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Abstract— The rapid development of data communications 

alongside its nature to be protected and secured have resulted in a 

long on-going research and development of Intrusion Detection 

System (IDS). One of many approaches for improving IDS is by 

using Machine Learning (ML) method. This research proposes to 

build an IDS model using Convolutional Neural Network (CNN) 

algorithm which is a specialized type of ML. This research is 

conducted by converting CSE-CIC-IDS2018 samples into a 

pixelate image as an input to the IDS model to classify between 

benign and malicious network traffic. The best model will be 

chosen by comparing performance metrics of each model on 

different parameter combinations and the final model will be 

evaluated with k-fold Cross-validation technique to make sure the 

finest performance is obtained. The results obtained on this 

research are performance metrics scores that is higher than 93% 

for all of the parameter combinations. Based on the final result 

obtained, the authors concluded that the model proposed on this 

research is not only successful, but also is better compared to other 

traditional ML-based IDS in terms of performance metrics. 

Keywords— Intrusion Detection System, Machine Learning, 

Convolutional Neural Network 

 

I. INTRODUCTION  

Along with the development of information technology 

and the convergence of technology with current digital 

lifestyle today, information security has become more 

relevant and needed than ever. By 2023 there will be 66% of 

global population that has internet access where the numbers 

of Internet Protocol (IP) connected devices will reach 29.3 

billion caused by Internet of Things up from 18.4 billion in 

2018 [1]. The inevitable trend of information technology 

development which on track with the increasing 

dependencies on robust and reliable data communications 

network makes information security a crucial aspect of 

functioning modern society. This phenomenon will occur 

worldwide as it is an essential nature to apply security 

approaches on wider and more crucial range of fields than 

before such as automated driving, healthcare, and energy. All 

of this is just the beginning of a more sophisticated form of 

digitalization. 

With all of this advanced development, these huge 

number of statistics raise new challenges as the development 

of information security also in tune with the rise of new and 

more sophisticated threats such as exploits and vulnerabilities 

in worldwide data network. One of those challenges is an 

anomalous network dataflow that is also known as intrusion 

or a breach on a network. A breach on a network nowadays 

means lots of possibilities ranging from an information gets 

stolen to an attack to the network functionality and 

availability widely known as Distributed Denial of Service 

(DDoS) [2]. According to Cisco, 1Gbps DDoS attack alone 

is enough to take most organizations completely offline [1]. 

Added with 23% of those attacks are greater than 1Gbps, a 

dynamic and scalable approach to protect network and 

information from unwanted hands has become one of the 

utmost importance. Intrusion Detection System (IDS) is one 

of many methods to overcome this problem. 

Intrusion Detection System (IDS) is a dedicated system 

formed as a software or hardware to run the intrusion process 

automatically. The ultimate goal of an IDS is to be able to 

identify different kinds of malicious intrusion with high 

detection rate and low false alarm rate, which cannot be 

achieved by firewall. IDS has a long history of appliance with 

traditional rule-based or pre-determined set of rules to 

differentiate between mundane and malignant traffic. This 

approach however is not reliable in the long run since it will 

unable to detect malicious traffic intelligently and 

continuously. 

Due to its rapid demand and the need to adapt to more 

complex threat in the future, Machine Learning (ML) 

technique can be used as a solution to reinforce an IDS. ML 

can improve conventional IDS methods in terms of 

effectiveness and efficiency by its capability to process and 

learn new patterns automatically [3]. ML is sought to be 

implemented on IDS because of the rapid nature of the 

development of ML technologies by both academia and 

industry. ML also has been used and applied in many other 

technological disciplines and has shown significant positive 

transformations. The versatile and learnability characteristic 

of ML is expected to strengthen and improving the existing 

conventional IDS in an unimaginable possibility [4]. 

