

Mastering Java

Mastering Computer Science
Series Editor: Sufyan bin Uzayr

Mastering Java: A Beginner's Guide

Divya Sachdeva and Natalya Ustukpayeva

Mastering Unreal Engine: A Beginner's Guide

Divya Sachdeva and Aruqqa Khateib

Mastering UI Mockups and Frameworks: A Beginner's Guide

Mohamed Musthafa MC and Kapil Kishnani

Mastering Ruby on Rails: A Beginner's Guide

Mathew Rooney and Madina Karybzhanova

Mastering Sketch: A Beginner's Guide

Mathew Rooney and Md Javed Khan

Mastering C#: A Beginner's Guide

Mohamed Musthafa MC, Divya Sachdeva, and Reza Na�m

For more information about this series, please visit:

https://www.routledge.com/ Mastering-Computer-Science/ book-series/ MCS

The “Mastering Computer Science” series of books are authored by the

Zeba Academy team members, led by Sufyan bin Uzayr.

Zeba Academy is an EdTech venture that develops courses and content

for learners primarily in STEM �elds, and offers education consulting to

Universities and Institutions worldwide. For more info, please visit

https://zeba.academy

https://www.routledge.com/Mastering-Computer-Science/book-series/MCS
https://zeba.academy/

Mastering Java

A Beginner's Guide

Edited by Sufyan bin Uzayr

First edition published 2022

by CRC Press

6000 Broken Sound Parkway NW, Suite 300, Boca Raton, FL 33487-2742

and by CRC Press

2 Park Square, Milton Park, Abingdon, Oxon, OX14 4RN

CRC Press is an imprint of Taylor & Francis Group, LLC

© 2022 Sufyan bin Uzayr

Reasonable efforts have been made to publish reliable data and information, but the author

and publisher cannot assume responsibility for the validity of all materials or the

consequences of their use. The authors and publishers have attempted to trace the copyright

holders of all material reproduced in this publication and apologize to copyright holders if

permission to publish in this form has not been obtained. If any copyright material has not

been acknowledged please write and let us know so we may rectify in any future reprint.

Except as permitted under U.S. Copyright Law, no part of this book may be reprinted,

reproduced, transmitted, or utilized in any form by any electronic, mechanical, or other

means, now known or hereafter invented, including photocopying, micro�lming, and

recording, or in any information storage or retrieval system, without written permission

from the publishers.

For permission to photocopy or use material electronically from this work, access

www.copyright.com or contact the Copyright Clearance Center, Inc. (CCC), 222 Rosewood

Drive, Danvers, MA 01923, 978-750-8400. For works that are not available on CCC please

contact mpkbookspermissions@tandf.co.uk

Trademark Notice: Product or corporate names may be trademarks or registered trademarks

and are used only for identi�cation and explanation without intent to infringe.

ISBN: 9781032134109 (hbk)

ISBN: 9781032134086 (pbk)

ISBN: 9781003229063 (ebk)

DOI: 10.1201/9781003229063

Typeset in Minion

by KnowledgeWorks Global Ltd.

http://www.copyright.com/
mailto:mpkbookspermissions@tandf.co.uk
https://doi.org/10.1201/9781003229063

Contents

About the Editor

CHAPTER 1 ◾ Introduction to Java

WHAT IS JAVA?

How Does Java Work?

Why Is Java Important?

Java's Technical Advantages Include

Java's Advantages in the Workplace

THE JAVA PROGRAMMING LANGUAGE HAS THE FOLLOWING

FEATURES

Simple and Well-Known

Compiled and Interpreted the Data

Independent of the Platform

Portable

Neutral in Architecture

Object-Oriented

Robust

Safe

Distributed

Interactive and Multi-Threaded

Outstanding Performance

Extensible and Dynamic

BASIC SYNTAX

What Is the Syntax of Java?

First Java Program

Syntax for Beginners

Identi�ers in Java

Keywords in Java

Modi�ers in Java

Variables in Java

Enums in Java

Literals in Java

Comments in Java

Blank Lines

Inheritance

Interfaces

CHAPTER 2 ◾ Getting Started with Java

HOW TO SETUP JAVA ON A WINDOWS COMPUTER

In Java, Here's How to Establish Environment Variables: Classpath

and Path

INSTALLING A JAVA INTEGRATED DEVELOPMENT

ENVIRONMENT (IDE)

Internal Java Program Details

What Occurs throughout the Compilation Process?

What Occurs When the Program Is Running?

TYPES OF PRIMITIVE DATA

Simple Programs to Write

Identi�ers

Variables

Variable Declaration

Assignments Expressions and Assignment Statements

In a Single Step, Declare and Initialize Variables

Constants

Numerical Data Types and Operations

Numerical Operators

Numeric Literals

Integer Literals

Floating-Point Literals

Notations in Scientist

Arithmetic Expressions

Shortcut Operators

Numeric Type Conversions

Character Data Type and Operations

Unicode and ASCII Code

Special Character Escape Sequences

Casting between Char and Numeric Types

String Type

String Concatenation

Converting a String to a Number

String to Integers Conversion

Strings to Doubles Conversion

Using the Console for Input

Using a Scanner to Getting Information

Documentation and Programming Style

Appropriate Comments and Style of Comments

Conventions for Naming

Spacing Lines and Proper Indentation

Block Styles

Errors in Programming

Syntax Problems “Compilation Errors”

Runtime Errors

Logic Errors

Debugging

CONTROL STRUCTURES

If

if Statement

if-else Statement

if-else-if Ladder

Nested if Statement

Switch Statement

Loop Statements

Jump Statements

A GUIDE TO JAVA PACKAGES

Package Kinds in Java

Subpackages in Java

CHAPTER 3 ◾ Object-Oriented Programming

JAVA OBJECT-ORIENTED PROGRAMMINGS (OOPs)

CONCEPTS

OOPs

Object

Class

Inheritance

Polymorphism

Abstraction

Encapsulation

Coupling

Cohesion

Association

Aggregation

Composition

In Java, What Is the Difference between an Object and a Class?

Advantages of OOPs over Procedure-Oriented Programming

Languages

Java Naming Conventions

Bene�ts of Java Naming Conventions

Class

Interface

Method

Variable

Package

Constant

Java Objects and Classes

In Java, What Is an Object?

In Java, What Is a Class?

In Java: Instance Variable

In Java: Method

In Java: New Keyword

What Are the Many Methods of Creating an Object in Java?

Anonymous Object

CONSTRUCTORS

Default Constructor

What Is a Default Constructor's Purpose?

Parameterized Constructor

Why Utilize the Parameterized Constructor?

Constructor Overloading

In Java, What Is the Difference between a Constructor and a

Method?

Copy Constructor in Java

Copying Values without Constructor

STATIC KEYWORD

Counter Program with No Static Variables

Counter Program with Static Variables

IN JAVA, “THIS” KEYWORD

JAVA ENUM'S

Inheritance and Enumeration

Methods values(), ordinal(), and function valueOf()

Constructor and Enum

Enumeration and Methods

CHAPTER 4 ◾ Creating and Using Java Strims

A BEGINNER'S GUIDE TO STRINGS

Interface for CharSequence

In Java, What Is a String?

What Is the Best Way to Make a String Object?

Methods of the String Class in Java

IMMUTABLE STRING IN JAVA

Why Are String Objects in Java Immutable?

Why Is the String Class in Java Final?

STRING COMPARISON

STRING CONCATENATION

IN JAVA SUBSTRING

METHODS OF JAVA STRING CLASS

Methods toUpperCase() and toLowerCase() in Java String

Method to Java String trim():

The Methods startsWith() and endsWith() in Java String

Method to Java String charAt()

Method to Java String length()

Method to Java String intern()

Method to Java String valueOf()

Method to Java String replace ()

STRINGBUFFER CLASS IN JAVA

StringBuffer Class's Important Constructors

Mutable String

STRINGBUILDER CLASS IN JAVA

Examples of StringBuilders

DIFFERENCE BETWEEN STRINGBUFFER AND STRING

String and StringBuffer Performance Tests

HashCode Test for Strings and StringBuffers

Difference between StringBuilder and StringBuffer?

Example of StringBuffer

Example of StringBuilder

HOW CAN WE MAKE AN IMMUTABLE CLASS?

The Function toString() Method in Java

Bene�t

Java StringTokenizer

StringTokenizer Constructors

StringTokenizer Class Methods

CHAPTER 5 ◾ Collections, Lists, and Java's Built-in
APIs

WHAT ARE JAVA ARRAYS?

Advantages

Disadvantages

Array Types in Java

Java Single Dimensional Array

Java Array Declaration, Instantiation, and Initialization

Java Array for Each Loop

Passing an Array to a Method

Method Returning an Array

ArrayIndexOutOfBoundsException

Java Multidimensional Array

Java's Jagged Array

What Is the Name of the Java Array Class?

Creating a Java Array Copy

In Java, Clone an Array

In Java, Add Two Matrices

In Java, Multiply Two Matrices

JAVA SETS

The Set Interface's Operations

Methods of Set

LIST IN JAVA

ArrayList vs. Java List

How to Make a List

Converting an Array to a List

How to Convert a List to an Array

Get and Set an Element in a List

Sorting a List

Interface for Java ListIterator

MAP INTERFACE IN JAVA

Hierarchy of Java Map

The interface of Map.Entry

IN JAVA, ITERATING COLLECTIONS

The Four Java Collection Iteration Methods

Method of Java Collection iterator()

CHAPTER 6 ◾ Libraries, Packages, and Modules

WHAT IS THE LIBRARY IN JAVA?

Locating a Library

.jar Files Downloading

Documentation in the Library

Classpath

What Exactly Is a Java Class Library?

Library Classes in Java

Making Use of Java Libraries

User vs. Builder

What Is Included in the Java SDK?

WHAT ARE THE PACKAGES IN JAVA?

To Compile a Java Package, Follow These Steps

To Launch a Java Package Application, Follow These Steps

How Do I Go to a Package from Another Package?

JAVA SUBPACKAGE

How Do I Transfer the Class File to a Different Directory or Drive?

Another Approach to Execute this Program Is to Use the Java -

Classpath Switch

Methods for Loading Class Files or Jar Files Include

How Do You Combine Two Public Classes into a Single Package?

JAVA ACCESS MODIFIERS

Private Constructor's Role

Access Modi�ers with Method Overriding in Java

ENCAPSULATION

The Bene�ts of Encapsulation in Java

Class Read-Only

Class Write-Only

CLONING OBJECTS IN JAVA

Why Should You Use the Clone() Method?

The Bene�t of Object Cloning

Object Copying Has the Following Disadvantages

MODULES IN JAVA

Bene�ts of Java Modules

Modular Java Platform for Smaller Application Distribution

Internal Package Encapsulation

Start Detection of Absent Modules

Module Basics in Java

Naming a Java Module

Module's Root Directory

Module System

Modularized Java 9 JDK

Module for Java 9

Module Name

How to Make a Java Module

Construct a Directory Structure

Source Code for Java

Compile Java Module

Module Execution

WHAT EXACTLY IS MAVEN?

What Does Maven Do?

Maven's Core Ideas

Maven Installation Procedure

pom.xml Maven File

Elements Utilized in Creating the pom.xml File

Other Pom.xml File Elements

The Bene�ts and Drawbacks of Using Maven

Bene�ts

Drawbacks

When Should Maven be Used?

Maven in Practical Application

Maven Repository

WHAT EXACTLY IS GRADLE?

High Performance

The JVM Foundation

Conventions

Flexibility

Gradle: Five Things You Should Know

What Is the Difference between Gradle and Maven?

CHAPTER 7 ◾ Java Database Connectivity

WHAT IS JDBC IN JAVA?

What Are the Bene�ts of Using JDBC?

What Exactly Is API?

DRIVER FOR JDBC

5 Steps to Connecting a Java Database

ORACLE DATABASE CONNECTIVITY IN JAVA

Creating a Table

Example

How to Con�gure the Temporary Classpath

How to Con�gure the Permanent Classpath

MySQL Database Connectivity in Java

CONNECTIVITY WITH ACCESS WITHOUT DATA SOURCE

NAME (DSN)

Example of Connecting a Java Application without a DSN

Example of Connecting a Java Application to a DSN

DRIVERMANAGER CLASS

Interface of Connection

Statement Interface

DATABASE MANAGEMENT SYSTEM

What Exactly Is a Database?

Database Management System

DBMS Features Include the Usage of a Digital Repository Built on

a Server to Store and Manage Information

Bene�ts of DBMS

DBMS Disadvantages

DATABASE

What Exactly Is Data?

What Exactly Is a Database?

DATABASE EVOLUTION

File-Based

Hierarchical Data Model

Network Data Model

Relational Database

Cloud Database

Bene�ts of a Cloud Database

NoSQL DATABASE

The Bene�t of NoSQL Is Its Scalability

The Disadvantage of NoSQL Is That It Is Open Source

OBJECT-ORIENTED DATABASES

WHAT EXACTLY IS RELATIONAL DATABASE MANAGEMENT?

How Does It Work?

RDBMS History

What Actually Is a Table?

What Exactly Is a Field?

What Is Row or Record?

What Basically Is a Column?

What Is the Distinction between DBMS and RDBMS?

File System vs. DBMS

ARCHITECTURE OF DBMS

DBMS Architecture Types

1st-Tier Architecture

2-Tier Architecture

3-Tier Architecture

The Architecture Consists of Three Schema

MODELS OF DATA

SCHEMA AND INSTANCE OF A DATA MODEL

INDEPENDENCE OF DATA

Language of Database

Database Language Varieties

CHAPTER 8 ◾ Java I/O

WHAT IS INPUT/OUTPUT IN JAVA?

Stream

OutputStream versus InputStream

OutputStream

InputStream

Class OutputStream

Class InputStream Class

FileOutputStream Class in Java

Declaration of the FileOutputStream Class

FileInputStream Class in Java

Declaration of the Java FileInputStream Class

BufferedOutputStream Class in Java

BufferedOutputStream Class Example

BufferedInputStream Class in Java

Declaration of the Java BufferedInputStream Class

Constructors of the Java BufferedInputStream Class

SequenceInputStream Class in Java

Declaration of the Java SequenceInputStream class

SequenceInputStream Class Constructors

SequenceInputStream Class Methods

Class Java ByteArrayOutputStream

Declaration of the Java ByteArrayOutputStream Class

Class Java ByteArrayInputStream

Declaration of the Java ByteArrayInputStream Class

DataOutputStream Class in Java

Declaration of the Java DataOutputStream Class

DataInputStream Class in Java

Declaration of the Java DataInputStream Class

FilterOutputStream Class in Java

Declaration of the Java FilterOutputStream Class

FilterInputStream Java Class

Declaration of the Java FilterInputStream Class

Console Class in Java

How to Get the Console Object

FilePermissions Class in Java

Declaration of the Java FilePermission Class

Writer in Java

Reader in Java

FileWriter Class in Java

Declaration of the Java FileWriter Class

FileReader Class in Java

Declaration of the Java FileReader Class

Java's Properties Class

CHAPTER 9 ◾ Java Streams

STREAMING IN JAVA 8

Stream Has the Following Features

STREAM PIPELINE IN JAVA

Methods of the Java Stream Interface

Java Stream Example: Using a Stream to Filter a Collection

Example of Iterating a Java Stream

Filtering and Iterating Collection in a Java Stream Example

Example of a Java Stream: reduce() Method in a Collection

Summation of a Java Stream Example Using Collector Methods

Example of a Java Stream: Determine the Maximum and Minimum

Product Price

Example of a Java Stream: count() Method in a Collection

Converting List to Set Using Java Streams Example

Converting a List to a Map Using Java Streams Example

Stream Method Reference

STREAM FILTER IN JAVA

Signature

Parameter

Return

Example of a Java Stream �lter()

Example 2 of a Java Stream �lter()

BASE64 ENCODE AND DECODE IN JAVA

Encoding and Decoding Fundamentals

Encoding and Decoding of URLs and Filenames

Multipurpose Internet Main Extensions (MIME)

DEFAULT METHODS IN JAVA

Example of a Java Default Method

Java 8 Interface Static Methods

Java 8 Interface vs. Abstract Class

FOREACH LOOP IN JAVA

Method forEachOrdered() in Java Stream

Signature

Java Stream forEachOrdered() Method Example

JAVA COLLECTORS

Example of a Java Collector: Obtaining Data as a List

Example of Using the Sum Function in Java Collectors

Example of Java Collectors: Obtaining Average Product Price

Counting Elements in Java Collectors Example

CHAPTER 10 ◾ Functional Programming with Lambda
Expressions

WHAT IS FUNCTIONAL PROGRAMMING IN JAVA?

Why Is Functional Programming Important?

Is Java a Good Fit?

JAVA'S PURE FUNCTIONS

LAMBDA EXPRESSIONS IN JAVA

What Is a Functional Interface?

Why Should You Utilize Lambda Expression?

Example of a Java Lambda Expression

APPRAISAL

INDEX

About the Editor

Sufyan bin Uzayr is a writer, coder, and entrepreneur with more than a

decade of experience in the industry. He has authored several books in the

past, pertaining to a diverse range of topics, ranging from History to

Computers/IT.

Sufyan is the Director of Parakozm, a multinational IT company

specializing in EdTech solutions. He also runs Zeba Academy, an online

learning and teaching vertical with a focus on STEM �elds.

Sufyan specializes in a wide variety of technologies, such as JavaScript,

Dart, WordPress, Drupal, Linux, and Python. He holds multiple degrees,

including ones in Management, IT, Literature, and Political Science.

Sufyan is a digital nomad, dividing his time between four countries. He

has lived and taught in universities and educational institutions around the

globe. Sufyan takes a keen interest in technology, politics, literature,

history, and sports, and in his spare time, he enjoys teaching coding and

English to young students.

Learn more at sufyanism.com.

http://sufyanism.com/

C H A P T E R 1

Introduction to Java

DOI: 10.1201/ 9781003229063-1

IN THIS CHAPTER

➢ What is Java, and why it is used

➢ Major features of Java

➢ Basic syntax

Java is one of the most widely used programming languages today. It all

began in 1990 when an American �rm at the forefront of the computer

revolution decided to assemble its top engineers to design and create a

product that would become a signi�cant participant in the new Internet

world. This book will look at java concepts, including their usage and

critical features, and basic syntax.

WHAT IS JAVA?
Java is an object-oriented programming (OOP) language and software

platform utilized on billions of devices, including laptop computers, mobile

devices, game consoles, medical equipment, and more. Java's principles and

grammar are based on the C and C++ programming languages.

https://doi.org/10.1201/9781003229063-1

The mobility of Java-based applications is a signi�cant bene�t. It's pretty

simple to migrate code from a notebook computer to a mobile device after

developing it in Java. The primary objective of the language, when it was

created in 1991 by Sun Microsystems' James Gosling (later purchased by

Oracle), was to “write once, run anywhere.” It's also crucial to note that Java

is not the same as JavaScript. The compilation is not required for

JavaScript; however, it is needed for Java code.

Furthermore, JavaScript can only be used in web browsers, but Java may

be used anywhere. New and improved software development tools replace

existing technologies, previously believed to be necessary at a breakneck

rate. Most back-end development projects, especially those requiring

extensive data and Android development, employ Java as the server-side

language. Java is also extensively used in gaming, numerical calculation,

and desktop and mobile computers.

How Does Java Work?

Before we get into the reasons for Java's continued popularity, let's take a

closer look at what Java is and why it's essential for corporate application

development.

Java is a programming language, and a software platform all rolled into

one. The Java Development Kit (JDK), available for Windows, macOS, and

Linux, is required to develop a Java application. After writing the program

in Java, a compiler converts it to Java bytecode, which is the instruction set

for the Java Virtual Machine (JVM), part of the Java runtime environment

(JRE).

Java bytecode runs unmodi�ed on any system that supports JVMs,

allowing us to run Java code on any platform. The JVM, the Java API, and a

complete development environment make up the Java software platform.

The JVM parses and executes (interprets) Java bytecode. The Java API

includes many libraries, including fundamental objects, networking,

security capabilities, Extensible Markup Language (XML) creation, and

web services. The Java programming language and the Java software

platform, when combined, provide a solid and well-proven solution for

corporate software development.

Why Is Java Important?

Suppose we work as an enterprise application developer. In that case, we're

probably already familiar with Java, and the company probably has

hundreds, if not millions, of lines of production code written in the

language. We'll almost certainly require some Java knowledge to debug,

maintain, and upgrade the existing codebase.

However, thinking of Java exclusively in terms of old programs is a

mistake. The Java programming language is at the heart of the Android

operating system, which runs most smartphones worldwide. Java is also one

of the most widely used programming languages for machine learning and

data research. Java is the language of choice for Internet solutions in many

corporate companies due to its robustness, simplicity of use, cross-platform

capabilities, and security.

Java technology, in particular, provides an excellent platform for creating

web apps, which are the cornerstone for every digital organization. Java

application servers interact with databases and offer dynamic web content

by acting as web containers for Java components, XML, and web services.

With characteristics such as transaction management, security, clustering,

performance, availability, connection, and scalability, Java application

servers provide a reliable deployment environment for corporate

applications.

Java's Technical Advantages Include

When selecting a programming language and environment for the next

corporate application, several compelling technical reasons to choose Java

include interoperability, scalability, and adaptability.

The most signi�cant justi�cation for using Java for new corporate

applications is its fundamental concept of interoperability across various

devices. The object-oriented architecture of Java allows us to construct

modular programs and reusable code, which speeds up development and

extends the life of corporate systems. Java's platform scalability is an

important feature. With Java, we may utilize a single system to solve a wide

range of problems. Existing desktop programs can simply be modi�ed to

run on smaller, resource-constrained devices. We also transfer apps from

mobile to desktop by creating business apps for Android and then

integrating them into existing desktop software, avoiding lengthy and costly

development cycles.

Java also impresses strategic strategists with its adaptability to new use

cases. Java, for example, is commonly regarded as an excellent platform for

the Internet of Things (IoT). The typical IoT application links many

different devices; a process made much easier because Java is installed on

billions of devices. Furthermore, Java's large developer community is

continually creating and sharing new libraries with features tailored to the

creation of IoT applications.

Java's Advantages in the Workplace

Java has solid technical justi�cations and commercial arguments: a big

talent pool, a low learning curve, and a wide choice of integrated

development environments (IDEs).

The demand for talented developers is growing as more �rms employ

linked devices, machine learning algorithms, and cloud solutions. Many

observers believe that there will be a scarcity of senior-level programmers

shortly, making it challenging to staff new software ventures. Demand for

mobile app developers might quickly outstrip supply in the near future.

A compelling argument to base considerable software efforts on Java is

the enormous skill pool of Java engineers. When hiring managers advertise

job vacancies for Java developers, they may anticipate receiving many

eligible applicants and �lling those jobs fast. Managers can also employ

contract resources to complement in-house personnel for certain activities

without hiring more people.

Major software projects need a signi�cant number of junior contributors

in addition to experienced engineers. While Java is still a common �rst

programming language in university computer science programs, many

graduates lack the necessary skills to be effective right away. Java is simpler

to learn and master than many other programming languages, resulting in a

shorter learning curve and quicker productivity ramp-up. Java's large online

community of developer forums, tutorials, and user groups helps new

programmers come up to speed while also providing seasoned programmers

with useful, tried-and-true problem-solving solutions.

Java has several IDEs. Experienced Java developers may rapidly learn a

new environment, allowing development managers to select the IDE that

best suits the project type, budget, development process, and programmers'

skill level. NetBeans, Eclipse, and IntelliJ IDEA are the best three IDEs for

corporate application development by many experienced Java programmers.

However, in certain situations, a lighter IDE, such as DrJava, BlueJ,

JCreator, or Eclipse Che, is the better option.

THE JAVA PROGRAMMING LANGUAGE HAS THE
FOLLOWING FEATURES
Java was created with versatility in mind, allowing programmers to build

code that can run on any system or device, regardless of architecture or

platform.1 It is one of the most widely used programming languages on the

planet, and it was designed to work reliably on every platform. Java

BuzzWords are a set of Java features.2

1https://techvidvan.com/ tutorials/ features-of-java-programming-language/ , Tech Vidvaan
2https://www.tutorialspoint.com/ What-are-the-major-features-of-Java-programming,

tutorialspoint

Sun MicroSystems of�cially describe Java as having the following

features:

Simple and well-known

Compiled and interpreted the data

Independent of the platform

Portable

Neutral in architecture

Object-oriented

Robust

Safe

Distributed

https://techvidvan.com/
https://www.tutorialspoint.com/

Interactive and multi-threaded

Outstanding performance

Extensible and dynamic

Simple and Well-Known

Java is straightforward because:

It has a very clear and easy-to-understand code style. It reduces

complexity by excluding the following complex and challenging

aspects found in other languages such as C and C++:

Explicit pointers concept

Classes for storing data

Header �les and preprocessors

Multiple inheritance

Operator overloading

Goto statements

Apart from eliminating these perplexing and unclear notions, there is an

Automatic Garbage Collection feature that eliminates the need to delete

unreferenced objects explicitly.

Java is well-known because:

It is built on well-known languages such as C and C++, incorporating

many of their capabilities.

It eliminates the disadvantages, complexity, and perplexing aspects of

C/C++. If you are familiar with C/C++, you will �nd Java quite

friendly and simple to learn.

Compiled and Interpreted the Data

A computer language is often compiled or interpreted. The strength of

compiled languages is combined with the �exibility of interpretable

languages in Java.

Java compiler converts bytecode to java source code.

The JVM then runs this bytecode, which is portable and executable on

various operating systems.

The following diagram depicts the procedure:

Long Description

Independent of the Platform

Java's most important characteristic is that it enables platform freedom,

which leads to portability, which is ultimately its greatest strength. Being

platform-independent means that software written on one system may run

without modi�cation on any other machine in the world. Java uses the idea

of the bytecode to achieve platform independence. Unlike the C/C++

compiler, the Java compiler never transforms source code to machine code.

Instead, it turns the source code into an intermediate code known as

bytecode, translated into machine-dependent form by another software layer

known as JVM. As a result, regardless of whatever machine created the

bytecode, JVM may execute it on any platform or Operating System (OS)

on which it is installed. This is where Java's motto “Write Once, Execute

Anywhere” comes into play, implying that we may build programs in one

environment and run them in another without changing the code.

Long Description

Portable

The SE (Standard Edition) version of Java is referred to be “portable.” The

mobility is due to the architecture's neutrality.

The source code in C/C++ may execute somewhat differently on different

hardware systems, but Java makes it easier to understand. Java bytecode can

be executed on any device with a compatible JVM to convert the bytecode

to the machine's speci�cations. The size of primitive data types is machine-

independent in Java, whereas it was machine-dependent in C/C++. As a

result of these features, Java programs may run on various platforms,

including Windows, Unix, Solaris, and Mac.

Furthermore, any modi�cations or upgrades to OS, Processors, or System

resources will not affect Java apps.

Neutral in Architecture

This means that software built for one platform or OS may operate on any

other platform or OS without recompiling. To put it another way, it's based

on the WORA (write-once-run-anywhere) or WORE (write-once-run-

everywhere) methodology.

Bytecode is not machine architecture-dependent, and the JVM can

simply convert bytecode to machine-speci�c code. When developing

applets or downloading applications from the Internet, this functionality

comes in handy. Furthermore, because these programs must operate on

various computers, this capability is critical in this situation.

Object-Oriented

Java is known as a pure object-oriented language since it �rmly supports the

ideas of OOP. Encapsulation, abstraction, and inheritance are all aspects of

OOP that Java provides. In Java, almost everything is an object. Objects and

classes contain all applications and data. Java includes a modular collection

of classes arranged into packages.

Robust

Java is robust because it can handle run-time failures, has automated

garbage collection and exception handling, and does not use the explicit

pointer notion. The memory management system in Java is rather good. It

aids in the elimination of mistakes by checking the code both during build

and execution. Java is a garbage-collected language, which means that the

JVM automatically deallocates memory blocks, so programmers don't have

to worry about manually removing memory as they do in C/C++. Exception

handling is another feature of Java, which detects and removes runtime

problems. Any runtime fault discovered by the JVM in Java is never

communicated directly to the underlying system; instead, the application is

terminated immediately, preventing it from in�icting any harm to the

underlying system.

Safe

Because criminal actions and viruses are a hazard, security is a signi�cant

concern for every programming language. Java allows you to use access

modi�ers to monitor memory access and guarantee that no viruses get into

your applet.

Java is a more secure language than C/C++ since it does not allow a

programmer to construct pointers explicitly. As a result, if we do not

correctly initialize a variable in Java, we will not access it. Virtual machines

Sandbox is used to run programs. A distinct environment in which users

may run their programs without impacting the underlying system. It has a

bytecode validator that looks for unlawful code that violates the access right

in code fragments.

Distributed

Because it enables users to develop distributed applications, Java is

distributed. We can break a program into many pieces in Java and save them

on various machines. A Java programmer sitting on one device can connect

to another machine's software. This Java feature allows for distributed

programming, which is particularly useful when working on massive

projects. The concepts of RMI (Remote Method Invocation) and EJB

(Enterprise JavaBeans) in Java enable us to do this (Enterprise JavaBeans).

Java has an extensive collection of classes connecting via TCP/IP protocols

like Hypertext Transfer Protocol (HTTP) and File Transfer Protocol (FTP),

making network interactions easier than C/C++. It also allows programmers

from many places to collaborate on the same project.

Interactive and Multi-Threaded

A thread is a separate execution route within a program that runs at the

same time. Multithreaded refers to handling several tasks simultaneously or

running various parts of the same program in parallel. Java's code is broken

down into smaller chunks, which Java runs logically and timely.

Advantages:

The primary bene�t of multithreading is that it allows for the most

ef�cient use of resources.

Each thread does not take up memory. It has a shared memory space.

It is unnecessary to wait for the application to complete one job before

moving on to the next.

The cost of maintenance has dropped. It also saves time.

It boosts the ef�ciency of complicated applications.

Java is interactive because its code allows excellent Character User

Interface (CUI) and Graphical User Interface (GUI) apps. It vastly increases

graphical programs' interaction performance.

Outstanding Performance

Because of its intermediate bytecode, Java's speed is outstanding for an

interpreted language. The Just In Time compiler in Java delivers excellent

speed by compiling code on-demand, compiling just the methods that are

being called. This saves time and increases ef�ciency. The Java architecture

is also built in such a way that it lowers runtime overheads. The addition of

multithreading to Java programs improves the overall speed of execution.

Because the Java compiler generates highly ef�cient bytecodes, the JVM

can process them considerably quicker.

Extensible and Dynamic

Java is dynamic and extensible, which means we may add classes and new

methods to classes using OOPs and create new classes using subclasses.

This makes it easy for us to expand and even change our classes. Java

allows you to link new class libraries, methods, and objects dynamically. It

is extremely dynamic since it can adapt to its changing surroundings. Java

also allows for the use of functions written in other languages, such as C

and C++, in Java projects. These are referred to as “native techniques.” At

runtime, these methods are dynamically connected.

BASIC SYNTAX
Each programming language has its own syntax. We'll go over the syntax

for everything in Java that you should know before learning and

familiarizing yourself with it.

The syntax refers to the format in which a Java program is written, and

the commands used to compile and run it. It will be dif�cult for a

programmer or learner to get the desired outputs from a program if they

lack proper syntax knowledge.

What Is the Syntax of Java?

The collection of rules that determine how to construct and understand a

Java program is referred to as Java syntax. Java's syntax is derived from C

and C++. However, there are numerous differences, such as the lack of

global variables in Java compared to C++.

In Java, the code belongs to objects and classes. To avoid programming

errors, Java does not include some features such as operator overloading

and the use of explicit pointers.

So let's start with java's basic syntax.3

Identi�ers are the fundamental components of a Java program. Identi�ers

are used to give names to various parts of a program, such as variables,

objects, classes, methods, and arrays.

3https://www.baeldung.com/ java-syntax, Baeldung

Objects: Objects are made up of states and actions. A dog, for example,

has states such as color, name, breed, and behavior such as wagging its

tail, barking, and eating. A class's instance is an object.

Class: A class is a pattern that describes the state that an object of its

kind may support.

Methods: The term “method” refers to a type of behavior. Many ways

can be found in a single class. Methods are where logic is expressed,

data is processed, and all actions are executed.

Instance Variables: Each object has a collection of instance variables

that are unique to it. The values supplied to these instance variables

determine the state of an object.

First Java Program

Consider the following code, which prints the words Hello.

Example:

public class FirstJavaProgram {

 /* This is my first java program.
 * This will print 'Hello Everyone '

https://www.baeldung.com/

 */

 public static void main(String []args) {
 System.out.println("Hello Everyone");
 }
}

Let's take a look at how to save the �le, compile it, and run it. Please

proceed with the steps below:

Open notepad and add the code as above.

Save the �le as: FirstJavaProgram.java.

Open a command prompt window and go to the directory where you

saved the class. Assume it's C:\.

Type “javac MyFirstJavaProgram.java” and press enter to compile your

code. If there are no errors in code, the command prompt will take you

to the following line (Assumption: The path variable is set).

Now, type “java FirstJavaProgram” to run your program and we will be

able to see “Hello Everyone” printed on the window.

Syntax for Beginners

It's critical to remember the following considerations while working with

Java applications.

Java is case sensitive, which implies that the identi�ers Hello and hello

have distinct meanings in Java.

The initial letter of each class name should be capitalized. If a class

name is made up of many words, the initial letter of each inner word

should be in upper case.

Example: FirstJavaClass is an example of a class.

Method names should all begin with a lower case letter. If the method's

name is made up of many words, the initial letter of each inner word

should be capitalized.

Example: public void myMethodName is an example of a public

void method ()

The name of the program �le should be identical to the name of the

class.

When saving the �le, use the class name and attach “.java” to the end

of the name (remember, Java is case sensitive) (if the �le name and the

class name do not match, your program will not compile).

If the �le does not include a public class, the �le name may differ

from the class name. It is also not required that the �le have a public

class.

Example: Assume the class is called “FirstJavaProgram.” Then, save

the program as “FirstJavaProgram.java.”

Public static void main(String args[]): The main() method, which is a

required part of any Java program, starts the processing of the program.

Identifiers in Java

The basic building elements of a Java program are identi�ers. Identi�ers are

used to give names to various components of a program, such as variables,

objects, classes, methods, arrays, etc.

The following are the guidelines for naming identi�ers in Java:

1. Alphabets, numbers, underscore (_), and dollar ($) sign characters can

all be used in identi�ers.

2. They can't be a Java reserved term or keyword like true, false, while,

and so on.

3. Identi�ers can't start with a digit.

4. Identi�ers can be as long as you want them to be.

5. Because Java is case sensitive, identi�ers in uppercase and lowercase

are handled differently.

Keywords in Java

Keywords are reserved words in Java that provide the compiler a particular

interpretation. The keywords can't be used as regular identi�er names; they

must be used for a speci�c reason.4

The following are some Java keywords:

Abstract: The abstract keyword in Java is used to declare an abstract

class. The interface can be implemented using an abstract class. Both

abstract and non-abstract methods may be used.

Boolean: The boolean keyword in Java is used to de�ne a Boolean type

variable. It can only store True and False values.

Break: The break keyword in Java is used to end a loop or switch

expressions. It interrupts the program's current �ow when certain

criteria are met.

