

Machine Learning Approach for Intrusion Detection

System to Mitigate Distributed Denial of Service Attack

Based on Convolutional Neural Network Algorithm

1st Muhammad Raksi Erlambang

Department of Telecommunications

Engineering

Telkom University

Bandung, Indonesia
mraksie@student.telkomuniversity.ac.id

2nd Ida Wahidah Hamzah

Department of Telecommunications

Engineering

Telkom University

Bandung, Indonesia

wahidah@telkomuniversity.ac.id

3rd Favian Dewanta

Department of Telecommunications

Engineering

Telkom University

Bandung, Indonesia

favian@telkomuniversity.ac.id

Abstract— The rapid development of data communications

alongside its nature to be protected and secured have resulted in a

long on-going research and development of Intrusion Detection

System (IDS). One of many approaches for improving IDS is by

using Machine Learning (ML) method. This research proposes to

build an IDS model using Convolutional Neural Network (CNN)

algorithm which is a specialized type of ML. This research is

conducted by converting CSE-CIC-IDS2018 samples into a

pixelate image as an input to the IDS model to classify between

benign and malicious network traffic. The best model will be

chosen by comparing performance metrics of each model on

different parameter combinations and the final model will be

evaluated with k-fold Cross-validation technique to make sure the

finest performance is obtained. The results obtained on this

research are performance metrics scores that is higher than 93%

for all of the parameter combinations. Based on the final result

obtained, the authors concluded that the model proposed on this

research is not only successful, but also is better compared to other

traditional ML-based IDS in terms of performance metrics.

Keywords— Intrusion Detection System, Machine Learning,

Convolutional Neural Network

I. INTRODUCTION

Along with the development of information technology

and the convergence of technology with current digital

lifestyle today, information security has become more

relevant and needed than ever. By 2023 there will be 66% of

global population that has internet access where the numbers

of Internet Protocol (IP) connected devices will reach 29.3

billion caused by Internet of Things up from 18.4 billion in

2018 [1]. The inevitable trend of information technology

development which on track with the increasing

dependencies on robust and reliable data communications

network makes information security a crucial aspect of

functioning modern society. This phenomenon will occur

worldwide as it is an essential nature to apply security

approaches on wider and more crucial range of fields than

before such as automated driving, healthcare, and energy. All

of this is just the beginning of a more sophisticated form of

digitalization.

With all of this advanced development, these huge

number of statistics raise new challenges as the development

of information security also in tune with the rise of new and

more sophisticated threats such as exploits and vulnerabilities

in worldwide data network. One of those challenges is an

anomalous network dataflow that is also known as intrusion

or a breach on a network. A breach on a network nowadays

means lots of possibilities ranging from an information gets

stolen to an attack to the network functionality and

availability widely known as Distributed Denial of Service

(DDoS) [2]. According to Cisco, 1Gbps DDoS attack alone

is enough to take most organizations completely offline [1].

Added with 23% of those attacks are greater than 1Gbps, a

dynamic and scalable approach to protect network and

information from unwanted hands has become one of the

utmost importance. Intrusion Detection System (IDS) is one

of many methods to overcome this problem.

Intrusion Detection System (IDS) is a dedicated system

formed as a software or hardware to run the intrusion process

automatically. The ultimate goal of an IDS is to be able to

identify different kinds of malicious intrusion with high

detection rate and low false alarm rate, which cannot be

achieved by firewall. IDS has a long history of appliance with

traditional rule-based or pre-determined set of rules to

differentiate between mundane and malignant traffic. This

approach however is not reliable in the long run since it will

unable to detect malicious traffic intelligently and

continuously.

Due to its rapid demand and the need to adapt to more

complex threat in the future, Machine Learning (ML)

technique can be used as a solution to reinforce an IDS. ML

can improve conventional IDS methods in terms of

effectiveness and efficiency by its capability to process and

learn new patterns automatically [3]. ML is sought to be

implemented on IDS because of the rapid nature of the

development of ML technologies by both academia and

industry. ML also has been used and applied in many other

technological disciplines and has shown significant positive

transformations. The versatile and learnability characteristic

of ML is expected to strengthen and improving the existing

conventional IDS in an unimaginable possibility [4].

