiatan distribusi untuk mewujudkan sustainable distribution pada ELCO.

2. Dasar Teori dan Metodologi

2.1. Supply Chain Management (SCM)

Supply chain management adalah seperangkat pendekatan yang digunakan untuk mengintregasikan supplier, pabrik, gudang, dan retailer sehingga barang yang diproduksi dapat didistribusikan dalam jumlah, waktu, dan lokasi yang tepat untuk meminimasi biaya keseluruhan dan meningkatkan pelayanan konsumen. [2]

2.2. Sustainable Supply Chain Management (SSCM)

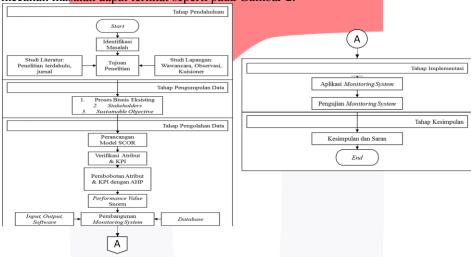
Sustainable Supply Chain Management (SSCM) didefinisikan sebagai strategi, integrasi dan pencapaian organisasi dalam mengintegrasikan antara aspek sosial, lingkungan, dan ekonomi dalam proses bisnis perusahaan untuk meningkatkan kinerja ekonomi dan supply chain dari perusahaan [3]. Aspek lingkungan pada SSCM bertujuan untuk meminimalkan atau mengeliminasi pemborosan pada bahan kimia berbahaya, emisi, energi dan limbah di sepanjang proses supply chain. Dimana proses supply chain yang dimaksud dimulai dari desain produk, pemilihan material, proses pembuatan, pengiriman produk akhir hingga ke pelanggan dan pengelolaan end of life dari produk. SSCM memiliki kerangka implementasi yang mencakup 3 area utama yaitu: Environment Performance, Social Performance, Economic Performance.

2.3. Supply Chain Operations Reference (SCOR)

Model SCOR dikembangkan untuk menyediakan suatu metode penilaian-mandiri dan perbandingan aktivitas-aktivitas dan kinerja rantai pasok sebagai suatu standar manajemen rantai pasok lintas-industri. Model ini menyajikan kerangka proses bisnis, indikator kinerja, praktik-praktik terbaik (*best practices*) serta teknologi untuk mendukung komunikasi dan kolaborasi antarmitra rantai pasok, sehingga dapat meningkatkan efektivitas manajemen rantai pasok dan efektivitas penyempurnaan rantai pasok. [1]

2.4. Analytical Hierarchy Process (AHP)

Analytical Hierarchy Process (AHP) adalah pengambilan keputusan multikriteria dengan dukungan metodologi yang telah diakui dan diterima sebagai prioritas yang secara teori dapat memberikan jawaban yang berbeda dalam masalah pengambilan keputusan serta memberikan peringkat pada alternatif solusinya. [4]

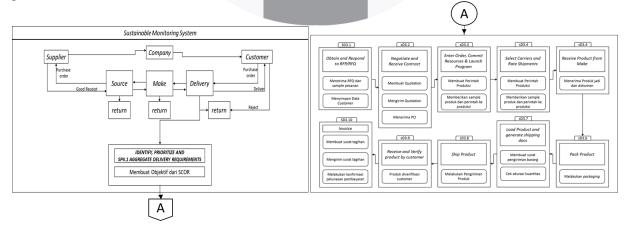

Metode AHP membantu memecahkan persoalan yang kompleks dengan menstrukturkan suatu hirarki kriteria, pihak yang berkepentingan, hasil dan dengan menarik berbagai pertimbangan guna mengembangkan bobot atau prioritas. Metode ini juga menggabungkan kekuatan dari perasaan dan logika yang bersangkutan pada berbagai persoalan, lalu mensintetis berbagai pertimbangan yang beragam menjadi hasil yang cocok dengan perkiraan secara intuitif sebagaimana yang dipresentasikan pada pertimbangan yang telah dibuat.

