ABSTRACT

There have been many developments in alternative energy generating

electricity to meet the electricity needs of the community. In this era of energy

recycling has the potential to be one of the solutions to the needs of the community's

electrical energy sources.

One of the potential energy that can be recycled is thermal energy. The use

of home electronic appliances such as refrigerators, emit heat due to the

condensation process which causes heat to be wasted into the environment. With

the use of the peltier module as a thermoelectric generator (TEG) an electrical

energy source can be generated from thermal energy.

TEG can be used to produce electrical energy when there is a temperature

difference between two different semi-conductor materials, so that this

thermoelectric element will flow current which will produce a voltage difference.

This principle is known as the Seebeck effect.

This research was conducted to determine the output voltage of six peltier

modules which will be an alternative source of converting heat energy to the

refrigerator compressor. Measurements were made by arranging six TEC1-12706

type peltier modules in series on the refrigerator compressor and placing a cooling

system in the form of a heatsink and aluminum water block.

By testing for 12 hours the maximum output voltage of 2.5V was obtained

from the operating range ΔT of 4-8 ° C. And the output value of the voltage is an

average of 1.05V with a measured current of around 0.11A. In this study the

percentage of effectiveness of the energy conversion system thermoelectric

generator applied to the refrigerator refrigeration unit compressor is 1.396231%.

With the potential power that can be generated by the thermoelectric generator

system and stored by a battery of 0.1155 Watt.

Keywords: Peltier module, Thermoelectric generator, Seebeck effect

iv