Previously, there was numbers of research on this topic 

regarding on how to apply an ML method on IDS. With 

stunning results and scores, these researches have managed 

to raise new standard and opened new pathway for other 

researcher to striving on this topic. However, these researches 

were mainly dominated by the combination usage of 

traditional ML method and old type of datasets as a training 

and validation subject. To fill in the gap of this issue, this 

Final Undergraduate Thesis proposes the using of newer type 

of ML method which are Convolutional Neural Network 

(CNN) algorithm and Neural Network type of ML on a 
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newest and designated dataset of a captured network traffic 

that consisted of detailed descriptions of intrusions and 

abstract distribution models of applications, protocols, and 

lower-level network entities. This is due to the fact that 

Neural Network with CNN method has gained massive 

success and popularity among many fields of study recently, 

even though the implementation of CNN is mainly used in 

computer vision field [5]. One of the biggest challenges of 

this undergraduate thesis is to make this implementation and 

experimentation possible through designing a set of rules of 

program to apply CNN method on a network traffic dataset. 

Another main reason to choose Neural Network over another 

traditional ML method is because Neural Network offers 

more advantages such as better feature representation, 

performance, and less false alarm. 

II. THEORITICAL REVIEW 

In this experiment, we design an IDS that has been 

trained with CNN and Neural Network algorithm. The 

traditional method to train an IDS is usually done by 

purposely generate a personal or dedicated real network 

traffic by oneself. Although it’s possible to do so, most of 

handcrafted network traffics are usually rather limited in 

coverage and considerably debatable in their integrity. Public 

dataset comes to resolve this issue. In this case, this 

experiment uses CSE-CIC-IDS2018 as it is one of the newest 

public traffic datasets available in this research field. 

Furthermore, all of the experiment process was conducted on 

Google Colab platform. Colab Pro tier is chosen in 

consideration that this experiment needs a more dedicated 

size of Random Access Memory (RAM) and resource 

priority [8]. 

 

 
FIG. 1.  

VISUALIZATION OF FIVE CONVERTED INSTANCES 

 

In general, there are two parts that are going to be 

conducted in this experiment; Pre-processing and building 

the ML model by training and evaluation [3]. The pre-

processing is one of the most important processes to 

transform the various raw dataset feature attributes into a 

meaningful and valuable data that the ML model would 

understand. This is due to the key elements to build an IDS 

with CNN algorithm is by mapping the one-dimensional 

instances of the dataset into a type of data that is accepted into 

the ML model, which is image type of data. Another key 

reason is because the CNN model is far better for processing 

image type of data compared to another type of data [5]. This 

experiment will exploit one of the advantages of CNN and 

Neural Network algorithm by making this experiment relies 

on the concept of image classification. Started with 80 

features from each instance in CSE-CIC-IDS2018 dataset, 

this experiment will end up on 79 features that will 

transformed into 13x6 pixels image type data excluding its 

label feature as shown on Fig. 1 which is the acceptable input 

for CNN and Neural Network model to execute. 

A. System Block Diagram 

The ML model on IDS starts when the model is provided 

with input data which come from previous pre-processing 

step. Generally, the IDS core system is a method to 

distinguish normal and malicious traffics as shown in Fig. 2. 

After the pre-processing step, the next step is to split the CSE-

CIC-IDS2018 dataset into training and testing block. Then, 

the core IDS system of this experiment would be consisted 

on training the CSE-CIC-IDS2018 block by a combined 

CNN and Neural Network algorithm to form a classification 

model algorithm. 

 
FIG. 2. 

