ABSTRACT

Cancer is a condition in which the growth of malignant tumors tend to grow

faster and spread to other parts of the body. Methods used to detect cancer are

available today, such as X-rays, mammography, MRI techniques and ultrasounds.

However, this method requires quite expensive costs. Planar antenna can be an

attractive and promising choice because it has many advantages such as lower cost

and safer. The Federal Communications Commission (FCC) sets the frequency for

the benefit of the medical imaging system, namely Ultra Wideband (UWB) in the

range of 3.1 to 10.6 GHz. Therefore, an antenna is needed that can support the UWB

system in medical imaging applications.

This Final Project designs and realizes the UWB planar antennas with Defected

Ground Structure (DGS) to detect brain cancer. The antenna works in the frequency

range of 3.1-10.6 GHz.

This Final Project produces bandwidth of 7.5 GHz, unidirectional radiation

pattern, return loss -24.41 dB, and VSWR 1.12 based on simulation result, while

the measurement result produce a bandwidth 6.15 GHz, unidirectional radiation

pattern, return loss -23.87 dB, and VSWR 1.13. The results of antenna simulation

designed can be detect the presence of cancer that is marked by changes in the value

of electric fields and the value of return loss in modeling head tissue with cancer

and without cancer.

Keywords: ultra wideband, planar antenna, brain cancer detection.

٧