Previously, there was numbers of research on this topic

regarding on how to apply an ML method on IDS. With

stunning results and scores, these researches have managed

to raise new standard and opened new pathway for other

researcher to striving on this topic. However, these researches

were mainly dominated by the combination usage of

traditional ML method and old type of datasets as a training

and validation subject. To fill in the gap of this issue, this

Final Undergraduate Thesis proposes the using of newer type

of ML method which are Convolutional Neural Network

(CNN) algorithm and Neural Network type of ML on a

ISSN : 2355-9365 e-Proceeding of Engineering : Vol.8, No.6 Desember 2022 | Page 3293

newest and designated dataset of a captured network traffic

that consisted of detailed descriptions of intrusions and

abstract distribution models of applications, protocols, and

lower-level network entities. This is due to the fact that

Neural Network with CNN method has gained massive

success and popularity among many fields of study recently,

even though the implementation of CNN is mainly used in

computer vision field [5]. One of the biggest challenges of

this undergraduate thesis is to make this implementation and

experimentation possible through designing a set of rules of

program to apply CNN method on a network traffic dataset.

Another main reason to choose Neural Network over another

traditional ML method is because Neural Network offers

more advantages such as better feature representation,

performance, and less false alarm.

II. THEORITICAL REVIEW

In this experiment, we design an IDS that has been

trained with CNN and Neural Network algorithm. The

traditional method to train an IDS is usually done by

purposely generate a personal or dedicated real network

traffic by oneself. Although it’s possible to do so, most of

handcrafted network traffics are usually rather limited in

coverage and considerably debatable in their integrity. Public

dataset comes to resolve this issue. In this case, this

experiment uses CSE-CIC-IDS2018 as it is one of the newest

public traffic datasets available in this research field.

Furthermore, all of the experiment process was conducted on

Google Colab platform. Colab Pro tier is chosen in

consideration that this experiment needs a more dedicated

size of Random Access Memory (RAM) and resource

priority [8].

FIG. 1.

VISUALIZATION OF FIVE CONVERTED INSTANCES

In general, there are two parts that are going to be

conducted in this experiment; Pre-processing and building

the ML model by training and evaluation [3]. The pre-

processing is one of the most important processes to

transform the various raw dataset feature attributes into a

meaningful and valuable data that the ML model would

understand. This is due to the key elements to build an IDS

with CNN algorithm is by mapping the one-dimensional

instances of the dataset into a type of data that is accepted into

the ML model, which is image type of data. Another key

reason is because the CNN model is far better for processing

image type of data compared to another type of data [5]. This

experiment will exploit one of the advantages of CNN and

Neural Network algorithm by making this experiment relies

on the concept of image classification. Started with 80

features from each instance in CSE-CIC-IDS2018 dataset,

this experiment will end up on 79 features that will

transformed into 13x6 pixels image type data excluding its

label feature as shown on Fig. 1 which is the acceptable input

for CNN and Neural Network model to execute.

A. System Block Diagram

The ML model on IDS starts when the model is provided

with input data which come from previous pre-processing

step. Generally, the IDS core system is a method to

distinguish normal and malicious traffics as shown in Fig. 2.

After the pre-processing step, the next step is to split the CSE-

CIC-IDS2018 dataset into training and testing block. Then,

the core IDS system of this experiment would be consisted

on training the CSE-CIC-IDS2018 block by a combined

CNN and Neural Network algorithm to form a classification

model algorithm.

FIG. 2.

 DIAGRAM OF CORE IDS

The 5,12 gigabytes out of 6,41 gigabytes of raw training

dataset used on this experiment are labelled normal or various

types of intrusion. In this case, this experiment categorizes

the intrusion labels into two types which are DDoS and Brute

Force. DDoS group of attack consists of over than 680,000

High Orbit Ion Canon (HOIC) attack and 1730 Low Orbit Ion

Canon (LOIC) attack. On the other hand, Brute Force group

of attack consists of over than 190,000 File Transfer Protocol

(FTP) Brute Force attack, 180,000 Secure Shell Protocol

(SSH) Brute Force attack, 611 Brute Force attack on Web,

230 Brute Force attack on Cross Site Scripting (XSS), and 87

Structured Query Language (SQL) Injection attack. Table 1

shows the representation of CSE-CIC-IDS2018 data used on

this experiment.
TABLE 1

Distribution of CSE-CIC-IDS2018 dataset used in this experiment

Traffic type Traffic
numbers

Distribution
(%)

