ABSTRACT

The X-Band radar can be used to detect targets by emitting an echo signal

which is then reflected back by the object. For transmit, echo signals required

radiation patterns that match the dimensions of the object. Therefore, it requires

beam forming or radiation pattern formation. Getting the radiation pattern can be

done by changing the current distribution of the amplitude or phase.

Changing the radiation pattern in this Final Project uses the Dolph-

Tchebyscheff current distribution. This current distribution is applied to microstrip

antennas with rectangular array patch 1 x 4 to 1 x 10. This observation uses a

comparison with an isotropic array antenna as a reference. Besides that, the final

result of a rectangular patch microstrip antenna using Dolph-Tchebyscheff's current

distribution will be compared with Uniform and Binomial current distribution to

see the effect of current amplitude input on each n-element on the radiation pattern.

This Final Project has analyzed a 1 x 10 microstrip array antenna with

Dolph-Tchebyscheff current distribution at Side Lobe Level (SLL) 33 dB as an

antenna that can work optimally at X-Band frequency or at 9,50 GHz. At this

antenna, the second-largest total field is obtained after the Binomial current

distribution. The total field value of the antenna is 223,99 volt/metre and the return

loss is -12,00 dB. Also, a beamwidth value of 19,80° is obtained. The radiation

pattern of this antenna also shows a directional direction.

Keywords: radiation pattern, beamwidth, return loss, Dolph-Tchebyscheff

iv