Byte: The byte keyword in Java is used to create a variable containing

8-bit data values.

Case: The case keyword in Java is used with switch statements to mark

text blocks.

4https://www.javatpoint.com/ java-keywords, javaTpoint

Catch: The catch keyword in Java is used to capture exceptions thrown

by try statements. It can only be used after the try block.

Char: The char keyword in Java is used to create a variable containing

unsigned 16-bit Unicode characters.

Class: To declare a class in Java, use the class keyword.

Continue: The continue keyword in Java is used to keep the loop going.

It continues the program's current �ow while skipping the remaining

code at the given circumstance.

Default: The default block of code in a switch statement is speci�ed by

the Java default keyword.

Do: The do keyword in Java is used to identify a loop in the control

statement. It can repeat a section of the program several times.

https://www.javatpoint.com/

Double: The double keyword in Java is used to create a variable

containing a 64-bit �oating-point value.

Otherwise: In the if statement, the else keyword in Java is used to

represent alternate branches.

Enum: The enum keyword in Java is used to specify a set of �xed

constants. Private or default constructors are always used in enum

constructors.

Extend: The extend keyword in Java is used to show that a class is

inherited from another class or interface.

Final: The �nal keyword in Java is used to denote that a variable has a

constant value. It's used in conjunction with a variable to prevent the

user from changing the variable's value.

Finally: The �nally keyword in Java denotes a code block in a try-catch

structure. Whether or not an exception is handled, this block is always

performed.

Float: The �oat keyword in Java is used to create a variable containing

a 32-bit �oating-point integer.

For: The for keyword in Java is used to begin a for loop. When a

condition is met, it is used to execute a set of instructions/functions

repeatedly. If the number of iterations is �xed, the for loop is preferred.

If: The if keyword in Java is used to test a condition. If the condition is

true, the if block is executed.

Implements: The term implements are used in Java to implement an

interface.

Keyword: The import keyword in Java makes classes and interfaces

available to the current source code.

Instanceof: The instanceof keyword in Java determines if an object is

an instance of a particular class or implements an interface.

Int: The int keyword in Java is used to declare a variable that can store

a signed 32-bit integer.

Interface: The interface keyword in Java is used to declare an interface.

It is limited to abstract techniques.

Long: The long keyword in Java is used to specify a variable that may

store a 64-bit integer.

Native: The Java native keyword indicates that a method is

implemented using JNI (Java Native Interface) in native code.

New: The new keyword in Java is used to create new objects.

Null: The null keyword in Java is used to indicate that a reference

refers to nothing. It gets rid of the trash value.

Package: The term package in Java is used to declare a Java package

that contains the classes.

Private: The private keyword in Java is an access modi�er. It's used to

say that a method or variable may only be accessible in the class where

it's declared.

Protected: The protected keyword in Java is an access modi�er. It can

be accessed both within and outside the package, but only through

inheritance. It isn't possible to use it with the class.

Public: The public keyword in Java is an access modi�er. It's a phrase

that means anything may be found anyplace. Among all the modi�ers,

it has the broadest use.

Return: When a method's execution is complete, the Java return

keyword is used to exit the method.

Short: The Java short keyword is used to declare a variable with a 16-

bit integer capacity.

Static: The static keyword in Java indicates that a variable or function

belongs to a class. In Java, the static keyword is mainly used to control

memory.

Strictfp: To guarantee portability, Java strictfp is used to limit �oating-

point calculations.

Super: The super keyword in Java is a reference variable that refers to

parent class objects. It may be used to call the method of the immediate

parent class.

Switch: The switch keyword in Java includes a switch statement that

executes code based on the test value. The switch statement compares

several values to see whether they are equal.

Synchronised: In multithreaded programming, the synchronized

keyword is used to identify the critical portions or functions.

This: In a method Java, this keyword can be used to refer to the current

object.

Throw: The throw keyword in Java is used to throw an exception

explicitly. Throwing custom exceptions is the most common usage of

the throw keyword. After that, there is an example.

Throws: The throws keyword in Java is used to declare an exception.

Throws can be used to propagate checked exceptions.

Transient: In serialization, the Java temporary keyword is utilized. Any

data member that is marked as transitory will not be serialized.

Try: The try keyword in Java is used to begin a block of code that will

be checked for errors. Either a catch or a �nal block must come after

the try block.

Void: The void keyword in Java is used to indicate that a method has no

return value.

Volatile: In Java, the volatile keyword is used to indicate that a variable

may change asynchronously.

While: The while keyword in Java is used to initiate a while loop. This

loop repeats a section of the program several times. The while loop is

recommended if the number of iterations is not �xed.

Modifiers in Java

Modi�ers may be used to alter classes, methods, and other objects, much as

in other languages. Modi�ers are divided into two groups:

1. Default, public, protected, and private are the access modi�ers.

2. Final, abstract, and strictfp are non-access modi�ers.

Variables in Java

The kinds of variables in Java are as follows:

Local Variables

Class Variables (Static Variables)

Instance Variable (Non-static Variables)

Enums in Java

In Java 5.0, enums were introduced. Enums limit a variable's value to one of

a few preset options. Enums are the values in this enumerated list. It is

possible to decrease the number of defects in your code by using enums.

For example, if we consider an application for a juice business, the glass

sizes may be limited to small, medium, and large. This would ensure that no

one could order anything other than a small, medium, or big size.

Literals in Java

Constants or data objects with �xed values are referred to as literals in Java.

In Java, there are several sorts of Literals. Numeric, Floating, Character,

Strings, Boolean, and Null are the types. They're also divided into

subcategories. Let's take a look at each one separately:

1. Numeric: Numbers are represented via numeric literals. In Java, there

are four different forms of numeric literals:

i. Integer Literals: Integer literals are integers in base 10 that are

entire numbers without any fractional parts. For instance, 108.

ii. Binary Literals: A binary literal is an integer with a base of two,

for instance, 011.

iii. Octal Literals: The numbers with base 8 are known as octal

literals. They can't have the numbers 8 or 9 in them. For instance,

565.

iv. Hexadecimal Literals: Hexadecimal literals are integers that have

a base of 16 characters. They can include numbers ranging from 0

to 9 as well as alphabets ranging from A to F. For instance, 24D6.

2. Floating-point: Floating-point literals are also known as real literals.

Only a fractional point is used in the �oating-point literal to specify

numeric values (.). They can take the shape of a fractional or

exponential function. For instance, -15.6, 1.876, 11.4D08.

3. Character: Character literals deal with characters contained in a single

quote. Within single quotes ‘ ’ they can only contain one character.

They are divided into the following categories:

i. Single quoted character: A single-quoted character encloses all

uni-length characters in single quotes. For example, ‘b’, ‘p’, ‘S’.

ii. Escape Sequences: These are the characters that appear after the

backslash and perform a speci�c purpose on the screen, such as

tabs, newlines, and so on. For example, ‘b,’ ‘n,’ ‘t’.

iii. Unicode Representation: We may express it by putting the

character's relevant Unicode value after the letter ‘u’. For

instance, ‘u0057’.

4. Boolean: True and false are the two possible values for a boolean

literal. ASCII letters are used to create these values. True or false, for

example.

5. String: String-literals are multi-character constants enclosed in double

quotes “.” For example, “javaclass,” “Hello,” “\cde,” and so on.

Comments in Java

When programmers add documentation to a method or a line speci�ed

within the program, they can use comments. While compiling, the compiler

does not read the comments and ignores them. The comments improve the

program's readability and comprehension.

The following are the different sorts of comments:

Java Single-Line Comments: These single-line comments are made up

of a single line of text added after a code line to clarify what it means.

We can designate a single-line comment with two backslashes(/), and it

will be immediately ended when a new line is introduced into the

editor.

Example:

int num = 4;
//value defining
System.out.println("The value is: " + number);
//Printing

Multi-Line Comments in Java: Throughout the program, multi-line

comments cover many lines. To elaborate the algorithm, we can write

them at the start of the program. Developers also use them to comment

out code sections while debugging. We may utilize them by putting a

starting tag(/*) and an ending tag(*/) in front of them.

Example:

int num = 4;
System.out.println("The value is: " + number);
/* The compiler will not execute it. Defining
the value of numbers and printing the value.
This is a multi-line comment. */

Blank Lines

A blank line is a line that has simply white space, maybe with a remark, and

Java ignores it completely.

Inheritance

In Java, classes can be derived from other classes. Essentially, if you need to

construct a new class and an existing class has part of the code you need,

you may derive your new class from the current code.

This idea allows you to reuse existing class �elds and functions without

recreating the code in a new class. In this case, the current class is referred

to as the superclass, and the derived class is referred to as the subclass.

Interfaces

In the Java programming language, an interface is a contract between

objects that speci�es how they communicate. When it comes to inheritance,

interfaces are pretty important. An interface speci�es which methods should

be used by a derived class (subclass). However, it is entirely up to the

subclass to implement the methods.

In this chapter, we discussed what Java is and how it works, why it is

essential, and its bene�ts. We also learned about many features of the Java

programming language. We also went through the fundamentals of Java

syntax.

C H A P T E R 2

Getting Started with Java

DOI: 10.1201/ 9781003229063-2

IN THIS CHAPTER

➢ How to Install and Run Java

➢ Java Primitive Types and Operators

➢ Control Structures

➢ A Guide to Java Loops

➢ A Guide to Java Packages

In the previous chapter, we discussed what Java is, why it's utilized, what its

characteristics are, and what Java's core features are. In this chapter, we'll

go through how to install and run Java on a Personal Computer (PC). What

are the different sorts of operators and control structures, as well as whole

packages?

HOW TO SETUP JAVA ON A WINDOWS
COMPUTER

https://doi.org/10.1201/9781003229063-2

We may use this Java Development Kit (JDK) to write and run Java

programs. It's feasible to have numerous JDK versions installed on the same

computer. However, it is suggested that we install the most recent version of

Java on Windows 10. Installing Java in Windows 10 for JDK 8 free

download for 32 bit or JDK 8 free download for Windows 64 bit and

installation are as follows:

Step 1: Click on the link https://www.oracle.com/ java/ technologies/

downloads/

For Java, go to JDK Download and download JDK 8.

Step 2: Accept the License Agreement.

Download the Java 8 JDK for 32-bit or 64-bit operating systems.

Step 3: A popup will appear when we click the Installation link. After

clicking on it, I reviewed and accepted the Oracle Technology Network

License Agreement for the Oracle Java Standard Edition (SE)

development kit; we will be routed to the login page. If we don't

already have an Oracle account, we can quickly create one by entering

basic information.

Step 4: After the Java JDK 8 download is �nished, execute the exe to

install the JDK. Next should be selected.

Step 5: To install Java on Windows, choose the PATH… We may keep

it at the default setting. Continue by pressing the next button.

Step 6: When Java has been installed on Windows, click Close.

In Java, Here's How to Establish Environment Variables: Classpath

and Path

The PATH variable speci�es the location of executables such as javac and

java, among others. We can start a program without providing the PATH but

must give the entire path of the executable, such as C:\Program

Files\Java\jdk1.8.0_271\bin\javacD.java instead of using basic javac, use

javacD.java.

The CLASSPATH variable speci�es where the Library Files are stored.

https://www.oracle.com/

Let's look at how to establish the PATH and CLASSPATH variables.

Step 1: Select the properties by right-clicking on My Computer.

Step 2: Select Advanced System Settings from the drop-down menu.

Step 3: To con�gure the Java runtime environment, choose

Environment Variables.

Step 4: Select the new User Variables Button.

Step 5: In the Variable name �eld, type PATH.

Step 6: In the JDK folder, copy the path to the bin folder.

Step 7: In the Variable value, paste the path to the bin folder. Select the

OK button.

Note: If we already have a PATH variable set up on the computer,

change it to PATH = <JDK installation directory>\bin;%PATH%;

Step 8: To set CLASSPATH, use an exact procedure.

Note: If Java installation fails after installing it, modify the classpath to

CLASSPATH = <JDK installation directory>\lib\tools.jar;

Step 9: Select the OK option.

Step 10: Type javac instructions at the command prompt.

INSTALLING A JAVA INTEGRATED DEVELOPMENT
ENVIRONMENT (IDE)
A step-by-step method to downloading and installing Eclipse IDE is

provided below:

Step 1: Installing Eclipse

Type https://www.eclipse.org/ into the browser.

Step 2: Select “Download” from the drop-down menu.

Step 3: Select “Download 64 bit” from the drop-down menu.

Step 4: Select “Download” from the drop-down menu.

https://www.eclipse.org/

Step 4: Download and install Eclipse.

In the Windows �le explorer, select “downloads.”

Select the �le “eclipse-inst-win64.exe” and double-click it.

Step 5: Select the Run option.

Step 6: Select “Eclipse IDE for Java Developers.”

Step 7: Select “INSTALL.”

Step 8: Select “LAUNCH” from the menu.

Step 9: Again, Select “LAUNCH.”

Step 10: Select “Create a new Java project.”

Step 11: Create a new Java project

Name the project.

Select “Finish” from the drop-down menu.

Step 12: Create a Java package.

Go to the “src.”

Select “New.”

Select “Package” from the drop-down menu.

Step 13: Type in the package's name.

Put the package's name.

After that, click the Finish button.

Step 14: Creating a Java Class

Select the package we've made.

Select “New.”

Select “Class.”

Step 15: Create a Java Class

Put the name of the class.

Select the checkbox for “public static void main (String[] args).”

Select “Finish.”

Step 16: Press the “Run” button.

Internal Java Program Details

We must develop a Java program and learn how to compile and run it. We'll

study what occurs when we build and run a Java application in this section.

What Occurs throughout the Compilation Process?

The Java �le is converted by Java Compiler (which does not interface with

the operating system) at compile-time, which turns the Java code into

bytecode.

What Occurs When the Program Is Running?

The following stages are carried out at runtime:

Long Description

Classloader: Classloader is a Java Virtual Machine (JVM) component

that is responsible for loading class �les.

Bytecode Veri�er: Checks code fragments for criminal code that might

compromise object access privileges.

Interpreter: The interpreter reads the bytecode stream and then executes

the commands.

TYPES OF PRIMITIVE DATA

Java basic data types and related topics such as variables, constants,

data types, operators, and expressions will be covered.

We'll learn how to create programs with basic data kinds, input, and

computations.

Simple Programs to Write

Designing algorithms and data structures and converting algorithms

into programming code are all part of the process of writing a program.

An algorithm de�nes how to solve a problem regarding the activities to

be performed and the sequence they should be performed.

Calculating the area of a circle. The following is a description of the

program's algorithm:

1. Take a look at the radius

2. Calculate the area using the formula below.

Area = radius * radius * ∏

3. Make the area visible.

Integers, �oating-point numbers, characters, and Boolean kinds are all

represented by data types in Java. Primitive data types are what they're

called.

When we code, we convert an algorithm into a programming language

that the computer can understand.

The following is a summary of the program:

//Area.Java: calculate the area

public class Area
{
public static void main(String[] args
{
double radius; // variable and data type
double area;

// radius assign
radius = 20;

// Calculate area
area = radius * radius * 3.14159;

// Display results

System.out.println("The area for the circle:" +
radius + " is " + area);
}
}

The radius must be represented by a variable symbol, which must be

declared in the program. In the software, variables are utilized to store

data and computational results.

Instead of a and b, use descriptive labels. Use radius to represent radius

and area to represent the area. Indicate if their data types are integer,

�oat, or anything else to tell the compiler what radius and area are.

Radius and area are declared as double-precision variables in the

program. The reserved word double indicates that radius and area are

stored in the computer as double-precision �oating-point numbers.

Identifiers

Variables, constants, methods, classes, and packages are named using

special symbols called identi�ers in programming languages.

The guidelines for naming identi�ers are as follows:

An identi�er is a string of letters, underscores (_), digits, and dollar

signs ($) composed of letters, digits, underscores (_), and dollar

signs ($).

An identi�er must begin with a letter, underscore (_), or dollar

symbol ($). It must not start with a digit.

A reserved term cannot be used as an identi�er. (For a list of

reserved terms, see Appendix A, “Java Keywords”).

An identi�er can't be true, false, or null at the same time.

The length of an identi�er is irrelevant.

Examples of legal IDs include $4, ComputeArea, area, radius, and

showMessageDialog.

Examples of illegal IDs are 4A and d+8.

Because Java is case-sensitive, the letters A and an are distinct

identi�ers.

Variables

Variables are used to store data in a program.

We may use the following code to calculate the area for various radii:

Example:

// Calculate the first area radius
area = radius*radius*3.14159;
System.out.println("Area " + area + " for
radius "+radius);

// Calculate the second area radius
area = radius*radius*3.14159;
System.out.println("Area " + area + " for
radius "+radius);

Variable Declaration

Variables are used to represent speci�c types of data.

To use a variable, we must �rst de�ne it by telling the compiler its

name and the kind of data it represents. Variable declaration is the term

for this.

Declaring a variable instructs the compiler to allocate memory to the

variable depending on its data type. Variable declarations can be seen

in the following examples:

 int a;
 char c;
 radius r

If two variables are of the same type, they can be de�ned as a single

variable using the short-hand form: var1, var2,…, varn are datatypes.

Assignments Expressions and Assignment Statements

We may use an assignment statement to assign a value to a variable

after it has been declared. The assignment statement has the following

syntax:

variable = expr;
x = 3; // Assign 3 to x;
radius = 2.0; // Assign 2.0 to radius;
d = 'D'; // Assign 'D' to d;

We may use the variable in the expression as well.

y = y + 3; // the result of y + 3 is assigned
to x;

The variable name must be on the left of the assignment operator to

assign a value to it.

4 = y would be wrong.

An assignment statement in Java can also be considered an expression

that evaluates the value being assigned to the variable on the left-hand

side of the assignment operator. As a result, an assignment statement is

also known as an assignment expression, and the assignment operator

is the symbol =.

System.out.println(y = 6); which is equivalent
to
y = 6;
System.out.println(y);
The following statement is also correct: a = b
= c = 2;

which is equivalent to c = 2; b = c; a = b;

In a Single Step, Declare and Initialize Variables

int y = 1;
This is equivalent to the next two statements: int
y;
y = 1;
// shorthand form to declare and initialize vars
of same type
int a = 1, b = 2;

Constants

A variable's value may vary throughout the program's execution, while

a constant represents permanent data that never changes.

The following is the syntax for declaring a constant:

Syntax:

final datatype CONSTANTNAME = VALUE;

Example:

final double pi = 3.14; // Declare a constant
final int size = 6;

Before a constant can be used, it must be declared and initialized. We

can't modify the value of a constant after it's been declared. Constants

are named in uppercase by convention.

Example:

//Area.Java: calculate the area of a circle
public class Area // Class Name
{

public static void main(String[] args) // Main
Method signature
{
final double pi = 3.14; // declare a constant
double radius = 10; // assign a radius

// Compute area
double area = radius * radius * pi;

// Results display
System.out.println("Area for the circle " +
radius + " is " + area);
}
}

Numerical Data Types and Operations

Every data type has a set of values that it can hold. According to the

data type of each variable or constant, the compiler allocates memory

space.

Six numeric types are available in Java: four for integers and two for

�oating-point values.

Name Storage Size Range

byte

short

int

long

�oat

double

8 bits

16 bits

32 bits

64 bits

32 bits

64 bits

-27 (-128) to 27 – 1 (127)

-215 (-32768) to 215 – 1 (32767)

-232 (-2147483648) to 231 –1(2147483647)

-263 to 263 - 1

6 – 7 signi�cant digits of accuracy

14 – 15 signi�cant digits of accuracy

Numerical Operators

+, -, *, /, and %

5/2 yields an integer 2

5.0/2 yields a double value 2.5

-5/2 yields an integer value -2

-5.0/2 yields a double value -2.5

-7 % 3 yields -1

-12 % 4 yields 0

-26 % -8 yields -2

20 % -13 yields 7

Numeric Literals

A literal is a constant value1 that appears in a program on its own. In

the following statements, for example, 64 and 2.0 are literals:

int a = 64;
double d = 2.0;

Integer Literals

As long as an integer literal �ts within an integer variable, it can be

assigned to it. If the literal were too large for the variable to contain, a

compilation error would result.

The expression byte a = 10000, for example, would result in a

compilation error since 10000 cannot be stored in a byte type variable.

The value of an integer literal is presumed to be in the range of -231

(-2147483648) to 231–1. (2147483647).

Append the letter L or one to an integer literal of the long type to

signify it (lowercase L).

The following code, for example, displays the decimal value 65535 for

the hexadecimal integer FFFF.

Example:

System.out.println(0xFFFF);

1https://www.geeksforgeeks.org/ literals-in-java/ , GeeksforGeeks

https://www.geeksforgeeks.org/

Floating-Point Literals

A decimal point is used in �oating-point literals. A �oating-point literal

is interpreted as a double type value by default.

For example, 2.0 is a double value rather than a �oat number.

A �oat is created by attaching the letter f or F to a number, while a

double is created by appending the letter d or D to a number.

For a �oat number, use 201.2f or 201.2F, and for a double number, use

201.2d or 201.2D.

Values of the double type are more precise than those of the �oat type.

Example:

System.out.println("value is " + 2.0 / 5.0);
Output will be value is 0.4

Notations in Scientist

Scienti�c notation may be used to specify �oating-point literals; for

example, 1.23456e+2, which is the same as 1.23456e2, is identical to

123.456, while 1.23456e-2 is equivalent to 0.0123456. An exponent is

represented by the letter E (or e), written in lowercase or uppercase.

Arithmetic Expressions

Consider, the arithmetic expression (5 + 4 * x)/4 – 10 * (y - 4)*(a + b +

c)/x + 8 *(5/x + (8 + x)/y)

The operators included in parenthesis are evaluated �rst.

Parentheses can be nested, in which case the inner parentheses'

expression is evaluated �rst.

After that, the multiplication, division, and remainder operators are

used. From left to right, the order of operations is followed. Subtraction

and addition are done last.

Shortcut Operators

Operator Example Equivalent

+= i+=8 i = i+8

-= f-=8.0 f = f-8.0

= i=8 i = i*8

/= i/=8 i = i/8

%= i%=8 i = i%8

For incrementing and decrementing a variable by one, there are two

more shortcut operators. ++ and — are the two operators. They can be

written as pre�xes or suf�xes.

Suf�x x++; // Same as x = x + 1;

Pre�x ++x; // Same as x = x + 1;

Suf�x x––; // Same as x = x – 1;

Pre�x ––x; // Same as x = x – 1;

Operators for increment and decrement:

++var (pre-increment): After incrementing var by one, the

expression (++var) evaluates the new value in var.

var++ (post-increment): The expression (var++) returns the original

value of var and increases it by one.

–var (pre-decrement): After decrementing var by one, the

expression (—var) evaluates the new value in var.

.var– (post-decrement): The expression (var–) evaluates the original

value in var and decrements var by 1.

Example:

double a = 2.0; double b = 7.0;
double d = a-- + (++b);

Using the increment and decrement operators shorten expressions but

makes them more complicated and challenging to interpret. Avoid

using these operators in expressions like int h = ++i + i, which alter

several variables or the same variable numerous times.

Numeric Type Conversions

Take a look at the following statements:

byte i = 300;
long k = i*4+5;
double d = i*4.1+k/3;

Are these statements correct?

When executing a binary operation with two operands of different

kinds, Java transforms the operand automatically according to the

following rules:

1. If one of the operands is double, the other is double as well.

2. If one of the operands is �oat, the other is changed to �oat as well.

3. If one of the operands is long, the other gets changed to long as

well.

4. If neither operand is int, both operands are changed to int.

As a result, the 1/2 result is 0, and the 1.0/2 result is 0.5.

Typecasting is the process of converting one data type's value into

another data type's value.

Casting a variable with a limited range to a variable of a wider range is

referred to as enlarging a type without explicit casting; a type can be

automatically widened.

Casting a variable of a type having an extensive range to a variable with

a smaller range is referred to as a narrowing. The process of narrowing

a type must be done explicitly.

Caution: Casting is required if we're assigning a value to a variable

with a narrower type range. If casting is not utilized in instances like

these, a compilation fault will result. Casting should be used with

caution. Inaccurate �ndings might come from lost data.

float f = (float) 11.1;
 int i = (int) g;

double c = 3.5;
int i =(int)c; // c is not changed
System.out.println("c " + c + " i " + i);

Implicit casting
double c = 4; // type widening

Explicit casting
int i = (int)4.0; // type narrowing

What's wrong?
int i = 1;
byte b = i; // Error because explicit casting
required

Character Data Type and Operations

The character data type char represents a single character.

A single quote mark surrounds a character literal.

char letter = 'D'; / Assigns the letter D to
the char variable (ASCII)
char numChar = '6'; / Numeric character 6 is
assigned to numChar

Use caution when using a literal string since it must be wrapped in

quotation marks. A single character contained in single quotation

marks is referred to as a character literal. So “D” is a character, and

“D” is a string.

Unicode and ASCII Code

Unicode is a 16-bit encoding method developed by the Unicode

Consortium to facilitate the exchange, processing, and display of

written texts in various languages throughout the world.

Unicode requires two bytes, precoded by u and represented in four

hexadecimal numbers ranging from “u0000” to “uFFFF.” The word

“coffee” is translated into Chinese using two characters; for example.

“u5496u5561” is the Unicode for these two characters.

char letter = '\u0041'; (Unicode è 16-bit
encoding scheme)
char numChar = '\u0034'; (Unicode)

Because FFFF is 65535 in hexadecimal, Unicode can represent 65,536

characters.

Most computers use the (ASCII) American Standard Code for

Information Interchange is a 7-bit encoding method representing all

capital and lowercase letters, numbers, punctuation marks, and control

characters.

ASCII code ranges from “u0000” to “u007F,” equivalent to 128 ASCII

characters.

Note: To retrieve the next or previous Unicode character, use the

increment and decrement operators on char variables.

The following statements, for example, show character c:

char ch = 'c';
System.out.println(++ch);

Special Character Escape Sequences

Description Escape Sequence Unicode

Backspace \b \u0008

Tab \t \u0009

Linefeed \n \u000A

Description Escape Sequence Unicode

Carriage return \r \u000D

Backslash \\ \u005C

Single Quote \' \u0027

Double Quote \" \u0022

Let's say we wish to publish the following message:

he remarked, "Java is entertaining."

The following is an example of how to write the statement:

System.out.println(he remarked\ "Java is
entertaining\")

Casting between Char and Numeric Types

Any numeric type may be cast into a char and vice versa.

If the result of a casting �ts inside the target variable, implicit casting

can be utilized. Otherwise, precise casting is required.

The char operands can be used with any numeric operation.

If the other operand is a number or a character, the char operand is

converted to a number.

The character is concatenated with the string if the other operand is a

string.

int i = 'a'; // Same as int i = (int)'a'; //
(int) a is 97

char c = 99; // Same as char c = (char)99;

String Type

The char type represents a single character. Use the String data type to

express a string of characters.

Example:

String message = "Welcome to Java";

Like the System class and JOptionPane classes, the String class is a

prede�ned class in the Java library.

The String data type isn't a primitive data type. A reference type is

what it's called. Any Java class can be used as a variable's reference

type.

String Concatenation

If one operand is a string, the plus sign (+) is the concatenation

operator.

If one operand is a non-string (for example, a number), it is

transformed into a string and concatenated with the other string.

Example:

String message = "Welcome" + "to " + "MyJava";
message += " and Java is fun"; // message =
Welcome to MyJava and Java is fun

Converting a String to a Number

String to Integers Conversion

The input returned from the input dialog box is a string. If we enter a

numeric value such as 123, it returns “123.” To obtain the input as a

number, we have to convert a string into a number.

To convert a string into an int value, we can use the static parseInt

method in the Integer class as follows:

int val = Integer.parseInt(intString);

Where intString is a numeric string such as “132.”

Strings to Doubles Conversion

We may use the static parseDouble function in the Double class to

convert a string to a double value as follows:

double val = Double.parseDouble(doubleString);

where doubleString is a numeric string such as
“132.42.”

Using the Console for Input

Using a Scanner to Getting Information

Creation of Scanner object

Scanner scan = new Scanner(System.in);

To get a string, byte, short, int, long, �oat, double, or boolean value,

use the methods next (), nextByte (), nextShort (), nextInt (), nextLong

(), nextFloat (), nextDouble (), or nextBoolean (). As an example,

System.out.print("Enter double value: ");
Scanner scan = new Scanner(System.in);
double db = scan.nextDouble();

Source Code:

import java.util.Scanner;

public class testscan {
public static void main(String args[]) {

// Create a Scanner

System.out.print("Enter an integer: ");
 int value = scanner.nextInt();
System.out.println("Entered the integer " +
value);

// user to enter a value
System.out.print("Enter double value: ");
double dvalue = scanner.nextDouble();
System.out.println("Entered the double value "+
dvalue);

// user to enter a string
System.out.print("Enter string without space:
");
String str = scanner.next();
System.out.println("You entered the string " +
str);
}
}

Documentation and Programming Style

Programming Style is concerned with the appearance of programs.

A program's documentation is the collection of explanatory notes and

comments.

As essential as code is the programming style and documentation. They

make it simple to follow the programs.

Appropriate Comments and Style of Comments

At the start of the program, provide a description that explains what the

program does, its signi�cant features, supporting data structures, and

distinctive approaches it employs.

Include comments that introduce each critical step and clarify anything

challenging to read in an extensive program.

Make comments brief, so they don't clog up the show or make it

dif�cult to follow.

The program's start includes your name, class section, date, instructor,

and a brief description.

Conventions for Naming

For variables and methods, use lowercase. If a name is made up of

many words, concatenate them all into one, lowercase the �rst word,

then uppercase the �rst letter of each succeeding word.

showInputDialog, for example.

Pick names that are both signi�cant and descriptive. The variables

radius and area, as well as the procedure computeArea, are examples.

In the class name, capitalize the initial letter of each word. Take, for

example, the ComputeArea class.

In constants, capitalize all letters. Consider the constant Process

Integration (PI).

Don't use names for classes that are already in the Java library. The

constants PI and MAX_VALUE, for example.

Spacing Lines and Proper Indentation

Indentation is used to show how the program's components or

statements are connected structurally.

Indent each subcomponent two spaces more than the structure into

which it is nested.

On both sides of a binary operator, use a single space.

boolean bn = 4 + 3 * 3 > 5 * (3 + 4)

Use a blank line to divide code parts.

Block Styles

A block is a collection of statements encircled by braces. For braces,

use the end-of-line or next-line style.

Long Description

Errors in Programming

Syntax Problems “Compilation Errors”

Syntax errors or compilation mistakes are errors that occur during

compilation.

Syntax errors are caused by mistakes in code composition, such as

mistyping a term, deleting essential punctuation, or using an opening

brace without a closing brace.

These mistakes are easy to see since the compiler informs you of their

location and causes.

Example:

public class ShowErrors {
public static void main(String[] args) { i =
20;
System.out.println(i+5);
}
}

Runtime Errors

Runtime mistakes are errors that cause a program to crash

unexpectedly.

Runtime errors arise when the environment identi�es an action that

cannot be completed while executing the program.

An input error, for example, happens when a user inputs an unexpected

input value that the software is unable to handle. The application

should remind the user to enter the right kind of data to avoid input

mistakes.

Division by zero is another example of a run-time mistake.

public class ShowErrors {
public static void main(String[] args) { int i
= 1 / 0;
}
}

Logic Errors

When a program doesn't work as it should, it's called a logic error.

For example, the program is free of syntax and runtime problems, but it

fails to output the expected result.

// Program contains a logic error

import javax.swing.JOptionPane;

public class ShowErrors
{
public static void main(String[] args)
{
// Add number1 to number2
int number1 = 3; int number2 = 3;
number2 += number1 + number2;
System.out.println("number2 " + number2);
}
}

Debugging

Finding logic mistakes, or “bugs,” is a dif�cult task, and the process of

locating and resolving problems is known as debugging.

You may either hand-trace the program or use print statements to

display the values of the variables or the program's execution sequence.

The most effective way for debugging an extensive, complex program

is to utilize a debugger tool.

CONTROL STRUCTURES
The Java compiler runs the code from beginning to end. The statements in

the code are executed in the order that they occur in the code.2 Java, on the

other hand, Statements that can be used to regulate the �ow of Java code are

available. Control �ow statements are what they're called. It is one of Java's

most important aspects since it ensures a smooth program �ow.

There are three different sorts of control �ow statements in Java.

1. Decision Making statements

if statements

switch statement

2. Loop statements

do-while loop

while loop

for loop

for-each loop

3. Jump statements

break statement

continue statement

2https://www.javatpoint.com/ control-�ow-in-java, javaTpoint

Decision-Making statements: Making decision in programming is

comparable to making decisions in real life. We also come into

instances in programming when we want a speci�c block of code to be

run when a particular condition is met.

Regulate statements are used in programming languages to control a

program's execution �ow based on speci�c criteria. These are used to

force the execution �ow to progress and branch in response to changes

in a program's state.

If

Simple if

if-else

nested-if

if-else-if

switch-case

If

https://www.javatpoint.com/

if Statement

The if statement is the simplest way to make a choice. It is used to

determine if a statement or a block of statements will be executed or not,

i.e., if a condition is true, a block of statements will be performed;

otherwise, it will not.

Syntax:

if(condition)
{
statement; //it executes when condition is
true
}

Example:

public class stud {
public static void main(String[] args) {
int x = 13;
int y = 11;
if(x+y > 15) {
System.out.println("x + y is greater than
15");
}
}
}

Output:

x + y is greater than 15

if-else Statement

The if-else statement is an expansion of the if-statement that employs the

else block of code. If the if-condition block is assessed as false, the else

block is performed.

Syntax:

if(condition)
{
statement one; //executes when condition is
true
}
else
{
statement two; //executes when the condition
is false
}

Example:

public class Stud
{
public static void main(String[] args) {
int x = 13;
int y = 11;
if(x+y < 12) {
System.out.println("x + y is less
than 12");
}
else
{
System.out.println("x + y is greater than
17");
}
}
}

Output:

x + y is greater than 17

if-else-if Ladder

The if-else-if statement is made up of an if statement and many else-if

statements. In other words, a decision tree is created by a sequence of if-

else statements in which the computer can enter the block of code when the

condition is true. At the conclusion of the chain, we may also de�ne an else

statement.

Syntax:

if(condition 1)
{
statement 1; //executes when condition 1 is
true
}
else if(condition 2)
{
statement 2; //executes when condition 2 is
true
}
else
{
statement 2; //when all the conditions are
false then executes
}

Example:

public class main
{
 public static void main(String[] args) {

 int num = 0;

 // checks
 if (num > 0) {

 System.out.println(" positive number
");
 }

 // checks
 else if (num < 0) {
 System.out.println(" negative number
");
 }

 // if both condition is false
 else
{
 System.out.println("Number is 0 ");
 }
 }
}

Output:

Number is 0

Nested if Statement

The if statement can include an if or if-else statement within another if or

else-if statement in nested if-statements.