Benign 3124681 74.49

DDOS attack-HOIC 686012 16.35

FTP-BruteForce 193360 4.6

SSH-BruteForce 187589 4.4

DDOS attack-LOIC-UDP 1730 0.04124

Brute Force -Web 611 0.01456

Brute Force -XSS 230 0.00548

SQL Injection 87 0.00207

Total 4194300 100

ISSN : 2355-9365 e-Proceeding of Engineering : Vol.8, No.6 Desember 2022 | Page 3294

B. System Work Flowchart

As mentioned before, in general, this experiment consists

of two major parts. The first part is pre-processing. After pre-

processing, the next part will be model building. In model

building, the data will be trained on the ML algorithm to

attained the desired model. These model eventually will get

evaluated in testing process with fine tuning until the most

satisfactory result achieved. In this case, the ideal result is

performance metrics score with above than 90% rate and

lowest loss score.

The full pre-processing part consisted of five steps of data

cleaning. Those five steps start with filling the null values of

each instance with zero value. This is because a dataset that

is consisted of null values is redundant and could cause major

inaccuracy on the IDS model. The next step is translating

each and every infinity values on the dataset into an

appropriate numeric value. Due to the dataset comes with a

few of inconsistent value, we need to make sure the data is

suitable for the ML model to process. In this case, all of

infinity values on this dataset will be transformed into each

attributes’ maximum value. After that, any irrelevant attribute

such as ‘Timestamp’ will be dropped as this attribute doesn’t

bring any intrinsic value and relevance on the ML model.

Furthermore, all of 78 features contained in each of dataset’s

instances are operated in normalization process.

Normalization process is a feature scaling procedure to obtain

same output value of each attribute of continuous data into

the range between 0 and 1. This normalization process will

be conducted with Min-max scaler technique. Accordingly,

all of these instances’ label will be converted into a

meaningful numerical value using Label-encoder technique.

This is due to the fact that every label attributes on each

instance are on string type of data and the ML model expects

numerical data as an input [6]. Lastly, all and each of instance

is converted from vector type of data into a form which

represents an image, which is matrix type of data. This

experiment converts all the 78 features into a 13×6 matrix

instance. Fig. 3 shows the flowchart of this experiment.

FIG. 3

FLOWCHART OF THIS EXPERIMENT

The full pre-processing part consisted of five steps of data

cleaning. Those five steps start with filling the null values of

each instance with zero value. This is because a dataset that

is consisted of null values is redundant and could cause major

inaccuracy on the IDS model. The next step is translating

each and every infinity values on the dataset into an

appropriate numeric value. Due to the dataset comes with a

few of inconsistent value, we need to make sure the data is

suitable for the ML model to process. In this case, all of

infinity values on this dataset will be transformed into each

attributes’ maximum value. After that, any irrelevant attribute

such as ‘Timestamp’ will be dropped as this attribute doesn’t

bring any intrinsic value and relevance on the ML model.

Furthermore, all of 78 features contained in each of dataset’s

instances are operated in normalization process.

Normalization process is a feature scaling procedure to obtain

same output value of each attribute of continuous data into

the range between 0 and 1. This normalization process will

be conducted with Min-max scaler technique. After that, all

of these instances’ label will be converted into a meaningful

numerical value using Label-encoder technique. This is due

to the fact that every label attributes on each instance are on

string type of data and the ML model expects numerical data

as an input [6]. Lastly, all and each of instance is converted

from vector type of data into a form which represents an

image, which is matrix type of data. This experiment converts

all the 78 features into a 13×6 matrix instance.