2.5. Monitoring System

Sistem *monitoring* digunakan dalam membantu pengambilan keputusan berdasarkan data atau informasi yang valid. Sistem *monitoring* dapat menggambarkan suatu sistem yang ingin dipantau, termasuk proses *input* data dan menyajikan hasil *monitoring* sesuai dengan yang diharapkan. *Monitoring system* dalam menyajikan data menjadi *tools* yang membantu pengukuran data aktual dan data target [5].

2.6. Sistematika Pemecahan Masalah

Sistematika pemecahan masalah dapat terlihat seperti pada Gambar 2.


Gambar 2. Sistematika Penelitian

3. Pembahasan

3.1. Tahap Identifikasi

a. Identifikasi Proses Bisnis Distribusi Eksisting

Proses bisnis distribusi eksisting dipetakan dengan basis model SCOR untuk identifikasi dan pengelompokan proses perusahaan menjadi berbasis proses bisnis model SCOR. Proses bisnis yang sudah dipetakan dapat dilihat pada Gambar 3.

Gambar 3 Pemetaan Proses Bisnis Distribusi Perusahaan berdasarkan model SCOR

ISSN: 2355-9365

b. Identifikasi Stakeholders

Identifikasi Stakeholders dapat dilihat pada tabel dibawah:

Tabel 1 Identifikasi Stakeholders

Stakeholder	Job Description					
Supplier	Pemasok kebutuhan bahan baku perusahaan					
Bagian Pemasaran	Penerima pesanan dari customer dan memasarkan produk perusahaan					
Bagian Persediaan	Pengelola bahan baku siap pakai dan produk jadi perusahaan					
Bagian Pembelian	Memenuhi kebutuhan bahan baku untuk produksi perusahaan					
Bagian Produksi	Melakukan produksi					
Bagian Pengiriman	Mendistribusikan produk jadi dari perusahaan kepada customer					
Bagian Keuangan	Mengelola keuangan perusahaan, merekap pemasukan dan pengeluaran perusahaan					
Administrasi dan membuat laporan administratif perusahaan						

c. Identifikasi Sustainable Requirement

Stakeholders	Requirements
Supplier	Sertifikasi ISO 14001 atau EMS
	Memenuhi kriteria lingkungan
	Menyediakan produk yang memenuhi kriteria lingkungan
	Transportasi yang ramah lingkungan
Bagian	Pemenuhan persyaratan legalitas, ramah lingkungan meminimasi keluhan dari konsumen
Pemasaran	Administrasi dengan dokumentasi yang lengkap
Bagian	Aktivitas pada w <i>arehouse</i> bersih dan ramah lingkungan
Persediaan	Biaya persediaan yang sesuai dengan budget perusahaan
Bagian	Mempunyai informasi yang baik untuk membantu dalam pengambilan keputusan pencarian
Pembelian	supplier dan pencarian barang yang akan dipesan
	Material yang dipesan memenuhi kriteria lingkungan seperti material memenuhi persyaratan legalitas dan ramah lingkungan
	Biaya pembelian yang sesuai dengan budget perusahaan
Bagian Produksi	Kegiatan manufaktur ramah lingkungan dan produksi yang mengurangi limbah, mencegah polusi, dan penghematan sumber daya
	Teknologi dan proses produksi yang meninjau aspek biaya dan kebutuhan ramah lingkungan
	Biaya produksi yang sesuai dengan budget perusahaan
Bagian	Melakukan proses distribusi yang memakai transportasi ramah lingkungan
Pengiriman	Biaya distribusi yang sesuai dengan budget perusahaan
Bagian	Melakukan pembuatan laporan yang rinci dan jelas mengenai pengeluaran dan pemasukan
Keuangan /	perusahaan sampai masing-masing bagian
Administrasi	Melakukan pembayaran yang tepat sesuai dengan anggaran yang ditentukan dan laporan seluruh hasil keugangan, administrasi, dan akuntansi proses bisnis perusahaan