 DIAGRAM OF CORE IDS 

 

The 5,12 gigabytes out of 6,41 gigabytes of raw training 

dataset used on this experiment are labelled normal or various 

types of intrusion. In this case, this experiment categorizes 

the intrusion labels into two types which are DDoS and Brute 

Force. DDoS group of attack consists of over than 680,000 

High Orbit Ion Canon (HOIC) attack and 1730 Low Orbit Ion 

Canon (LOIC) attack. On the other hand, Brute Force group 

of attack consists of over than 190,000 File Transfer Protocol 

(FTP) Brute Force attack, 180,000 Secure Shell Protocol 

(SSH) Brute Force attack, 611 Brute Force attack on Web, 

230 Brute Force attack on Cross Site Scripting (XSS), and 87 

Structured Query Language (SQL) Injection attack. Table 1 

shows the representation of CSE-CIC-IDS2018 data used on 

this experiment. 
TABLE 1  

Distribution of CSE-CIC-IDS2018 dataset used in this experiment 

Traffic type Traffic 
numbers 

Distribution 
(%) 

Benign 3124681 74.49 

DDOS attack-HOIC 686012 16.35 

FTP-BruteForce 193360 4.6 

SSH-BruteForce 187589 4.4 

DDOS attack-LOIC-UDP 1730 0.04124 

Brute Force -Web 611 0.01456 

Brute Force -XSS 230 0.00548 

SQL Injection 87 0.00207 

Total 4194300 100 
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B. System Work Flowchart 

As mentioned before, in general, this experiment consists 

of two major parts. The first part is pre-processing. After pre-

processing, the next part will be model building. In model 

building, the data will be trained on the ML algorithm to 

attained the desired model. These model eventually will get 

evaluated in testing process with fine tuning until the most 

satisfactory result achieved. In this case, the ideal result is 

performance metrics score with above than 90% rate and 

lowest loss score.  

The full pre-processing part consisted of five steps of data 

cleaning. Those five steps start with filling the null values of 

each instance with zero value. This is because a dataset that 

is consisted of null values is redundant and could cause major 

inaccuracy on the IDS model. The next step is translating 

each and every infinity values on the dataset into an 

appropriate numeric value. Due to the dataset comes with a 

few of inconsistent value, we need to make sure the data is 

suitable for the ML model to process. In this case, all of 

infinity values on this dataset will be transformed into each 

attributes’ maximum value. After that, any irrelevant attribute 

such as ‘Timestamp’ will be dropped as this attribute doesn’t 

bring any intrinsic value and relevance on the ML model. 

Furthermore, all of 78 features contained in each of dataset’s 

instances are operated in normalization process. 

Normalization process is a feature scaling procedure to obtain 

same output value of each attribute of continuous data into 

the range between 0 and 1. This normalization process will 

be conducted with Min-max scaler technique. Accordingly, 

all of these instances’ label will be converted into a 

meaningful numerical value using Label-encoder technique. 

This is due to the fact that every label attributes on each 

instance are on string type of data and the ML model expects 

numerical data as an input [6]. Lastly, all and each of instance 

is converted from vector type of data into a form which 

represents an image, which is matrix type of data. This 

experiment converts all the 78 features into a 13×6 matrix 

instance. Fig. 3 shows the flowchart of this experiment. 

 

 
FIG. 3 

FLOWCHART OF THIS EXPERIMENT 

 

The full pre-processing part consisted of five steps of data 

cleaning. Those five steps start with filling the null values of 

each instance with zero value. This is because a dataset that 

is consisted of null values is redundant and could cause major 

inaccuracy on the IDS model. The next step is translating 

each and every infinity values on the dataset into an 

appropriate numeric value. Due to the dataset comes with a 

few of inconsistent value, we need to make sure the data is 

suitable for the ML model to process. In this case, all of 

infinity values on this dataset will be transformed into each 

attributes’ maximum value. After that, any irrelevant attribute 

such as ‘Timestamp’ will be dropped as this attribute doesn’t 

bring any intrinsic value and relevance on the ML model. 

Furthermore, all of 78 features contained in each of dataset’s 

instances are operated in normalization process. 

Normalization process is a feature scaling procedure to obtain 

same output value of each attribute of continuous data into 

the range between 0 and 1. This normalization process will 

be conducted with Min-max scaler technique. After that, all 

of these instances’ label will be converted into a meaningful 

numerical value using Label-encoder technique. This is due 

to the fact that every label attributes on each instance are on 

string type of data and the ML model expects numerical data 

as an input [6]. Lastly, all and each of instance is converted 

from vector type of data into a form which represents an 

image, which is matrix type of data. This experiment converts 

all the 78 features into a 13×6 matrix instance. 