C. Building the IDS Model

After pre-processing, the next step is to build the core of

the IDS. This experiment builds the IDS by training and

evaluating an ML model. In general, the ML architecture of

this experiment is shown in Fig. 4. This experiment’s ML

model starts with channeling each transformed instance into

the first layer of the ML model, the CNN layer. The

convolutional layer acted as the first input layer, followed by

a pooling layer, dropout layer, and finally proceeded to a

Neural Network layer with only a single dense layer that is

fully linked to an output of three classes, namely Normal

traffic, DDoS attack traffic, and BruteForce attack traffic.

FIG. 4

 VISUAL REPRESENTATION OF THIS EXPERIMENT ML

MODEL

The first layer of this experiment’s ML model, the CNN

layer consists of filters, kernels, and activation function

parameter. The filters are usually less abstract and generally

emulates basic feature detectors to extract input data. The

conservative values of CNN filter are 16 and 32. Researcher

usually don’t want a huge number of filters applied to the

CNN layer due to its nature that the model will be more likely

redundant if the filter value is too high. The kernel size of

CNN layer determines of how large the filter matrix that

moves over the convoluted data. The kernel size of a two-

dimensional CNN algorithm usually ranges from 2x2 and 3x3

[5]. The last variable of this ML model’s first layer, the

ISSN : 2355-9365 e-Proceeding of Engineering : Vol.8, No.6 Desember 2022 | Page 3295

activation function acts as an additional component on the

network which adds non-linearity to the data. This is due to

the nature of linear transformation function alone couldn’t

capture complex relationships. Eventually, this experiment

uses Rectified Linear Unit (ReLU) as activation function.

ReLU has become the de facto and default activation function

for many researchers because it’s easier to use and frequently

achieves better performance compared to another types of

activation function [5].

The second and third layer of this experiment’s ML model

is pooling and dropout layer. Quite similar with CNN layer,

the pooling layer essentially reduces the spatial size of the

input data without sacrificing its major features. Ultimately,

the objective of pooling layer is to make the computational

power more efficient through dimensionality reduction [7].

This experiment uses Max Pooling technique as this pooling

type is also capable of being a noise suppressant to the data.

Done with pooling, the dropout layer serves as a deterrent to

overfitting the model which leads in poor performance when

the model is evaluated in the benchmarking process. The

value of dropout layer lies between 0 and 1. The best value of

dropout layer is dependent on its dataset and ML model. This

means there are no fixated or default value for this layer.

However, usually the value of dropout layer performs better

on the range between 0.3 and 0.8.

The fourth and last layer of this experiment is a single

layer of Forward Propagation Neural Network that is going

to be iterated for over a series of epochs. Abstractly in the

background, this final layer executes a matrix-vector

multiplication. The most important parameter for this layer is

unit parameter. This parameter uses a positive integer as its

input and represents the output size of the layer. Followed by

activation function parameter, this layer also utilizes ReLU.

Finally, the output of this layer is transmitted to the last output

layer formed as the same single dense layer with three units.

But different compared to its precedent, this layer utilizes

Softmax as its activation function. This is due to the

performance of Softmax is better for multi-class

classification compared to other activation function.

III. METHOD

In general, the goal of this experiment is to finding the

ideal conditions of the proposed ML approach by tweaking

the designated parameters. Those parameters are convolution

layer’s filter value, dropout layer’s value, number of the

neural network’s dense layer nodes, and batch size.

Furthermore, after the model with optimum result obtained

by tweaking the parameters, the model will be evaluated with

cross-validation technique. In this case, k-fold cross-

validation technique is chosen with the value k of 3, and 2.

The range values of each parameter that will be fine-tuned in

this experiment is represented on Table 2 and are described

as follows:

1. The range values of the convolution layer’s filter

values are 8 and 16. The reason the numbers chosen

are less than 32 which is the conservative value is

because this experiment is dealing with relatively

small resolution or size of data input. Thus, smaller

values will be more effective. For simplicity, the

usage of this parameter will be abbreviated with ’C’

on further figures and tables.

2. The range values of the dropout layer are 0.3, 0.5, and

0.7. In this case, 0.3 and 0.7 are also chosen to show

which leaning bias is better between smaller and

bigger dropout value. For simplicity, the usage of this

parameter will be abbreviated with ’DO’ on further

figures and tables.