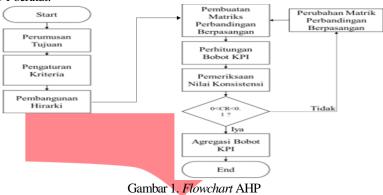
d. Identifikasi Sustainable Objective

Tabel 2 Objektif Atribut Kerja

Stakeholders	Sustainable Objective		
	Ongkos pengiriman rendah, penggunaan bahan bakar rendah		
Bagian Pengiriman	Akurasi produk yang dikirim dalam jumlah, spesifikasi, kualitas		
	Pengiriman tepat waktu		
	Dokumentasi pengiriman akurat dan memiliki sistem		
Bagian Pengiriman dan Bagian Pemasaran	Pengiriman ramah lingkungan dan package ramah lingkungan		
Bagian Pemasaran	Kepuasan pelanggan dari segi sustainable		

e. Identifikasi Key Performance Indicator (KPI)

Identifikasi KPI (*key performance indicator*) dilakukan dengan mengidentifikasikan seluruh indikator yang berhubungan dengan *sustainable distribution* berdasarkan referensi matriks SCOR, Setelah dirancang model SCOR hingga level 2 yaitu aktivitas yang ada diperusahaan maka dilanjutkan ke level 3 yang berisi matriks SCOR dari beberapa atribut *responsiveness*, *reliability*, dan *cost*. KPI yang dirancang lalu diverifikasi sehingga didapatkan KPI yang sesuai.


Tabel 3 Identifikasi KPI

1										
No	Atribut	Key Performance Indicator	Definisi							
1	Reliability (RL)	Perfect Condition	Persentase pesanan yang dikirim dalam keadaan tidak rusak yang memenuhi spesifikasi, memiliki konfigurasi yang benar, dipasang tanpa kesalahan (sebagaimana seharusnya) dan diterima oleh pelanggan							
2		Delivery Quantity Accuracy	Persentase pesanan di mana semua jumlah yang diterima oleh pelanggan sesuai dengan jumlah pesanan (dalam toleransi yang disetujui bersama)							
3		% Faultless Invoices	Jumlah faktur yang diproses tanpa masalah dan atau kesalahan dibagi dengan jumlah total faktur.							
4	Responsiveness (RS)	Obtain & Respond to Request for Quote (RFQ) / Request for Proposal (RFP) Cycle Time	Waktu siklus mendapatkan & menanggapi permintaan penawaran <i>order</i> dari customer							
5		Select Carriers & Rate Shipments Cycle Time	Waktu siklus pemilihan transportasi dan cara pendistribusian							
6		Receive Product from Make/Source Cycle Time	Waktu siklus penerimaan produk dari bagian Produksi							
7		Pack Product Cycle Time	Waktu siklus packing produk untuk pengiriman							
8		Ship Product Cycle Time	Waktu siklus pengiriman produk							
9		Install Product Cycle Time	Waktu Siklus yang terkait dengan pemasangan produk							
10		Builds load cycle time	Waktu siklus yang terkait dengan pembuatan beban pengiriman							

11		Load Product & Generate Shipping Documentation Cycle Time	Waktu siklus untuk memasukkan beban kiriman dan pembuatan dokumen pengiriman
12		Schedule Installation Cycle Time	Waktu siklus terkait jadwal pemasangan produk
13		Negotiate & receive contract cycle time	Waktu siklus negosiasi harga dan menerima kontrak dari customer
14		Pick Product Cycle Time	Waktu siklus terkait pengambilan produk
15		Route Shipment Cycle Time	Waktu siklus terkait pemilihan rute
16	Cost (CO)	Transportation cost	Biaya yang terkait dengan transportasi fisik barang antar node rantai pasokan

3.2. Penentuan tingkat kepentingan KPI

Penentuan tingkat kepentingan KPI dilakukan menggunakan metode AHP. Langkah penentuan tingkat kepentingan dapat dilihat pada Gambar 1 berikut:

Dilakukan pengaturan kriteria, seperti pada Tabel 4 dan Tabel 5 dibawah ini:

Tabel 4. Pengaturan kriteria objektif

8	
Sustainable objective	Kode Kriteria
Reliability	Al
Responsiveness	A2
Cost	A3
Tahel 5 Pengaturan kriteria KPI	

KPI	Kode Kriteria
RL.2.4 Perfect Condition	KI
RL. 3.35 Delivery Quantity Accuracy	K2
RS.3.93 Obtain & Respond to Request for Quote (RFQ) / Request for Proposal (RFP) Cycle Time	К3
RS.3.124 Select Carriers & Rate Shipments Cycle Time	K4
RS.3.108 Receive Product from Make/Source Cycle Time	K5
RS.3.95 Pack Product Cycle Time	K6
RS.3.126 Ship Product Cycle Time	K7
CO.3.022 Transportation cost	K8

Hasil kuisioner yang disebar kepada 5 responden dilakukan rekapitulasi, lalu dicari rata-rata menggunakan geomean. Berikut contoh perhitungan geomean A1:

Geomean =
$$\sqrt[5]{1 \times 2 \times 3 \times 3 \times 5}$$

Geomean = $\sqrt[5]{90}$
Geomean = 2.45

Rata-rata geometrik ini dipakai untuk data yang memiliki kualitas/berat (weight) yang berbeda di antara data-data tersebut. Hasil geomean ditunjukkan Tabel 6, 7 dan 8 berikut:

Tabel 6. Hasil rekap kuisioner atribut

Atribut	1	Res	pon	dei	n	C	Atribut	
Atribut	1	2	3	4	5	Geomean		
A1	1	2	3	3	5	2.45	A2	
A1	5	5	2	5	3	3.75	A3	
A2	5	5	2	5	3	3.75	A3	

Tabel 7. Hasil rekap kuisioner reliability

Alternatif	Responden					Coomoon	Alternatif	
	1	2	3	4	5	Geomean	Aiternatii	
K1	6	3	0.25	1	8	2.04	K2	

Tabel 8. Hasil rekap kuisioner responsiveness

Alternatif		Re	spond		Alternatif			
Alternatii	1	2	3	4	5	Geomean	Aiternatii	
K3	3	5	4	0.33	2	2.08	K4	
K3	0.33	4	8	0.25	8	1.84	K5	
K3	0.25	8	9	0.33	0.2	1.03	K6	
K3	0.13	5	3	0.14	0.5	0.67	K7	
K4	3	0.17	0.2	0.11	0.33	0.32	K5	
K4	4	0.2	0.25	0.33	0.2	0.42	K6	
K4	0.17	0.13	3	0.14	0.11	0.25	K7	
K5	0.2	4	7	7	0.2	1.50	K6	
K5	0.13	0.2	5	0.17	0.14	0.31	K7	
K6	0.33	1	0.25	3	0.25	0.57	K7	

Hasil geomean digunakan untuk melakukan matriks perbangingan berpasangan, hasil geomean A1 dengan A2 senilai 2.46 dipakai untuk matriks perbandndingan A1 dan A2 dibawah. Begitu juga untuk hasil geomean A1 dengan A3 senilai 3.76 dipakai untuk matriks perbandingan A1 dan A3 dibawah. Sementara untuk perbandingan antar kriteria yang sama, misalkan A1 dengan A1, maka nilainya 1. Untuk nilai kebalikannya, misalkan A3 banding A1, maka dibagikan denfgan 1, 1/3.76 = 0.27. Berikut Tabel 9, 10, dan 11 berisi hasil perbandingan matriks berpasangan:

Tabel 9. Matrik berpasangan atribut

Matriks perbandingan antar atribut									
	A1 A2 A3								
A1	1.00	2.46	3.76						
A2	0.41	1.00	3.76						
A3	0.27	0.27	1.00						
Jumlah	1.67	3.73	8.52						
Tabel 10. Matrik berpasangan reliability									
Matriks perbandingan antar reliability									
K1 K2									
K1		1.00	2.04						