Syntax:

if(condition 1) {
statement 1; //executes when condition 1 is
true
if(condition 2) {
statement 2; //executes when condition 2 is
true
}
else{

statement 2; //executes when condition 2 is
false
}
}

Example:

public class main {
 public static void main(String[] args)
{

 // declaring double variables type
 Double d1 = -2.0, d2 = 5.5, d3 = -6.3,
large;

 // checks if d1 is greater than or equal
to d2
 if (d1 >= d2) {

 // if...else statement inside the if
block
 if (d1 >= d3) {
 large = d1;
 }

 else {
 large = d3;
 }
 } else {

 // if..else statement inside else
block
 // checks if d2 is greater than or
equal to d3
 if (d2 >= d3)
{

 large = d2;
 }

 else {
 large = d3;
 }
 }

 System.out.println("Largest Number: " +
large);
 }
}

Output:

Largest Number: 5.5

Switch Statement

Switch statements in Java are comparable to if-else-else statements. A

single case is performed based on the variable being switched in the switch

statement, which comprises numerous blocks of code called cases. Instead

of using if-else-if statements, you may use the switch statement. It also

improves the program's readability.

There are a few things to keep in mind with the switch statement:

Integers, shorts, bytes, chars, and enumerations can all be used as case

variables. Since Java version 7, the string type has also been supported.

Cases are unique and cannot be duplicated.

When the value of the expression does not meet any of the

circumstances, the default statement is used. It's a decision.

When the condition is met, the break statement ends the switch block.

If it is not utilized, the following case is executed.

We must remember that the case expression will be the same type as

the variable when employing switch statements. It will, however, be a

constant value.

Syntax:

switch (expression)
{
 case val1:
 statement1;
 break;
 .
 .
 .
 case valN:
 statementN;
 break;
 default:
 default statement;
}

Example:

public class Main {
 public static void main(String[] args) {
 int day = 5;
 switch (day)
{
 case 1:
 System.out.println("monday");
 break;
 case 2:
 System.out.println("tuesday");
 break;
 case 3:
 System.out.println("wednesday");

 break;
 case 4:
 System.out.println("thursday");
 break;
 case 5:
 System.out.println("friday");
 break;
 case 6:
 System.out.println("saturday");
 break;
 case 7:
 System.out.println("sunday");
 break;
 }
 }
}

Output:

friday

We must remember that the case expression will be the same type as the

variable when employing switch statements. It will, however, be a constant

value. Only int, string, and enum type variables are allowed to be used with

this option.

Loop Statements

In programming, we may need to run a code several times while a condition

evaluates to true. Loop statements, on the other hand, are used to repeat the

set of instructions. The execution of the set of instructions is contingent on a

speci�c circumstance.3

3https://www.sitesbay.com/ java/ java-looping-statement, Sitesbay.com

In Java, there are three different forms of loops that all work in the same

way. However, there are variations in their syntax and the time it takes to

check for conditions.

https://www.sitesbay.com/
http://sitesbay.com/

1. for and for each loop

2. while loop

3. do-while loop

Let's take a look at each loop statement individually.

1. For loop: In java, for loop is similar to C and C++. In a single line of

code, we may initialize the loop variable, verify the condition, and

increment/decrement. We only use the for loop when we know exactly

how many times we want to run a code block.

Syntax:

for(initialization, condition,
increment/decrement)
{
//statements block
}

Example:

public class Cal
{
public static void main(String[] args)
{
int sum = 0;
for(int c = 1; c<=10; c++) {
sum = sum + c;
}
System.out.println("sum of 10 natural numbers:
" + sum);
}
}

Output:

The sum of first 10 natural numbers is 55

2. for-each loop: Java provides an enhanced for loop to traverse the data

structures like array or collection. In the for-each loop, we don't need

to update the loop variable. The syntax to use the for-each loop in java

is given below.

Syntax:

for(data_type var : array_name){
//statement
}

Example:

public class Cal {
public static void main(String[] args)
{
String[] names =
{"C","C++","Java","JavaScript"};
System.out.println("Printing the content:\n");
for(String name:names) {
System.out.println(name);
}
}
}

Output:

Printing the content:

C
C++
Java
JavaScript

3. while loop: The while loop may also be used to iterate over a set of

statements repeatedly. We should use a while loop if we don't know

the number of iterations ahead of time. In contrast to the loop, the

initialization and increment/decrement do not happen inside the while

loop statement.

Because the condition is veri�ed at the start of the loop, it's also

known as the entry-controlled loop. The loop body will be run if the

condition is true; else, the statements after the loop will be executed.

Syntax:

while(condition){
//looping statements
}

Example:

public class Cal
{
public static void main(String[] args)
{
int c = 0;
System.out.println("Print list of 10 even
numbers \n");
while(c<=10) {
System.out.println(c);
c = c + 2;
}
}
}

Output:

Print list of 10 even numbers

0
2
4
6
8

10

4. do-while loop: After running the loop statements, the do-while loop

veri�es the condition at the conclusion of the loop. We can use a do-

while loop when the number of iterations is unknown, and we need to

run the loop at least once.

Because the condition is not veri�ed in advance, it is also known as

the exit-controlled loop. The do-while loop's syntax is seen below.

Syntax:

do
{
//statement
} while (condition);

Example:

public class Cal
{
public static void main(String[] args)
{
// Auto-generated method stub
int c = 0;
System.out.println("Print the list of 10 even
numbers \n");
do {
System.out.println(c);
c = c + 2;
}while(c<=10);
}
}

Output:

Print the list of 10 even numbers
0

2
4
6
8
10

Jump Statements

Jump statements are used to move the program's control to particular

statements. Jump statements, in other words, move the execution control to

another portion of the program. In Java, there are two sorts of jump

statements:

1. Break

2. Continue

1. Break statement: As its name implies, the break statement is used to

interrupt the program's current �ow and transfer control to the

following statement outside of a loop or switch statement. In the event

of a nested loop, however, it just breaks the inner loop.

In a Java program, the break statement cannot be used on its own; it

must be put inside a loop or switch statement.

Example:

public class breakex
{
public static void main(String[] args)
{
// Auto-generated method
for(int c = 0; c<= 10; c++)
{
System.out.println(c);
if(c==8)
{
break;
}

}
}
}

Output:

0
1
2
3
4
5
6
7
8

2. Continue statement: In comparison to the break statement, the

continue statement does not break the loop; instead, it skips the

speci�ed section of the loop and immediately goes to the next

iteration of the loop.

Example:

public class ContinueEx
{

public static void main(String[] args)
{
// Auto-generated method

for(int c = 0; c<= 3; c++)
{

for (int d = c; d<=6; d++)
{

if(d == 5)

{
continue;
}
System.out.println(d);
}
}
}
}

Output:

0
1
2
3
4
6
1
2
3
4
6
2
3
4
6
3
4
6

A GUIDE TO JAVA PACKAGES
As the name implies, a package is a collection of classes, interfaces, and

other packages. Packages are used in Java to arrange classes and interfaces.

In Java, there are built-in packages and packages that we may construct

(also known as a user-de�ned package).

We have numerous built-in packages in Java; for example, when we need

user input, we import the following package:

Syntax:

import java.util.Scanner

Java is the top-level package, whereas util is a sub-package.

The scanner is a class included in the util package.

Let's look at the bene�ts of utilizing a package before we look at how to

make one in Java.

The following are some of the bene�ts of using packages in Java:

Reusability: When working on a Java project, we frequently notice a

few things that we repeat in our code. You may build such things in

classes inside a package and then import that package and use the class

anytime you need to execute the same operation.

Better Organization: In big java projects with hundreds of classes, it is

usually necessary to arrange similar types of classes into a meaningful

package name to better organize your project and �nd and utilize what

you need quickly increasing ef�ciency.

Name Con�icts: We may create two classes with the same name in

distinct packages; thus, we can utilize packages to avoid name

collisions.

Package Kinds in Java

There are two sorts of packages in Java.

1. User-de�ned package: The package we make is referred to as a “user-

de�ned package.”

2. Built-in package: Built-in packages are pre-de�ned packages such as

java.io.*, java.lang.*, and so on.

Example 1: Java packages

Within the package letcalculate, we've built a class called Calculator.

Declare the package name in the �rst sentence of your program to

create a class inside it. There may only be one package declaration per

class.

package letcalculate;

public class Calc {
 public int add(int x, int y){
 return x+y;
 }
 public static void main(String args[]){
 Calc obj = new Calc();
 System.out.println(obj.add(20, 30));
 }
}

Let's look at how to use this package in another program.

import letcalculate.Calc;
public class Demo{
 public static void main(String args[]){
 Calc obj = new Calc();
 System.out.println(obj.add(200, 300));
 }
}

We've imported the package letcalculate to utilize the Calculator class.

We've named the package letcalculate in the above application. The

calculator is the only class that this imports. However, if the package

letcalculate has many classes, we may import it to utilize all of the

package's classes.

import letcalculate.*;

Example 2: While importing another package, create a class within

the package.

Both package declaration and package import should be the initial

statement in your Java application, as we've seen. Let's look at the

sequence in which we should create a class within a package while

importing another package.

//Declaring a package
package anotherpackage;
//importing a package
import letcalculate.Calc;
public class Example{
 public static void main(String args[]){
 Calc obj = new Calc();
 System.out.println(obj.add(200, 300));
 }
}

Example 3: When importing a class, use the fully quali�ed name.

To eliminate the import statement, we can use a fully quali�ed name.

Example:

Calc.java

package letcalculate;
public class Calc {
 public int add(int x, int y){
 return x+y;
 }
 public static void main(String args[]){
 Calc obj = new Calc();
 System.out.println(obj.add(20, 30));
 }
}

Exp.java

//package declaration
package anotherpackage;
public class Exp{
 public static void main(String args[]){
 //Using fully qualified name instead of
import
 letcalculate.Calc obj =
 new letcalculate.Calc();
 System.out.println(obj.add(200, 300));
 }
}

Instead of importing the package, we created its object using the entire

quali�ed name such as package_name.class_name in the Exp class.

Subpackages in Java

A subpackage is a package that is contained within another package. For

example, if a package is created within the letcalculate package, it is

referred to as a subpackage.

Let's pretend we've added another package to letcalculate, and the name

of the subpackage is multiply. So, if we build a class in this subpackage, it

should start with the following package declaration:

Syntax:

package letcalculate.multiply;

Multiplication.java

Example:

package letmecalculate.multiply;
public class Multipli {
 int product(int x, int y){
 return x*y;
 }

}

If we want to utilize this Multiplication class, we must either import the

package as follows:

Syntax:

import letcalculate.multiply;

This chapter taught us how to install Java on a Windows computer and

set up Environment Variables. We also learnt how to set up an IDE and

about the internal workings of a Java application. In addition, we learnt

about Java's primitive classes and operations. Later on, we discussed control

structures and loops, as well as their many forms. Finally, we learnt about

Java packages through several examples.

C H A P T E R 3

Object-Oriented

Programming

DOI: 10.1201/ 9781003229063-3

IN THIS CHAPTER

➢ Java OOP's Concept

➢ Java Classes and Objects

➢ Access Modi�ers and Constructors

➢ Interfaces

➢ A Guide to Inheritance

➢ Java Enums

In the previous chapter, we covered a complete guide to installing and

executing Java and the primitives. In addition, we learned about Java's

control structures and various packages. In this chapter, we'll learn about

object-oriented programming, including what classes and objects are, as

https://doi.org/10.1201/9781003229063-3

well as modi�ers and interfaces. We'll also go over inheritance and enums

in detail.

JAVA OBJECT-ORIENTED PROGRAMMINGS
(OOPS) CONCEPTS
Inheritance, data binding, polymorphism, and other notions are all part of

the Object-Oriented Programming (OOP) paradigm.

The OOP language Simula is regarded as the �rst. An utterly OOP

language is a programming paradigm in which everything is represented as

an object.

Smalltalk is widely regarded as the �rst OOP language.

OOPs

A real-world entity such as a pen, chair, table, computer, watch, and so on is

referred to as an object. OOP is a programming approach or paradigm that

uses classes and objects to create a program. It makes software development

and maintenance more accessible by introducing the following concepts:

Object

Class

Inheritance

Polymorphism

Abstraction

Encapsulation

Aside from these ideas, there are a few more words used in Object-

Oriented design:

Coupling

Cohesion

Association

Aggregation

Composition

Object

An object is any entity that has a state and behavior. For instance, a pen,

table, chair, bicycle, and so forth. It might be physical or intellectual.

An instance of a class can be declared as an Object. An object has an

address and takes up memory. Even if they are ignorant of one other's data

or code, objects can communicate. The only thing that matters is the type of

message accepted and the type of response that the objects provide.

A dog, for example, is an object since it has states such as color, name,

breed, and actions such as waving the tail, barking, and eating.

Class

The term “class” refers to a group of things. It's a logical thing.

A class may alternatively be thought of as a blueprint from which an

individual object can be created. Class doesn't take up any room.

Inheritance

When one object inherits all of its parent object's properties and behaviors,

this is known as inheritance. It allows for code reuse. It's utilized to achieve

polymorphism at runtime.

Polymorphism

Polymorphism refers to the notion that the same task may be completed in a

number of different ways. To persuade a consumer in a new way, draw a

form, triangle, rectangle, or another object.

To accomplish polymorphism in Java, we employ method overloading

and method overriding.

Another example is to say anything; for example, a cat meows, a dog

barks woofs, and so on.

Abstraction

Abstraction is the process of concealing internal information while

displaying functionality. We don't know the internal processes of a phone

call, for example. To accomplish abstraction in Java, we utilize abstract

classes and interfaces.

Encapsulation

Encapsulation is the process of binding (or wrapping) code and data

together into a single entity. A capsule, for example, is coated with several

medications.

Encapsulation is demonstrated through a Java class. Because all data

members are private in a Java bean, it is a fully enclosed class.

Coupling

Another class's knowledge, information, or reliance is referred to as

coupling. It occurs when students are aware of one another's existence.

There is strong coupling when a class possesses the detailed information of

another class. To display the visibility level of a class, method, or �eld in

Java, we utilize the private, protected, and public modi�ers. Because there

is no real implementation, you may use interfaces for the lesser coupling.

Cohesion

The degree of a component that performs a single well-de�ned duty is

referred to as cohesion. A very coherent technique is used to complete a

single well-de�ned job. The work will be divided into different sections

using the weakly cohesive approach. Because it contains I/O-related classes

and interfaces, the java.io package is relatively coherent. The java.util

package, on the other hand, is a disjointed collection of classes and

interfaces.

Association

The link between the items is represented through association. One item can

be linked to one or more objects in this case. There are four different types

of object associations:

1. One to One

2. One to Many

3. Many to One, and

4. Many to Many

Aggregation

Aggregation is a technique for achieving Association. Aggregation refers to

a connection in which one object's state includes other things. It symbolizes

a shaky connection between items. In Java, it's known as a has-a

connection. The is-a connection, for example, is represented by inheritance.

It's yet another way to recycle items.

Composition

Association can also be achieved through composition. The composition

denotes a connection in which one item includes other objects as part of its

state. The enclosing item and the dependent object have a strong

connection. It is the state in which the items that make up the container have

no independent existence. If you delete the parent object, it will be followed

by the deletion of all child objects.

In Java, What Is the Difference between an Object and a Class?

In OOP, a Class is a blueprint or prototype that speci�es the variables and

methods (functions) that are shared by all Java Objects of a particular kind.1

In OOPs, an object is a class specimen. Software objects are frequently

used to simulate real-world things seen in daily life.

Advantages of OOPs over Procedure-Oriented Programming

Languages

OOPs make development and maintenance more accessible, but

procedure-oriented programming languages are dif�cult to handle as

project sizes expand.

Data hiding is provided by OOPs, whereas global data may be accessed

from anywhere in a procedure-oriented programming language.

OOPs signi�cantly improve the capacity to replicate real-world events.

If we use the OOP language, we may give a solution to a real-world

problem.

1https://www.guru99.com/ java-oops-class-objects.html, Guru99

Java Naming Conventions

A naming convention in Java is a set of rules to follow when naming

identi�ers such as classes, packages, variables, constants, methods, etc.

It is not, however, obligatory to follow. As a result, it is referred to as a

convention rather than a regulation. Several Java groups, including Sun

Microsystems and Netscape, have recommended these norms.

According to the Java naming convention, the Java programming

language's classes, interfaces, packages, methods, and �elds are all named.

If you don't follow these rules, you could end up with some ambiguous or

incorrect code.

Benefits of Java Naming Conventions

Using standard Java naming conventions makes your code easier to read for

both you and other programmers. The readability of a Java program is

crucial. It means that less effort is spent deciphering what the code

accomplishes.

The following are the fundamental rules that any identi�er must follow:

There must be no white spaces in the name.

Special characters such as & (ampersand), $(dollar), and _ (underscore)

should not be used in the name.

Class

The class should begin with an uppercase letter.

https://www.guru99.com/

Color, Button, System, Thread, and so on are examples of nouns.

Instead of acronyms, use relevant words.

Example:

public class Emp
{
//code
}

Interface

The interface should begin with an uppercase letter.

An adjective like Runnable, Remote, or Action Listener should be

used.

Instead of acronyms, use relevant words.

Example:

interface Print
{
//code
}

Method

It should begin with a lowercase letter.

It must be a verb like main(), print(), or println ().

If the name has more than one word, begin with a lowercase letter and

then an uppercase letter, such as actionPerformed ().

Example:

class Emp
{

//method
void draw()
{
//code
}
}

Variable

It should begin with a lowercase letter, for example, id or name.

It should not begin with special characters such as (&) ampersand, ($)

dollar, and underscore (_).

If the name has more than one word, begin with a lowercase letter and

then an uppercase letter, such as �rstName and lastName.

Avoid using one-character variables such as a, b, and c.

Example:

class Emp
{
//variable
int name;
//code
}

Package

It should start with a lowercase letter, like java or lang.

If the name comprises multiple terms, such as java.util or java.lang, the

dots (.) should be used to separate them.

Example:

package com.javatpoint;
class Emp

{
//code
}

Constant

It should be written in capital letters, such as RED.

If the name comprises several words, an underscore (_) should

separate them, such as MAX PRIORITY.

It may have digits but not as the �rst letter.

Example:

class Emp
{
//constant
 static final int min_age = 13
//code
}

Java Objects and Classes

We create a program utilizing objects and classes in OOP.

In Java, an object is both a physical and a logical thing, whereas a class is

simply a logical entity.

In Java, What Is an Object?

An object is a physical item with a state and activity, such as a chair, a bike,

a marker, a pen, a table, a car, and so on. It might be either physical or

logical (tangible and intangible). The �nancial system is an example of an

intangible thing.

There are three qualities of an object:

1. State: The data (value) of an object is represented by its state.

2. Behavior: The behavior (functionality) of an object, such as deposit,

withdrawal, and so on, is characterized by the term behavior.

3. Identify: A unique ID is generally used to represent an object's

identi�cation. The value of the ID is hidden from the outside user. The

Java Virtual Machine (JVM), on the other hand, uses it internally to

identify each object uniquely.

Pen, for instance, is an object. Reynolds is its name, and the color white is

its condition. It's accustomed to writing, so that's what it does.

A class's instance is an object. A class is a blueprint or template from

which things are built. As a result, an object is a class's instance.

In Java, What Is a Class?

A class is a collection of objects with similar characteristics. It's a blueprint

or template from which things are made. It's a logical thing. It can't be a

physical problem.

In Java, a class can have the following elements:

Fields

Methods

Constructors

Blocks

Nested class and interface

Syntax:

class <classname>
{
 field;
 method;
}

In Java: Instance Variable

In Java, an instance variable is a variable that is generated within a class but

outside of a method. At compilation time, memory is not allocated to

instance variables. When an object or instance is formed, it obtains memory

at runtime. As a result, it's referred to as an instance variable.

In Java: Method

A method in Java is similar to a function in that it is used to expose an

object's behavior.

The method has an advantage:

Reusability of code

Optimization of the code

In Java: New Keyword

At runtime, the new keyword is used to allocate memory. In the Heap

memory region, all things receive memory.

Example of an Object and a Class: Main within the Class:

We've constructed a Student class in this example, with two data members:

id and name. The object of the Student class is created using the new

keyword, and the object's value is printed.

Inside the class, we're going to create a main() function.

Source Code:

// Class Declaration
class dog
{
 String breed;
 int age;
 String color;

 // method 1
 public String getinfo() {

 return ("Breed: "+breed+"
Age:"+age+" color: "+color);
 }
}
public class Exec{
 public static void main(String[] args) {
 dog bulldog = new dog();
 bulldog.breed=" bulldog ";
 bulldog.age=3;
 bulldog.color="brown";
 System.out.println(bulldog.getinfo()
);
 }
}

Output:

Breed: bulldog Age:3 color: brown

There are three ways to initialize an object in java.

1. By reference variable

2. By method

3. By constructor

1. By reference variable: When we construct a class object (instance),

heap memory space is reserved. Let's look at an example to assist us

to comprehend.2

Syntax:

demo d1 = new demo();

We construct a Pointing element, also known as a Reference variable,

which simply indicates where the Object is located.

Identifying the Reference Variable

A reference variable is a type of the variable used to point to an

object or a set of data.

In Java, reference types include classes, interfaces, arrays,

enumerations, and annotations. In Java, reference variables are

used to store the objects/values of reference types.

2https://www.geeksforgeeks.org/ reference-variable-in-java/ , geeksforgeeks

A null value can be stored in a reference variable. If no object is

given to a reference variable, it will default to storing a null value.

Using dot syntax, you may access object members using a

reference variable.

Syntax:

<reference variablename >.
<instance variablename / methodname>

Example:

// Java program to explain reference
variable in java

import java.io.*;
class demo {
 int y = 20;
 int display()
 {
 System.out.println("y = " + y);
 return 0;
 }
}

class Main {
 public static void main(String[] args)
 {

https://www.geeksforgeeks.org/

 demo dm1 = new demo();

 System.out.println(dm1);

 System.out.println(dm1.display());
 }
}

Output:

demo@6a6824be
y = 20
0

2. Initialization through the method: In this example, we're creating two

Student objects and using the insertRecord method to set their values.

By using the displayInformation() function, we may see the status

(data) of the objects.

Example:

class student{
 int rollnum;
 String name;
 void insertRecord(int rn, String num){
 rollnum=rn;
 name=num;
 }
 void displayInformation()
{
System.out.println(rollnum+" "+name);
}
}
public class test
{
 public static void main(String args[]){
 student s1=new student();

 student s2=new student();
 s1.insertRecord(11,"Kirti");
 s2.insertRecord(22,"Adii");
 s1.displayInformation();
 s2.displayInformation();
 }
}

Output:

11 Kirti
22 Adii

3. Initialization through a constructor

Example:

class Emp
{
 int id;
 String name;
 float salary;
 void insert(int d, String nm, float sr) {
 id=d;
 name=nm;
 salary=sr;
 }
 void display()
{
System.out.println(id+" "+name+" "+salary);
}
}
public class Test
{
public static void main(String[] args)
{
 Emp e1=new Emp();

 Emp e2=new Emp ();
 Emp e3=new Emp();
 e1.insert(11,"aman",65000);
 e2.insert(12,"isha",35000);
 e3.insert(13,"nitin",25000);
 e1.display();
 e2.display();
 e3.display();
}
}

Output:

11 aman 65000.0
12 isha 35000.0
13 nitin 25000.0

What Are the Many Methods of Creating an Object in Java?

In Java, there are several ways to construct an object. They are as follows:

By new keyword

By newInstance() method

By clone() method

By deserialization

By factory method

Anonymous Object

The term “anonymous” simply means “without a name.” An anonymous

object does not have a reference. It can only be used when creating an item.

An anonymous object is an excellent choice if you need to utilize it once.

Consider the following scenario:

new Calc();

Using a reference to call a method:

Calc c=new Calc();
c.fact(6);

Using an anonymous object to call a method:

new Calc().fact(6);

Example:

public class Calc
{
 void fact(int n){
 int fact=2;
 for(int c=2;c<=n;c++){
 fact=fact*c;
 }
 System.out.println("factorial is "+fact);
}
public static void main(String args[])
{
 new Calc().fact(6);
}
}

Output:

factorial is 1440

Creating many objects with a single type:

As with primitives, we may generate several objects with a single type.

Primitive variable initialization:

int c=20, d=30;

Reference variables are set up as follows:

rectangle rn1=new rectangle(), rn2=new
rectangle();

Example:

class rectangle
{
int len;
 int wid;
 void insert(int ln,int wd)
{
 len=ln;
 wid=wd;
 }
 void calculateArea()
{
System.out.println(len*wid);}
}
class TestRectangle2
{
 public static void main(String args[])
{
 rectangle rn1=new rectangle(),
 rn2=new rectangle();//creating two
objects
 rn1.insert(12,6);
 rn2.insert(4,15);
 rn1.calculateArea();
 rn2.calculateArea();
}
}

CONSTRUCTORS

A function in Java is a piece of code that is comparable to a method. When

a new instance of the class is created, this method is invoked. Memory for

the object is allocated in the memory when the constructor is called. It's a

unique kind of method that's used to set up an object.

At least one constructor is invoked every time an object is created with

the new() keyword. If no constructor is provided in the class, it uses the

default constructor. In this situation, the Java compiler automatically creates

a default constructor.

In Java, there are two types of constructors: no-arg and parameterized

constructors.

It's called a constructor because it creates the values when the object is

created. A constructor does not have to be written for a class. It's because if

the class doesn't have one, the Java compiler will produce one.

Rules for Writing a Java Constructor:

Two rules specify the constructor.

The constructor's name must match the class's name.

There must be no explicit return type in a constructor.

An abstract, static, �nal, and synchronized Java constructor is not

possible.

Constructors in Java are divided into two categories:

Default constructor (no-arg constructor)

Parameterized constructor

Default Constructor

A constructor is classi�ed “Default Constructor” when it doesn't have any

parameter.

Syntax:

<classname> (){}

Example:

// Program to create & call default
constructor
class bike{
// default constructor
bike()
{
System.out.println("created bike ");
}
//main method
public static void main(String args[]){
//calling a default constructor
bike bk=new bike();
}
}

Output:

created bike

What Is a Default Constructor's Purpose?

The default constructor gives the object default values like 0, null, and so

on, depending on the type.

Example:

public class student
{
int id;
String name;
// display the value
void display()
{
System.out.println(id+" "+name);
}
public static void main(String args[])
{
//create objects
student st1=new student();
student st2=new student();
//displaying values
st1.display();
st2.display();
}
}

Output:

0 null
0 null

Explanation: In the above class, we are not making any constructor, so the

compiler gives you a default constructor. Here 0 and invalid qualities are

given default constructor.

Parameterized Constructor

A constructor which has a particular number of parameters is known as a

parameterized constructor.

Why Utilize the Parameterized Constructor?

The parameterized constructor is utilized to give various qualities to distinct

objects. In any case, we can provide a similar value moreover.

Example:

In this model, we have made the constructor of the Student class

that has two boundaries. We can have quite a few limitations in

the constructor.

public class student
{
 int id;
 String name;
 // parameterized constructor
 student(int c,String nm)
{
 id = c;
 name = nm;
 }
 // display values
 void display()
{
System.out.println(id+" "+name);
}

 public static void main(String args[])
{
 // object creation and passing values
 student st1 = new student(11,"Kiran");
 student st2 = new student(22,"Arav");

 //calling method
 st1.display();
 st2.display();
 }
}

Output:

11 Kiran
22 Arav

Constructor Overloading

A constructor is similar to a method in Java, except it does not have a return

type. It, like Java methods, can be overloaded.

In Java, constructor overloading is the practice of having many

constructors with different argument lists. They're organized such that each

a constructor does something distinct. The compiler distinguishes them

based on the number of arguments in the list and their kinds.

Example:

// program for overload constructors
public class student
{
 int id;
 String name;
 int age;
 // two arg constructor creation
 student(int c,String nm)
{
 id = c;
 name = nm;
 }
 // three arg constructor creation
 student(int c,String nm,int ag)
{

 id = c;
 name = nm;
 age=ag;
 }
 void display()
{
System.out.println(id+" "+name+" "+age);
}

 public static void main(String args[])
{
 student st1 = new student(11,"Kiran");
 student st2 = new
student(22,"Arav",25);
 st1.display();
 st2.display();
 }
}

Output:

11 Kiran 0
22 Arav 25

In Java, What Is the Difference between a Constructor and a

Method?

The distinctions between constructors and methods are many. Below is a list

of them.

Java Constructor Java Method

An object's state is initialized using a

constructor.

A method is used to reveal an object's

behavior.

There can't be a return type in a constructor. A return type is required for a method.

Implicitly, the constructor is called. The method is explicitly called.

If a class lacks a compiler, the Java compiler

offers a default compiler.

In any instance, the compiler does not

supply the method.

Java Constructor Java Method

The constructor must have the same name as

the class.

The method name and the class name may

or may not be the same.

Copy Constructor in Java

Java doesn't have a copy constructor. However, using the copy f constructor

in C++, we may copy data from one object to another.

In Java, there are several methods for copying the values of one object to

another. They are as follows:

By constructor

By assigning values from one item to another.

By using the Object class's clone() function.

Example:

public class student
{
 int id;
 String name;
 //constructor to initialize integer and
string
 student(int c,String nm)
{
 id = c;
 name = nm;
 }
 //constructor to initialize object
 student(student st)
{
 id = st.id;
 name =st.name;
 }
 void display()
{
System.out.println(id+" "+name);}

 public static void main(String args[]){
 student st1 = new student(11,"Kiran");
 student st2 = new student(st1);
 st1.display();
 st2.display();
 }
}

Output:

11 Kiran
11 Kiran

Copying Values without Constructor

We may replicate the values of one object into another without using a

constructor by assigning the object's values to another object. There is no

need to build the constructor in this situation.

Example:

public class student
{
 int id;
 String name;
 student(int c,String nm)
{
 id = c;
 name = nm;
 }
 student(){}
 void display()
{
System.out.println(id+" "+name);
}

 public static void main(String args[])
{
 student st1 = new student(11,"Kiran");
 student st2 = new student();
 st2.id=st1.id;
 st2.name=st1.name;
 st1.display();
 st2.display();
 }
}

Output:

11 Kiran
11 Kiran

STATIC KEYWORD
In Java, the static keyword is mainly used for memory management. With

variables, methods, blocks, and nested classes, we may use the static

keyword. The static keyword refers to a class rather than a speci�c instance

of that class.

The static can take the form of:

Variable

Method

Block

Nested class

1. Static variable in Java: A static variable has been declared as static.

The static variable can be used to refer to a property that is shared

by all objects (but not unique to each object), such as an employee's

business name or a student's college name.

The static variable is only stored in memory once in the class area

when the class is loaded.

Static variables provide the following advantages:

They conserve memory in your application (i.e., it saves memory).

Without a static variable, it is possible to comprehend the situation.

class students
{
 int roll_no;
 String name;
 String college="TTS";
}

If the college has 300 students, all instance data members will receive

memory each time the object is created. Because each student has a

unique roll number and name, an instance data member is helpful in

this situation. The term “college” denotes a quality that all things

share. This �eld will only get the memory once if we make it static.

Example:

class students
{
 int roll_no; //instancevariable
 String name;
 static String college ="TTS";
//staticvariable
 //constructor
 students(int rn, String nm){
 roll_no = rn;
 name = nm;
 }
 // display values methods
 void display ()
{
System.out.println(roll_no+" "+name+"
"+college);
}

}
//Test class
public class Test
{
 public static void main(String args[])
{
 students st1 = new students(11,"Kiran");
 students st2 = new students(22,"Arya");
 st1.display();
 st2.display();
 }
}

Output:

11 Kiran TTS
22 Arya TTS

Counter Program with No Static Variables

We've established a count instance variable in this example, which is

increased in the constructor. Each object will have a copy of the instance

variable since it receives memory at the moment of object creation. It will

not re�ect other objects if it is increased. As a result, the count variable will

have the value 1 for each item.

Example:

public class counter
{
int counts=0; // When an instance is
created, it will acquire memory each time.

counter()
{
counts++; // value incrementing
System.out.println(counts);

}

public static void main(String args[])
{
// objects creating
counter c1=new counter();
counter c2=new counter();
counter c3=new counter();
}
}

Output:

1
1
1

Counter Program with Static Variables

As previously stated, a static variable will only get memory once;

nevertheless, if any object changes the value of the static variable, it will

maintain its value.

Example:

Public class counter
{
static int counts=0; // will only receive
memory once and keep its value

counter()
{
counts++; //incrementing value
System.out.println(counts);
}

public static void main(String args[])

{
//creating objects
counter c1=new counter();
counter c2=new counter();
counter c3=new counter();
}
}

Output:

1
2
3

2. Static method in Java: A static method is created by using the static

keyword with any method.

A class's static method, rather than the class's object, belongs to the

class.

A static method can be called without having to create a class

instance.

A static method can access and alter the value of a static data

member.

Example:

class student
{
 int roll_no;
 String name;
 static String college = "TTS";
 // To modify the value of a static
variable, use the static method.
 static void change()
{
 college = "TTDIT";
 }

 // initialize the variable
 student(int rn, String nm)
{
 roll_no = rn;
 name = nm;
 }
 // display values method
 void display()
{
System.out.println(roll_no+" "+name+"
"+college);
}
}
//Test class
public class Test
{
 public static void main(String args[])
{
 student.change(); //change method calling
 // objects creating
 student st1 = new student(11,"Kiran");
 student st2 = new student(22,"Arav");
 student st3 = new student(33,"Sonali");
 // display method calling
 st1.display();
 st2.display();
 st3.display();
 }
}

Output:

11 Kiran TTDIT
22 Arav TTDIT
33 Sonali TTDIT

Static method constraints:

There are two primary constraints for the static method. They are as

follows:

A static method cannot utilize non-static data members or directly

invoke non-static methods.

In a static environment, this and super aren't allowed to be used.

Example:

class B{
 int x=30;//non static

 public static void main(String args[])
{
 System.out.println(x);
 }
}

Output:

Compile Time Error

3. Static Block in Java

The static data member is initialized using the Java static block.

It is called before the main function when the class is loaded.

Example:

public class B2
{
 static{System.out.println("invoked static
block");
}
 public static void main(String args[])

{
 System.out.println("Hello");
 }
}

Output:

invoked static block
Hello

IN JAVA, “THIS” KEYWORD
“This” keyword in Java can be used in a variety of ways. This is a reference

variable in Java that points to the current object.

The following is an example of how to use the Java keyword:

This keyword is used in six different ways in Java:

1. “this” may be used to refer to the current instance variable of a class.

2. “this” may be used to invoke the method of the current class.

3. “this()” can be used to invoke the constructor call of the current class.

4. In the method call, “this” can be provided as an argument.

5. “this” can be given to the constructor call as an argument.

6. “this” may be used to get the current instance of the class from a

method.

1. this: to refer to the current instance variable of the class: This keyword

can be used to refer to the existing instance variable of a class. If there

is any misunderstanding between the instance variables and

arguments, this keyword resolves the ambiguity.

Without this term, it is impossible to comprehend the situation.

Let's look at an example to see what happens if we don't utilize this

keyword:

Example:

class student
{
int roll_no;
String name;
float fees;
student(int roll_no,String name,float fees)
{
roll_no= roll_no;
name=name;
fees=fees;
}
void display()
{
System.out.println(roll_no+" "+name+" "+fees);
}
}
public class Test
{
public static void main(String args[])
{
student st1=new student(11,"ankita",4500);
student st2=new student(12,"sunita",5000);
st1.display();
st2.display();
}
}

Output:

0 null 0.0
0 null 0.0

Parameters and instance variables are the same in the example above.