3. The range values of the neural network’s dense layer

are 16, 32, 64, and 128. Similar with the value of

convolution, this experiment would not need a big

value of neural network nodes. Since the input data of

the ML model is relatively small and bigger nodes is

also mean a waste of resource and more computational

time which leads to inefficiency. For simplicity, the

usage of this parameter will be abbreviated with ’De’

on further figures and tables.

4. The range values of batch size on the ML model are

128, 256, 512, 1024, and 2048. The reason 2048 is

chosen for the highest value is because the bigger the

size of the batch, the more inaccurate the model will

be. For simplicity, the usage of this parameter will be

abbreviated with ’B’ on further figures and tables.

IV. RESULT AND DISCUSSION

The process to find the optimal IDS model is done by

manually training and testing the dataset with reiteration for

each parameter values. In this case, the experiment started

with the lowest value for each parameter and reiterated by

changing each of values in respect to the model performance.

The model performance observed are performance metrics

and time to complete the process. The parameter tweaking

stage will be conducted with simple training and testing

scheme. The author choses 8:2 data ratio, which means 20%

of the dataset are randomly chosed as testing set. The reason

is because the model will be evaluated with higher testing

ratio by cross-validation technique later on the evaluation

stage.

A. Training and Testing Results

From Table 2, the performance metrics shows that the

initial proposed ML model has already attained stunning

results with a steady 99% of scores in each and every metric.

However, the only significant difference from this stage

process is the time to process each model. A smaller batch

size of training data tends to slow the building process of the

IDS model. As it is better to choose smaller batch size value

in respect to both time and performance, the author choses

2048 as the parameter value.

TABLE 2

PERFORMANCE METRICS OF BATCH SIZE VALUE

TWEAKING.

 Acc.
(%)

Prec.
(%)

Rec.
(%)

F1
(%)

Loss
(%)

Time

C=4
DO=0.3
De=16
B=128

99.9673 99.96 99.96 99.96 0.2 10m
30s

C=4
DO=0.3
De=16
B=256

99.9367 99.93 99.93 99.93 0.51 5m
13s

C=4
DO=0.3

99.9646 99.96 99.96 99.96 0.24 3m
17s

ISSN : 2355-9365 e-Proceeding of Engineering : Vol.8, No.6 Desember 2022 | Page 3296

De=16
B=512

C=4
DO=0.3
De=16
B=1024

99.9129 99.91 99.91 99.91 0.4 2m
18s

C=4
DO=0.3
De=16
B=2048

99.9042 99.90 99.90 99.90 0.52 1m
37s

C=4,
DO=0.3
De=16
B=4096

99.8740 99.87 99.87 99.87 1.03 1m
18s

The performance metrics on Table 3 shows a pretty

similar behavior with the first stage’s parameter tweaking due

to each and every scores are consistently above 99%. As one

can observe, the value of 32 and 64 could reach 99.95% and

99.94% accuracy respectively. However, the dense layer

value of 128 has slightly better accuracy and time

performance compared to other two values with only four

seconds time. The author also has decided to not continue

with a dense layer value bigger than 128 as this could lead to

an overfitting condition. Ultimately, the author chooses 128

for the value of this parameter tweaking stage and moves

forward toward the next stage which is dropout layer

parameter tweaking.

TABLE 3

PERFORMANCE METRICS OF DENSE LAYER VALUE

TWEAKING.

 Acc.
(%)

Prec.
(%)

Rec.
(%)

F1
(%)

Loss
(%)

Time

C=4
DO=0.3
De=32
B=2048

99.9598 99.95 99.95 99.95 0.48 1m
37s

C=4
DO=0.3
De=64
B=2048

99.9443 99.94 99.94 99.94 0.88 1m
37s

C=4
DO=0.3
De=128
B=2048

99.9622 99.96 99.96 99.96 0.4 1m
33s

Moving to dropout value tweaking on Table 4, it is clear

that the dropout value of 0.7 has a decreasing performance

with 93% accuracy compared to all IDS model from the

beginning of this experiment. The loss metric on dropout

value of 0.7 also shows an outlier result of 31% which is far

less than the acceptable IDS performance metrics in general.