 

C. Building the IDS Model 

After pre-processing, the next step is to build the core of 

the IDS. This experiment builds the IDS by training and 

evaluating an ML model. In general, the ML architecture of 

this experiment is shown in Fig. 4. This experiment’s ML 

model starts with channeling each transformed instance into 

the first layer of the ML model, the CNN layer. The 

convolutional layer acted as the first input layer, followed by 

a pooling layer, dropout layer, and finally proceeded to a 

Neural Network layer with only a single dense layer that is 

fully linked to an output of three classes, namely Normal 

traffic, DDoS attack traffic, and BruteForce attack traffic. 

 
FIG. 4 

 VISUAL REPRESENTATION OF THIS EXPERIMENT ML 

MODEL 

 

The first layer of this experiment’s ML model, the CNN 

layer consists of filters, kernels, and activation function 

parameter. The filters are usually less abstract and generally 

emulates basic feature detectors to extract input data. The 

conservative values of CNN filter are 16 and 32. Researcher 

usually don’t want a huge number of filters applied to the 

CNN layer due to its nature that the model will be more likely 

redundant if the filter value is too high. The kernel size of 

CNN layer determines of how large the filter matrix that 

moves over the convoluted data. The kernel size of a two-

dimensional CNN algorithm usually ranges from 2x2 and 3x3 

[5]. The last variable of this ML model’s first layer, the 
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activation function acts as an additional component on the 

network which adds non-linearity to the data. This is due to 

the nature of linear transformation function alone couldn’t 

capture complex relationships. Eventually, this experiment 

uses Rectified Linear Unit (ReLU) as activation function. 

ReLU has become the de facto and default activation function 

for many researchers because it’s easier to use and frequently 

achieves better performance compared to another types of 

activation function [5]. 

The second and third layer of this experiment’s ML model 

is pooling and dropout layer. Quite similar with CNN layer, 

the pooling layer essentially reduces the spatial size of the 

input data without sacrificing its major features. Ultimately, 

the objective of pooling layer is to make the computational 

power more efficient through dimensionality reduction [7]. 

This experiment uses Max Pooling technique as this pooling 

type is also capable of being a noise suppressant to the data. 

Done with pooling, the dropout layer serves as a deterrent to 

overfitting the model which leads in poor performance when 

the model is evaluated in the benchmarking process. The 

value of dropout layer lies between 0 and 1. The best value of 

dropout layer is dependent on its dataset and ML model. This 

means there are no fixated or default value for this layer. 

However, usually the value of dropout layer performs better 

on the range between 0.3 and 0.8. 

The fourth and last layer of this experiment is a single 

layer of Forward Propagation Neural Network that is going 

to be iterated for over a series of epochs. Abstractly in the 

background, this final layer executes a matrix-vector 

multiplication. The most important parameter for this layer is 

unit parameter. This parameter uses a positive integer as its 

input and represents the output size of the layer. Followed by 

activation function parameter, this layer also utilizes ReLU. 

Finally, the output of this layer is transmitted to the last output 

layer formed as the same single dense layer with three units. 

But different compared to its precedent, this layer utilizes 

Softmax as its activation function. This is due to the 

performance of Softmax is better for multi-class 

classification compared to other activation function. 

III. METHOD 

In general, the goal of this experiment is to finding the 

ideal conditions of the proposed ML approach by tweaking 

the designated parameters. Those parameters are convolution 

layer’s filter value, dropout layer’s value, number of the 

neural network’s dense layer nodes, and batch size. 

Furthermore, after the model with optimum result obtained 

by tweaking the parameters, the model will be evaluated with 

cross-validation technique. In this case, k-fold cross-

validation technique is chosen with the value k of 3, and 2. 