As a result, we use this term to distinguish between local and instance

variables.

This keyword can be used to solve the above problem:

class student
{
int roll_no;
String name;
float fees;
student(int roll_no,String name,float fees)
{
this.roll_no=roll_no;
this.name=name;
this.fees=fees;
}
void display()
{
System.out.println(roll_no+" "+name+"
"+fees);}
}

public class Test
{
public static void main(String args[])
{
student st1=new student(11,"ankita",7000);
student st2=new student(12,"sunita",9000);
st1.display();
st2.display();
}
}

Output:

11 ankita 7000.0
12 sunita 9000.0

There is no need to use this keyword if local and instance variables

are distinct, like in the following program:

This keyword is not necessary for this program.

class student
{
int roll_no;
String name;
float fees;
student(int rn,String nm,float fs)
{
roll_no=rn;
name=nm;
fees=fs;
}
void display()
{
System.out.println(roll_no+" "+name+" "+fees);
}
}

public class Test
{
public static void main(String args[])
{
student st1=new student(11,"ankita",4000);
student st2=new student(12,"sunita",5000);
st1.display();
st2.display();
}
}

Output:

11 ankita 4000.0
12 sunita 5000.0

2. this: to call the current class method: “this” keyword can be used to

call a method in the current class. If you don't use the “this” keyword,

the compiler will add it when you call the method. Let's look at an

example.

Example:

class B
{
void x()
{
System.out.println("hello x");
}
void y()
{
System.out.println("hello y");
//x(); //same as this.x()
this.x();
}
}
public class Test
{
public static void main(String args[]){
B b=new B();
b.y();
}
}

Output:

hello y
hello x

3. this(): to call the constructor of the current class: The current class can

be called using this() constructor call. Its purpose is to allow the

constructor to be reused. To put it another way, it's utilized to link

constructors.

Using a parameterized constructor to call the default constructor:

Example:

class B
{
B()
{
System.out.println("hello b");}
B(int y){
this();
System.out.println(y);
}
}
public class Test
{
public static void main(String args[])
{
B b=new B(20);
}
}

Output:

hello b
20

Using the default constructor to call the parameterized constructor:

Example:

class B
{
B()
{
System.out.println("hello b");}
B(int y)

{
this();
System.out.println(y);
}
}
public class Test
{
public static void main(String args[])
{
B b=new B(20);
}
}

Output:

hello b
20

4. this() constructor call real usage: To reuse the constructor from the

constructor, use this() constructor call. It is used for constructor

chaining and maintains the chain between the constructors.

Example:

class student
{
int roll_no;
String names,courses;
float fees;
student(int roll_no,String names,String
courses)
{
this.roll_no=roll_no;
this.names=names;
this.courses=courses;
}

student(int roll_no,String names,String
courses,float fees)
{
this(roll_no,names,courses); //reusing
constructor
this.fees=fees;
}
void display()
{
System.out.println(roll_no+" "+names+"
"+courses+" "+fees);
}
}
public class Test
{
public static void main(String args[])
{
student st1=new student(11,"ankita","java");
student st2=new
student(12,"sunita","java",7000);
st1.display();
st2.display();
}}

Output:

11 ankita java 0.0
12 sunita java 7000.0

5. this: to be passed as an argument to the method: “this” keyword can

also be used as an argument in a method. It is mainly used in event

management. Let's look at an example:

Example:

public class D2
{

 void b(D2 obj)
{
 System.out.println("method invoked");
 }
 void c()
{
 b(this);
 }
 public static void main(String args[]){
 D2 d1 = new D2();
 d1.c();
 }
}

Output:

method invoked

6. this: to use in the constructor call as a parameter: “this” keyword can

also be sent to the constructor. It comes in handy when we need to

utilize the same object in numerous classes. Let's look at an example:

Example:

class C
{
 D4 obj;
 C(D4 obj)
{
 this.obj=obj;
 }
 void display(){
 System.out.println(obj.data); //using D4
class data member
 }
}

public class D4{
 int data=20;
 D4(){
 C c=new C(this);
 c.display();
 }
 public static void main(String args[]){
 D4 a=new D4();
 }
}

Output:

20

7. “this” keyword may be used to get the current instance of a class:

“this” keyword can be returned as a statement from the method. In

this situation, the method's return type must be the class type (non-

primitive). Let's look at an example:

Syntax:

returntype methodname()
{
return this;
}

Example:

class B
{
B getB()
{
return this;
}
void msg()
{

System.out.println("Hello");
}
}
public class Test
{
public static void main(String args[])
{
new B().getB().msg();
}
}

Output:

Hello

JAVA ENUM'S
In a programming language, enumerations are used to express a set of

named constants. The four suits in a deck of playing cards, for example,

might be four enumerators named Club, Diamond, Heart, and Spade, all of

which belong to the enumerated type Suit. Natural enumerated types are

another example (like the planets, days of the week, colors, directions, etc.).

Enums are used when all potential values are known at compile-time,

such as menu options, rounding modes, command line settings, and so on.

The set of constants in an enum type does not have to be �xed at all times.3

Enums are represented in Java by the enum data type. Enums in Java is

more powerful than enums in C/C++. We may also include variables,

methods, and constructors in Java. Enum's primary goal is to allow us to

design our data types.

3https://docs.oracle.com/ javase/ tutorial/ java/ javaOO/ enum.html, Oracle

In Java, an enum is declared as follows:

Enum declaration is possible both outside and inside a Class, but not

inside a Method.

https://docs.oracle.com/

Example 1:

// enum example where the enum is declared
outside a class

enum colors
{
 BLUE, YELLOW, ORANGE;
}

public class test1
{
 // Driver method
 public static void main(String[] args)
 {
 colors cr1 = colors.ORANGE;
 System.out.println(cr1);
 }
}

Output:

ORANGE

Example 2:

// declaration of enum inside a class

public class test1
{
 enum colors
 {
 BLUE, YELLOW, ORANGE;
 }

 // Driver method

 public static void main(String[] args)
 {
 colors cr1 = colors.ORANGE;
 System.out.println(cr1);
 }
}

Output:

ORANGE

The �rst line should be a list of constants, followed by methods,

variables, and constructors inside the enum.

Constants should be named with full capital letters, according to Java

naming standards.

Example:

//Java program to demonstrate working on enum

import java.util.Scanner;

// Enum class
enum Days
{
 MONDAY, TUESDAY, WEDNESDAY,
 THURSDAY, FRIDAY, SATURDAY, SUNDAY;
}

public class test1
{
 Days days;

 // Constructors
 public test1(Days days)
 {

 this.days = days;
 }

 // Prints
 public void dayIsLike()
 {
 switch (days)
 {
 case TUESDAY:
 System.out.println("Tuesday is bad.");
 break;
 case THURSDAY:
 System.out.println("Thursday are
better.");
 break;
 case FRIDAY:
 case SUNDAY:
 System.out.println("Weekends best.");
 break;
 default:
 System.out.println("Midweek so-so.");
 break;
 }
 }

 // Driver method
 public static void main(String[] args)
 {
 String st = "TUESDAY";
 test1 ts1 = new test1(Days.valueOf(st));
 ts1.dayIsLike();
 }
}

Output:

Tuesday is bad.

Every enum constant is public static �nal by default. We may use the

enum Name to access it because it is static. We can't make child enums

since it's �nal.

The main() function can be declared inside the enum. As a result, we

may use the Command Prompt to call enum.

Inheritance and Enumeration

Java.lang is implicitly extended by all enums.

Enum class. Because in Java, a class can only extend one parent, an

enum can't extend anything else.

In java.lang, the function toString() is overridden.

Enum class that returns the name of an enum constant.

Many interfaces may be implemented with enum.

Methods values(), ordinal(), and function valueOf()

These methods may be found in the java.lang.enum.

The values() function of an enum may be used to return all of the

values in the enum.

In enums, the order is crucial. Each enum constant index may be

determined using the ordinal() function, much like an array index.

If an enum constant for the supplied string valueof() exists, the function

returns it.

Example:

//Demonstrate working of values(), ordinal()
and valueOf()
enum colors
{

 BLUE, YELLOW, ORANGE;
}

public class test1
{
 public static void main(String[] args)
 {
 // values() calling
 colors arr[] = colors.values();

 // with loop enum
 for (colors colr : arr)
 {

 System.out.println(colr + " at index "
 + colr.ordinal());
 }

 // Using the function valueOf() returns a
Color object with the specified constant.

System.out.println(colors.valueOf("ORANGE"));

 }
}

Output:

BLUE at index 0
YELLOW at index 1
ORANGE at index 2
ORANGE

Constructor and Enum

A constructor can be included in an enum, and it is run independently

for each enum constant when the enum class is loaded.

We can't explicitly build enum objects; therefore, we can't call the

enum constructor directly.

Enumeration and Methods

Both concrete and abstract methods can be found in an enum. If an

enum class has an abstract method, it must be implemented by each

instance of the enum class.

Example:

// enums can have constructor and concrete
methods, as seen in this program.

enum colors
{
 ORANGE, GREEN, RED;

 // for each constant enum constructor called
separately
 private colors()
 {
 System.out.println("Constructor called: " +
 this.toString());
 }

 public void colorInfo()
 {
 System.out.println("Color Universal");
 }
}

public class test1
{

 // Driver method
 public static void main(String[] args)
 {
 colors cr1 = colors.ORANGE;
 System.out.println(cr1);
 cr1.colorInfo();
 }
}

Output:

Constructor called: ORANGE
Constructor called: GREEN
Constructor called: RED
ORANGE
Color Universal

In this chapter, we learned about OOPs concepts such as java objects and

classes and how to use modi�ers and constructors in Java. In addition, we

learned what interfaces are and a complete tutorial on inheritance and

enums in Java.

C H A P T E R 4

Creating and Using Java

Strims

DOI: 10.1201/ 9781003229063-4

IN THIS CHAPTER

➢ Introductory to String in Java

➢ Comparing Strings

➢ Java String Conversions

In Chapters 1 to 3, we covered Object-Oriented Programming (OOPs) and

classes and objects, as well as access modi�ers, constructors, and interfaces.

Moreover, we discussed guidance to inheritance and java enums. In this

chapter, we will learn about the complete introduction to strings and the

string comparisons and conversions.

A BEGINNER'S GUIDE TO STRINGS
It is a collection of char values represented by an object. A character array

works in the same way as a Java string does. Consider the following

https://doi.org/10.1201/9781003229063-4

scenario: “hello java” is a string containing a sequence of characters ‘h’, ‘e’,

‘l’, ‘l’, ‘o’, ‘j’, ‘a’, ‘v’, and ‘a’.

In Java, double quotes are used to denote a string. As an example,

// string creation
String type = " hello Java ";

The Java String class has several methods for working with strings,

including compare(), concat(), equals(), split(), length(), replace(),

compareTo(), intern(), substring(), and so on.

Serializable, Comparable, and CharSequence interfaces are implemented

by the java.lang.String class.

Interface for CharSequence

To represent a series of characters, the CharSequence interface is utilized. It

is implemented by the String, StringBuffer, and StringBuilder classes. This

indicates that these three classes can be used to produce strings in Java.1

1https://www.javatpoint.com/ java-string, javaTpoint

The Java String is immutable, meaning it cannot be modi�ed. A new

instance is produced every time we alter a string. You may use the

https://www.javatpoint.com/

StringBuffer and StringBuilder classes to create mutable strings.

Immutable strings will be discussed later. Let's start by learning what a

String is in Java and how to make a String object.

In Java, What Is a String?

A string, in general, is a collection of characters, whereas a Java object is a

string of characters. The java.lang package. A string object is created using

the String class.

What Is the Best Way to Make a String Object?

String objects can be created in two ways:

Using a string literal

By using a new keyword

1. Using a string literal: Double quotes are used to produce a Java String

literal. Consider the following scenario:

String s="welcome";

The Java Virtual Machine (JVM) checks the “string constant pool”

�rst whenever you construct a string literal. A reference to the pooled

instance is returned if the string already exists in the pool. A new

string instance is produced and placed in the pool if the string does

not exist. Consider the following scenario:

String s1="Welcome Everyone";
String s2="Welcome Everyone"; //doesn't create
a new instance

Only one object will be generated in the case above. First, JVM will

generate a new object since it cannot locate a string object with the

“Welcome Everyone” value in the constant string pool. After that, it

will search the collection for the string “Welcome Everyone” and

return a reference to the same instance rather than creating a new one.

Why does Java utilize the String literal concept?

To improve Java's memory ef�ciency (because no new objects are

created if it exists already in the constant string pool).

2. By using a new keyword

String s=new String("Welcome Everyone"); //one
reference variable and creates two objects

The literal “Welcome” will be stored in the constant string pool, and

JVM will construct a new string object in regular (non-pool) heap

memory. The variable s will be used to refer to a heap object (non-

pool).

Example of String:

public class StringEx
{
public static void main(String args[])
{
String st1="java program"; //by Java string
literal creating string
char chr[]={'s','t','r','i','n','g'};
String st2=new String(chr);//char array to
string convertion
String st3=new String("eg"); // Java string by
new keyword creating
System.out.println(st1);
System.out.println(st2);
System.out.println(st3);
}}

Output:

java program
string
eg

The code above creates a String object from a char array. The println()

function displays the String objects st1, st2, and st3 on the console.

Methods of the String Class in Java

Many useful methods for performing operations on a series of char values

are available in the java.lang.String class.

No. Method Description

 1 char charAt(int index) For each index, it returns a char value.

 2 int length() It returns the length of a string.

 3 static String format(String format, Object…

args)

It returns a string that has been

formatted.

 4 static String format(Locale l, String format,

Object… args)

It returns a formatted string in the

locale speci�ed.

 5 String substring(int beginIndex) For a speci�ed begin index, it returns

a substring.

 6 String substring(int beginIndex, int

endIndex)

It returns a substring for the speci�ed

begin and end indexes.

 7 boolean contains(CharSequences) After matching the sequence of char

values, it returns true or false.

 8 connect static Strings (CharSequence

delimiter, CharSequence… elements)

It gives you a connected string as a

result.

 9 static String join(CharSequence delimiter,

Iterable<?extends CharSequence>

elements)

It gives you a connected string as a

result.

10 boolean equals(Object another) It compares the string to the provided

object to see whether they are

equal.

11 boolean isEmpty() It determines if the string is empty.

12 String concat(String str) The supplied string is concatenated.

13 String replace(char old, char new) All occurrences of the supplied char

value are replaced.

14 String replace(CharSequence old,

CharSequence new)

All occurrences of the provided

CharSequence are replaced.

15 static String equalsIgnoreCase(String

another)

It makes a comparison with another

string. It does not do a case check.

16 String[] split(String regex) It returns a split string that matches

the regex pattern.

17 String[] split(String regex, int limit) It gives you a split string that matches

the regex and the limit.

No. Method Description

18 String intern() It returns a string that has been

interned.

19 int indexOf(int ch) It returns the index of the speci�ed

char value.

20 int indexOf(int ch, int fromIndex) It starts with the provided index and

returns the speci�ed char value

index.

21 int indexOf(String substring) It returns the substring index that was

given.

22 int indexOf(String substring, int fromIndex) It returns the provided substring index,

beginning at index.

23 String toLowerCase() It returns a lowercase string.

24 String toLowerCase(Locale l) It returns a lowercase string in the

provided locale.

25 String toUpperCase() It returns an uppercase string.

26 String toUpperCase(Locale l) It returns an uppercase string in the

provided locale.

27 String trim() This string's starting and ending

spaces are removed.

28 static String valueOf(int value) It turns any type into a string. It's an

approach that's been overloaded.

IMMUTABLE STRING IN JAVA
When developing any application software, a String is an inevitable type of

variable. Various characteristics such as usernames, passwords, and so on

are stored via string references. String objects are immutable in Java.

Immutable simply means that it cannot be changed or modi�ed.

The data or state of a String object can't be altered once it's been formed;

instead, a new String object is generated.

Let's use the following example to grasp the idea of immutability better:

Example 1:

public class immutablestringTest
{
 public static void main(String args[])
{
 String st="Sunita";

 st.concat(" palkar "); //concat()
 System.out.println(st); //print
 }
}

Output:

Sunita

Example 2:

public class immutablestringTest
{
 public static void main(String args[])
{
 String st=" Sunita ";
 st=st.concat("palkar ");
 System.out.println(st);
 }
}

Output:

Sunita palkar

Why Are String Objects in Java Immutable?

The idea of a string literal is used in Java. Assume there are �ve reference

variables, all of which relate to the same object, “Sunita.” All reference

variables will be impacted if one reference variable alters the value of the

object. As a result, String objects in Java are immutable.

The properties of String that make String objects immutable are listed

below.

1. ClassLoader: A String object is passed as an input to a Java

ClassLoader. Consider that if the String object is changeable, the

value might change, and the class intended to be loaded could change.

The string is immutable to avoid this type of misunderstanding.

2. Thread Security: We don't have to worry about synchronization when

sharing an item across many threads since the String object is

immutable.

3. Security: Immutable String objects, like class loading, avoid

additional problems by loading the right class. As a result, the

application software becomes more secure. Consider banking

software as an example. Because String objects are immutable, no

intruder can change the username or password. This can improve the

security of the application program.

4. Heap Space: String's immutability helps to keep heap memory use to

a minimum. The JVM checks if the value already exists in the String

pool when de�ning a new String object. If it already exists, the new

object is given the same value. This feature helps Java to make

effective use of memory space.

Why Is the String Class in Java Final?

The String class is �nal because no one can override the String class's

methods to give the same functionality to both new and old String objects.

STRING COMPARISON
In Java, we may compare Strings based on their content and references.

It's utilized for things like authentication (by equals() method), sorting

(by compareTo() method), reference matching (by == operator), etc.

In Java, there are three techniques to compare strings:

By using the equals() method

Using the == operator

By using the compareTo() method

1. Using the equals() method: The equals() function of the String class

compares the string's original content. It compares string values for

equality. Two methods are available in the String class:

This string is compared to the provided object using public

boolean equals(Object another).

This string is compared to another string using

equalsIgnoreCase(String another), which ignores the case.

Example:

public class stringcomparisonTest
{
 public static void main(String args[])
{
 String st1="Sunita";
 String st2="Sunita";
 String st3=new String("Sunita");
 String st4="Saurabh";
 System.out.println(st1.equals(st2));
//true
 System.out.println(st1.equals(st3));
//true
 System.out.println(st1.equals(st4));
//false
 }
}

Output:

true
true
false

2. By using == operator: The == operator compares references rather

than values.

Example:

public class stringcomparisonTest
{
 public static void main(String args[])
{
 String st1="Sunita";
 String st2="Sunita";
 String st3=new String("Sunita");
 System.out.println(st1==st2); //true
 System.out.println(st1==st3); //false
 }
}

Output:

true
false

3. Using compareTo() method: The compareTo() function of the String

class compares data lexicographically and returns an integer value

indicating whether the �rst string is smaller, equal to, or larger than

the second string.

Assume that s1 and s2 are two different String objects.

If:

The function returns 0 if s1 == s2

The function delivers a positive result if s1 > s2

The method returns a negative number. s1 < s2

Example:

public class stringcomparisonTest
{
 public static void main(String args[])
{
 String st1="Sunita";

 String st2="Sunita";
 String st3="Rita";
 System.out.println(st1.compareTo(st2));
 System.out.println(st1.compareTo(st3));
 System.out.println(st3.compareTo(st1));
 }
}

Output:

0
1
-1

STRING CONCATENATION
String concatenation in Java creates a new String that combines several

strings. In Java, there are two techniques to concatenate strings:

By + (String concatenation) operator is used to join two strings

together.

By using the concat() function.

1. by (+) String concatenation operator

Example:

public class StringConcatenationTest
{
 public static void main(String args[])
{
 String st="Sunita"+" Palkar";
 System.out.println(st);
 }
}

Output:

Sunita Palkar

The above code is transformed into this by the Java compiler:

String st=(new
StringBuilder()).append("Sunita").append("
Palkar").toString();

The StringBuilder (or StringBuffer) class and its add function are used

to concatenate strings in Java. By adding the second argument to the

end of the �rst operand, the String concatenation operator creates a

new String. Not just Strings but also primitive items may be

concatenated using the String concatenation operator.

Example:

public class StringConcatenationTest
{
 public static void main(String args[])
{
 String st=40+60+"Sunita"+30+20;
 System.out.println(st);
 }
}

Output:

100Sunita3020

2. Concatenation of strings using the concat() method: Concatenates the

supplied text to the end of the current string with the String concat()

function.

Syntax:

public String concat(String_another)

Example:

public class StringConcatenationTest
{
 public static void main(String args[])
{
 String st1="Sunita ";
 String st2="Palkar";
 String st3=st1.concat(st2);
 System.out.println(st3);
 }
}

Output:

Sunita Palkar

There are a few more options for concatenating Strings in Java:

1. Concatenation of strings using the StringBuilder class: The append()

function of the StringBuilder class is used to execute concatenation

operations. Objects, StringBuilder, int, char, CharSequence, boolean,

�oat, and double inputs are all accepted by the add() function. In Java,

StringBuilder is the most common and fastest method of

concatenating strings. Because it is a mutable class, values saved in

StringBuilder instances can be modi�ed or altered.

Example:

public class Strbuild
{
 /* Code */
 public static void main(String args[])
 {
 StringBuilder st1 = new
StringBuilder("Hello");
 StringBuilder st2 = new StringBuilder("
Everyone");
 StringBuilder st = st1.append(st2);

 System.out.println(st.toString());
 //result display
 }
}

Output:

Hello Everyone

2. Concatenation of strings using the format() method: The

String.format() function concatenate multiple strings using format

speci�ers such as % and string values or objects.

Example:

public class Strform
{
 /* Code */
 public static void main(String args[])
 {
 String st1 = new String("Hello");
 String st2 = new String("
Everyone");
 String st =
String.format("%s%s",st1,st2);
 System.out.println(st.toString());

 }
}

Output:

Hello Everyone

3. Concatenation of strings using the String.join() method: The

String.join() function is present in Java version 8 and all versions

higher. String.join() takes two arguments: a separator and an array of

String objects.

Example:

public class StrgJoin
{
 /* Code */
 public static void main(String args[])
 {
 String st1 = new String("Hello");
 String st2 = new String("
Everyone");
 String st = String.join("",st1,st2);
 System.out.println(st.toString());
 // result
 }
}

Output:

Hello Everyone

4. String concatenation with the StringJoiner class: The StringJoiner

class contains all of the String.join() method's functionality. Its

function constructor can optionally receive optional parameters, such

as pre�x and suf�x, in advance.

Example:

public class StringJoin
{

 public static void main(String[] args)
{

 String st = String.join("/", "2021",
"9", "29");
 System.out.println(st);
 }
}

Output:

2021/9/29

5. Using Collectors.joining() method in String concatenation:

Collectors class has a joining() method that concatenates the input

components in the same order in which they appear.

Example:

import java.util.*;
import java.util.stream.Collectors;
public class CollJoin
{
 /* Code */
 public static void main(String args[])
 {
 List<String> liststrg =
Arrays.asList("xyx", "abc", "ghi");
 String st =
liststrg.stream().collect(Collectors.joining(",
")); //performs
 System.out.println(st.toString()); //D
isplays result
 }
}

Output:

xyx, abc, ghi

IN JAVA SUBSTRING
Substring, in other terms, is a subset of another String. The built-in

substring() method of the Java String class extracts a substring from a

speci�ed string using the index values supplied as an argument. StartIndex

is inclusive, and endIndex is exclusive when using the substring()

technique.

One of two techniques can be used to extract a substring from a String

object:

1. public String substring(int startIndex): This function returns a new

String object with the substring of the given string beginning at the

speci�ed startIndex. When the startIndex is greater than the length of

String or less than zero, the procedure raises an

IndexOutOfBoundException.

2. public String substring(int startIndex, int endIndex): This method

returns a new String object with the substring of the provided string

from startIndex to endIndex. When the startIndex is less than zero, the

startIndex is higher than the endIndex, or the endIndex is greater than

the String length, the function raises an IndexOutOfBoundException.

When it comes to String:

startIndex: inclusive.

endIndex: exclusive.

Let's look at the code below to see how startIndex and endIndex work:

String st="hello everyone";
System.out.println(st.substring(1,3));

Example:

public class SubstringTest
{
 public static void main(String args[])
{

String st="SunitaPalkar";
 System.out.println("OriginalString: " +
st);
 System.out.println("Substringstarting from
index 5: " +st.substring(5));
 System.out.println("Substringstarting from
index 0 to 7: "+st.substring(0,7));
 }
}

Output:

OriginalString: SunitaPalkar
Substringstarting from index 5: aPalkar
Substringstarting from index 0 to 7: SunitaP

METHODS OF JAVA STRING CLASS
The java.lang.String class in Java has a variety of built-in methods for

manipulating strings. We may execute String objects using these methods,

such as cutting, concatenating, converting, comparing, and replacing

strings.

Because everything is regarded as a String when you submit any form in

a windowed, web-based, or mobile application, Java String is a powerful

notion.

Let's look at some of the String class's most signi�cant functions:

Methods toUpperCase() and toLowerCase() in Java String

This String is converted to the uppercase letter using the Java String

toUpperCase() method and lowercase letter using the String toLowerCase()

method.

Example:

public class Stringop
{

public static void main(String ar[])
{
String st="Sunita";
System.out.println(st.toUpperCase());
System.out.println(st.toLowerCase());
System.out.println(st);
}
}

Output:

SUNITA
sunita
Sunita

Method to Java String trim():

The trim() function of the String class removes white spaces from both

before and after the String.

Example:

public class Stringop
{
public static void main(String ar[])
{
String st=" Sunita ";
System.out.println(st);
System.out.println(st.trim());
}
}

Output:

 Sunita
Sunita

The Methods startsWith() and endsWith() in Java String

The method startsWith() determines if the String begins with the letters

provided as arguments, while the method endsWith() determines if the

String ends with the letters passed as arguments.

Example:

public class Stringop
{
public static void main(String ar[])
{
String st="Sunita";
 System.out.println(st.startsWith("Su"));

 System.out.println(st.endsWith("a"));
}
}

Output:

true
true

Method to Java String charAt()

The charAt() function of the String class in Java returns a character at the

provided index.

Example:

public class Stringop
{
public static void main(String ar[])
{
String st="Sunita";
System.out.println(st.charAt(0));
System.out.println(st.charAt(3));

}
}

Output:

S
i

Method to Java String length()

The length() function of the String class returns the length of the supplied

String in Java.

Example:

public class Stringop
{
public static void main(String ar[])
{
String st="Sunita";
System.out.println(st.length());
}
}

Output:

6

Method to Java String intern()

The class String keeps a private pool of strings, which is initially empty.

When the intern method is used, the String from the pool is returned if it

already has a String equal to this String object as determined by the

equals(Object) function. Otherwise, a reference to this String object is

returned, which is added to the pool.

Example:

public class Stringop
{
public static void main(String ar[])
{
String st=new String("Sunita");
String st2=st.intern();
System.out.println(st2);
}
}

Output:

Sunita

Method to Java String valueOf()

The function valueOf() of the String class converts any type into String,

including int, long, �oat, double, boolean, char, and char array.

Example:

public class Stringop
{
public static void main(String ar[])
{
int b=20;
String st=String.valueOf(b);
System.out.println(st+20);
}
}

Output:

2020

Method to Java String replace ()

The replace() function of the String class replaces all occurrences of the

�rst sequence of characters with the second sequence of characters.

Example:

public class Stringop
{
public static void main(String ar[])
{
String st1="Java programming language and
Java is a platform.";
String
replaceString=st1.replace("Java","Hello");

System.out.println(replaceString);
}
}

Output:

Hello programming language and Hello is a
platform.

STRINGBUFFER CLASS IN JAVA
The StringBuffer class is used to construct mutable (modi�able) String

objects in Java. In Java, the StringBuffer class is similar to the String class

except that it is changeable, meaning that it may be modi�ed.

StringBuffer Class's Important Constructors

StringBuffer(): It produces an empty string buffer with a size of 16 by

default.

StringBuffer(String str): It creates a string buffer with the string given.

StringBuffer(int capacity): It generates an empty string buffer with a

length equal to the provided capacity.

StringBuffer's Most Important Methods

Modi�er and

Type
Method Description

public

synchronized

StringBuffer

append(String st) It's used to add this string to the supplied string.

Append(char), append(boolean), append(int),

append(�oat), append(double), and so on are all

overloaded versions of the append() function.

public

synchronized

StringBuffer

insert(int offsets,

String st)

Its purpose is to insert the supplied string at the

de�ned location. Insert(int, char), insert(int,

boolean), insert(int, int), insert(int, �oat),

insert(int, double), and so on are all overloaded

versions of the insert() function.

public

synchronized

StringBuffer

replace(int

startindex, int

endindex, String

st)

It's used to replace a string starting at startindex

and ending at endindex.

public

synchronized

StringBuffer

delete(int startindex,

int endindex)

It's used to remove the string from the startindex

and endindex given.

public

synchronized

StringBuffer

reverse() It's used to turn the string around.

public int capacity() It's used to get the current capacity.

public void ensureCapacity(int

mincapacity)

It's used to make sure the capacity is at least as

high as the speci�ed minimum.

public char charAt(int indexs) It's used to get the character back at the given

location.

public int length() It's used to get the string's length or the total

amount of characters.

public String substring(int

beginindex)

It's used to get the substring from the beginindex

value.

public String substring(int

beginindex, int

endindex)

It's used to get the substring from the beginindex

and endindex parameters.

Mutable String

Mutable Strings are strings that can be altered or modi�ed. For generating

mutable strings, the StringBuffer and StringBuilder classes are utilized.

1. Method of StringBuffer Class append(): The append() function joins

this String with the supplied input.

Example:

public class ExampleStringBuffer
{
public static void main(String args[])
{
StringBuffer stb=new StringBuffer("Hello
Everyone ");
stb.append("Javapro"); //original string is
changed now
System.out.println(stb); //print Hello
Javapro
}
}

Output:

Hello Everyone Javapro

2. Method to StringBuffer insert(): The insert() function replaces the

provided String at the speci�ed location with the given String.

Example:

public class ExampleStringBuffer
{
public static void main(String args[])
{
StringBuffer stb=new StringBuffer("Hello
Everyone ");
stb.insert(1,"Javapro"); //original string is
changed now
System.out.println(stb);
}

}

Output:

HJavaproello Everyone

3. Method to StringBuffer replace(): The replace() function replaces the

provided beginIndex and endIndex with the given String.

Example:

Public class ExampleStringBuffer
{
public static void main(String args[])
{
StringBuffer stb=new StringBuffer("Hello
Everyone");
stb.replace(1,3,"Javapro");
System.out.println(stb);
}
}

Output:

HJavaprolo Everyone

4. Method to StringBuffer delete(): The StringBuffer class's delete()

function deletes the String from the provided beginIndex to endIndex.

Example:

public class ExampleStringBuffer
{
public static void main(String args[])
{
StringBuffer stb=new StringBuffer("Hello
Everyone");
stb.delete(1,3);

System.out.println(stb);
}
}

Output:

Hlo Everyone

5. Method to StringBuffer reverse(): The StringBuilder class's reverse()

function reverses the current String.

Example:

public class ExampleStringBuffer
{
public static void main(String args[])
{
StringBuffer stb=new StringBuffer("Hello
Everyone");
stb.reverse();
System.out.println(stb);
}

Output:

enoyrevE olleH

6. Method to StringBuffer capacity():

The StringBuffer class's capacity() function returns the buffer's current

capacity. The buffer's default capacity is 16. If the number of

characters exceeds the existing limit, the capacity increases by

(oldcapacity*2)+2. If your current capacity is 16, for example,

(16*2)+2=34.

Example:

public class ExampleStringBuffer

{
public static void main(String args[])
{
StringBuffer stb=new StringBuffer();
System.out.println(stb.capacity());
stb.append("Hello Everyone");
System.out.println(stb.capacity());
stb.append("java high level language");
System.out.println(stb.capacity());
}
}

Output:

16
16
38

7. Method to StringBuffer ensureCapacity(): The StringBuffer class's

ensureCapacity() function assures that the speci�ed capacity is equal

to or less than the existing capacity. It raises the capacity by

(oldcapacity*2)+2 if larger than the existing capacity if your current

capacity is 16, for example, (16*2)+2=34.

Example:

public class ExampleStringBuffer
{
public static void main(String args[])
{
StringBuffer stb=new StringBuffer();
System.out.println(stb.capacity());
stb.append("Hello Everyone");
System.out.println(stb.capacity());
stb.append("java high level language");
System.out.println(stb.capacity());
stb.ensureCapacity(20);

System.out.println(stb.capacity());
stb.ensureCapacity(40);
System.out.println(stb.capacity());
}
}

Output:

16
16
38
38
78

STRINGBUILDER CLASS IN JAVA
To build mutable (modi�able) Strings, the Java StringBuilder class is

utilized. The StringBuilder class in Java is similar to the StringBuffer class;

however, it is non-synchronized. Since Java Development Kit (JDK) 1.5, it

has been accessible.2

2https://www.geeksforgeeks.org/ stringbuilder-class-in-java-with-examples/ , geeksforgreeks

StringBuilder's Most Important Constructors

Constructor Description

StringBuilder() It generates an empty string Builder with a capacity of 16 by

default.

StringBuilder(String

st)

With the supplied string, it produces a String Builder.

StringBuilder(int len) It generates an empty string Builder with the length provided as

capacity.

StringBuilder's Most Essential Methods

Method Description

public StringBuilder

append(String st)

It's used to add this string to the supplied string. Append(char),

append(boolean), append(int), append(�oat), append(double),

and so on are all overloaded versions of the append() function.

https://www.geeksforgeeks.org/

Method Description

public StringBuilder

insert(int offsets,

String st)

Its purpose is to insert the supplied string at the de�ned location.

Insert(int, char), insert(int, boolean), insert(int, int), insert(int,

�oat), insert(int, double), and so on are all overloaded versions

of the insert() function.

public StringBuilder

replace(int

startindex, int

endindex, String

st)

It's used to replace a string starting at startIndex and ending at

endIndex.

public StringBuilder

delete(int

startindex, int

endindex)

It's used to remove the string from the startIndex and endIndex

given.

public StringBuilder

reverse()

It's used to turn the string around.

public int capacity() It's used to get the current capacity of the system.

public void

ensureCapacity(int

mincapacity)

It's used to make sure the capacity is at least as high as the

speci�ed minimum.

public char

charAt(int Index)

It's used to get the character back at the given location.

public int leng() It's used to get the string's length or the total amount of characters.

public String

substring(int

beginindex)

It's used to get the substring starting at the provided beginindex.

public String

substring(int

beginindex, int

endindex)

It's used to get the substring from the beginindex and endindex

parameters.

Examples of StringBuilders

1. Method StringBuilder append(): The append() function of the

StringBuilder concatenates the provided argument with this String.

Example:

public class ExampleStringBuilder
{
public static void main(String args[])

{
StringBuilder stb=new StringBuilder("Hello
Everyone ");
stb.append("Javapro");
System.out.println(stb);
}
}

Output:

Hello Everyone Javapro

2. Method StringBuilder insert():

The StringBuilder insert() function replaces the provided string at the

speci�ed location with this string.