On this stage, the author has drawn conclusions that the

bigger the dropout value added on the model, the less

accurate the IDS will be while the performance time doesn’t

change much. Furthermore, the author has suggested the best

dropout value for this IDS model lies between the value of

0.3 and 0.5. For simplicity, the next convolution stage ahead

will use the dropout value of 0.3 as shown on Table 4.

TABLE 4

PERFORMANCE METRICS OF DROPOUT VALUE

TWEAKING.

 Acc.
(%)

Prec.
(%)

Rec.
(%)

F1
(%)

Loss
(%)

Time

C=4
DO=0.5
De=128
B=2048

99.9634 99.96 99.96 99.96 0.91 1m
35s

C=4
DO=0.7
De=128
B=2048

93.2599 93.25 93.25 93.25 31 1m
34s

Lastly, on Table 5, the convolution filter value of 16 has

shown a slightly improvements of 0.03% compared to the

value of 4 and 0.01% compared to the value of 8. This little

improvement also come with a stable performance time.

Furthermore, the convolution filter value of 16 also has

shown the lowest loss metric score compared to all iterations

conducted from the beginning of this experiment. With this

result, the author finally chooses the combination of the

convolution filter value of 16, the dropout value of 0.3, the

neural network’s dense layer value of 128, and the batch size

value of 2048 for all the model parameter. This combination

further will be evaluated by k-fold cross-validation technique

in the next subchapter.

TABLE 5

PERFORMANCE METRICS OF CONVOLUTION

FILTER VALUE TWEAKING.

 Acc.
(%)

Prec.
(%)

Rec.
(%)

F1
(%)

Loss
(%)

Time

C=8
DO=0.3
De=128
B=2048

99.9406 99.94 99.94 99.94 0.22 1m
34s

C=16
DO=0.3
De=128
B=2048

99.9725 99.97 99.97 99.97 0.16 1m
37s

B. Evaluation with k-fold Cross-validation

After the ideal model parameters has been achieved, the

result of this experiment is still need to be evaluated to make

sure that the IDS is able to predict new data traffics that was

outside of the training dataset. In this case, the use of cross

validation technique is important as it will decrease the

chance of selection bias and exhibit an insight on how the IDS

will behave towards independent or unknown instance. This

evaluation process will be conducted by a randomized and

regularized / stratified k-fold cross-validation.

Randomization and regularization however, are just

additional k-fold characteristics added to the k-fold process

to preserve the same class ratio throughout all of the iterations

to the ratio of the whole original dataset while maintaining its

randomness.

This evaluation process will utilize the k value of 3 and 2.

This means the cross-validation process will utilize 33% and

50% of its whole dataset as testing dataset respectively. The

reason smaller k value is chosen is because the lower the k

value means that the IDS model is trained on a limited

training dataset and tested on a bigger testing dataset thus will

lead to a high error prediction on average. This was expected

as the model has already shown staggering result with nearly

perfect classifications on only 20% testing dataset that was

conducted and presented in the beginning of this chapter.

ISSN : 2355-9365 e-Proceeding of Engineering : Vol.8, No.6 Desember 2022 | Page 3297

From Table 6, the evaluation process shows that this IDS

model also has a similar and consistent performance

compared to the model in parameter tweaking stages. With

more than 99% on all metric scores and identical losses, the

proposed IDS model has passed the evaluation process with

the value k of 3 and eligible to proceed for the evaluation with

k value of 2 in the next Sub-chapter.

TABLE 6

PERFORMANCE METRICS OF CONVOLUTION

FILTER VALUE TWEAKING.

 Acc.
(%)

Prec. (%) Rec. (%) F1
(%)

Loss
(%)

C=16
DO=0.3
De=128
B=2048
k=3

99.9720 99.97 99.97 99.97 0.18

From Table 7, the author has concluded that this

experiment has generated the most optimum and ideal IDS

model for the proposed approach. Since 50% of its dataset

has been used for testing set, performance metric scores are

still showing results that are undeniably high and similar to

the previous experiment.

TABLE 7

PERFORMANCE METRICS OF CONVOLUTION

FILTER VALUE TWEAKING.