The range values of each parameter that will be fine-tuned in 

this experiment is represented on Table 2 and are described 

as follows: 

1. The range values of the convolution layer’s filter 

values are 8 and 16. The reason the numbers chosen 

are less than 32 which is the conservative value is 

because this experiment is dealing with relatively 

small resolution or size of data input. Thus, smaller 

values will be more effective. For simplicity, the 

usage of this parameter will be abbreviated with ’C’ 

on further figures and tables. 

2. The range values of the dropout layer are 0.3, 0.5, and 

0.7. In this case, 0.3 and 0.7 are also chosen to show 

which leaning bias is better between smaller and 

bigger dropout value. For simplicity, the usage of this 

parameter will be abbreviated with ’DO’ on further 

figures and tables. 

3. The range values of the neural network’s dense layer 

are 16, 32, 64, and 128. Similar with the value of 

convolution, this experiment would not need a big 

value of neural network nodes. Since the input data of 

the ML model is relatively small and bigger nodes is 

also mean a waste of resource and more computational 

time which leads to inefficiency. For simplicity, the 

usage of this parameter will be abbreviated with ’De’ 

on further figures and tables. 

4. The range values of batch size on the ML model are 

128, 256, 512, 1024, and 2048. The reason 2048 is 

chosen for the highest value is because the bigger the 

size of the batch, the more inaccurate the model will 

be. For simplicity, the usage of this parameter will be 

abbreviated with ’B’ on further figures and tables. 

 
IV. RESULT AND DISCUSSION 

The process to find the optimal IDS model is done by 

manually training and testing the dataset with reiteration for 

each parameter values. In this case, the experiment started 

with the lowest value for each parameter and reiterated by 

changing each of values in respect to the model performance. 

The model performance observed are performance metrics 

and time to complete the process. The parameter tweaking 

stage will be conducted with simple training and testing 

scheme. The author choses 8:2 data ratio, which means 20% 

of the dataset are randomly chosed as testing set. The reason 

is because the model will be evaluated with higher testing 

ratio by cross-validation technique later on the evaluation 

stage. 

 
A. Training and Testing Results  

From Table 2, the performance metrics shows that the 

initial proposed ML model has already attained stunning 

results with a steady 99% of scores in each and every metric. 

However, the only significant difference from this stage 

process is the time to process each model. A smaller batch 

size of training data tends to slow the building process of the 

IDS model. As it is better to choose smaller batch size value 

in respect to both time and performance, the author choses 

2048 as the parameter value. 

TABLE 2 

PERFORMANCE METRICS OF BATCH SIZE VALUE 

TWEAKING. 

 Acc. 
(%) 

Prec. 
(%) 

Rec. 
(%) 

F1 
(%) 

Loss 
(%) 

Time 

C=4 
DO=0.3 
De=16 
B=128 

99.9673 99.96 99.96 99.96 0.2 10m 
30s 

C=4 
DO=0.3 
De=16 
B=256 

99.9367 99.93 99.93 99.93 0.51 5m 
13s 

C=4 
DO=0.3 

99.9646 99.96 99.96 99.96 0.24 3m 
17s 
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De=16 
B=512 

C=4 
DO=0.3 
De=16 
B=1024 

99.9129 99.91 99.91 99.91 0.4 2m 
18s 

C=4 
DO=0.3 
De=16 
B=2048 

99.9042 99.90 99.90 99.90 0.52 1m 
37s 

C=4, 
DO=0.3 
De=16 
B=4096 

99.8740 99.87 99.87 99.87 1.03 1m 
18s 

 

The performance metrics on Table 3 shows a pretty 

similar behavior with the first stage’s parameter tweaking due 

to each and every scores are consistently above 99%. As one 

can observe, the value of 32 and 64 could reach 99.95% and 

99.94% accuracy respectively. However, the dense layer 

value of 128 has slightly better accuracy and time 

performance compared to other two values with only four 

seconds time. The author also has decided to not continue 

with a dense layer value bigger than 128 as this could lead to 

an overfitting condition. Ultimately, the author chooses 128 

for the value of this parameter tweaking stage and moves 

forward toward the next stage which is dropout layer 

parameter tweaking. 