Example:

public class ExampleStringBuilder
{
public static void main(String args[])
{
StringBuilder stb=new StringBuilder("Hello
Everyone");
stb.insert(1,"Javapro");
System.out.println(stb);
}
}

Output:

HJavaproello Everyone

3. Method StringBuilder replace(): The replace() function of the

StringBuilder replaces the provided string with the de�ned beginIndex

and endIndex.

Example:

public class ExampleStringBuilder
{
public static void main(String args[])
{
StringBuilder stb=new StringBuilder("Hello
Everyone");
stb.replace(1,3,"Javapro");
System.out.println(stb);
}
}

Output:

HJavaprolo Everyone

4. Method to StringBuilder delete(): The StringBuilder class's delete()

function removes the string from the provided beginIndex to

endIndex.

Example:

public class ExampleStringBuilder
{
public static void main(String args[])
{
StringBuilder stb=new StringBuilder("Hello
Everyone");
stb.delete(1,3);
System.out.println(stb);
}
}

Output:

Hlo Everyone

5. Method to StringBuilder reverse(): The StringBuilder class's reverse()

function reverses the current string.

Example:

public class ExampleStringBuilder
{
public static void main(String args[])
{
StringBuilder stb=new StringBuilder("Hello
Everyone");
stb.reverse();
System.out.println(stb);
}
}

Output:

enoyrevE olleH

6. Method to StringBuilder capacity(): The capacity() function of the

StringBuilder class returns the Builder's current ability. The Builder's

default capacity is 16. If the number of characters exceeds the existing

limit, the capacity increases by (oldcapacity*2)+2. If your current

capacity is 16, for example, (16*2)+2=34.

Example:

public class ExampleStringBuilder
{
public static void main(String args[])
{
StringBuilder stb=new StringBuilder();
System.out.println(stb.capacity());
stb.append("Hello Everyone");
System.out.println(stb.capacity());

stb.append("Java high programming
language");
System.out.println(stb.capacity());
}
}

Output:

16
16
44

7. Method to StringBuilder ensureCapacity():

The StringBuilder class's ensureCapacity() function guarantees that

the supplied capacity is equal to or less than the existing capacity. It

raises the capacity by (oldcapacity*2)+2 if larger than the existing

capacity if your current capacity is 16, for example, (16*2)+2=34.

Example:

public class ExampleStringBuilder
{
public static void main(String args[])
{
StringBuilder stb=new StringBuilder();
System.out.println(stb.capacity());
stb.append("Hello Everyone");
System.out.println(stb.capacity());
stb.append("Java high programming
language");
System.out.println(stb.capacity());
stb.ensureCapacity(20);
System.out.println(stb.capacity());
stb.ensureCapacity(60);
System.out.println(stb.capacity());
}

}

Output:

16
16
44
44
90

DIFFERENCE BETWEEN STRINGBUFFER AND
STRING
String and StringBuffer are two different types of strings.

The distinctions between String and StringBuffer are many. The

following is a list of the differences between String and StringBuffer:

Sr

No.
String StringBuffer

(1) Immutability is a property of the String class. StringBuffer is a changeable

class.

(2) When we concatenate too many strings, it takes longer

and uses more memory since it produces a new

instance each time.

When concatenating t

strings, StringBuffer is

faster and uses less

memory.

(3) The String class overrides the Object class's equals()

method. As a result, the equals() function may be

used to compare the contents of two strings.

The StringBuffer class does

not override the Object

class's equals() method.

(4) When executing a concatenation operation, the String

class is slower.

When performing

concatenation operations,

the StringBuffer class is

quicker.

(5) The String class is used. The pool of string constants. StringBuffer uses heap

memory.

String and StringBuffer Performance Tests

Example:

public class TestConcat
{
 public static String
concatWithString()
{
 String st = "Javapro";
 for (int c=0; c<10000; c++)
{
 st = st + "Tpoint";
 }
 return st;
 }
 public static String
concatWithStringBuffer()
{
 StringBuffer stb = new
StringBuffer("Javapro");
 for (int c=0; c<10000; c++){
 stb.append("Tpoint");
 }
 return stb.toString();
 }
 public static void main(String[] args)
{
 long starttime =
System.currentTimeMillis();
 concatWithString();
 System.out.println("Concating with
String takes time: "+
(System.currentTimeMillis()-
starttime)+"mts");
 starttime =
System.currentTimeMillis();
 concatWithStringBuffer();
 System.out.println("Concating using
StringBuffer takes time: "+

(System.currentTimeMillis()-
starttime)+"mts");
 }
}

Output:

Concating with String takes time: 192mts
Concating using StringBuffer takes time:
2mts

HashCode Test for Strings and StringBuffers

As shown in the example below, when String does concatenation, it returns

a new hashcode, whereas the StringBuffer class returns the same hashcode.

Example:

public class TestInstance
{
 public static void main(String args[])
{
 System.out.println("Test of Hashcode
String:");
 String sr="java";
 System.out.println(sr.hashCode());
 sr=sr+"tpoint";
 System.out.println(sr.hashCode());

 System.out.println("StringBuffer
Hashcode test:");
 StringBuffer stb=new
StringBuffer("javapro");
 System.out.println(stb.hashCode());

 stb.append("tpoint");

 System.out.println(stb.hashCode());

 }
}

Output:

Test of Hashcode String:
3254818
229541438
StringBuffer Hashcode test:
88579647
885796475

Difference between StringBuilder and StringBuffer?

To express a series of characters, Java provides three classes: String,

StringBuffer, and StringBuilder. The string is an immutable class, whereas

StringBuffer and StringBuilder are changeable classes. There are several

distinctions between StringBuffer and StringBuilder. Since JDK 1.5, there

has been a StringBuilder class.

The following are the distinctions between StringBuffer and

StringBuilder:

No. StringBuffer StringBuilder

1. StringBuffer is thread-safe since it is

synchronized. It indicates that two

threads cannot call StringBuffer

methods at the same time.

StringBuilder is non-synchronized, which

means it is not thread-safe. It indicates

that two threads can call StringBuilder

methods at the same time.

2. StringBuffer is inef�cient in

comparison to StringBuilder.

StringBuilder outperforms StringBuffer in

terms of ef�ciency.

3. StringBuffer �rst appeared in Java 1.0. StringBuilder �rst appeared in Java 1.5.

Example of StringBuffer

public class TestBuffer
{
 public static void main(String[] args)

{
 StringBuffer buf=new StringBuffer("hello
everyone");
 buf.append("javapro");
 System.out.println(buf);
 }
}

Output:

hello everyonejavapro

Example of StringBuilder

public class TestBuilder
{
 public static void main(String[] args)
{
 StringBuilder build=new
StringBuilder("hello everyone");
 build.append("javapro");
 System.out.println(build);
 }
}

Output:

hello everyonejavapro

HOW CAN WE MAKE AN IMMUTABLE CLASS?
String, Boolean, Byte, Short, Integer, Long, Float, Double, and other

immutable classes exist. In summary, all wrapper classes, including the

String class, are immutable. We may also construct immutable classes by

de�ning �nal classes with �nal data members, as seen in the example

below:

Example:

final class Emp
{
final String pancardnumb;
public Emp(String pancardnumb)
{
this. pancardnumb = pancardnumb;
}
public String getPancardNumber()
{
return pancardnumb;
}
}
public class Immutabledemo
{
public static void main(String ar[])
{
Emp ep = new Emp("CDE1231");
String st1 = ep.getPancardNumber();
System.out.println("Pancard number: " +
st1);
}
}

Output:

Pancard number: CDE1231

The above-mentioned class is immutable because:

The class' instance variable is �nal, so we cannot alter its value after

creating an object.

Because the class is �nal, we cannot build a subclass.

There are no setter methods; therefore, we can't alter the value of the

instance variable.

The Function toString() Method in Java

The function toString() function is available if we wish to express any

object as a string.

The function toString() returns the object's string representation.

The Java compiler calls the function toString() method on the object

internally when we print an object. Overriding the function toString()

returns the desired output, which can be the state of an object or anything

else depending on our implementation.

Benefit

We can return values from the object by overriding the function toString()

function of the Object class, so we don't need to write any code.

Understanding the situation in the absence of the function toString()

function:

public class students
{
 int roll_no;
 String names;
 String city;

students(int roll_no, String names, String city)
{
 this.roll_no=roll_no;
 this.names=names;
 this.city=city;
 }

 public static void main(String args[]){
 students st1=new
students(11,"Rajiv","london");

 students st2=new
students(12,"Vicky","delhi");

 System.out.println(st1);
 System.out.println(st2);
 }
}

Output:

students@7960847b
students@6a6824be

Printing st1 and st2 output the hashcode values of the objects, as seen in the

preceding example, but we want to publish the values of these objects.

Because the Java compiler invokes the function toString() method

internally, overriding this method returns the supplied values. Let's look at

an example to help us understand:

Java function toString() method example:

public class students
{
 int roll_no;
String names;
 String city;

 students(int roll_no, String names, String city)
{
 this.roll_no=roll_no;
 this.names=names;
 this.city=city;
 }

 public String toString()
{

 return roll_no+" "+names+" "+city;
 }
 public static void main(String args[])
{
 students st1=new students
(11,"Rajiv","ludhiana");
 students st2=new students
(12,"Vicky","noida");

 System.out.println(st1);
 System.out.println(st2);
 }
}

Output:

11 Rajiv ludhiana
12 Vicky Noida

In the above example, the Java compiler uses the internal function toString()

method; overriding this method returns the given values of the student

class's st1 and st2 objects.

Java StringTokenizer

The java.util.StringTokenizer class allows you to tokenize a String. It is a

straightforward method for breaking a String. It is a Java legacy class.3

It does not support differentiating between integers, quoted strings,

identi�ers, and so on, like the StreamTokenizer class, does. In Chapter 3, we

will go through the StreamTokenizer class.

The delimiters in the StringTokenizer class can be given at the time of

creation or one by one to the tokens.

Long Description

StringTokenizer Constructors

The StringTokenizer class de�nes three constructors.

Constructor Description

StringTokenizer(String

st)

It generates a StringTokenizer from the supplied string.

StringTokenizer(String

st, String deli)

StringTokenizer is created using the supplied string and

delimiter.

StringTokenizer(String

st, String deli, boolean

returnVal)

StringTokenizer is created using the provided string, delimiter,

and returnValue. If the return value is true, delimiter

characters are treated as tokens. If true, delimiter characters

are used to separate tokens.

3https://techvidvan.com/ tutorials/ java-stringtokenizer/ , TechVidvaan

StringTokenizer Class Methods

The StringTokenizer class has six helpful methods, which are as follows:

https://techvidvan.com/

Long Description

Example:

import java.util.StringTokenizer;
public class simplestng
{
 public static void main(String args[])
{
 StringTokenizer str = new
StringTokenizer("Java programs "," ");
 while (str.hasMoreTokens())
{

System.out.println(str.nextToken());
 }
 }
}

Output:

Java

programs

Example of nextToken method:

import java.util.*;

public class testing
{
 public static void main(String[] args)
{
 StringTokenizer str = new
StringTokenizer("Java pro is important");

 // next token printing
 System.out.println("Next token: " +
str.nextToken(","));
 }
}

Output:

Next token: Java pro is important

In this chapter, we studied the Introduction to Strings in Java and the many

types of strings and methods available in Java. Concatenation is a string and

comparison. Furthermore, we discussed the distinctions between string and

string buffer, as well as stringbuffer and stringbuilder.

C H A P T E R 5

Collections, Lists, and Java's

Built-in APIs

DOI: 10.1201/ 9781003229063-5

IN THIS CHAPTER

➢ Arrays

➢ Sets

➢ Lists

➢ Maps

➢ Iterating with Collections

In the previous chapter, we discovered the basics of Java Strings, including

string types and methods. Furthermore, Concatenation is a string and a

comparison. It also explains the distinctions between string and string

buffer, as well as stringbuffer and stringbuilder.

This chapter will talk about arrays, sets, lists, and maps in Java and

iterating with the collection.

https://doi.org/10.1201/9781003229063-5

WHAT ARE JAVA ARRAYS?
An array is often a collection of comparable types of items with contiguous

memory locations.

An array in Java is an object that includes items of the same data type.

Furthermore, array items are kept in a continuous memory region. It is a

data structure in which related components are stored. A Java array can only

hold a �xed number of items.1

In Java, arrays are index-based; the �rst member of the array is kept at

the 0th index, the second element at the 1st index, etc.

In Java, an array is a dynamically created class object. The Object class is

inherited by the Java array, which implements the Serializable and

Cloneable interfaces. In Java, we may store primitive values or objects in an

array. In Java, we can build single-dimensional or multidimensional arrays

in the same way we do in C/C++.

Furthermore, Java has the characteristic of unnamed arrays, which C/C+

does not have.

Advantages

Code Optimization: It optimizes the code so that we can obtain or sort

the dta more ef�ciently.

Random Access: We can obtain any data that is situated at an index

point using random access.

1https://www.dummies.com/ programming/ java/ what-are-java-arrays/ , dummies.

Disadvantages

Size Restriction: We can only store elements of a �xed size in the array.

It does not expand in size during running. In Java, a collection

framework that grows automatically is utilized to overcome this

problem.

Array Types in Java

There are two types of arrays:

https://www.dummies.com/

1. Multidimensional Array

2. Single Dimensional Array

Java Single Dimensional Array

Syntax:

dataType arr[];

In Java, you may create an array by instantiating it.

arrayRefVari=new datatype[size];

Example:

public class arrayTest
{
public static void main(String args[])
{
int b[]=new int[5];
b[0]=20;
b[1]=40;
b[2]=50;
b[3]=70;
b[4]=10;
// array traversing
for(int c=0;c<b.length;c++)
System.out.println(b[c]);
}
}

Output:

20
40
50
70

10

Java Array Declaration, Instantiation, and Initialization

We may declare, instantiate, and initialize a Java array by doing the

following:

Syntax:

int b[]={43,5,41,52}; //declaration,
instantiation and initialization

Example:

public class arrayTest
{
public static void main(String args[])
{
int b[]={43,5,41,52}; //declaration,
instantiation and initialization
// array printing
for(int c=0;c<b.length;c++)//length is the
property of array
System.out.println(b[c]);
}
}

Output:

43
5
41
52

Java Array for Each Loop

We can use a for each loop to display the Java array. The array elements are

printed one by one using Java for each loop. It stores an array element in a

variable before executing the loop's body.

Syntax:

for(datatype variable_array)
{
//body
}

Example:

public class arrayTest
{
public static void main(String args[])
{
int arr[]={43,5,41,52};
//printing
for(int c:arr)
System.out.println(c);
}
}

Output:

43
5
41
52

Passing an Array to a Method

We may provide a java array to a method to reuse the same logic on any

array.

Let's look at a basic example of utilizing a method to retrieve the smallest

integer in an array.

Example:

public class arrayTest
{
//creating method
static void min(int arr[])
{
int mini=arr[0];
for(int c=1;c<arr.length;c++)
 if(mini>arr[c])
 mini=arr[c];

System.out.println(mini);
}
public static void main(String args[])
{
int b[]={43,5,41,52};// array declaring and
initializing
min(b);
}
}

Output:

5

In Java, an anonymous array is de�ned as follows:

Because Java provides the anonymous array feature, you don't need to

declare the array when giving it a function.

Example:

public class AnonymousArrayTest
{
// which receives an array as a parameter
creating that method
static void printArray(int arra[])
{

for(int c=0;c<arra.length;c++)
System.out.println(arra[c]);
}

public static void main(String args[])
{
printArray(new int[]{12,20,54,67});
//passing anonymous array
}
}

Output:

12
20
54
67

Method Returning an Array

In Java, we may also return an array from the method.

Example:

public class ReturnArrayTest
{
// which receives an array as a parameter
creating that method
static int[] get()
{
return new int[]{20,40,80,10,30};
}
public static void main(String args[])
{
int arra[]=get();
//printing
for(int c=0;c<arra.length;c++)

System.out.println(arra[c]);
}
}

Output:

20
40
80
10
30

ArrayIndexOutOfBoundsException

The JVM (Java Virtual Machine) throws an

ArrayIndexOutOfBoundsException if the length of the array is negative,

larger than, or equivalent to the array size when traversing the array

Example:

public class ArrayExceptionTest
{
public static void main(String args[])
{
int arra[]={55,40,80,90};
for(int c=0;c<=arra.length;c++)
{
System.out.println(arra[c]);
}
}
}

Output:

55
40
80

90

Exception in thread “main” java.lang.ArrayIndexOutOf BoundsException:

Index 4 out of bounds for length 4

at
ArrayExceptionTest.main(ArrayExceptionTest.java:8)

Java Multidimensional Array

In this scenario, data is kept in a row and column index.

Syntax:

dataType []arrayRefVar[];

In Java, here's an example of how to create a Multidimensional Array:

int[][] arra=new int[4][4];//4 row and 4 column

In Java, an example of how to initialize a Multidimensional Array:

arr[0][0]=2;
arr[0][1]=3;
arr[0][2]=4;
arr[1][0]=6;
arr[1][1]=7;
arr[1][2]=3;
arr[2][0]=8;
arr[2][1]=9;
arr[2][2]=3;

Example:

public class arrayTest
{
public static void main(String args[])
{

//2D array declaring and initializing
int arra[][]={{10,21,23},{12,42,51},
{4,44,65}};
//printing
for(int c=0;c<3;c++)
{
for(int d=0;d<3;d++){
 System.out.print(arra[c][d]+" ");
 }
 System.out.println();
}
}
}

Output:

10 21 23
12 42 51
 4 44 65

Java's Jagged Array

A jagged array has an odd number of columns in a 2D array. In other words,

it is a collection of arrays with varying numbers of columns.

Example:

public class JaggedArrayTest
{
 public static void main(String[] args)
{
 // with odd columns declaring 2D
array
 int arra[][] = new int[3][];
 arra[0] = new int[3];
 arra[1] = new int[4];
 arra[2] = new int[2];

 //jagged array initializing
 int counts = 0;
 for (int c=0; c<arra.length; c++)
 for(int d=0; d<arra[c].length;
d++)
 arra[c][d] = counts++;

 //printing
 for (int c=0; c<arra.length; c++)
{
 for (int d=0; d<arra[c].length;
d++)
{
 System.out.print(arra[c]
[d]+" ");
 }
 System.out.println();
 }
 }
}

Output:

0 1 2
3 4 5 6
7 8

What Is the Name of the Java Array Class?

An array is a kind of object in Java. A proxy class is generated for array

objects whose name may be retrieved by calling the getClass().getName()

method on the object.

Example:

public class arrayTest
{

public static void main(String args[])
{
//array declaration and initialization
int arra[]={41,34,25};
//getting the class name
Class cs=arra.getClass();
String names=cs.getName();
//printing
System.out.println(names);
}
}

Output:

[I

Creating a Java Array Copy

Using the arraycopy() function of the System class, we may copy one array

to another.

Syntax:

public static void arraycopy
(
Object src, int srcPos,Object dest, int
destPos, int length
)

Example:

public class ArrayCopyDemoTest
{
 public static void main(String[] args)
{
 // source array declaring

 char[] copyFrom = { 'e', 'd', 'c',
'a', 'f', 'f', 'e',
 'i', 'n', 'b', 'c', 'a', 't'
};
 // destination array declaring
 char[] copyTo = new char[7];
 //copying array
 System.arraycopy(copyFrom, 2,
copyTo, 0, 7);
 //printing
 System.out.println(String.valueOf(co
pyTo));
 }
}

Output:

caffeine

In Java, Clone an Array

We can build a clone of the Java array since it implements the Cloneable

interface. When we clone a single-dimensional array, we get a deep

duplicate of the Java array. That is, it will duplicate the actual value.

However, cloning a multidimensional array makes a shallow duplicate of

the Java array, implying it replicates the references.

Example:

public class arrayTest
{
public static void main(String args[])
{
int arra[]={23,33,41,59};
System.out.println("Printing array
original:");
for(int c:arra)

System.out.println(c);

System.out.println("Printing clone array:");
int carra[]=arra.clone();
for(int c:carra)
System.out.println(c);

System.out.println("Are both equal??");
System.out.println(arra==carra);

}
}

Output:

 Printing array original:
23
33
41
59
Printing clone array:
23
33
41
59
Are both equal??
false

In Java, Add Two Matrices

Example:

public class arrayTest
{
public static void main(String args[])
{

// two matrices creating
int x[][]={{10,35,42},{13,34,55}};
int y[][]={{11,32,49},{23,74,65}};
//to store the sum of two matrices creating
another matrix
int a[][]=new int[2][3];
//adding and printing addition of 2 matrices
for(int c=0;c<2;c++){
for(int d=0;d<3;d++){
a[c][d]=x[c][d]+y[c][d];
System.out.print(a[c][d]+" ");
}
System.out.println();//new line
}
}
}

Output:

21 67 91
36 108 120

In Java, Multiply Two Matrices

Matrix multiplication involves multiplying a one-row element of the �rst

matrix by all the columns of the second matrix.

Example:

public class ExampleMatrixMultiplication
{
public static void main(String args[])
{
// two matrices creating
int x[][]={{11,11,11},{22,22,22},
{33,33,33}};

int y[][]={{11,11,11},{22,22,22},
{33,33,33}};

//creating another matrix
int a[][]=new int[3][3]; //3 rows 3 columns

//multiplying
for(int c=0;c<3;c++)
{
for(int d=0;d<3;d++)
{
a[c][d]=0;
for(int e=0;e<3;e++)
{
a[c][d]+=x[c][e]*y[e][d];
}//end of e loop
System.out.print(a[c][d]+" "); //printing
}//end j loop
System.out.println(); //new line
}
}}

Output:

726 726 726
1452 1452 1452
2178 2178 2178

JAVA SETS
The set interface is included in java.util package. The set interface is an

extension of the Collection interface. A collection interface is an unordered

collection or list in which duplicates are not permitted. To build the

mathematical set, the set interface is utilized. To avoid the insertion of the

identical components, the set interface takes advantage of the collection

interface's methods. The interfaces SortedSet and NavigableSet enhance the

set implementation.

Example:

import java.util.*;
public class Exampleset
{
 public static void main(String[] args)
 {
 // using the Set creating
LinkedHashSet
 Set<String> datas = new
LinkedHashSet<String>();
 datas.add("JavaPro");
 datas.add("Set");
 datas.add("Example");
 datas.add("Check");
 System.out.println(datas);
 }
}

Output:

[JavaPro, Set, Example, Check]

The Set Interface's Operations

We can do all basic mathematical operations on the Set, such as

intersection, union, and difference.

Consider the following two sets: set1 = [77, 45, 33, 22, 66, 55, 34] and

set2 = [83, 33, 2, 55, 45, 3, 12]. On the Set, we may execute the following

operation:

Intersection: The intersection operation returns all elements that

lappear in both sets. Set1 and set2 will cross at [33, 45, 55].

Union: The union operation returns all of the elements of sets 1 and 2

in a single set, which might be set1 or set2. The sum of setsl1 and 2 is

[2, 3, 12, 22, 33, 34, 45, 55, 66, 77, 83].

Difference: The difference operation removes from the set any values

that are also present in another set. The difference between sets 1 and 2

is [66, 34, 22, 77].

In set, the union is performed using the addAll() method, the intersection is

performed using the retainAll() method, and the difference is performed

using the removeAll() method: an example to see how these techniques

execute intersection, union, and difference operations.

Example:

import java.util.*;
public class OperationSet
{
 public static void main(String args[])
 {
 Integer[] X = {33, 55,38, 86, 22,
33, 72};
 Integer[] Y = {55, 24, 83, 51, 63,
12, 33};
 Set<Integer> sets1 = new
HashSet<Integer>();
 sets1.addAll(Arrays.asList(X));
 Set<Integer> sets2 = new
HashSet<Integer>();
 sets2.addAll(Arrays.asList(Y));
 // Union of set1 and set2 Finding
 Set<Integer> union_datas = new
HashSet<Integer>(sets1);
 union_datas.addAll(sets2);
 System.out.print("Union is:");
 System.out.println(union_datas);

 // Intersection of set1 and set2
Finding
 Set<Integer> intersection_datas =
new HashSet<Integer>(sets1);
 intersection_datas.retainAll(sets2);
 System.out.print("Intersection
is:");
 System.out.println(intersection_data
s);
 // Difference of set1 and
set2 Finding
 Set<Integer> difference_datas = new
HashSet<Integer>(sets1);
 difference_datas.removeAll(sets2);
 System.out.print("Difference is:");
 System.out.println(difference_datas)
;
 }
}

Output:

Union is: [33, 83, 51, 38, 86, 22, 55, 72,
24, 12, 63]
Difference is: [38, 86, 22, 72]
Intersection is: [33, 55]

In the above code, we �rst construct two arrays of type integer, X and Y.

Following that, we build two sets of type integer, sets1, and sets2. We

convert both arrays to lists and add the items of array A to sets1 and the

elements of array B to sets2.

We build a new set of union data with the same element as sets1 to

execute the union. The sets2 is then passed as an input to the addAll()

function of the set. This function will add all missing pieces to the union

data and return the union of the two sets.

We build a new set of intersection data with the same element as set1 to

execute the intersection. The sets2 is then passed as an input to the

retainAll() function of the set. This function will get all intersection_datas

items present in set2 and save them in the intersection data. The

intersection_datas now contains the intersection value of both sets.

We make a new set difference_datas with the same element as set1 to

conduct the difference. The sets2 is then sent as an input to the removeAll()

function of the set.

Methods of Set

In the set interface, there are various methods that we may utilize to execute

a particular operation on our sets. These techniques are as follows:2

1. add(): The add() function adds a new value to the collection.

Depending on the existence of the insertion element, the method

returns true or false. If the element exists already in the set, it returns

false; otherwise, it returns true.

Syntax:

boolean add(type_element)

2https://www.javatpoint.com/ set-in-java, javaTpoint

Example:

import java.io.*;
import java.util.*;
public class Methodadd
{
 public static void main(String args[])
 {
 Set<Integer> datas = new
LinkedHashSet<Integer>();
 datas.add(33);
 datas.add(25);
 datas.add(47);

https://www.javatpoint.com/

 datas.add(11);
 datas.add(63);
 datas.add(58);
 System.out.println("data: " + datas);
 }
}

Output:

data: [33, 25, 47, 11, 63, 58]

2. addAll(): The addAll() function appends to the set all the elements of

the given collection.

Syntax:

boolean addAll(Collection_data)

Example:

import java.io.*;
import java.util.*;
public class MethodaddAll
{
 public static void main(String args[])
 {
 Set<Integer> datas = new
LinkedHashSet<Integer>();
 datas.add(31);
 datas.add(21);
 datas.add(41);
 System.out.println("Set: " + datas);
 ArrayList<Integer> newData = new
ArrayList<Integer>();
 newData.add(99);
 newData.add(17);
 newData.add(89);

 datas.addAll(newData);
 System.out.println("Set: " + datas);
 }
}

Output:

Set: [31, 21, 41]
Set: [31, 21, 41, 99, 17, 89]

3. clear(): The method discards all of the elements in the set. It does not

remove the set's reference. It just deletes the set's items.

Syntax:

void clear()

Example:

import java.io.*;
import java.util.*;
public class Methodclear
{
 public static void main(String args[])
 {
 Set<Integer> datas = new
LinkedHashSet<Integer>();
 datas.add(34);
 datas.add(22);
 datas.add(40);
 System.out.println("Set: " + datas);
 datas.clear();
 System.out.println("The final set: " +
datas);
 }
}

Output:

Set: [34, 22, 40]
The final set: []

4. contains(): The contains() function determines the existence of an

element in a set. Its return value is either true or false, depending on

whether the component is present.

Syntax:

boolean contains(Object_element)

Example:

import java.io.*;
import java.util.*;
public class Methodcontains
{
 public static void main(String args[])
 {
 Set<Integer> datas = new
LinkedHashSet<Integer>();
 datas.add(38);
 datas.add(29);
 datas.add(34);
 datas.add(57);
 datas.add(19);
 datas.add(82);
 System.out.println("Set: " + datas);
 System.out.println("Does the Set
contains 93?" + datas.contains(93));
 System.out.println("Does the Set
contains javaTpoint? " + datas.contains("44"));
 System.out.println("Does the Set
contains 15? " + datas.contains(15));
 }

}

Output:

Set: [38, 29, 34, 57, 19, 82]
Does the Set contains 93?false
Does the Set contains javaTpoint? false
Does the Set contains 15? false

5. containsAll(): The technique is used to determine whether or not all of

the collection components are present in the existing set. It returns

true if all of the collection's items are present and false if one of the

elements is missing from the current set.

Syntax:

public boolean containsAll(Collection_data)

Example:

import java.io.*;
import java.util.*;
public class MethodcontainsAll
{
 public static void main(String args[])
 {
 Set<Integer> datas = new
LinkedHashSet<Integer>();
 datas.add(31);
 datas.add(21);
 datas.add(41);
 datas.add(51);
 datas.add(11);
 datas.add(81);
 System.out.println("data: " + datas);
 Set<Integer> newData = new
LinkedHashSet<Integer>();

 newData.add(37);
 newData.add(29);
 newData.add(42);
 System.out.println("\nDoes data contains
newdata?: "+ datas.containsAll(newData));

 }
}

Output:

data: [31, 21, 41, 51, 11, 81]
Does data contains newdata?: false

6. hashCode(): The method returns the hash code value for the set's

current instance. It returns an integer hash code value.

Syntax:

public int hashCode()

Example:

import java.io.*;
import java.util.*;
class MethodhashCode
{
 public static void main(String args[])
 {
 Set<Integer> datas = new
LinkedHashSet<Integer>();
 datas.add(31);
 datas.add(21);
 datas.add(41);
 datas.add(51);
 datas.add(11);
 datas.add(81);

 System.out.println("data: " + datas);
 System.out.println("\nHash code value
of set:"+ datas.hashCode());
 }
}

Output:

data: [31, 21, 41, 51, 11, 81]
Hash code value of set: 236

7. isEmpty():

isEmpty() function is used to determine whether the set is empty. If

the set is empty, it returns true; otherwise, it returns false.

Syntax:

boolean isEmpty()

Example:

import java.io.*;
import java.util.*;
public class MethodisEmpty
{
 public static void main(String args[])
 {
 Set<Integer> datas = new
LinkedHashSet<Integer>();
 datas.add(31);
 datas.add(21);
 datas.add(41);
 datas.add(51);
 datas.add(11);
 datas.add(81);
 System.out.println("data: " + datas);

 System.out.println("\nIs Data empty: "+
datas.isEmpty());
 }
}

Output:

data: [31, 21, 41, 51, 11, 81]
Is Data empty: false

8. iterator(): The iterator() function is used to locate the set's iterator. The

iterator is used to get the elements one at a time.

Syntax:

Iterator iterate_value = set1.iterator();

Example:

import java.io.*;
import java.util.*;
public class Methoditerator
{
 public static void main(String args[])
 {
 Set<Integer> datas = new
LinkedHashSet<Integer>();
 datas.add(38);
 datas.add(12);
 datas.add(48);
 datas.add(55);
 datas.add(31);
 datas.add(89);
 System.out.println("data: " + datas);

 Iterator new_Data = datas.iterator();

 System.out.println("The NewData values:
");
 while (new_Data.hasNext()) {
 System.out.println(new_Data.next())
;
 }
 }
}

Output:

data: [38, 12, 48, 55, 31, 89]
The NewData values:
38
12
48
55
31
89

9. remove(): The technique is used to delete an element from the Set.

The element's availability determines its return value. If the

component is available in the set, it returns true; otherwise, it returns

false.

Syntax:

boolean remove(Object O)

Example:

import java.io.*;
import java.util.*;
public class Methodremove
{
 public static void main(String args[])
 {

 Set<Integer> datas = new
LinkedHashSet<Integer>();
 datas.add(38);
 datas.add(23);
 datas.add(49);
 datas.add(53);
 datas.add(21);
 datas.add(89);
 System.out.println("data: " + datas);

 datas.remove(89);
 datas.remove(21);
 datas.remove(38);
 System.out.println("data after removing
elements: " + datas);
 }
}

Output:

data: [38, 23, 49, 53, 21, 89]
data after removing elements: [23, 49, 53]

10. removeAll(): The method removes all of the existing set's elements

from the provided collection.

Syntax:

public boolean removeAll(Collection_data)

Example:

import java.io.*;
import java.util.*;
public class MethodremoveAll
{
 public static void main(String args[])

 {
 Set<Integer> datas = new
LinkedHashSet<Integer>();
 datas.add(31);
 datas.add(21);
 datas.add(41);
 datas.add(91);
 datas.add(71);
 datas.add(81);
 System.out.println("data: " + datas);

 ArrayList<Integer> newDatas = new
ArrayList<Integer>();
 newDatas.add(99);
 newDatas.add(72);
 newDatas.add(83);
 System.out.println("NewData: " +
newDatas);
 datas.removeAll(newDatas);
 System.out.println("after removing
Newdata element : " + datas);
 }
}

Output:

data: [31, 21, 41, 91, 71, 81]
NewData: [99, 72, 83]
after removing Newdata element: [31, 21, 41,
91, 71, 81]

11. retainAll(): The method keeps all elements from the provided set in

the supplied collection.

Syntax:

public boolean retainAll(Collection_data)

Example:

import java.io.*;
import java.util.*;
public class MethodretainAll
{
 public static void main(String args[])
 {
 Set<Integer> datas = new
LinkedHashSet<Integer>();
 datas.add(31);
 datas.add(21);
 datas.add(41);
 datas.add(91);
 datas.add(71);
 datas.add(81);
 System.out.println("data: " + datas);

 ArrayList<Integer> newDatas = new
ArrayList<Integer>();
 newDatas.add(91);
 newDatas.add(71);
 newDatas.add(81);
 System.out.println("newData is: " +
newDatas);

 datas.retainAll(newDatas);
 System.out.println("data after
retaining newdatas elements : " + datas);
 }
}

Output:

data: [31, 21, 41, 91, 71, 81]
newData is: [91, 71, 81]

data after retaining newdatas elements: [91,
71, 81]

12. size(): The method returns the set's size.

Syntax:

int size()

Example:

import java.io.*;
import java.util.*;
public class Methodsize
{
 public static void main(String args[])
 {
 Set<Integer> datas = new
LinkedHashSet<Integer>();
 datas.add(31);
 datas.add(29);
 datas.add(40);
 datas.add(92);
 datas.add(72);
 datas.add(83);
 System.out.println("data is: " +
datas);

 System.out.println("size is : " +
datas.size());
 }
}

Output:

data is: [31, 29, 40, 92, 72, 83]
size is: 6

13. removeAll(): The technique is used to generate an array that contains

the same elements as the set.

Syntax:

Object[] toArray()

Example:

import java.io.*;
import java.util.*;
public class MethodtoArray
{
 public static void main(String args[])
 {
 Set<Integer> datas = new
LinkedHashSet<Integer>();
 datas.add(31);
 datas.add(21);
 datas.add(41);
 datas.add(91);
 datas.add(71);
 datas.add(81);
 System.out.println("data is: " +
datas);
 Object[] array_datas = datas.toArray();
 System.out.println("Array:");
 for (int c = 0; c < array_datas.length;
c++)
 System.out.println(array_datas[c]);
 }
}

Output:

data is: [31, 21, 41, 91, 71, 81]
Array:

31
21
41
91
71
81

LIST IN JAVA
In Java, a list allows you to keep an ordered collection. It includes index-

based techniques for inserting, updating, deleting, and searching items. It

may also include redundant components. The null entries can also be stored

in the list.