 Acc.
(%)

Prec.
(%)

Rec.
(%)

F1
(%)

Loss
(%)

C=16
DO=0.3
De=128
B=2048
k=2

99.9673 99.96 99.96 99.96 0.18

C. Analysis

From the set of stages of experiment above, the author has

gathered some final analysis on how the parameter tweaking

and application of CNN and ML model on IDS could achieve

high performance. Those analysis has been summarized on

the following points:

1. Among all of the parameters used in this

experiment, the value of batch size plays a very

important role on determining the training and

testing time which correlates heavily on the

efficiency of computational resources.

2. Although a higher batch size value is expected

which resulted on compromised loss scores, the

tweaking process of other parameters could be

utilized to improve it.

3. Even though different value of dense layer

parameter has resulted on similar performance

metric, the higher dense layer value is still preferred

since it offers more metric scores and less losses

compared to other.

4. The dropout parameter tweaking process has

shown that the model proposed has better

performance with lower dropout value. Hence, the

authors have preferred the range between 0.3 and

0.5 as the dropout value since this range has

resulted on higher metric scores compared to other.

5. A higher convolution value has shown a better

performance which we suggest that it can be used

to handle the compromising large batch size value.

6. The model proposed on this research has exceed

expectations as the evaluation result with k-fold

cross-validation technique has shown a stable and

consistent prominent result.

V. CONCLUSION

From the set of stages of experiment above, the authors
have summarized the following points:

1. Based on the experiment, the result demonstrates

that the application of Convolutional Neural

Network algorithm can be used as the main tool to

build an Intrusion Detection System through the

technique of converting network traffic data into

image form of data as a model input.

2. The approach proposed in this research has proven

to detect the characteristic of a captured network

traffic, namely benign and malicious traffics.

3. The model proposed in this research has proven to

achieve higher accuracy compared to other

traditional machine learning models on the same

dataset.

4. Based on each of models that have been built, the

scores of the model’s performance metrics are

highly dependant on each of the value of the

machine learning parameters.

5. The parameter of batch size highly correlates with

the model’s time performance, while the parameter

of convolution plays a role in determining the

accuracy metric of the IDS model.

REFERENCE

[1] Cisco and/or its affiliates. 2020. Cisco Annual

Internet Report (2018-2023) White Paper. [Online]

Available at:

https://www.cisco.com/c/en/us/solutions/collateral/

executiveperspectives/annual-internet-report/white-

paper-c11-741490.html

[2] B. A. Forouzan, 2007. Data Communications and

Networking, 4th Edition. McGraw Hill Higher

Education, 2007.

[3]

[4]

[5]

[6]

K. Kim, M. E. Aminanto, and H. C. Tanuwidjaja,

2018. Network Intrusion Detection using Deep

Learning: A Feature Learning Approach. Springer.

A. Khraisat, I. Gondal, P. Vamplew, and J.

Kamruzzaman, 2019. Survey of intrusion detection

systems: techniques, datasets, and challenges.

Cybersecurity. 2:20 1-2.

S. Albawi, T. A. Mohammed, and S. Al-Zawi, 2017.

Understanding of a Convolutional Neural Network.

International Conference on Engineering and

Technology (ICET). 1-6.

W. -H. Lin, H. -C. Lin, P. Wang, B. -H. Wu and J. -

Y. Tsai, 2018. Using convolutional neural networks

to network intrusion detection for cyber threats.

ISSN : 2355-9365 e-Proceeding of Engineering : Vol.8, No.6 Desember 2022 | Page 3298

[7]

[8]

IEEE International Conference on Applied System

Invention (ICASI). 1107-1110.

A. Ajit, K. Acharya and A. Samanta, 2020. A

Review of Convolutional Neural Networks.

International Conference on Emerging Trends in

Information Technology and Engineering (ic-

ETITE). 1-5.

T. Carneiro, R. V. Medeiros Da N´oBrega, T.

Nepomuceno, G. -B. Bian, V. H. C. De Albuquerque

and P. P. R. Filho, 2018. Performance Analysis of

Google Colaboratory as a Tool for Accelerating

Deep Learning Applications. IEEE Access, vol. 6.

61677-61685.

ISSN : 2355-9365 e-Proceeding of Engineering : Vol.8, No.6 Desember 2022 | Page 3299