Tabel 11. Matrik berpasangan responsiveness

Matriks perbandingan antar responsiveness												
	K3 K4 K5 K6 K7											
K3	1	2.08	1.84	1.03	0.67							
K4	0.47	1	0.32	0.42	0.25							
K5	0.54	3.06	1	1.50	0.31							
K6	0.96	2.37	0.66	1	0.57							
K7	K7 1.48 3.96 3.17 1.74 1											
Jumlah	4.48	12.49	7.01	5.71	2.81							

Nilai pada matriks normalisasi, didapatkan dari hasil bagi nilai pada matriks berpasangan dengan jumlah kolom matriks tersebut. Contoh nilai matriks berpasangan A1 dengan A1 sebesar 1, kemudian dibagikan dengan jumlah kolomnya sebesar 1.67. Seperti berikut:

$$Normalization = \frac{1}{1.67} = 0.60$$

Begitu juga untuk kriteria lain pada matriks normalisasi. Sedangkan nilai priority vector didapatkan dari rata-rata tiap kriteria, berikut contoh perhitungannya:

Priority Vector =
$$\frac{0.60+0.66+0.44}{3}$$
 = 0.57

 $Priority\ Vector = \frac{0.60 + 0.66 + 0.44}{3} = 0.57$ Nilai matriks x faktor merupakan hasil kali *priority vector* dengan matrik perbandingan. Berikut contoh perhitungannya:

$$Matrix\ x\ Vector = (1.00x0.57 + 2.46x0.32 + 3.76x0.12) = 1.78$$

Nilai konsistensi didapat dari hasil bagi matriks x faktor dengan *priority vector*. Berikut contoh perhitungannya: $Consistency = \frac{1.78}{0.57} = 3.15$

Consistency =
$$\frac{1.78}{0.57}$$
 = 3.15

Nilai 3.15 menunjukkan hasil perhitungan nilai konsistensi adalah konsisten, karena sesuai dengan jumlah kolom dan baris normalisasi. Dibawah ini merupakan hasil perhitungan keseluruhan normalisasi dan konsistensi:

Tabel 12. Nomalisasi dan konsistensi

		A	L P		AS	Juman	Vecto	or 1	Faktor	Konsistensi			_	
								CI	0.0	3				
	A1 0.60		0 0.	66	0.44	1.70	0.5	7	1.78	3.15	RI	0.58		
	A2 0.24		4 0.	27	0.44	0.95	0.32	2	0.98	3.10				
	A3	0.1	6 0.	07	0.12	0.35	0.12	2	0.35	3.03	CR	0.05		
		<u> </u>	T	1.				14	4		Menghitung CR Kriteria			
		K1	K2	Ju	mlah	Priority	Vector	Matriks	x Faktor	Konsistensi	λ maks	2.00		
]	K1 0.67		0.6	7 1	.34	0.	0.67		34	2.00	CI	0.00		
	***		0.0			0.00					RI	(0	
J	K2 0.33		0.3	0.32 0.6		0.33		0.65		2.00	CR 0.0		00	
		КЗ	K4	К5	K6	K7	Jumlah	Priority	Matriks x	Konsistensi	Menghitung CR Kriteria			
		11.5	KS K4 KS		100	14,	Jun 1	Vector	Faktor		λm	aks	5.16	
F	(3)	0.22	0.17	0.26	0.18	0.24	1.07	0.21	1.13	5.24	CI		0.03	
ŀ	(4	0.11	0.08	0.05	0.07	7 0.09	0.40	0.08	0.40	5.08	CI		****	
ŀ	(5	0.12	0.25	0.14	0.26	0.11	0.89	0.18	0.91	5.16	RI		1,12	
ŀ	6	0.22	0.19	0.09	0.18	0.20	0.88	0.18	0.89	5.07	CR		0.03	
F	7	0.33	0.32	0.45	0.31	0.36	1.76	0.35	1.86	5.26	ÇK 0.0.		0.03	