The Collection interface is inherited by the List interface, which is

available in java.util package. It is a ListIterator interface factory. We can

iterate the list in both forward and backward directions using the

ListIterator. The List interface's implementation classes include ArrayList,

LinkedList, Stack, and Vector. In Java programming, the ArrayList and

LinkedList are extensively utilized. Since Java 5, the Vector class has been

deprecated.

Syntax:

public interface List<E> extends
Collection<E>

List Methods in Java

Method Description

void add(int index, E element) It is used to insert the supplied element into a list at the

speci�ed location.

boolean add(E e) It appends the supplied element to the end of a list.

boolean addAll(Collection<?

extends E> c)

It is used to add to the end of all of the entries in the

given collection.

boolean addAll(int indexs,

Collection<? extends E> c)

It is used to add all of the entries in the provided

collection, beginning at the point indicated in the

list.

void clear() It is used to delete every entry from this list.

boolean equals(Object o) It compares the supplied item to the elements in a list.

Method Description

int hashcode() It is used to return a list's hash code value.

E get(int index) It is used to retrieve an element from a certain place in

the list.

boolean isEmpty() If the list is empty, it returns true; otherwise, it returns

false.

int lastIndexOf(Object o) It return index of the last occurrence of the provided

element in this list, or -1 if it is not found.

Object[] toArray() It's used to return an array with all of the entries in this

list in the right order.

<T> T[] toArray(T[] a) It return an array with all of the elements in this list in

the correct order.

boolean contains(Object o) If the list includes the supplied element, it returns true.

boolean

containsAll(Collection<?> c)

If the list contains all of the provided elements, it

returns true.

int indexOf(Object o) It return the index of the �rst occurrence of the

supplied element in this list, or -1 if the List does not

include this element.

E remove(int index) It is used to delete the entry from the list at the

speci�ed location.

boolean remove(Object o) It's used to get rid of the �rst instance of the supplied

element.

boolean removeAll(Collection<?

> c)

It is used to delete all of the list's items.

void

replaceAll(UnaryOperator<E>

operator)

It is used to replace all of the list's elements with the

supplied element.

void retainAll(Collection<?> c) It is used to keep all of the list's elements that are

present in the given collection.

E set(int index, E element) It replaces the speci�ed element in the list, which is

currently present at the speci�ed position.

void sort(Comparator<? super

E> c)

It is used to order the list's elements based on the given

comparator.

Spliterator<E> spliterator() It's used to make a spliterator out of the elements of a

list.

List<E> subList(int fromIndex,

int toIndex)

It is used to get all items that fall inside the speci�ed

range.

int size() Its purpose is to return the number of elements in the

list.

ArrayList vs. Java List

The list is an interface, and ArrayList is its implementation class.

How to Make a List

List interface is implemented by the ArrayList and LinkedList classes. Let's

look at few instances of how to make a List:

// ArrayList is used to create a String List.
List<String> lists=new ArrayList<String>();

// ArrayList is used to create an Integer List
List<Integer> lists=new ArrayList<Integer>();
// ArrayList is used to create a list of type
Books
List<Book> lists=new ArrayList<Book>();
// LinkedList is used to create a String List.
List<String> lists=new LinkedList<String>();

Example:

import java.util.*;
public class ListsExample
{
public static void main(String args[])
{
 //Creating List
 List<String> lists=new ArrayList<String>();
 //Adding elements
 lists.add("Kiwi");
 lists.add("Banana");
 lists.add("Apple ");
 lists.add("Oranges");
 // using for-each loop Iterating the List
element
 for(String fruit:lists)
 System.out.println(fruit);

}
}

Output:

Kiwi
Banana
Apple
Oranges

Converting an Array to a List

We may convert an array to a list by traversing the array and adding each

element to the list one at a time with the list.add() function. Let's look at a

basic example of converting array items to List.

Example:

import java.util.*;
public class ExampleArrayToList
{
public static void main(String args[])
{
// Array Creation
String[] arra=
{"C#","AdvPython","Java","C++"};
System.out.println("Printing Array is:
"+Arrays.toString(arra));
//Converting Array to List
List<String> lists=new ArrayList<String>();
for(String lang:arra)
{
lists.add(lang);
}
System.out.println("Printing List is:
"+lists);
}
}

Output:

Printing Array is: [C#, AdvPython, Java,
C++]
Printing List is: [C#, AdvPython, Java, C++]

How to Convert a List to an Array

By using the list.toArray() function, we can convert the List to an Array.

Let's look at a basic example of converting list elements to array elements.

Example:

import java.util.*;
public class ExampleListToArray
{
public static void main(String args[])
{
 List<String> fruitLists = new ArrayList<>
();
 fruitLists.add("Kiwi");
 fruitLists.add("Grapes");
 fruitLists.add("Oranges");
 fruitLists.add("Strawberry");
 //Converting ArrayList to Array
 String[] array = fruitLists.toArray(new
String[fruitLists.size()]);
 System.out.println("Printing Array is:
"+Arrays.toString(array));
 System.out.println("Printing List is:
"+fruitLists);
}
}

Output:

Printing Array is: [Kiwi, Grapes, Oranges,
Strawberry]

Printing List is: [Kiwi, Grapes, Oranges,
Strawberry]

Get and Set an Element in a List

The element at the speci�ed index is returned by the get() function, whereas

the component is changed or replaced by the set() method.

Example:

import java.util.*;
public class ExampleList
{
 public static void main(String args[])
{
 //Creation of List
 List<String> lists=new ArrayList<String>();
 //Adding elements in the List
 lists.add("Mango");
 lists.add("Apple");
 lists.add("Banana");
 lists.add("Grapes");
 //accessing the element
 System.out.println("Returning element:
"+lists.get(1)); //it return the 2nd element
// element changing
 list.set(1,"Dates");
 //Iterating the List
 for(String fruit:lists)
 System.out.println(fruits);

 }
}

Output:

Returning element: Apple

Mango
Dates
Banana
Grapes

Sorting a List

There are other methods for sorting a List; in this case, we will utilize the

Collections.sort() function to sort the list element. Collections is a utility

class in java.util package has the static method sort (). We may simply sort

any List using the Collections.sort() function.

Example:

import java.util.*;
public class ListSortArray
{
 public static void main(String args[])
{
 //Creating list
 List<String> lists1=new ArrayList<String>
();
 lists1.add("Kiwi");
 lists1.add("Mango ");
 lists1.add("Oranges");
 lists1.add("Grapes");

 //Sorting list
 Collections.sort(lists1);

 //Traversing list
 for(String fruit:lists1)
 System.out.println(fruit);
 System.out.println("Sorting numbers");

//Creating a list

 List<Integer> lists2=new
ArrayList<Integer>();
 lists2.add(24);
 lists2.add(17);
 lists2.add(58);
 lists2.add(10);
 //Sorting the list
 Collections.sort(lists2);
 //Traversing list through the for-each
loop
 for(Integer number:lists2)
 System.out.println(number);
 }

}

Output:

Grapes
Kiwi
Mango
Oranges
Sorting numbers
10
17
24
58

Interface for Java ListIterator

To traverse the element backward and forth, the ListIterator interface is

utilized.

Syntax:

public interface ListIterator<E> extends
Iterator<E>

Java ListIterator Interface Methods

Method Description

void add(E e) This function adds the provided item to the list.

boolean hasNext() When traversing the list in the forward mode, this method returns true

if the list iterator has more entries.

E next() This function returns the next element in the list and moves the cursor

to the next place in the list.

int nextIndex() This function returns the index of the element that would be returned

by the following method call to next()

boolean has

Previous()

If this list iterator contains more elements while traversing the list in

the other way, this function returns true.

E previous() This function returns the previous item in the list and shifts the cursor

backward.

E previousIndex() This function returns the element index returned by the preceding call

to the previous().

void remove() This function deletes the �nal member of the list returned by the

next() or previous() methods.

void set(E e) This function replaces the supplied element with the latest element

returned by the next() or previous() methods.

Example:

import java.util.*;
public class ExampleListIterator
{
public static void main(String args[])
{
List<String> adl=new ArrayList<String>();
 adl.add("Anita");
 adl.add("Vicky");
 adl.add("Karan");
 adl.add(1,"Sneha");
 ListIterator<String>
itrr=adl.listIterator();
 System.out.println("Traversing
elements in forward:");
 while(itrr.hasNext())
{

 System.out.println("index:"+itrr.nex
tIndex()+" value:"+itrr.next());
 }
 System.out.println("Traversing
elements in backward");
 while(itrr.hasPrevious())
{
 System.out.println("index:"+itrr.pre
viousIndex()+" value:"+itrr.previous());
 }
}
}

Output:

Traversing elements in forward:
index:0 value:Anita
index:1 value:Sneha
index:2 value:Vicky
index:3 value:Karan
Traversing elements in backward direction
index:3 value:Karan
index:2 value:Vicky
index:1 value:Sneha
index:0 value:Anita

MAP INTERFACE IN JAVA
A map includes values based on the key, i.e., a key and value pair. Each

key-value pair is referred to as an entry. A Map has distinct keys.3

A Map is essential when searching, updating, or deleting items based on

a key.

Hierarchy of Java Map

Map in Java has two interfaces: Map and SortedMap, as well as three

classes: HashMap, LinkedHashMap, and TreeMap. The Java Map hierarchy

is as follows:

Long Description

3https://docs.oracle.com/ javase/ tutorial/ collections/ interfaces/ map.html, Oracle

Duplicate keys are not permitted in a Map, although duplicate values are

allowed. TreeMap does not support null keys or values, but HashMap and

LinkedHashMap do.

Because a Map cannot be browsed, you must convert it to a Set using the

keySet() or entrySet() methods.

Class Description

HashMap HashMap is a Map implementation; however, it does not keep track of

the order.

LinkedHashMap LinkedHashMap is the implementation of Map. It inherits the HashMap

class. It maintains insertion order.

TreeMap TreeMap is a Map and SortedMap implementation. It keeps ascending

order.

Map Interface Techniques That Are Useful

https://docs.oracle.com/

Method DescriptionMethod Description

V put(Object key, Object value) It is used to add a new entry to the map.

void putAll(Map map) It inserts the provided map onto the map.

V putIfAbsent(K key, V value) If the provided value does not exist in the map, it is

inserted with the speci�ed key.

V remove(Object key) It is used to remove an entry for the given key.

boolean remove(Object key,

Object value)

It removes the provided values from the map together

with the related de�ned keys.

Set keySet() It returns the Set view, which contains all of the keys.

Set<Map.Entry<K,V>>

entrySet()

It returns the Set view with all of the keys and values.

void clear() It's used to clear map.

V compute(K key,

BiFunction<? super K,?

super V,? extends V>

remappingFunction)

It generates a mapping between the provided key and its

current mapped value.

V computeIfAbsent(K key,

Function<? super K,?

extends V>

mappingFunction)

If the supplied key is not already associated with a

value, It computes its value using the supplied

mapping function and adds it into this map unless

null.

V computeIfPresent(K key,

BiFunction<? super K,?

super V,? extends V>

remappingFunction)

If the value for the supplied key is present and non-null,

it is utilized to generate a new mapping given the key

and its existing mapped value.

boolean containsValue(Object

value)

If a value equal to the value exists in the map, this

function returns true; otherwise, it returns false.

boolean containsKey(Object

key)

If key with the same name as the key exists in the map,

this function returns true; otherwise, it returns false.

boolean equals(Object o) Its purpose is to compare the provided Object to the

Map.

void forEach(BiConsumer<?

super K,? super V> action)

It executes the speci�ed action for each entry in the map

until all entries are processed, or the action produces

an exception.

V get(Object key) This function returns the object containing the key's

related value.

V getOrDefault(Object key, V

defaultValue)

It returns the value to which the provided key is mapped

or defaultValue if no mapping for the key exists in the

map.

int hashCode() It returns the Map's hash code value.

boolean isEmpty() If the map is empty, this function returns true;

otherwise, it returns false.

Method Description

V merge(K key, V value,

BiFunction<? super V,? super

V,? extends V>

remappingFunction)

Associates the speci�ed key with the provided non-null

value if it is not already associated with a value or is

associated with null.

V replace(K key, V value) It replaces the speci�ed value for the speci�ed key.

boolean replace(K key, V

oldValue, V newValue)

For a given key, it replaces the previous value with the

new value.

void replaceAll(BiFunction<?

super K,? super V,? extends

V> function)

It changes the value of each item with the result of

executing the provided function on that entry until all

entries are processed, or the method produces an

exception.

Collection values() It gives you a collection view of the values on the map.

int size() This function returns the number of entries on the map.

The interface of Map.Entry

Map's subinterface is Entry. As a result, we will use Map to go there. Name

of the entry. It returns a map collection-view with components of this type.

It provides ways for obtaining keys and value.

Map.Entry Interface Methods

Method Description

K getKey() It's used to get a key.

V getValue() It is utilized to acquire value.

int hashCode() It is used to obtain hashCode.

V setValue(V value) It is used to overwrite the value

associated with this item with the

supplied value.

boolean equals(Object o) It is used to compare the provided item to

other things that already exist.

static <K extends Comparable<? super K>,V>

Comparator<Map.Entry<K,V>>

comparingByKey()

It returns a comparator that compares the

items on key in natural order.

static <K,V> Comparator<Map.Entry<K,V>>

comparingByKey(Comparator<? super K>

cmp)

It return a comparator that uses the

provided Comparator to compare the

objects by key.

static <K,V extends Comparable<? super V>>

Comparator<Map.Entry<K,V>>

comparingByValue()

It return a comparator that compares the

objects on value in natural order.

Method Description

static <K,V> Comparator<Map.Entry<K,V>>

comparingByValue(Comparator<? super V>

cmp)

It return a comparator that uses the

provided Comparator to compare the

objects by value.

Example1: Non generic method

import java.util.*;
public class ExampleMap
{
public static void main(String[] args)
{
 Map maps=new HashMap();
 //Adding elements
 maps.put(11,"Anita");
 maps.put(4,"Ridhi");
 maps.put(1,"Jatin");
 maps.put(3,"Alex");
 //Traversing Map
 Set sets=maps.entrySet(); //Converting
to Set
 Iterator itrr=sets.iterator();
 while(itrr.hasNext())
{
 Map.Entry entr=
(Map.Entry)itrr.next();
 System.out.println(entr.getKey()+"
"+entr.getValue());
 }
}
}

Output:

1 Jatin
3 Alex
4 Ridhi

11 Anita

Example2: Generic method

import java.util.*;
public class ExampleMap
{
 public static void main(String args[])
{
 Map<Integer,String> maps=new
HashMap<Integer,String>();
 maps.put(101,"Anita");
 maps.put(103,"Vicky");
 maps.put(108,"Riti");
 // in any order elements can traverse
 for(Map.Entry mp:maps.entrySet())
{
 System.out.println(mp.getKey()+"
"+mp.getValue());
 }
 }
}

Output:

101 Anita
103 Vicky
108 Riti

Example: comparingByValue()

import java.util.*;
public class ExampleMap
{
 public static void main(String args[])
{

Map<Integer,String> maps=new
HashMap<Integer,String>();
 maps.put(100,"Amit");
 maps.put(101,"Vijay");
 maps.put(102,"Rahul");
 // Returns a Set representation of the
mappings included in this map.
 maps.entrySet()
 // This collection is used as the
source for a sequential Stream
 .stream()
 // Sorted based on the supplied
Comparator
 .sorted(Map.Entry.comparingByValue())
 //This procedure is performed on each
element of this stream
 .forEach(System.out::println);
 }
}

Output:

100=Amit
102=Rahul
101=Vijay

IN JAVA, ITERATING COLLECTIONS

The Four Java Collection Iteration Methods

Iteration is one of the most fundamental operations performed on a

collection. Iterations essentially extract components from a collection one

after the other, from the �rst to the last.

For example, you could want to browse through all of the students in a

class to print their names or see who got good marks on the most recent

exam. Alternatively, you might iterate through a list of integers to compute

the total and average. Such procedures are pretty prevalent in

programming.4

For loops, iterator, and forEach are the four methods the Java

programming language provides for iterating through collections.

Assume we have the following List collection before proceeding to each

type of iteration:

List<String> listname = new ArrayList<>();

listname.add("Tomi");
listname.add("Mari");
listname.add("Peti");
listname.add("Johi");
listname.add("Kimi");

4https://www.codejava.net/ java-core/ collections/ the-4-methods-for-iterating-collections-in-

java, CodeJava

This list includes the names of all pupils in a class. Take note of the

diamond operator <> used in the assignment's right side:

ArrayList<>();

From Java 7, we may use this syntax to declare generics collections more

compactly because the compiler can infer the parameter type on the right

side from the left side.

1. The Classic for Loop: This iteration approach is fairly known in

programming, and it involves running a counter variable from the �rst

entry in the collection to the �nal one. Here is the code that iterates

across the listNames collection:

for (int c = 0; c < listNames.size(); c++)
{
 String nName = listNames.get(c);
 System.out.println(nName);
}

https://www.codejava.net/

2. The Iterator Method: Because of the standard for loop restrictions, the

Iterator function was designed to allow us to iterate across any type of

collection. As you can see, the Collection interface requires all

collections to implement the iterator() function.

The following example exempli�es the iterator concept:

Iterator<String> iterators =
listNames.iterator();
while (iterators.hasNext()) {
 String nName = iterators.next();
 System.out.println(nName);
}

3. The Enhanced for Loop: Since Java 5, programmers may iterate over

a collection using a more concise syntax, improving a loop.

For example, the following iterates through the listNames

collection using the extended for loop:

for (String nName : listNames)
{
 System.out.println(nName);
}

4. The forEach Method with Lambda Expressions: The forEach method,

introduced in Java 8 with Lambda expressions, is a whole new

approach of iterating through collections.

What is the primary distinction between the forEach technique and the

preceding ones?

In the primary ways, the programmers control how the collection is

iterated(traditional for loop, iterator, and improved for-loop). The

iteration code is not included in the collection and is created by

programmers, thus the external name iteration.

On the other hand, the new approach wraps the iteration logic in the

collection itself, removing the need for programmers to create code

for iterating collections. On the other hand, the programmers describe

what to do in each iteration – this is a signi�cant distinction! As a

result, the phrase “internal iteration” was coined: the collections

manage the iteration, whilst the programmers pass the action – what

has to be done in each iteration.

Following example will help you grasp the concepts:

listNames.forEach(names ->
System.out.println(names));

Method of Java Collection iterator()

The iterator() function of the Java Collection Interface returns an iterator

through the collection's items.

Syntax:

public Iterator <E> iterator()

Parameters:

NA

Return:

The iterator () function iterates across the members of this

collection.

Example 1:

import java.util.Collection;
import java.util.Iterator;
import
java.util.concurrent.ConcurrentLinkedQueue;
public class ExampleJavaCollectionIterator
{
 static int c = 1;
 public static void main(String[] args)

{
 Collection<String> collections = new
ConcurrentLinkedQueue<String>();
 collections.add("Raman");
 collections.add("Shiv");
 collections.add("Murat");
 collections.add("Rakesh");
 Iterator<String> iterators =
collections.iterator();
 // over the elements returns an
iterator
 while (iterators.hasNext())
{
 System.out.println(c++ + "." +
iterators.next());
 }
 }
}

Output:

1.Raman
2.Shiv
3.Murat
4.Rakesh

Example 2:

import java.util.Collection;
import java.util.Collections;
import java.util.Iterator;
import
java.util.concurrent.ConcurrentLinkedQueue;
public class ExampleJavaCollectionIterator
{
 public static void main(String[] args)

{
 Integer[] vals = new Integer[2];
 Collection<Integer> collections =
new ConcurrentLinkedQueue<Integer>();
 collections.add(71098);
 collections.add(8090);
 collections.add(1278);
 collections.add(1490);
 // over the elements returns an
iterator
 Iterator<Integer> iterators =
collections.iterator();
 while(iterators.hasNext()){
 System.out.println(iterators.nex
t());
 vals[0] =
Collections.max(collections);
 vals[1] =
Collections.min(collections);
 }
 System.out.println("Maxi number = "+
vals[0]);
 System.out.println("Mini number = "+
vals[1]);
 }
}

Output:

71098
8090
1278
1490
Maxi number = 71098
Mini number = 1278

This chapter de�ned arrays and discussed their bene�ts, drawbacks, and

array kinds. We also learned about sets in Java and its interface operations,

list, list methods in Java, how to build a list, and how to convert an array to

a list or a list to an array. In addition, we spoke about the Map Interface in

Java and its hierarchy. What is Iterating with Collections, and what are the

many forms of it?

C H A P T E R 6

Libraries, Packages, and

Modules

DOI: 10.1201/ 9781003229063-6

IN THIS CHAPTER

➢ Introduction

➢ Organizing Code into Packages

➢ Maven and Grandle

➢ Access Modi�ers

➢ Encapsulation

➢ Cloning Objects

In the previous chapter, we covered arrays and their different types of array.

We also studied sets in Java. Moreover, we learned about lists and maps as

well as iterating with collections. This chapter will learn about the

introduction of Libraries, Packages, and Modules and Organizing Code into

Packages also Maven and Grandle.

https://doi.org/10.1201/9781003229063-6

WHAT IS THE LIBRARY IN JAVA?
As of now, we've depended on Java's standard classes, which we can learn

about in the Java Application Programming Interface (API). These classes

were created by the same people that made Java, and they may be used on

any machine that has Java installed.1

We are not, however, con�ned to utilizing only those classes. You've

previously seen how to make classes that interact with one another. We may

also use classes created by others.

Java library is a collection of classes that have previously been developed

by someone else. You download those classes, inform your computer about

them, and then utilize them in your code. This allows you to extend what

Java can accomplish and depend on code others have tested rather than

doing everything yourself.

Locating a Library

Before we can utilize a library, we must �rst pick which library we wish to

use. How do we know which library to use when there are so many

available?

The answer, like most things in programming, is Google. A search for the

“Java ABC library,” where ABC is what we want to perform, will often

provide a plethora of results. Assume we wish to write Java software that

displays graphs. We'd start by Googling the “Java graph library,” which

yielded a plethora of options.

1https://happycoding.io/ tutorials/ java/ libraries, Happy Coding

We'd next go through the results until we discovered one that helped us

achieve our aim. When deciding on a library, don't be scared to try them all!

Create basic programs with each and see which one works best for us.

The JFreeChart library, which allows us to add interactive charts and

graphs to Swing applications, will be used for the rest of the course.

.jar Files Downloading

We've probably come across.zip �les, which are archive �les or �les that

contain other �les. Similarly, .jar �les are a type of archive �le that typically

https://happycoding.io/

contains.class �les. Java libraries are often packaged in.jar �les. (In reality,

they're generally in.zip �les that contain.jar �les that contain.class �les)

Anyway, now that we've settled on a library, the next step is to get it.

JFreeChart's download page may be found on the library's website:

https://www.jfree.org/ jfreechart/ download.html

Download zip �le and unzip it wherever you wish. This produces a

directory containing a slew of .jar �les.

Documentation in the Library

We should be pretty comfortable with looking at the Java API, tutorials, and

conducting Google searches by this point. Using a library is no different:

going through its documentation to understand what it can accomplish is

one of the �rst stages in working with it.

JFreeChart API documentation can be found at https://www.jfree.org/

jfreechart/ api/ javadoc/ index.html. It includes a list of all the classes in the

library and the variables and functions they contain. That may seem like a

lot, but our objective isn't to read it all. Simply browse the classes to get a

broad sense of your possibilities, and then start focusing on anything that

sounds like it could be what we're looking for.

Classpath

When we build and run Java �les, Java looks for them in the current

directory by default.

As an example:

javac MyJavaProgram.java

When we run this command, the Java compiler searches the current

directory for classes. So, if MyProgram.java refers to another class called

MyDependency, it explores the current directory for MyDependency.class

or MyDependency.java. This is how you can build several classes using just

the main �le.

However, our library �les are contained within the. jar �le rather than in

the current directory! If we wish to use the library classes, we must tell Java

https://www.jfree.org/
https://www.jfree.org/

where to �nd them.

To put it another way, we must specify the classpath, which is a list of

places where Java will look for class �les. We do this by supplying a list of

paths as the -cp option to a Java command.

As an example:

javac -cp.
;path/to/first/jarFile.jar;path/to/second/ja
rFile.jar MyFirstProgram.java

This command starts the Java compiler and sends it a -cp parameter

containing three entries:

1. ‘.’ This adds the current directory to the classpath since we probably

want Java to keep looking in that location.

2. path/to/�rst/jarFile.jar a.jar �le is added to the classpath as a result of

this. Any .class �les included within that.jar �le can now be used in

our software.

3. path/to/second/jarFile.jar A second .jar �le is added to the classpath as

a result.

What Exactly Is a Java Class Library?

Because Java is not reliant on any particular operating system, Java

programs cannot rely on platform-speci�c native libraries; instead, Java

offers a collection of dynamically loaded libraries common to current

operating systems.

These libraries offer:

Regular Expressions and container classes

Interfaces for activities that rely on the Operating System's (OS)

hardware, such as network and �le access.

If the underlying platform does not support a speci�c Java feature,

these libraries will override that feature if necessary.

Java Library classes are a collection of prede�ned classes in packages that

are made available to programmers as part of the Java installation process.

Library classes make it easier for programmers to do their jobs by providing

built-in methods for ordinary and non-trivial activities like accepting input

from the user, presenting output to the user, and so on. For example, the

System class provides the print() and println() methods in java.lang package

of Java Library classes for presenting output to the user.

Library Classes in Java

This lesson will go through the package java.lang, which contains classes

essential to the Java programming language design. The most critical

classes are Object (the base of the class hierarchy) and Class (which

represent classes at run time).

The following list of the classes in java.lang package. These classes are

critical for any Java programmer to understand. To learn more about a

particular class, click on its link. We can turn to standard Java manuals for

more practice.

Sr.

No
Methods with Explanations

 1 Boolean

Boolean

 2 Byte

The Byte class creates an object out of a primitive type byte value.

 3 Character

A value of the primitive type char is wrapped in an object by the Character class.

 4 Class

In a running Java application, instances of the class. The class represents classes and

interfaces.

 5 ClassLoader

A class loader is an entity that is in charge of class loading.

 6 Compiler

The Compiler class is given to aid in the development of Java-to-native-code

compilers and related services.

 7 Double

The Double class is an object that encapsulates a value of the basic type double.

 8 Float

The Float class is an object that contains a value of the basic type �oat.

Sr.

No
Methods with Explanations

 9 Integer

The Integer class is an object that encapsulates a value of the primitive type int.

10 Long

A value of the primitive type long is wrapped in an object by the Long class.

11 Math

Math class includes fundamental mathematical operations such as trigonometric,

square root, logarithmic, and exponential functions.

12 Number

The number is the abstract superclass of BigDecimal, BigInteger, Byte, Double,

Float, Integer, Long, and Short.

13 Object

The root of the class hierarchy is Class Object.

14 Package

Package objects include info of versions about a Java package's implementation and

speci�cation.

15 Process

The Runtime.exec techniques produce a native process and return an instance of a

subclass of Process that may be used to control and query the process.

16 Runtime

Every Java program has a single instance of the class Runtime, which allows the

application to communicate with the environment it is executing.

17 RuntimePermission

This class is used to manage runtime permissions.

18 SecurityManager

A security manager is a class that enables applications to apply security policies.

19 Short

The Short class wraps an object around a value of the primitive type short.

20 StackTraceElement

In a stack trace an element, as returned by Throwable.getStackTrace().

21 StrictMath

Methods in the StrictMath class execute fundamental mathematical operations such

as the elementary exponential, trigonometric, logarithm, and square root functions.

22 String

The String class represents character strings.

23 StringBuffer

A string buffer is a character sequence that may be changed.

24 System

The System class has several essential class �elds and methods.

25 Thread

A thread is an execution thread in a program.

Sr.

No
Methods with Explanations

26 ThreadGroup

Thread group is a group of threads.

27 ThreadLocal

This class provides Thread-local variables.

28 Throwable

It is the superclass of all Java errors and exceptions.

29 Void

The Void class is an uninstantiable placeholder class that references the Java keyword

void's Class object.

Making Use of Java Libraries

While there are still a few essential basic programming principles to learn,

we'd like to use existing libraries in the Java Software Development Kit

(SDK) as soon as feasible. To that end, this outline will give “just enough”

information to demonstrate the actual core usage of current Java class

libraries.

User vs. Builder

Two points of view should always be addressed while developing any

reusable programming construct:

1. The builder is responsible for declaring and de�ning how some

module works.

2. The caller (i.e., some code, often another module) uses an existing

module to perform a task.

It is critical to remember that, for this session (Using Java Libraries), we are

looking at things from the user's point of view. In other words, what we

need to know to use a pre-existing Java library from the SDK and its many

pre-de�ned features.

What Is Included in the Java SDK?

There are several types of library constructions to examine, such as:

Classes and interfaces with generic type arguments are packaged as

classes and interfaces.

Packages are groups of classes and interfaces.

The dot operator is used to divide packages into categories and

subcategories. Packages include java.lang, java.util,

java.util.concurrent, and methods.

If a class is included within a package, we may refer to the entire name

by using the package name, dot-operator, and class name.

Examples: java.lang.String, java.util.Scanner.

Fields can be included in classes and interfaces, techniques.

WHAT ARE THE PACKAGES IN JAVA?
A Java package is a gathering of comparable sorts of classes, interfaces, and

sub-bundles.

Bundle in java can be classi�ed into two structures, inherent bundle and

client characterized bundle. There are many inherent bundles like Java,

lang, awt, javax, swing, net, io, util, sql, etc. Here, we will have the itemized

learning of making and utilizing client characterized bundles.

The bene�t of Java Package

1. The Java package is utilized to arrange the classes and interfaces to be

handily kept up with.

2. Java package gives access assurance.

3. Java package eliminates the naming impact.

Long Description

Example:

package pack;
public class simplepack
{
 public static void main(String args[])
{
 System.out.println("package welcome ");
 }
}

To Compile a Java Package, Follow These Steps

If we are not using an IDE, we must use the following syntax:

javac -d directory namejavafile

Example:

javac -d. Simplepro.java

The -d switch speci�es the location of the produced class �le. You can use

any directory name, such as /home (in Linux), d:/abc (in Windows), and so

on. You can use it if you wish to keep the package in the same directory

(dot).

To Launch a Java Package Application, Follow These Steps

We must use a fully quali�ed name, such as mypack.Simplepro. To execute

the class, use simple, etc.

How Do I Go to a Package from Another Package?

There are three ways to get inside the package from outside of it.

1. Import package.*;

2. Import package.class_name;

3. quali�ed name

Using Packagename.*: If you use package.*, all of this package's

classes and interfaces will be available, but not sub-packages.

The import keyword is used to create another package's classes and

interface available to the current package.

Example:

//save by X.java

package packg;
public class X
{
 public void msg()
{
System.out.println("Hello Everyone");
}
}

//save by Y.java

package mypackg;
import packg.*;
class Y
{
 public static void main(String args[])

{
 X objt = new X();
 objt.msg();
 }
}

Using packagename.classname: Only the de�ned classes of this

package will be accessible if you import package.classname.

Example:

//save by X.java

package packg;
public class X
{
 public void msg()
{
System.out.println("Hello Everyone");
}
}

//save by Y.java

package mypackg;
import packg.X;

class Y
{
 public static void main(String args[])
{
 X objt = new X();
 objt.msg();
 }
}

Using the Fully Quali�ed Name: Only the stated classes of this

package will be available if you use a suitably quali�ed name.

Importing is no longer necessary. However, when accessing the class or

interface, you must always use the fully quali�ed name.

It is typically used when two packages include the same class name,

such as when the java.util and java.sql packages both contain the Date

class.

Example:

//save by X.java

package packg;
public class X
{
 public void msg()
{
System.out.println("Hello everyone");
}
}

//save by Y.java

package mypackg;
class Y
{
 public static void main(String args[])
{
 pack.X objt = new pack.X(); //fully
qualified name using
 objt.msg();
 }
}

JAVA SUBPACKAGE
The package within the package is referred to as the subpackage. It should

be developed to classify the package further.

For example, Sun Microsystems' java package comprises various classes

such as System, String, Reader, Writer, Socket, and so on. These classes

represent a particular group; for example, Reader and Writer classes

represent Input/Output operations, Socket and ServerSocket classes

represent networking, etc. As a result, Sun has divided the java package into

sub-packages such as lang, net, io, and so on, and placed Input/Output

related classes in the io package, Server and ServerSocket classes in the net

packages, etc.

Example:

package com.javatpoint.core;
class Simple
{
 public static void main(String args[])
{
 System.out.println("Hello everyone
subpackage");
 }
}

How Do I Transfer the Class File to a Different Directory or Drive?

There is a case; I want to place the class �le of X.java source �le in the c:

drive class �le. As an example:

Example:

//save as Simplepro.java
package mypackg;
public class Simplepro
{
 public static void main(String args[])
{

 System.out.println("Welcome to the
package");
 }
}

To Compile:

e:\sources> javac -d c:\classes
Simplepro.java

To Execute:

To run this program from the e:\source directory, specify the classpath to

the directory containing the class �le.

e:\sources> set classpath=c:\classes;.;
e:\sources> java mypackg.Simplepro

Another Approach to Execute this Program Is to Use the Java -

Classpath Switch

The -classpath option is supported by both javac and the java tool.

To execute this program from the e: source directory, use the java -

classpath switch, which instructs the program to look for class �les. As an

example:

e:\sources> java -classpath c:\classes
mypackg.Simplepro

Methods for Loading Class Files or Jar Files Include

The class �les can be loaded in two ways: temporarily and permanently.

Temporary:

In the command prompt, set the classpath

Using the -classpath switch

Permanent:

Set the classpath in the environment variables

By generating a Java Archive (JAR) �le that contains all of the class

�les and placing them in the jre/lib/ext folder

How Do You Combine Two Public Classes into a Single Package?

If you want to include two public classes in a package, create two java

source �les, each with one public class, but keep the package name the

same. For instance:

//save as X.java

package javatpoints;
public class X
{
}
//save as Y.java

package javatpoints;
public class Y
{
}

JAVA ACCESS MODIFIERS
In Java, there are two kinds of modi�ers: access modi�ers and non-access

modi�ers.

In Java, access modi�ers de�ne the accessibility or scope of a �eld,

method, or class. Using the access modi�er may modify the access level of

�elds, constructors, methods, and classes.

Java access modi�ers are classi�ed into four types:

1. Private: A private modi�er's access level is restricted to the class. It

cannot be retrieved from outside the class.

2. Default: A default modi�er's access level is limited to the package. It

cannot be retrieved from outside the package. If no access level is

speci�ed, the default will be used.

3. Protected: A protected modi�er's access level is within and outside the

package through a child class. If the child class is not created, it

cannot be accessed from outside the package.

4. Public: A public modi�er's access level is present everywhere. It is

accessible from within the class, outside the class, within the package,

and from outside the package.

