ABSTRACT

Human work in way of detecting objects in a room requires high accuracy and

must be precision. Therefore, a sophisticated and accurate object detection system

is needed to simplify the job. One of the technologies that can be used is Light

Detecting and Ranging (LIDAR) sensor. LiDAR is a device that has function as an

object detection tool by capturing the points x, y, and z or often known as the

Cartesian coordinates.

In this final project, an object detection system using ground-based LiDAR is

designed. The data that is used are data from the point cloud, generated from

scanning by YDLiDAR G4 with 5 Hz and 12 Hz frequency. This data was taken in

a closed room with a size of 5,76 x 4,95 m2 and then two objects placed at different

distances. This Final Project uses Euclidean distance method which its function is

to measure the distance between objects detected in the room.

In this final project, an analysis was done about the accuracy level, and the

calculation of error rate which resulted the output of several object points that have

been successfully detected and visualized in 2 Dimensions (2D). Furthermore,

generated the comparison distance result at 5 Hz frequency get an error of 0,22 m

and at 12 Hz frequency it reach error at 0,27 m. The result of the error rate system

detection for 5 Hz frequency is 7,45%. While, the error rate at 12 Hz frequency is

6,95%.

Keywords: LiDAR, euclidean distance, point cloud.

V