Pembobotan untuk melihat prioritas kepentingan menurut stakeholders distribusi, responden berjumlah 5 yang melakukan penilaian secara kualitatif terhadap tiap kriteria. Nilai Bobot didapatkan dari priority vector yang merupakan nilai rata-rata baris normalisasi pada tiap kriteria. Pada *priority vector reliability* merupakan hasil perhitungan dari = (0.60+0.66+0.44)/3 = 0.57. Demikian juga untuk bobot lainnya. Untuk *ranking* dilakukan pengurutan dari hasil bobot akhir setiap KPI.

Untuk pengukuran λ maks berikut contoh perhitungannya:

$$\lambda \, max = \frac{3.15 + 3.10 + 3.03}{3} = 3.09$$

Pengukuran *consistency index* untuk melihat konsistensi dari λ maks dengan jumlah baris dan kolom. Berikut contoh perhitungannya:

$$CI = \frac{3.09 - 3}{3} = 0.03$$

Perhitungan *consistency ratio* dilakukan untuk melihat CR kurang dari 0.1 maka hasilnya bisa disebut konsisten. Jika CR lebih besar dari atau sama dengan 0,1 maka hasilnya tidak konsisten. Berikut contoh perhitungannnya:

$$CR = \frac{0.03}{0.58} = 0.05$$

Hasil perhitugan dengan AHP pada objektif dengan melihat hasil CR dapat dikatakan konsisten.

Tabel 13. Key Performance Indicator

No	Atribut	Bobot	КРІ	Bobot	Bobot Akhir	Ranking
1	Reliability	0.57	RL.2.4 Perfect Condition	0.67	0.38	1
2			RL. 3.35 Delivery Quantity Accuracy		0.18	2
3	Responsiv eness	0.32	RS.3.93 Obtain & Respond to Request for Quote (RFQ) / Request for Proposal (RFP) Cycle Time	0.21	0.06	5
4			RS.3.124 Select Carriers & Rate Shipments Cycle Time	0.08	0.02	8
5			RS.3.108 Receive Product from Make/Source Cycle Time	0.18	0.05	6
6			RS.3.95 Pack Product Cycle Time	0.18	0.05	7
7			RS.3.126 Ship Product Cycle Time	0.35	0.11	4
8	Cost	0.12	CO.3.022 Transportation cost	1	0.11	3

3.3. Tahap Perhitungan Nilai SCOR Total

Perhitungan total nilai SCOR pada proses *deliver* merupakan cara untuk mengukur KPI pada perusahaan. Nilai aktual, nilai minimal, dan nilai maksimal didapatkan dari data historis perusahaan. Berikut contoh perhitungan Snorm dan *Performance Value* KPI *Perfect Condition*:

Snorm (skor) =
$$\frac{(0.9897 - 0.9835)}{(1 - 0.9835)}$$
 x 100% = 37.83% $S_{min} = 98.36\%$ Perhitungan performance value Perfect Condition: Smin = 98.36% Performance Value = 0.3783 x 0.38 Performance Value = 0.14

Hasil perhitungan dari total nilai SCOR dapat dilihat pada Tabel 5.

Tabel 14. Pembobotan KPI

KPI	Min	Maks	Aktual	Snorm	Bobot	Hasil	
Perfect Condition	0.99	1.00	0.99	0.38	0.38	0.14	
Delivery Quantity Accuracy	0.98	1.00	0.99	0.33	0.18	0.06	
Obtain & Respond to Request for Quote (RFQ) / Request for Proposal (RFP) Cycle Time	0.33	1.00	0.50	0.25	0.06	0.02	
Select Carriers & Rate Shipments Cycle Time	0.83	1.00	1.00	1.00	0.02	0.02	
Receive Product from Make/Source Cycle Time	0.67	1.00	1.00	1.00	0.05	0.05	
Pack Product Cycle Time	0.61	1.00	0.78	0.43	0.05	0.02	
Ship Product Cycle Time	0.62	1.00	0.85	0.60	0.11	0.07	
Transportation cost	0.61	1.00	0.96	0.90	0.11	0.10	
Total							

Hasil perhitungan dengan Snorm didapatkan *performance value* dari KPI terpilih sebesar 0.48 atau 48%, hal ini menunjukkan performa distribusi dari ELCO adalah dibawah rata-rata, atau marjinal.