TABLE 3 

PERFORMANCE METRICS OF DENSE LAYER VALUE 

TWEAKING. 

 Acc. 
(%) 

Prec. 
(%) 

Rec. 
(%) 

F1 
(%) 

Loss 
(%) 

Time 

C=4 
DO=0.3 
De=32 
B=2048 

99.9598 99.95 99.95 99.95 0.48 1m 
37s 

C=4 
DO=0.3 
De=64 
B=2048 

99.9443 99.94 99.94 99.94 0.88 1m 
37s 

C=4 
DO=0.3 
De=128 
B=2048 

99.9622 99.96 99.96 99.96 0.4 1m 
33s 

 

Moving to dropout value tweaking on Table 4, it is clear 

that the dropout value of 0.7 has a decreasing performance 

with 93% accuracy compared to all IDS model from the 

beginning of this experiment. The loss metric on dropout 

value of 0.7 also shows an outlier result of 31% which is far 

less than the acceptable IDS performance metrics in general. 

On this stage, the author has drawn conclusions that the 

bigger the dropout value added on the model, the less 

accurate the IDS will be while the performance time doesn’t 

change much. Furthermore, the author has suggested the best 

dropout value for this IDS model lies between the value of 

0.3 and 0.5. For simplicity, the next convolution stage ahead 

will use the dropout value of 0.3 as shown on Table 4. 

 

TABLE 4 

PERFORMANCE METRICS OF DROPOUT VALUE 

TWEAKING. 

 Acc. 
(%) 

Prec. 
(%) 

Rec. 
(%) 

F1 
(%) 

Loss 
(%) 

Time 

C=4 
DO=0.5 
De=128 
B=2048 

99.9634 99.96 99.96 99.96 0.91 1m 
35s 

C=4 
DO=0.7 
De=128 
B=2048 

93.2599 93.25 93.25 93.25 31 1m 
34s 

 

Lastly, on Table 5, the convolution filter value of 16 has 

shown a slightly improvements of 0.03% compared to the 

value of 4 and 0.01% compared to the value of 8. This little 

improvement also come with a stable performance time. 

Furthermore, the convolution filter value of 16 also has 

shown the lowest loss metric score compared to all iterations 

conducted from the beginning of this experiment. With this 

result, the author finally chooses the combination of the 

convolution filter value of 16, the dropout value of 0.3, the 

neural network’s dense layer value of 128, and the batch size 

value of 2048 for all the model parameter. This combination 

further will be evaluated by k-fold cross-validation technique 

in the next subchapter. 

 

 

TABLE 5 

PERFORMANCE METRICS OF CONVOLUTION 

FILTER VALUE TWEAKING. 

 Acc. 
(%) 

Prec. 
(%) 

Rec. 
(%) 

F1 
(%) 

Loss 
(%) 

Time 

C=8 
DO=0.3 
De=128 
B=2048 

99.9406 99.94 99.94 99.94 0.22 1m 
34s 

C=16 
DO=0.3 
De=128 
B=2048 

99.9725 99.97 99.97 99.97 0.16 1m 
37s 

 
B. Evaluation with k-fold Cross-validation  

After the ideal model parameters has been achieved, the 

result of this experiment is still need to be evaluated to make 

sure that the IDS is able to predict new data traffics that was 

outside of the training dataset. In this case, the use of cross 

validation technique is important as it will decrease the 

chance of selection bias and exhibit an insight on how the IDS 

will behave towards independent or unknown instance. This 

evaluation process will be conducted by a randomized and 

regularized / stratified k-fold cross-validation. 

Randomization and regularization however, are just 

additional k-fold characteristics added to the k-fold process 

to preserve the same class ratio throughout all of the iterations 

to the ratio of the whole original dataset while maintaining its 

randomness. 