Non-access modi�ers include static, abstract, synchronized, native, volatile,

transitory, and so on. We will just cover access modi�ers in this section.

Using a basic table, let's look at how access modi�ers work in Java.

Java Access Modi�ers Explained

Access

Modi�er

Within

class

Within

package

Outside package by subclass

only

Outside

package

Private Ys No No No

Default Ys Ys No No

Protected Ys Ys Ys No

Public Ys Ys Ys Ys

Private: The private access modi�er is only available within the class.

A basic example of a private access modi�er

We've generated two classes in this example: A and Simple. A

private data member and a private method are both found in a class.

There is a compile-time issue since we are accessing these secret

members from outside the class.

Example:

class X
{
private int data=30;
private void msg(){System.out.println("Hello
java program");
}

}

public class Simple
{
 public static void main(String args[])
{
 X objt=new X();
 System.out.println(objt.data); //Compile
Error
 objt.msg(); //Compile Error
 }
}

Private Constructor's Role

If you make a class constructor private, you will be unable to create a class

object outside the class. As an example:

class X
{
private X(){} //private_constructor
void msg()
{
System.out.println("Hello java program");
}
}
public class Simplepro
{
 public static void main(String args[])
{
 X objt=new X(); //Compile Error
 }
}

Default: If no modi�er is used, it is considered as default by default.

The default modi�er is only available within the package. It cannot be

retrieved from outside the package. It is more accessible than a private

residence. However, it is more restricted than protected and open.

As an example of a default access modi�er, consider the following:

We've built two packages in this example: packg and mypackg.

We're accessing the A class from outside its package since it's not

public and can't be accessed from outside the package.

Example:

//save by X.java

package pack;
class X
{
 void msg()
{
System.out.println("Hello Java program");
}
}

//save by Y.java

package mypackg;
import packg.*;
class Y
{
 public static void main(String args[])
{
 Y objt = new Y(); //Compile Error
 objt.msg(); //Compile Error
 }
}

Protected: The protected access modi�er is accessible both within and

outside of the package, but only through inheritance.

The protected access modi�er applies to data members, methods,

and constructors. It cannot be used in class.

It's more accessible than the default modi�er.

Example:

In this example, we've made two packages: packg and mypackg.

Because the pack package's A class is public, it may be accessed from

outside the package. However, the message method of this package is

marked as protected; thus, it can only be accessed from outside the

class via inheritance.

//save by X.java

package packg;
public class X
{
protected void msg()
{
System.out.println("Hello Java");
}
}
//save by Y.java

package mypackg;
import packg.*;

class Y extends X
{
 public static void main(String args[])
{
 Y objt = new Y();
 objt.msg();
 }
}

Public: The public access modi�er can be accessed from anywhere. It

has the broadest reach of any modi�er.

Example:

//save by X.java

package packg;
public class X
{
public void msg()
{
System.out.println("Hello java");
}
}

//save by Y.java

package mypackg;
import packg.*;
class Y
{
 public static void main(String args[])
{
 X objt = new X();
 objt.msg();
 }
}

Access Modifiers with Method Overriding in Java

If we override a method, the overridden method (de�ned in a subclass)

cannot be more restricted.

Example:

class X
{
protected void msg()
{
System.out.println("Hello java program");
}
}

public class Simplepro extends X
{
void msg()
{
System.out.println("Hello java program");}
//compile.error
 public static void main(String args[])
{
 Simplepro objt=new Simplepro();
 objt.msg();
 }
}

The protected modi�er is more restricted than the default modi�er. As a

result, there is a compile-time error.

ENCAPSULATION
Encapsulation in Java combines code and data into a single unit, such as a

capsule containing numerous medications.

In Java, we may construct a fully enclosed class by keeping all of the

class's data members private. We can now use setter and getter methods to

set and get data from it.

A completely enclosed class is an example of a Java Bean class.

The Benefits of Encapsulation in Java

You may make the class read-only or write-only by simply giving a

setter or getter method. In other words, you don't have to use the getter

or setter procedures.

It gives you control over the data. If you want to set the value of id to

be larger than 100 alone, you may do it within the setter method. You

may implement logic to prevent negative values from being stored in

the setter methods.

It is a method of achieving data concealing in Java since other classes

will not access the data through private data members.

The encapsulate class is simple to put to the test. As a result, it is

preferable for unit testing.

Typical IDEs provide the ability to produce getters and setters. As a

result, creating an enclosed class in Java is simple and quick.

Example:

File save: Students.java

// A Java class that is entirely encapsulated
// It includes a private data member as well as
getter and setter methods

package com.javatpoints;
public class Students
{
//data member private
private String names;
// for name getter method
public String getName()
{
return names;
}
//setter method for name
public void setName(String names)
{

this.names=names
}
}

File save: Testpro.java

//Java class to test

package com.javatpoints;
class Testpro
{
public static void main(String[] args)
{
//creating instance
Students st=new Students();
//setting value
st.setName("vicky");
//getting value
System.out.println(st.getName());
}
}

Class Read-Only

// A Java class that solely contains getter
methods.

public class Students
{
// data member private
private String colleges="XYZ";
//for college getter method
public String getCollege()
{
return colleges;
}

}

You can no longer modify the value of the college data member “XYZ.”

st.setCollege("INFD"); //compile time error will
render

Class Write-Only

// A Java class that solely contains setter
methods.
public class Students
{
//data member private
private String colleges;
// for college getter method
public void setCollege(String colleges)
{
this.colleges=colleges;
}
}

You can no longer obtain the value of the college; instead, you can only

alter the value of the college data component.

System.out.println(st.getCollege()); // Compile
Time Error, since no such method exists.
System.out.println(st.colleges); // Because the
college data member is private, there is a compile
time error.
//As a result, it cannot be accessible from
outside the class.

CLONING OBJECTS IN JAVA
Item cloning is a method of creating an identical duplicate of an object. The

Object class's clone() function is used to duplicate an object.2

java.lang.Cloneable interface must implemented by the class whose clone

object we wish to generate. If we do not implement the Cloneable interface,

the clone() function throws a CloneNotSupportedException.

The clone() function is de�ned in the Object class.

The clone() method's syntax is as follows:

2https://www.javatpoint.com/ object-cloning, javaTpoint

protected Object clone() throws
CloneNotSupportedException

Why Should You Use the Clone() Method?

The Clone() method avoids the need for subsequent processing to generate

a duplicate of an object. If we do it using the new keyword, it will take a

long time to process, so we utilize object cloning.

The Benefit of Object Cloning

Although Object.clone() has several design �aws, it is a standard and

straightforward method of copying objects. Some of the advantages of using

the clone() function are as follows:

There is no need to create lengthy and repeated code. Simply use an

abstract class with a clone() function that is 4 or 5 lines long.

It is the simplest and ef�cient method for copying items, mainly when

used to an already established or old project. Simply build a parent class,

implement Cloneable, then de�ne the clone() function and complete the

work.

Clone() is the quickest way to duplicate an array.

Object Copying Has the Following Disadvantages

The following are some drawbacks of the clone() method:

To utilize the Object.clone() method, we must alter several syntaxes in

our code, such as implementing a Cloneable interface, de�ning the

clone() function, and handling CloneNotSupportedException, and

ultimately using Object.clone(), among other things.

https://www.javatpoint.com/

We must implement a cloneable interface even though it has no

methods. We just utilize it to inform the JVM that we may execute

clone() on our object.

Because Object.clone() is protected, we must supply our own clone()

and call Object.clone() indirectly from it.

Because Object.clone() does not execute any function, we do not

in�uence object formation.

If you wish to write a clone method in a child class, all superclasses

must declare it or inherit it from another parent class. The super.clone()

chain will fail otherwise.

Object.clone() only allows shallow copying; we must override it if we

require deep cloning.

Example:

class Students18 implements Cloneable
{
int roll_no;
String names;

Students18(int roll_no,String names)
{
this.roll_no=roll_no;
this.names=names;
}

public Object clone()throws
CloneNotSupportedException
{
return super.clone();
}

public static void main(String args[])
{
Try

{
Students18 st1=new Students18(101,"anita");

Students18 st2=(Students18)st1.clone();

System.out.println(st1.roll_no+" "+st1.names);
System.out.println(st2.roll_no+" "+st2.names);

}
catch(CloneNotSupportedException c){}

}
}

MODULES IN JAVA
A Java module is a technique for packaging a Java application or Java API

as a distinct Java module. A modular JAR �le contains a Java module. A

Java module can de�ne which Java packages it contains and which should

be visible to other Java modules that utilize it. A Java module must

additionally describe which other Java modules are required to complete its

task.

Java modules are a new feature introduced in Java 9 through the Java

Platform Module System (JPMS). Depending on where you read, the Java

Platform Module System is sometimes known as Java Jigsaw or Project

Jigsaw. During development, the internal project name was Jigsaw. The

jigsaw was later renamed Java Platform Module System.

Benefits of Java Modules

The Java Platform Module System provides numerous advantages to Java

developers. We'll mention the essential bene�ts below.

Modular Java Platform for Smaller Application Distribution

All of the Java Platform APIs have been separated into distinct modules as

part of Project Jigsaw. The advantage of breaking up all of the Java APIs

into modules is that you can now de�ne which modules of the Java platform

your application needs. Knowing which Java Platform modules your

application requires, Java can package your program such that it only

includes the Java Platform modules that your application utilizes.

Because there were no of�cial means of accurately validating which

classes your Java program utilized before Java 9 and the Java Platform

Module System, you would have had to bundle all of the Java Platform

APIs with your Java application. Because the Java Platform APIs have

become fairly extensive over the years, your application would receive

many Java classes in its deployment, many of which we would probably not

need.

Because of the unneeded classes, our applications distributable are more

signi�cant than it needs to be. This can be an issue for tiny devices such as

mobile phones, Raspberry Pis, etc. You may now package your application

with only the modules of the Java Platform APIs that your application uses,

thanks to the Java Platform Module System. As a result, application

distributable will be smaller.

Internal Package Encapsulation

A Java module must specify which Java packages within the module are to

be exported to other Java modules that use the module. A Java module may

include Java packages that are not exported. Classes in not exported

packages are inaccessible to other Java modules. Such packages are only

usable within the Java module that includes them.

Packages that are not exported are often known as hidden or encapsulated

packages.

Start Detection of Absent Modules

Beginning with Java 9, Java programs must also be bundled as Java

modules. As a result, an application module de�nes the other modules (Java

API modules or third-party modules) that it employs. As a result, when the

Java VM starts up, it may examine the whole module dependency chain

from the application module onward. If any needed modules are not

discovered when the Java VM boots up, it reports the absent module and

closes down.

Before Java 9, missing classes (for example, from a missing JAR �le)

were not identi�ed until the program attempted to utilize the missing class.

This might occur at some point during runtime, depending on when the

program attempted to utilize the missing class.

Having absent modules noti�ed at program startup time is a signi�cant

bene�t to having the missing module/JAR/class reported at runtime when

attempting to utilize the absent module/JAR/class.

Module Basics in Java

Now that you know what a Java module is and the merits of Java modules

let's look at the fundamentals of Java modules.

Modules Consist One or More Packages: A Java module collects one or

even more Java packages. A module might be a whole Java program, a

Java-based API, or a third-party API.

Naming a Java Module

A Java module must have a different name. A valid module name, for

example.

com.jenkov.mymodules

A Java module's name follows the same naming conventions as a Java

package's name. However, from Java 9 and beyond, you should not use

underscores (_) in module names (or package names, class names, method

names, variable names, and so on) because Java intends to utilize

underscore as a reserved identi�er in the future.

If feasible, it is suggested to name a Java module the same as the name of

the root Java package included in the module.

Module's Root Directory

Before Java 9, all Java classes for an application or API were nested

immediately within a root class directory (added to the classpath) or directly

inside a JAR �le. For example, the directory structure for

com.jenkov.mymodules built packages might look like this:

com/jenkov/mymodules

Module System

The Java Module System is a signi�cant change in the Java 9 version. Java

introduced this functionality to group Java packages and code into a single

unit known as a module.

There was no notion of modules in previous versions of Java; therefore, it

was challenging to construct modular Java programs, which increased the

size of the application and made it harder to move about. Even the JDK was

too large; in Java 8, the rt.jar �le size is about 64MB.

Java 9 reorganized JDK into a series of modules to deal with the

problem, allowing us to utilize just the components we needed for our

project.

Aside from the JDK, Java also allows us to construct our modules,

developing module-based applications.

The module system comes with a variety of tools and choices, which are

listed below:

Includes several options for the Java tools javac, jlink, and java where

we may de�ne module paths that point to the module's location.

The modular JAR �le format is introduced. The module-info.class �le

is located in the root folder of this JAR.

The JMOD format, which is a packaging format similar to JAR but

may incorporate native code and con�guration �les, is introduced.

Both the JDK and Java Runtime Environment (JRE) have been rebuilt

to allow modules. It boosts performance, security, and maintenance.

For naming modules, classes, and resources, Java introduces a new

Uniform Resource Identi�er (URI) system.

Modularized Java 9 JDK

Module for Java 9

A module is a grouping of Java applications or software. A Java �le

module-info.java is required to describe a module. This �le, often known as

a module descriptor, contains the following information:

Name of the module.

What exactly does it export?

What are the requirements?

Module Name

This module name should follow the reverse-domain-pattern as we name

packages, for example, com.javapoint.

How to Make a Java Module

The following steps were necessary to create a Java module:

Construct a directory structure

Make a module declarator

Source code for Java

Construct a Directory Structure

Constructing modules using the given directory structure is suggested,

similar to how we create packages and project structures in Java utilizing

the reverse-domain-pattern.

Make a �le called module-info.java and declare a module inside it by

using the module identi�er and providing the same name as the directory

that contains it. In our example, the directory is called com.javapoint.

module com.javapoint
{

}

If the module does not have module dependencies, leave the module body

empty. Save this �le as module-info.java under src/com.javapoint.

Source Code for Java

Create a Java �le to compile and run the module. In our case, we have a

Helloeveryone.java �le with the following code.

class Helloeveryone
{
 public static void main(String[] args)
{
 System.out.println("Hello from the
everyone");
 }
}

Compile Java Module

To compile the module, use the following command:

javac -d mods --module-source-path src/ --module
com.javapoint

It will generate a new directory with the following structure after building.

We now have a built module that can simply be executed.

Module Execution

Use the following command to run the built module:

java --module-path mods/ --module
com.javapoint/com.javapoint.Hello

WHAT EXACTLY IS MAVEN?
Maven is a sophisticated project management tool based on the POM

paradigm (project object model). It is used for project development,

dependency management, and documentation. It, like ANT, streamlines the

construction process. However, it is far more sophisticated than ANT.

In a nutshell, a maven is a tool that can be used to create and manage any

Java-based project. Maven simpli�es the day-to-day work of Java

developers and aids in the understanding of any Java-based project.

What Does Maven Do?

Maven does a variety of useful tasks, such as:

We can easily create a project with maven.

We can simply add jars and other project dependencies with the

assistance of maven.

Maven gives project details (a log document, a dependency list, unit

test results, and so on).

Maven is quite helpful for a project when it comes to upgrading the

central repository of JARs and other dependencies.

We can use Maven to build any number of projects into output formats

such as JAR, Web Application Resources (WAR), and so on without

performing any programming.

We can simply connect our project with a source controller by using

Maven.

Maven's Core Ideas

Project Object Model Files: POM Files are XML �les that include

project and con�guration information such as dependencies, source

directory, plugin, objectives, and so on. Maven utilizes them to create

the project. When you want to run a maven command, you provide it a

POM �le to work with. Maven reads the pom.xml �le to con�gure and

run its activities.

Dependencies and Repository: Dependencies are external Java libraries

required by the project, whereas repositories are folders containing

bundled JAR �les. The local repository is simply a directory on your

computer's hard drive. If the dependencies aren't discovered in your

local Maven repository, Maven gets them from a central Maven

repository and stores them in your local repository.

Build Life Cycles, Phases, and Objectives: A build life cycle comprises

a series of build phases, and each build phase is made up of a series of

goals. The name of a Maven command refers to a build lifecycle,

phase, or objective. When a lifecycle is asked to be run using the

maven command, all build steps in that life cycle are likewise executed.

When a build phase is requested to be conducted, the build phases in

the given order are also performed.

Build Pro�les: A build pro�le is a collection of con�guration settings

that allows you to build your project with various con�gurations. For

example, you may need to compile your project for development and

testing on your local computer. To allow multiple builds, use the pro�le

components in your POM �les to add different build pro�les triggered

in several ways.

Build Plugins: Build plugins are used to do speci�c tasks. A plugin

may be added to the POM �le. You can use Maven's standard plugins,

or you can write your own in Java.

Maven Installation Procedure

Check to see if your machine has Java installed. If not, download and

install Java.

Check to see if the Environmental java variable is set. If this is not the

case, then set the java environmental variable.

Install Maven (https://maven.apache.org/ download.cgi).

Unzip your maven zip �le anywhere on your system.

Add the bin directory of the newly formed directory apache-maven-

3.5.3 (depending on your installation version) to the PATH environment

variable and the system variable.

https://maven.apache.org/

Run the mvn -v command in cmd. If it prints the lines of code below,

the installation is complete.

pom.xml Maven File

POM, which stands for Project Object Model, is essential for Maven to

function. Maven reads the pom.xml �le to con�gure and run its activities. It

is an Extensible Markup Language (XML) �le that provides project-related

and con�guration information such as dependencies, source directory,

plugin, objectives, etc. It is utilized by Maven to create the project.3

<project xmlns="http://maven.apache.org/ POM/ 4.0.0"
xmlns:xsi="http://www.w3.org/ 2001/ XMLSchema-
instance"
xsi:schemaLocation="http://maven.apache.org/ POM/
4.0.0
http://maven.apache.org/ xsd/ maven-4.0.0.xsd">

<modelVersion>4.0.0</modelVersion>
<groupId> com.project.loggerapi </groupId>
<artifactId>LoggerApi</artifactId>
<version>0.0.1-SNAPSHOT</version>

<!-- Add typical dependencies for a web
application -->
<dependencies>
<dependency>
<groupId>org.apache.logging.log4j</groupId>
<artifactId>log4j-api</artifactId>
<version>2.11.0</version>
</dependency>
</dependencies>

</project>

Elements Utilized in Creating the pom.xml File

http://maven.apache.org/
http://www.w3.org/
http://maven.apache.org/
http://maven.apache.org/

project: The root element of the pom.xml �le is the project.

modelVersion: It refers to the version of the POM model that you are

utilizing. For Maven 2 and Maven 3, use version 4.0.0.

groupId: The project group's id is represented by groupId. It is unique,

and you will most likely choose a group ID close to the root Java

package name of the project as we did with the groupId

com.project.loggerapi.

artifactId: It is used to specify the name of the project you are

constructing. LoggerApi is the name of our project in this example.

version: The version element includes the project's version number. If

your project has been released in many versions, it is essential to

provide the version of your project.

3https://www.geeksforgeeks.org/ introduction-apache-maven-build-automation-tool-java-

projects/ , greeksforgeeks

Other Pom.xml File Elements

Dependencies: The dependencies element is used to describe a list of

project dependencies.

Dependency: It speci�es a dependence and is used within the

dependencies tag. Each dependency is identi�ed by a groupId, an

artifactId, and a version.

Name: This element is utilized to give our maven project a name.

Scope: This element is used to describe the scope of this maven project,

which may be compile, runtime, test, supplied system, and so on.

Packaging: The packaging element is utilized for packaging our project

into output kinds such as JAR, WAR, etc.

The Benefits and Drawbacks of Using Maven

Benefits

https://www.geeksforgeeks.org/

By scanning the pom �le, Maven can automatically add all of the

project's dependencies.

Using Maven, one may quickly compile their project to the jar, war,

and other formats as needed.

Maven makes it simple to start projects in multiple settings and

eliminates the need to handle dependency injection, builds, processing,

and so on.

It is quite simple to add a new dependent. Simply write the dependent

code in the pom �le.

Drawbacks

Maven requires a maven installation on the system and a maven plugin

for the IDE to function.

If the maven code for an existing dependent is not accessible, maven

cannot be used to add that dependency.

When Should Maven be Used?

When the project has many dependents, then, using maven, you can

easily manage those dependencies.

When the dependent version is regularly updated, simply update the

version ID in the pom �le to update dependencies.

Maven makes it simple to handle continuous builds, integration, and

testing.

When there is a requirement for a simple approach to generate

documentation from source code, Compiling source code, and then

packaging it into JAR or ZIP �les.

Maven in Practical Application

When working on a java project that has a lot of dependencies, builds, and

requirements, handling all of those things manually is quite tedious and

monotonous. Thus, having a tool that can perform these tasks is quite

bene�cial.

It is a build management tool that can handle everything from adding

dependencies to managing a project's classpath to automatically creating

war and jar �les.

Maven Repository

Maven repositories are folders that contain packaged JAR �les along with

some information. The metadata are POM �les that provide information on

the projects to which each packaged JAR �le belongs and what external

dependencies each packaged JAR has.

This information instructs Maven to download dependents of your

dependencies recursively until all dependencies have been downloaded and

installed on your local computer.

Maven offers three different types of repositories:

Local repository

Central repository

Remote repository

WHAT EXACTLY IS GRADLE?
Gradle is an open-source build automation platform that is intended to be

versatile enough to create nearly any sort of software. The following are

some of its features:

High Performance

Gradle eliminates redundant work by only performing tasks required to run

because their inputs or outputs have changed. A build cache can also be

used to reuse task results from earlier runs or even from a separate

computer.

Gradle incorporates several more improvements, and the development

team is always working to enhance Gradle's speed.

The JVM Foundation

Gradle operates on the JVM, and you must have a Java Development Kit

(JDK) installed to use it. This is advantageous for Java platform users since

you may utilize normal Java APIs in your build logic, such as custom task

types and plugins. It also makes it simple to run Gradle on many platforms.

It's worth noting that Gradle isn't just for generating JVM applications; it

also has support for building native projects.

Conventions

Gradle takes a page from Maven's book and implements standards to make

common sorts of projects, such as Java projects, easier to create. With the

right plugins, you can quickly create compact build scripts for a variety of

projects. These conventions, however, do not limit you: Gradle allows you

to override them, add your jobs, and customize your convention-based

builds in a variety of ways.

Flexibility

Gradle's �exibility allows you to add your task types easily or even build

models. For example, consider Android build support, introducing

numerous additional build concepts such as �avors and build types.

Gradle: Five Things You Should Know

Gradle is a versatile and powerful build tool that might be frightening when

you �rst start using it. Understanding the following fundamental concepts,

on the other hand, will make Gradle much more approachable, and you will

be an expert with the tool before you realize it.

Gradle is a build tool that may be used for a variety of purposes

The basic model is task-based

Gradle features several �xed build stages

Gradle may be extended in a variety of ways

Build scripts interact with an API

What Is the Difference between Gradle and Maven?

A program and group of programs containing instructions that deliver the

intended functionality are referred to as software. Engineering is the process

of creating and producing anything to suit a speci�c function while also

�nding a cost-effective solution to issues. Gradle and Maven are two

software development technologies. The contrasts between these two tools

are explained.

1. Gradle: Gradle is an open-source technology that allows us to

automate the creation of software. Because of its excellent

performance, this tool is extensively utilized to develop various types

of software. It creates the project structure using Java and a Groovy-

based Domain-Speci�c Language (DSL). Gradle facilitates the

development of mobile and online apps and their testing and

deployment across many platforms. It is considered an of�cial tool for

creating Android applications because of its capabilities.

2. Maven: Maven is an open-source program management tool that

assists us in creating various applications throughout the lifespan of

this tool. This tool focuses on standardization (i.e., developing

software in a standard layout in a short amount of time). We can use

this to construct Java projects, but it can also be used for other

languages. Maven structures the application using Extensible Markup

Language.

Gradle Maven

Based on Gradle is a framework for creating

domain-speci�c language

applications.

Maven is a framework for creating

pure Java language-based

applications.

Con�guration It creates project structure using a

Groovy-based Domain-speci�c

language.

It uses Extensible Markup Language

for creating project structure.

Focuses on Adding additional features to

existing apps to make them

more useful.

Creating applications within a

speci�c time frame.

Performance It outperforms Maven since it is

geared for tracking only the

currently executing task.

Because it does not create a local

temp folder during software

creation, it takes a long time.

Java

Compilation

It does not require compilation. Compilation is required.

Gradle Maven

Usability It is a new tool that will take some

time for people to become used

to.

This tool is well-known among many

users and is easily accessible.

Customization Because it supports several IDEs,

this application is very

con�gurable.

This program only supports a small

number of developers and is not

very con�gurable.

Languages

supported

It supports Java, C, C++, and

Groovy program development.

It supports Scala, C#, and Ruby

program development.

In this chapter, we discussed libraries, packages, and modules and access

modi�ers and Access Modi�ers with Method Overriding in Java. In

addition, we learned about encapsulation and object cloning in Java. We

also learned about Maven and Grandle.

C H A P T E R 7

Java Database Connectivity

DOI: 10.1201/ 9781003229063-7

IN THIS CHAPTER

➢ What is JDBC?

➢ Relational Databases

➢ Relational Database Management Systems

➢ Learning SQL

We discussed Libraries, Packages, and Modules in the previous chapter and

how to arrange packages. We also discussed access modi�ers,

encapsulation, and cloning objects. In Java, we also discussed Maven and

Grandle. We will learn about Java Database Connectivity (JDBC), as well

as relational databases and Structured Query Language (SQL).

WHAT IS JDBC IN JAVA?
JDBC is an acronym for Java Database Connectivity. JDBC is a Java

Application Programming Interface (API) that connects to databases and

https://doi.org/10.1201/9781003229063-7

runs queries against them. It is a part of JavaSE. JDBC API connects to the

database using JDBC drivers. JDBC drivers are classi�ed into four types:

JDBC-ODBC Bridge Driver

Native Driver

Network Protocol Driver

Thin Driver

JDBC API may be used to retrieve tabular data contained in any relational

database. We may store, edit, remove, and retrieve data from the database

using the JDBC API. It is similar to Microsoft's Open Database

Connectivity (ODBC). JDBC 4.3 is the most recent version. It has been

steady since September 21, 2017. Its foundation is the X/Open SQL Call

Level Interface. The java.sql package contains JDBC API classes and

interfaces. The following is a list of standard JDBC API interfaces:

Driver

Connection

Statement

PreparedStatement

CallableStatement

ResultSet

ResultSetMetaData

DatabaseMetaData

RowSet

The Following Is a Collection of Popular Jdbc Api Classes:

DriverManager

Blob

Clob

Types

What Are the Benefits of Using JDBC?

Prior to JDBC, the database API to connect to and run queries with the

database was ODBC API. However, the ODBC API uses an ODBC driver

written in C. (i.e., platform-dependent and unsecured). As a result, Java has

created its API (JDBC API) that employs JDBC drivers.

We may use JDBC API to manage databases in Java programs and do the

following tasks:

Connect to database

Run queries and update statements against the database.

Obtain the outcome of the database query.

What Exactly Is API?

An API is a document that describes all of the characteristics of a product

or software. It depicts the classes and interfaces that software applications

can use to interact with one another. APIs can be written for programs,

libraries, operating systems, and so on.

DRIVER FOR JDBC
JDBC Driver is a piece of software that enables Java programs to connect

with databases. JDBC drivers are classi�ed into four types:

1. Driver for JDBC-ODBC Bridge

2. Driver for native API

3. Driver for the Network Protocol

4. Thin driver

Driver for JDBC-ODBC Bridge: The JDBC-ODBC bridge driver

connects to the database using the ODBC driver. The JDBC-ODBC

bridge driver converts JDBC method calls to ODBC function calls.

Because of the thin driver, this is now discouraged.

Oracle does not support the Java 8 JDBC-ODBC Bridge. Instead of

using the JDBC-ODBC Bridge, Oracle advises that you utilize JDBC

drivers provided by your database vendor.

Bene�ts:

Simple to use.

It is simple to connect to any database.

Disadvantages:

Performance suffers since JDBC method calls are translated into

ODBC function calls.

The client machine must have the ODBC driver installed.

Driver for Native API: The Native API driver takes advantage of the

client-side libraries provided by the database. The driver transforms

JDBC method calls into database API native calls. It is not entirely

written in Java.

Advantage:

Superior performance than the JDBC-ODBC bridge driver.

Disadvantage:

Each client system must have the Native driver installed.

On the client system, the Vendor client library must be installed.

Driver for the Network Protocol: he Network Protocol driver uses

middleware (application servers) to transform JDBC calls actively or

passively into supplier database protocols. It's entirely written in Java.

Advantage:

There is no need for a client-side library because the application

server can do various activities like auditing, load balancing,

logging, etc.

Disadvantages:

The client machine must have network capability.

Database-speci�c coding must be done at the middle tier.

Servicing Internet Protocol drivers is expensive since it

necessitates data system coding in the intermediate tier.

Thin Driver: The thin driver immediately transforms JDBC calls into

the vendor-speci�c database protocol. That is why it is referred to as a

thin driver. It is entirely written in Java.

Advantage:

Outperforms all other drivers in terms of performance.

There is no software required on either the client or server-side.

Disadvantage:

Drivers are dependent on the database.

5 Steps to Connecting a Java Database

To connect any Java program to a database using JDBC, follow these �ve

steps. These are the actions to take:

1. Register for the Driver class

2. Make a connection

3. Make a statement

4. Perform out inquiries

5. Close connection

Register for the Driver class: The Class class's forName() function is

used to register the driver class. This technique is used to load the

driver class dynamically.

forName() method syntax:

public static void forName(String
class_Name)throws ClassNotFoundException

The following is an example of how to register the OracleDriver class:

In this case, the Java program is loading the Oracle driver to

establish a database connection.

Class.forName("oracle.jdbc.driver.OracleDriver"
);

Make a Connection:

The DriverManager class's getConnection() function is used to connect

to the database.

getConnection() method syntax:

public static Connection
getConnection(String_url)throws SQLException
public static Connection getConnection(String
url,String_name,String_password) throws
SQLException

Example:

Connection con=DriverManager.getConnection(
"jdbc:oracle:thin:@localhost:1521:xe","root1","
passwords");

Make a Statement: To construct a statement, utilize the Connection

interface's createStatement() function. The statement's object is in

charge of doing queries to the database.

Syntax of the method createStatement():

public Statement create-Statement()throws
SQLException

Example:

Statement stmt=con.create-Statement();

Perform Out Inquiries:

The executeQuery() function of the Statement interface is used to

execute database queries. This function provides a ResultSet object that

may retrieve all of the records in a table.

ExecuteQuery() method syntax:

public ResultSet executeQuery(String sql)throws
SQLException

Example:

ResultSet rts=stmt.executeQuery("select * from
empy");
while(rts.next())
{
System.out.println(rts.getInt(1)+"
"+rts.getString(2));

}

Close Connection: By closing the connection object statement, the

ResultSet will be immediately closed. The Connection interface's

close() function is used to end the connection.

Close() method syntax:

public void close()throws SQLException

Example:

con.close();

ORACLE DATABASE CONNECTIVITY IN JAVA
To connect a Java program to an Oracle database, we must �rst complete

the �ve procedures listed below. The database used in this sample is Oracle

10g. As a result, the following information is required for the Oracle

database:

Driver class: Oracle.jdbc.driver.OracleDriver is the driver class for the

Oracle database.

URL for the connection: The Oracle10G database connection URL is

jdbc: oracle:thin:@localhost:1521:xe where jdbc is the API, oracle is

the database, thin is the driver, localhost is the server name (or IP

address), 1521 is the port number, and XE is the Oracle service name

All of this information is available in the tnsnames.ora �le.

Username: System is the default username for the Oracle database.

Password: This is the password entered by the user while installing the

Oracle database.

Creating a Table

Before we connect, let's �rst create a table in the Oracle database. The SQL

statement to create a table is shown below.

create table empy(id number(20),name
varchar2(30),age number(5));

Example

In this instance, we connect to an Oracle database and retrieve data from the

emp table. Here, the system and oracle are the Oracle database's login and

password.

import java.sql.*;
class OracleConnc
{
public static void main(String args[])
{
try
{
// load the driver class step1
Class.forName("oracle.jdbc.driver.OracleDriver");

// create the connection object step2
Connection connc=DriverManager.getConnection(
"jdbc:oracle:thin:@localhost:1521:xe","root","pass
word");

// create the statement object step3
Statement stmt=connc.createStatement();

// execute query step4
ResultSet rts=stmt.executeQuery("select * from
empy");
while(rts.next())
System.out.println(rts.getInt(1)+" "+rts.getStrin
g(2)+" "+rts.getString(3));

// close the connection object step5
connc.close();

}catch(Exception e)
{
 System.out.println(e);
}

}
}

There are two methods for loading the jar �le:

1. Paste the ojdbc14.jar �le into the jre/lib/ext folder: To begin, look for

the ojdbc14.jar �le, then navigate to the JRE/lib/ext folder and paste

the jar �le there.

2. Set the Classpath: The classpath may be established in two ways:

temporary and permanent.

How to Configure the Temporary Classpath

To begin, look for the ojdbc14.jar �le, then open a command line and type:

C:>set class-path=c:\folder\ojdbc14.jar;.;

How to Configure the Permanent Classpath

Navigate to an environment variable and then to a new tab. In variable

name, write classpath, and in variable value, attach ojdbc14.jar to the path

to ojdbc14.jar;.; as

C:oraclexeapporacleproduct10.2.0serverjdbclibojdbc14.jar;.

MySQL Database Connectivity in Java

To connect a Java program to a MySQL database, we must �rst go through

the �ve steps below.

In this example, MySql is used as the database. As a result, we must

know these facts about the mysql database:

com.mysql.jdbc. Driver is the mysql database
driver class.

URL for the connection: The connection URL for the mysql database is

jdbc:mysql:/localhost:2306/root, where jdbc is the API mysql is the

database, localhost is the server name, 2306 is the port number, and root is

the database name. We may use any database; in that case, we must change

the root with the name of our database.

Username: The mysql database's default username is root.

Password: This is the password entered by the user while installing the

mysql database. In this example, we'll use root as the password.

Let's begin by creating a table in the mysql database, but �rst, we must

build the database:

create database example;
use example;
create table empy(id int(20),name varchar(50),age
int(4));

Example:

import java.sql.*;
class MysqlConn
{
public static void main(String args[]){
try{
Class.forName("com.mysql.jdbc.Driver");
Connection con=DriverManager.getConnection(
"jdbc:mysql://localhost:3306/example","root","ABC"
);
//here example is database name, root is username
and password
Statement stmt=conn.createStatement();

ResultSet rts=stmt.executeQuery("select * from
empy");
while(rts.next())
System.out.println(rs.getInt(1)+" "+rts.getString
(2)+" "+rts.getString(3));
conn.close();
}catch(Exception e)
{
 System.out.println(e);
}
}
}

CONNECTIVITY WITH ACCESS WITHOUT DATA
SOURCE NAME (DSN)
There are two methods for connecting a Java program to an Access

database.

1. Without Data Source Name

2. With Data Source Name

Example of Connecting a Java Application without a DSN

In this example, we will link the java program to the access database. In this

example, we set up the login table in the access database. In the table, there

is just one column called name. Let's retrieve the login table's full name.

import java.sql.*;
class Test1
{
public static void main(String ar[])
{
 try{
 String database1="student.mdb"; // In this
case, the database exists in the current

directory.