3.4. Pengembangan Sistem Monitoring

Monitoring system yang dirancang untuk melakukan visualisasi data yang menjadi *input* pengukuran nilai masing-masing atribut dan KPI pada proses distribusi. Berikut tampilan *homepage*:

Pada *homepage* ditampilkan tiga proses SCOR, yaitu *source, make*, dan *deliver*. Lalu ditampilkan juga 4 *gauge*, *gauge* paling atas menampilkan *overall performance* gabungan dari ketiga proses SCOR, yang saat ini menunjukkan nilai 47.89%. Pada bagian bawah terdapat 3 *gauge*, untuk masing-masing *performance* tiap proses SCOR, seperti pada *gauge deliver* didapatkan nilai 48.00% yang merupakan hasil perhitungan kinerja *deliver*, lalu pada *bar chart* berisi nilai tiap performa yaitu *reliability, responsiveness, costs*, dan *assets*. Pada *deliver* didapatkan nilai terendah pada aspek *cost*.

Gambar 2. Tampilan homepage

Pada halaman KPI ditampilkan performansi dari KPI, terdiri dari 3 grafik, *doughnut chart* untuk menampilkan performansi kuarter terakhir, *clustered bar chart* untuk menampilkan rata-rata performansi KPI selama 16 kuarter, dan *clustered column chart* untuk menampilkan data historis rincian tiap 16 kuarter yang ada. Berikut tampilan halaman KPI pada Gambar 3:

Gambar 3. Tampilan halaman KPI

4. Kesimpulan

- a. Model SCOR dapat digunakan sebagai acuan yang tepat. Performansi SCOR berisi *indicator* keberhasilan kinerja atau KPI sesuai dengan *objective* yang ingin dicapai perusahaan.
- b. Model SCOR yang menampilkan 15 proses bisnis dan 16 Key Performance Indicator yang bersumber dari terdapat 8 Key Performance Indicator terverifikasi Dan didapatkan bahwa Perfect Condition merupakan prioritas utama pada bagian distribution.
- c. Hasil perhitungan SNORM, didapatkan performansi *deliver* perusahaan sebesar 48%, aktivtas *deliver bad performance* dalam menerapkan *sustainable distribution*.

Daftar Pustaka:

- [1] Jannah, B., Ridwan, An. Y., El Hadi, R. M. (2018). Perancangan Model Pengukuran Kineja Green Procurement Berdasarkan Model SCOR Pada Industri Penyamakan Kulit. Jurnal Rekayasa Sistem & Industri (JRSI), 5(01)
- [2] Chopra, Sunil dan Peter Meindl, 2004. Supply Chain Management Strategy, Planning, and Operation. Second Edition.
- [3] Carter, C.R. and Rogers, D.S., 2008. *A framework of sustainable supply chain management: moving toward new theory*. International journal of physical distribution & logistics management, 38(5), pp.360-387.
- [4] Waaliy, A.N., Ridwan, A. Y., & Akbar, M.D. (2018). Supply Chain Operation Reference (SCOR) dan Analytical Hierarchy Process (AHP) Untuk Mendukung Green Procurement Pada Industri Penyamakan Kulit. Jurnal Industrial Services (JISS), Vol.4, No.1
- [5] Ridwan, A.Y., Mubassiran, M., & Syafiq, S. 2015. "Pengembangan Prototype Sistem Monitoring Logistik Beras (Studi Kasus di Badan Ketahanan Pangan Provinsi Jawa Barat)." Jurnal Rekayasa Sistem & Industri (JRSI), 2(02), 28-34.