This evaluation process will utilize the k value of 3 and 2. 

This means the cross-validation process will utilize 33% and 

50% of its whole dataset as testing dataset respectively. The 

reason smaller k value is chosen is because the lower the k 

value means that the IDS model is trained on a limited 

training dataset and tested on a bigger testing dataset thus will 

lead to a high error prediction on average. This was expected 

as the model has already shown staggering result with nearly 

perfect classifications on only 20% testing dataset that was 

conducted and presented in the beginning of this chapter. 
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From Table 6, the evaluation process shows that this IDS 

model also has a similar and consistent performance 

compared to the model in parameter tweaking stages. With 

more than 99% on all metric scores and identical losses, the 

proposed IDS model has passed the evaluation process with 

the value k of 3 and eligible to proceed for the evaluation with 

k value of 2 in the next Sub-chapter. 

 

TABLE 6 

PERFORMANCE METRICS OF CONVOLUTION 

FILTER VALUE TWEAKING. 

 Acc.  
(%) 

Prec. (%) Rec. (%) F1  
(%) 

Loss 
(%) 

C=16 
DO=0.3 
De=128 
B=2048 
k=3 

99.9720 99.97 99.97 99.97 0.18 

 

From Table 7, the author has concluded that this 

experiment has generated the most optimum and ideal IDS 

model for the proposed approach. Since 50% of its dataset 

has been used for testing set, performance metric scores are 

still showing results that are undeniably high and similar to 

the previous experiment. 

 

TABLE 7  

PERFORMANCE METRICS OF CONVOLUTION 

FILTER VALUE TWEAKING. 

 Acc. 
(%) 

Prec.  
(%) 

Rec.  
(%) 

F1  
(%) 

Loss 
(%) 

C=16 
DO=0.3 
De=128 
B=2048 
k=2 

99.9673 99.96 99.96 99.96 0.18 

 
C. Analysis  

From the set of stages of experiment above, the author has 

gathered some final analysis on how the parameter tweaking 

and application of CNN and ML model on IDS could achieve 

high performance. Those analysis has been summarized on 

the following points: 

1. Among all of the parameters used in this 

experiment, the value of batch size plays a very 

important role on determining the training and 

testing time which correlates heavily on the 

efficiency of computational resources. 

2. Although a higher batch size value is expected 

which resulted on compromised loss scores, the 

tweaking process of other parameters could be 

utilized to improve it. 

3. Even though different value of dense layer 

parameter has resulted on similar performance 

metric, the higher dense layer value is still preferred 

since it offers more metric scores and less losses 

compared to other. 

4. The dropout parameter tweaking process has 

shown that the model proposed has better 

performance with lower dropout value. Hence, the 

authors have preferred the range between 0.3 and 

0.5 as the dropout value since this range has 

resulted on higher metric scores compared to other. 

5. A higher convolution value has shown a better 

performance which we suggest that it can be used 

to handle the compromising large batch size value. 

6. The model proposed on this research has exceed 

expectations as the evaluation result with k-fold 

cross-validation technique has shown a stable and 

consistent prominent result. 
 

V. CONCLUSION 

From the set of stages of experiment above, the authors 
have summarized the following points: 

1. Based on the experiment, the result demonstrates 

that the application of Convolutional Neural 

Network algorithm can be used as the main tool to 

build an Intrusion Detection System through the 

technique of converting network traffic data into 

image form of data as a model input. 

2. The approach proposed in this research has proven 

to detect the characteristic of a captured network 

traffic, namely benign and malicious traffics. 

3. The model proposed in this research has proven to 

achieve higher accuracy compared to other 

traditional machine learning models on the same 

dataset. 

4. Based on each of models that have been built, the 

scores of the model’s performance metrics are 

highly dependant on each of the value of the 

machine learning parameters. 

5. The parameter of batch size highly correlates with 

the model’s time performance, while the parameter 

of convolution plays a role in determining the 

accuracy metric of the IDS model. 
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