 String url="jdbc:odbc:Driver={Microsoft Access
Driver (*.mdb)};
 DBQ=" + database1 +
";DriverID=22;READONLY=true";

 Class.forName("sun.jdbc.odbc.JdbcOdbcDriver");
 Connection c1=DriverManager.getConnection(url);
 Statement sts=c1.createStatement();
 ResultSet rts=sts.executeQuery("select * from
login");

 while(rts.next()){
 System.out.println(rts.getString(1));
 }

}catch(Exception ee){System.out.println(ee);}

}}

Example of Connecting a Java Application to a DSN

Connectivity with a type 1 driver is regarded as poor. To connect a Java

application to a type 1 driver, �rst, construct a DSN; in this example, we'll

assume your DSN name is mydsn.

import java.sql.*;
class Test1
{
public static void main(String ar[])
{
 try{
 String url="jdbc:odbc:mydsn";
 Class.forName("sun.jdbc.odbc.JdbcOdbcDriver");
 Connection c1=DriverManager.getConnection(url);

 Statement sts=c1.createStatement();
 ResultSet rts=sts.executeQuery("select * from
login");

 while(rts.next()){
 System.out.println(rts.getString(1));
 }

}catch(Exception ee){System.out.println(ee);}

}}

DRIVERMANAGER CLASS
The DriverManager class serves as a bridge between the user and the

drivers. It maintains track of the available drivers and facilitates the

establishment of a link between a database and the right driver. The

DriverManager class keeps track of all Driver classes that have registered

themselves by invoking the DriverManager.registerDriver function ().

DriverManager Class Methods That Are Useful

Method Description

public static void registerDriver(Driver

driver):

It is used to add the speci�ed driver to

DriverManager.

public static void deregisterDriver(Driver

driver):

It is used to deregister the speci�ed driver

with DriverManager (to remove the driver

from the list).

public static Connection

getConnection(String url):

It is used to make a connection to the

provided url.

public static Connection

getConnection(String

url,String_userName,String_password):

It is used to connect with the provided url,

username, and password.

Interface of Connection

A Connection is a session that exists between a Java program and a

database. The Connection interface is a factory for Statement,

PreparedStatement, and DatabaseMetaData, which means that the

Connection object may be used to get the Statement and DatabaseMetaData

objects. The Connection interface provides several transaction management

methods such as commit(), rollback(), etc.

Methods of the Connection interface that are often used:

public Statement createStatement(): This function generates a

statement object that may be used to perform SQL queries.

public Statement createStatement(int resultSetType,int

resultSetConcurrency): This method creates a Statement object that

will generate ResultSet objects of the speci�ed type and concurrency.

public void setAutoCommit(boolean status): This function is used to

set the commit status.

It is true by default.

public void commit(): Permanently saves the modi�cations made since

the last commit/rollback.

public void rollback(): Removes any modi�cations made since the

previous commit/rollback.

public void close(): instantly ends the connection and releases any

JDBC resources.

Statement Interface

The Statement interface offers ways for querying the database. The

statement interface is a ResultSet factory, which means it provides a factory

method for obtaining a ResultSet object.

Statement interface techniques that are often used:

The following are the essential Statement interface methods:

public ResultSet executeQuery(String sql): this method is used to run a

SELECT query. It returns the ResultSet object.

public int executeUpdate(String sql): is used to execute the provided

query, which might be create, drop, insert, update, delete, and so on.

public boolean executes (String sql): this method is used to run

searches that may yield numerous results.

public int[] executeBatch(): is used to run a series of instructions in a

row.

Example:

import java.sql.*;
class FetchRecords
{
public static void main(String args[])
throws Exception{
Class.forName("oracle.jdbc.driver.OracleDriver"
);
Connection
conn=DriverManager.getConnection("jdbc:oracle:t
hin:@localhost:1521:xe","system","root");
Statement stmts=cons.createStatement();

int result=stmts.executeUpdate("delete from
emp765 where id=43");
System.out.println(result+" records affected");
con.close();
}}

DATABASE MANAGEMENT SYSTEM
DBMS Tutorial teaches fundamental and advanced database topics. Our

DBMS Tutorial is intended for both beginners and experienced users.

A database management system (DBMS) is software that is used to

manage databases.

Our DBMS Tutorial covers all DBMS subjects: introduction, ER model,

keys, relational model, join operation, SQL, functional dependence,

transaction, concurrency control, etc.

What Exactly Is a Database?

The database is a collection of meaningful connections used to retrieve,

insert, and delete items ef�ciently. It is also used to arrange data into tables,

schema, views, and reports, among other things.1

For example, the college database organizes data on the administration,

staff, students, and professors, among other things.

You can quickly access, insert, and delete information using the database.

Database Management System

A DBMS is a piece of software used to manage databases. For example,

MySQL, Oracle, and other commercial databases are often used in a wide

range of applications.

1https://www.geeksforgeeks.org/ introduction-of-dbms-database-management-system-set-1/

, geeksforgreeks

DBMS offers an interface for performing different activities such as

database creation, data storage, data updating, table creation in the database,

and much more.

It ensures the database's safety and security. It also ensures data

consistency in the case of numerous users.

DBMS allows users to do the following tasks:

Data De�nition: It is used to create, modify, and remove de�nitions that

describe the arrangement of data in a database.

Data Updation: It is used for inserting, modifying, and deleting actual

data from the database.

Data Retrieval: It is used to retrieve data from a database so that

programs may utilize it for various reasons.

User Administration: It is used for enrolling and monitoring users,

maintaining data integrity, enforcing data security, dealing with

concurrency control, monitoring performance, and restoring

information damaged by unexpected failure.

DBMS Features Include the Usage of a Digital Repository Built on a

Server to Store and Manage Information

https://www.geeksforgeeks.org/

It can give a clear and logical perspective of the data manipulation

process.

Automatic backup and recovery processes are built into DBMS.

It has ACID characteristics that keep data in a healthy condition in the

event of a failure.

It has the potential to simplify the complicated connection between

data.

It is used to help in data manipulation and processing.

It is used to ensure data security.

It may see the database from several perspectives based on the user's

needs.

Benefits of DBMS

Controls database redundancy: It can manage data redundancy since it

keeps all of the data in a single database �le and that recorded data is

stored in the database.

Data sharing: In DBMS, an organization's authorized users can

exchange data among numerous users.

Easily Maintenance: Because of the centralized structure of the

database system, it is readily maintenance.

Reduce development and maintenance time: It decreases development

and maintenance time.

Backup: It includes backup and recovery subsystems that generate

automatic backups of data in the event of hardware or software failures

and restore the data if necessary.

Multiple user interfaces: It offers a variety of user interfaces, including

graphical user interfaces and application program interfaces.

DBMS Disadvantages

Cost of Hardware and Software: A high-speed data processor and a big

memory capacity are required to execute DBMS software.

Size: To operate them ef�ciently, it requires a vast amount of storage

space and RAM.

Complexity: A database system adds complexity and needs.

Higher impact of failure: Failure has a more signi�cant effect on the

database since, in most organizations, all data is kept in a single

database, and if the database is destroyed due to an electric failure or

database corruption, the data may be lost permanently.

DATABASE

What Exactly Is Data?

A collection of unique tiny units of information is referred to as data. It can

take several forms, including text, numbers, media, bytes, and so on. It can

be saved on paper or in electronic memory, for example.

The term “data” is derived from the Latin word “datum,” which signi�es

a “single item of information?” It is the plural form of the word data.

Data is information in computing that can be converted into a form that

allows for ef�cient transportation and processing. Data can be interchanged.

What Exactly Is a Database?

A database is a structured collection of data that can be accessed and

handled simply.

To make it simpler to discover important information, you may arrange

data into tables, rows, and columns and index it.

Database handlers design databases so that just one set of software

programs gives data access to all users.

The database's primary function is to run a vast quantity of information

by storing, retrieving, and managing data.

Nowadays, there are numerous dynamic websites on the World Wide

Web that are managed by databases. For example, consider a model that

checks the availability of hotel rooms. It is an example of a database-driven

dynamic webpage.

MySQL, Sybase, Oracle, MongoDB, Informix, PostgreSQL, SQL Server,

and more databases are available.

The DBMS manages modern databases.

Structured Query Language(SQL), is a programming language used to

manipulate data contained in a database. SQL(Structured Query Language)

is predicated on relational algebra and tuple relational calculus.

The image of a database is displayed using a circular shape.

DATABASE EVOLUTION
The database has evolved over more than 50 years, from �at-�le systems to

relational and object-relational systems. It has been passed down for too

many generations.

File-Based

File-Based databases were �rst presented in 1968. Data was stored as a �at

�le in �le-based databases. Although �les offer numerous bene�ts, they do

have certain limits.

One of the signi�cant bene�ts is that the �le system supports a variety of

access techniques, such as sequential, indexed, and random.

It necessitates considerable programming in a third-generation language

like COBOL or BASIC.

Hierarchical Data Model

The Hierarchical Database reigned supreme from 1968 until 1980. IBM's

initial DBMS used a prominent hierarchical database model. It was known

as IMS (Information Management System).

Files are connected in this paradigm in a parent/child relationship.

The �gure below depicts a hierarchical data model. Objects are

represented by little circles.

Long Description

Like the �le system, this architecture has some drawbacks, such as

complicated implementation, lack of structural independence, inability to

manage a many-many connection, etc.

Network Data Model

At Honeywell, Charles Bachman created the �rst DBMS, named Integrated

Data Store (IDS). It was built in the early 1960s, but the CODASYL group

standardized it in 1971.

Files in this architecture are connected as owners and members, similar to

the standard network model.

The following components were discovered using the network data

model:

Network schema

Sub-schema

Data management language

This paradigm also has certain drawbacks, such as system complexity and

dif�culty in designing and maintaining it.

Relational Database

From 1970 until the present, we live in the era of relational databases and

database management. E.F. Codd proposed the relational model in 1970.

In the relational database paradigm, there are two primary terminologies:

instance and schema.

A table with rows or columns is an example.

The schema de�nes the structure, such as the relation's name, the type of

each column, and the name.

Some mathematical concepts, such as set theory and predicate logic, are

used in this approach.

In 1995, the �rst online database application was developed.

Many additional models were introduced throughout the relational

database era, such as the object-oriented model, the object-relational model,

etc.

Cloud Database

A cloud database allows you to store, manage, and retrieve structured and

unstructured data over a cloud platform. This information is available over

the Internet. Because they are provided as a managed service, cloud

databases are also known as databases as a service.

The following are some of the signi�cant cloud options:

Amazon Web Services

Snow�ake Computing

Oracle Database Cloud Services

Microsoft SQL server

Google cloud spanner

Benefits of a Cloud Database

Reduced costs: In general, a �rm provider is not required to invest in

databases. It is capable of running and supporting one or more data

centers.

Automated: A range of automatic procedures, such as recovery,

failover, and auto-scaling, are added to cloud databases.

Improved accessibility: You may access your cloud-based database at

any time and from any location. All you require is an Internet

connection.

NOSQL DATABASE
A NoSQL database is a database architecture method that can support a

wide range of data structures. NoSQL is an abbreviation for “not only

SQL.” It is an alternative to typical relational databases in which data is

stored in tables, and the data structure is meticulously developed before the

database is constructed.

NoSQL databases are bene�cial for vast amounts of dispersed data.

The following are some examples of NoSQL database systems and their

categories:

MongoDB, CouchDB, Cloudant

Memcached, Redis, Coherence

HBase, Big Table, Accumulo

The Benefit of NoSQL Is Its Scalability

Excellent scalability: Because of its scalability, NoSQL can manage a

large quantity of data. If the amount of data increases, the NoSQL

database scales to manage it ef�ciently.

Availability is high: Auto replication is supported by NoSQL. Because

data replicates itself to the prior consistent state in the event of a

failure, it is highly accessible.

The Disadvantage of NoSQL Is That It Is Open Source

Open-source: Because NoSQL is an open-source database, there is

currently no credible standard for NoSQL.

Management dif�culty: Data administration in NoSQL is far more

dif�cult than in traditional databases. It isn't easy to install and

considerably more challenging to handle regularly.

No graphical user interface: There aren't many GUI tools for NoSQL

databases on the market.

Backup: Backup is a signi�cant weakness for NoSQL databases. Some

databases, such as MongoDB, lack robust data backup solutions.

OBJECT-ORIENTED DATABASES
Object-oriented databases (OODs) store data as objects and classes. Things

are real-world entities, while types are groups of objects. An OOD

combines aspects of the relational model with object-oriented principles. It

is a different implementation than the relational model.

OODs adhere to object-oriented programming principles. A hybrid

application is an object-oriented DBMS.

The OOD model has the following characteristics.

Object-Oriented Programming (OOP) Characteristics

Objects

Classes

Inheritance

Polymorphism

Encapsulation

Properties of a Relational Database

Atomicity

Consistency

Integrity

Durability

Concurrency

Query processing

WHAT EXACTLY IS RELATIONAL DATABASE
MANAGEMENT?
RDBMS is an abbreviation for Relational Database Management Systems.

RDBMS is the foundation of all current DBMSs such as SQL, MS SQL

Server, IBM DB2, ORACLE, My-SQL, and Microsoft Access.2

It is known as the RDBMS since it is based on E.F. Codd's relational

paradigm.

How Does It Work?

In RDBMS, data is represented as tuples (rows).

The most popular type of database is a relational database. It comprises a

number of tables, each with its own primary key.

Data in RDBMS may be retrieved simply due to a collection of structured

tables.

2https://www.javatpoint.com/ what-is-rdbms, javaTpoint

RDBMS History

From 1970 to 1972, E.F. Codd released a study proposing the usage of the

relational database model.

RDBMS is based on E.F. Codd's development of the relational model.

What Actually Is a Table?

Tables are used to hold data in the RDBMS database. A table is a collection

of connected data items that uses rows and columns to hold information.

A table is the most basic type of data storage in an RDBMS.

Let's look at an example of a student table.

ID Name AGE COURSE

1 Anita 23 MSC

2 Arnav 20 Commerce

https://www.javatpoint.com/

ID Name AGE COURSE

3 Mayank 22 B-Tech

4 Rita 21 Maths

5 Vicky 22 IT

What Exactly Is a Field?

A �eld is a subset of a table that provides particular information about each

entry in the table. The �elds in the student table in the above example are id,

name, age, and course.

What Is Row or Record?

A table row is also known as a record. It gives information about each

individual entry in the table. In the table, it is a horizontal object. As an

example: There are �ve records in the table above.

Let's take a look at one record/row in the table.

1 Anita 23 MSC

What Basically Is a Column?

A column is a vertical object in a table that includes all information

connected with a given �eld. For example, in the following table, “name” is

a column that provides all information on the student's name.

Anita

Arnav

Mayank

Rita

Vicky

NULL Values: A NULL value in a table indicates that a �eld was left

blank during record creation. It is not the same as a value of zero or a

�eld containing space.

Data Integrity: Each RDBMS has the following categories of data

integrity:

Entity integrity: Entity integrity requires that there be no duplicate rows

in a table.

Domain integrity: It ensures that valid entries for a particular column

are entered by limiting the type, format, or range of values.

Referential integrity: This indicates that rows that are utilized by other

records cannot be removed.

User-de�ned integrity: It enforces some speci�c business rules that

users set. These rules are distinct from those governing entity, domain,

or referential integrity.

What Is the Distinction between DBMS and RDBMS?

Although both DBMS and RDBMS store data in physical databases, there

are signi�cant distinctions between them.

The following are the primary distinctions between DBMS and RDBMS.

No. DBMS RDBMS

1 Data is stored as a �le in DBMS

applications.

RDBMS applications use tabular data to store

information.

2 Data in DBMS is often stored in

either a hierarchical or a

navigational format.

Tables in RDBMS contain a unique identi�er

known as the primary key, and data values are

kept in the form of tables.

3 DBMS does not support

normalization.

RDBMS supports normalization.

4 DBMS does not apply any

security with regard to data

manipulation.

RDBMS(Relational database management

system) de�nes the integrity constraint for the

purpose of the ACID (Atomicity, Consistency,

Isolation, and Durability) characteristic.

5 DBMS(database management

system) uses a �le system to

store data, so there will be no

relation between the tables.

Because data values in RDBMS are kept in the

form of tables, a connection between these data

values will also be recorded in the form of a

table.

6 DBMS has to provide some

uniform methods to access the

stored information.

The RDBMS system offers a tabular data structure

and a link between them to retrieve the stored

information.

7 DBMS does not support

distributed databases.

RDBMS allows for distributed databases.

No. DBMS RDBMS

8 DBMS is designed for tiny

organizations for dealing with

minor amounts of data. It only

supports a single user.

RDBMS is built to manage massive amounts of

data. It allows for numerous users.

9 File systems, XML, and other

DBMS are examples.

RDBMS examples include mysql, postgre, sql

server, and oracle.

After examining the distinctions between DBMS and RDBMS, you can

conclude that RDBMS is a subset of DBMS. There are numerous software

solutions on the market today that are DBMS and RDBMS compatible.

That is, an RDBMS application is now a DBMS application and vice versa.

File System vs. DBMS

The following distinctions exist between DBMS and �le systems:

DBMS File System

A DBMS is a collection of data. The

user is not necessary to write

procedures in DBMS.

The �le system is a collection of data, and the user

must create the methods for maintaining the

database in this system.

Database management system offers

an abstract representation of data

that hides the details.

The �le system speci�es the details of data

representation and storage.

DBMS offers a crash recovery

mechanism, which protects the

user in the event of a system

failure.

The �le system lacks a crash mechanism, which

means that if the machine fails while inputting

data, the �le's information is lost.

A decent protection method is

provided by DBMS.

It is extremely dif�cult to secure a �le in the �le

system.

DBMS contains a wide variety of

sophisticated techniques to store

and retrieve the data.

The �le system is incapable of storing and

retrieving data effectively.

Concurrent data access is handled by

DBMS employing some type of

locking.

Concurrent access poses numerous dif�culties in

the �le system, such as forwarding the �le while

another person deletes or updates data.

ARCHITECTURE OF DBMS
A DBMS's architecture has an impact on its design. The primary

client/server design is used to cope with a large number of network-

connected PCs, web servers, database servers, and other components.

The client/server architecture is made up of numerous PCs and a

workstation that are linked together via a network.

DBMS design is determined by how users connect to the database to

complete their requests.

DBMS Architecture Types

Database architecture can be single-tiered or multi-tiered. However,

conceptually, database architecture is divided into two types: 2-tier

architecture and 3-tier architecture.

1st-Tier Architecture

The database is immediately accessible to the user in this architecture. It

means that the user may sit right on the DBMS and utilize it.

Any modi�cations made here will have an immediate impact on the

database. It does not offer end consumers with a helpful tool.

The 1-tier design is utilized for local application development, where

programmers may directly connect with the database for rapid response.

2-Tier Architecture

The 2-tier architecture is the same as the basic client-server design. In a

two-tier design, client-side apps can connect directly with the database on

the server-side. APIs like ODBC and JDBC are utilized for this interaction.

On the client-side, user interfaces and application programs are executed.

The server side is in charge of providing functions such as query

processing and transaction management.

To communicate with the DBMS, the client-side application connects to

the server-side.

3-Tier Architecture

Another layer exists between the client and the server in the 3-Tier

architecture. The client cannot connect directly with the server under this

design.

The client-side application talks with an application server, which then

communicates with the database system.

Beyond the application server, the end-user is unaware of the presence of

the database. Aside from the program, the database does not know about

any other users.

In the event of an extensive online application, the 3-Tier design is

employed.

The Architecture Consists of Three Schema

Three schema architecture is sometimes referred to as ANSI/SPARC

architecture or three-level architecture.

This framework describes the structure of a particular database system.

The three schema architecture is often used to differentiate between user

applications and actual databases.

There are three levels in the three schema architecture. It categorizes the

database into three distinct sections.

1. Internal Level: The internal level has an internal schema that speci�es

the database's actual storage structure. The internal schema is

sometimes referred to as the physical schema. It takes advantage of

the physical data model. It is used to specify how data will be stored

in a block. The physical level is used to explain complete complicated

low-level data structures.

2. Conceptual Level: At the conceptual level, the conceptual schema

explains the architecture of a database. The conceptual level is

sometimes referred to as the logical level. The conceptual schema

de�nes the overall organization of the database. The conceptual level

speci�es what data will be kept in the database and the relationships

that exist between those data. Internal speci�cs, such as the

implementation of the data structure, are buried at the conceptual

level. At this level, programmers and database administrators work.

3. External Level: A database has many schemas at the external level,

which are frequently referred to as subschema. The subschema is used

to specify the many database views. An external schema is sometimes

referred to as a view schema. Each view schema de�nes the database

component in which a speci�c user group is interested while hiding

the remainder of the database from that user group. The view schema

speci�es how the database system interacts with the end-user.

MODELS OF DATA
The modeling of the data semantics, data description, and consistency

requirements is known as a data model. It gives conceptual tools for

specifying a database's design at each level of data abstraction. As a result,

the following four data models are used to explain the structure of the

database:

1. Relational Data Model: This model organizes data into rows and

columns within a table. As a result, a relational model employs tables

to describe data and in-between connections. Tables are sometimes

referred to as relations. Edgar F. Codd �rst described this concept in

1969. The relational data model is the most frequently used model,

with commercial data processing systems mainly using it.

2. Entity-Relationship Data Model (ER Model): An ER model is a

logical representation of data as objects with relationships between

them. These things are referred to as entities, and a relationship is a

connection between them. Peter Chen created this model, which was

published in 1976 publications. It was commonly utilized in database

design. A collection of characteristics describes the entities. For

example, the “student” object is represented by student name and

student id. An “entity set” is a collection of the same kind of entities,

while a “relationship set” is a collection of the same type of

relationships.

3. Object-Based Data Model: An expansion of the ER model that

includes concepts like functions, encapsulation, and object

identi�cation. This model provides a comprehensive type system with

structured and collection types. As a result, numerous database

systems based on the object-oriented paradigm were created in the

1980s. Objects in this context are nothing more than data with

attributes.

4. Semistructured Data Model:

Unlike the other three data models, this one is semistructured

(explained above). The semistructured data model supports data

speci�cations at points where speci�c data items of the same type

may have varying attribute sets. The Extensible Markup Language

(XML), often known as a markup language, is commonly used to

describe semistructured data. Although XML was initially intended to

add markup information to text documents, it has grown in popularity

due to its usage in data sharing.

SCHEMA AND INSTANCE OF A DATA MODEL

An instance of the database is the data saved in the database at a

speci�c point in time.

Schema refers to a database's general design.

A database schema is the database's skeletal structure. It re�ects the

database's logical structure.

A schema includes schema objects like tables, foreign keys, primary

keys, views, columns, data types, stored procedures, etc.

A visual diagram can be used to depict a database schema. This

diagram depicts the database items and their relationships.

Database designers create a database schema to assist programmers

whose software will interface with the database. The process of

constructing a database is referred to as data modeling.

A schema diagram can only show some schema features, such as the name

of the record type, data type, and constraints. The schema diagram does not

allow for the speci�cation of other aspects. The presented image, for

example, does not display the data type of each data item or the link

between multiple �les.

INDEPENDENCE OF DATA

The three-schema architecture may be used to explain data

independence.

Data independence refers to changing the schema at one level of a

database system without affecting the schema at the next higher level.

Data independence is classi�ed into two types:

1. Independence of Logical Data

Logical data independence refers to the capacity to change the

conceptual schema without affecting the external schema.

To separate the external level from the conceptual perspective,

logical data independence is utilized.

If we modify the conceptual perspective of the data, it will not

affect the user's view of the data.

At the user interface level, logical data independence arises.

2. Independence of Physical Data

The ability to modify the internal schema without changing the

conceptual schema is referred to as physical data independence.

If we alter the storage amount of the database system server, the

conceptual structure of the database will remain unchanged.

To distinguish conceptual levels from internal levels, physical

data independence is employed.

The logical interface level is when physical data independence

occurs.

Language of Database

A DBMS contains appropriate languages and interfaces for expressing

database queries and changes.

To read, save, and update data in a database, database languages can be

utilized.

Database Language Varieties

1. DDL (Data De�nition Language): DDL is an abbreviation for Data

De�nition Language. It is used to de�ne the structure or pattern of a

database.

It is used in the database to build schema, tables, indexes,

constraints, etc.

The backbone of the database may be created using DDL

statements.

The data de�nition language is used to record metadata like the

number of tables and schemas, their names, indexes, columns in each

table, constraints, and so on.

DDL encompasses the following tasks:

Create: It is used to create database objects.

Alter: It is used to change the database's structure.

Drop: This method is used to remove objects from the database.

Truncate: This function is used to delete all records from a table.

Rename: This command is used to rename an item.

Comments: It is used to make comments on the data dictionary.

2. DML (Data Manipulation Language): DML is an abbreviation for

Data Manipulation Language. It is used to retrieve and manipulate

data stored in a database. It responds to user queries.

DML encompasses the following tasks:

Select: It is used to obtain information from a database.

Insert: This function is used to insert data into a table.

Update: This function is used to update existing data in a table.

Delete: This command is used to remove all records from a table.

Merge: It executes UPSERT actions, such as insert or update

operations.

Call: It is used to invoke a structured query language or a Java

subprogram.

Explain Plan: It has a parameter for describing data.

Lock Table: Lock It manages concurrency through a table.

3. DCL (Data Control Language)

DCL is an abbreviation for Data Control Language. It is used to

retrieve data that has been saved or stored.

The execution of the DCL is transactional. It also offers rollback

options.

(However, with Oracle databases, the execution of data control

language does not provide rolling back.)

Here are some examples of DCL tasks:

Grant: It is used to grant a user access to a database.

Revoke: This command is used to revoke a user's permissions.

Revoke permission is granted for the following operations:

CONNECT, INSERT, USAGE, EXECUTE, DELETE, UPDATE,

and SELECT are all commands.

4. Transaction Control Language: TCL is used to execute the DML

statement's modi�cations. TCL can be combined to form a logical

transaction.

TCL encompasses the following tasks:

Commit: This command is used to save the transaction to the

database.

Rollback: It is used to restore the database to its original state

after the most recent Commit.

In this chapter, we discussed Java Database connection, its bene�ts, and

JDBC drivers. Steps for Connecting a Java Database to a Different Server

were also covered. We learned about DBMSs, RDBMSs, and NoSQL

databases and their bene�ts and drawbacks. We also discussed DBMS

architecture and database language.

C H A P T E R 8

Java I/O

DOI: 10.1201/ 9781003229063-8

IN THIS CHAPTER

➢ Console I/O in Java

➢ Reading from a File

➢ Creating and Writing to a File

➢ Reading a Properties File

In the previous chapter, we discussed Java database Connectivity (JDBC),

Relational Databases and Structured Query Language (SQL), and various

JDBC with different servers. In this chapter, we will cover the input-output

console in Java, how to read, write, and create �les in Java, and their many

properties.

WHAT IS INPUT/OUTPUT IN JAVA?
Java I/O is used to process input and output results. Java employs the idea

of a stream to speed up I/O operations. All of the classes necessary for input

and output operations are included in the java.io package. The java.io

https://doi.org/10.1201/9781003229063-8

package provides virtually every class required for input and output in Java.

Each of these streams serves as both an input source and an output

destination. The stream in the java.io package supports a wide range of data

types, including primitives, objects, and localized characters.

The Java I/O API allows us to do �le handling in Java.

Stream

A stream is a data sequence. A stream in Java is made up of bytes. It's

called a stream because it resembles a �owing stream of water. Three

streams are automatically established for us in Java. All of these streams are

linked to the console.

System.out is a generic output stream.

System.in is the standard input stream.

System.err is a standard error stream.

Let's have a look at the code for printing output and an error message to the

console:

System.out.println("simple –message in java");
System.err.println("error-message in java");

Let's look at the code for getting input from the console:

int a=System.in.read(); //returns 1st character
ASCII code
System.out.println((char)a); //print character

OutputStream versus InputStream

The following is a description of the OutputStream and InputStream

classes:

OutputStream

A Java program employs an output stream to publish data to a destination,

which might be a �le, array, peripheral device, or socket.

InputStream

An input stream is used by a Java program to read data from a source,

which might be a �le, an array, a peripheral device, or a socket.

Class OutputStream

The OutputStream class is abstract. It is the superclass of all classes that

represent a bytes output stream. An output stream receives output bytes and

routes them to a sink.

Useful OutputStream Methods

Method Description

public void write(int)throws

IOException

It is used to add a byte to the currently active output

stream.

public void write(byte[])throws

IOException

It is used to write a byte array to the currently active

output stream.

public void �ush()throws

IOException

The current output stream is �ushed.

public void close()throws

IOException

This function closes the current output stream.

Class InputStream Class

The InputStream class is abstract. It is the superclass of all classes that

represent a bytes input stream.

InputStream Techniques That Are Useful

Method Description

public abstract int

read()throws IOException

The following byte from the input stream is read. After the

�le, it returns -1.

public int available()throws

IOException

It provides a rough estimate of how many bytes can be read

from the current input stream.

public void close()throws

IOException

This function closes the current input stream.

FileOutputStream Class in Java

The Java FileOutputStream is an output stream that is used to write data to a

�le.

Use the FileOutputStream class to write basic values to a �le. The

FileOutputStream class allows you to write both byte-oriented and

character-oriented data. However, for character-oriented data, FileWriter is

preferable than FileOutputStream.

Declaration of the FileOutputStream Class

Example:

public class FileOutputStreams1 extends
OutputStreams

Methods of the FileOutputStream Class

Method Description

protected void �nalize() Its purpose is to close the connection with the �le output

stream.

void write(byte[] ary) It is used to write the byte array's ary.length bytes to the �le

output stream.

void write(byte[] ary, int

off, int leng)

It is used to write leng bytes to the �le output stream from the

byte array beginning at offset off.

void write(int b) It writes the provided byte to the �le output stream.

FileChannel

getChannel()

It's used to get the �le channel object that's connected with the

�le output stream.

FileDescriptor getFD() It is used to return the stream's �le descriptor.

void close() Its purpose is to close the �le output stream.

Example: write byte

import java.io.FileOutputStream;
public class FileOutputStreamExample1
{
 public static void main(String args[])
{
 try{

 FileOutputStream fouts=new
FileOutputStream("D:\\testout.txt");
 fouts.write(85);
 fouts.close();
 System.out.println("success is
here ");
 }catch(Exception e)
{
System.out.println(e);
}
 }
}

Example: write string

import java.io.FileOutputStream;
public class FileOutputStreamExample1
{
 public static void main(String args[])
{
 try{
 FileOutputStream fouts=new
FileOutputStream("D:\\testout.txt");
 String st="Welcome to
javaTpoint.";
 byte b[]=st.getBytes();
//converting string into byte array
 fouts.write(b);
 fouts.close();
 System.out.println("success is
here");
 }catch(Exception e)
{System.out.println(e);}
 }
}

FileInputStream Class in Java

The Java FileInputStream class reads bytes from a �le. It is used to read

byte-oriented data (raw bytes streams) such as picture data, audio, video,

etc. You may also read data from a character stream. However, when

reading character streams, it is best to utilize the FileReader class.

Declaration of the Java FileInputStream Class

public class FileInputStream1 extends InputStream

Methods of the Java FileInputStream Class

Method Description

int available() It is used to return an approximation of how many bytes can be read

from the input stream.

int read() It is used to read a single byte from the input stream.

int read(byte[] b) It is used to read data from the input stream up to a length of

b.length bytes.

int read(byte[] b, int

off, int leng)

It reads up to leng bytes of data from the input stream.

long skip(long xx) It skips over and discards xx bytes of data from the input stream.

FileChannel

getChannel()

It's used to get the return FileChannel object that's connected with

the �le input stream.

FileDescriptor

getFD()

It's used to get the FileDescriptor object back.

protected void

�nalize()

It is used to guarantee that the closure method is called when the

�le input stream is no longer referenced.

void close() It is used to stop the �ow of the stream.

Example: read a single character

import java.io.FileInputStream;
public class DataStreamExample1
{
 public static void main(String args[])
{
 try{

 FileInputStream fint=new
FileInputStream("D:\\testout.txt");
 int c=fint.read();
 System.out.print((char)c);

 fint.close();
 }catch(Exception e)
{System.out.println(e);}
 }
 }

Example: read all character

package com.javapoint;

import java.io.FileInputStream;
public class DataStreamExample1
{
 public static void main(String args[])
{
 try{
 FileInputStream fint=new
FileInputStream("D:\\testout.txt");
 int c=0;
 while((c=fint.read())!=-1){
 System.out.print((char)c);
 }
 fint.close();
 }catch(Exception e)
{System.out.println(e);}
 }

 }

BufferedOutputStream Class in Java

The BufferedOutputStream class in Java is used to buffer an output stream.

It stores data internally in a buffer. It is more ef�cient than just writing data

into a stream. As a result, the performance is quick.

Use the BufferedOutputStream class to add a buffer to an OutputStream.

Let's look at the syntax for inserting a buffer into an OutputStream:

OutputStream ots= new BufferedOutputStream(new
FileOutputStream("D:\\IO Package\\testout.txt"));

Declaration of the Java BufferedOutputStream Class

public class BufferedOutputStreamexample extends
FilterOutputStream

Constructors of the Java BufferedOutputStream Class

Constructor Description

BufferedOutputStream(OutputStream

os)

It generates a new buffered output stream for

writing data to the given output stream.

BufferedOutputStream(OutputStream

os, int size)

It generates a new buffered output stream for

writing data to the given output stream with

the provided buffer size.

Methods of the Java BufferedOutputStream Class

Method Description

void write(int b) It inserts the provided byte into the buffered output stream.

void write(byte[] b,

int off, int leng)

It writes the bytes from the provided byte-input stream into the

speci�ed byte array, beginning at the speci�ed offset.

void �ush() The buffered output stream is �ushed.

BufferedOutputStream Class Example

In this example, we are writing text into the BufferedOutputStream object

linked to the FileOutputStream object. The �ush() method �ushes data from

one stream and sends it to another. It's necessary if you've linked one stream

to another.

package com.javatpoint;
import java.io.*;

public class BufferedOutputStreamExample1
{
public static void main(String args[])
throws Exception{
 FileOutputStream fouts=new
FileOutputStream("D:\\testout.txt");
 BufferedOutputStream bouts=new
BufferedOutputStream(fout);
 String st="Welcome to javaTpoint.";
 byte bt[]=st.getBytes();
 bouts.write(bt);
 bouts.flush();
 bouts.close();
 fouts.close();
 System.out.println("success is here");
}
}

BufferedInputStream Class in Java

To read data from a stream, use the Java BufferedInputStream class. To

increase performance, it utilizes a buffer method inside.

The following are the essential aspects of BufferedInputStream:

When bytes from the stream are skipped or read, the internal buffer is

automatically replenished, several bytes at a time, from the enclosed input

stream.

An internal buffer array is produced when a BufferedInputStream is

established.

Declaration of the Java BufferedInputStream Class

public class BufferedInputStreams extends
FilterInputStream

Constructors of the Java BufferedInputStream Class

Constructor Description

Constructor Description

BufferedInputStream(InputStream

IS)

It constructs the BufferedInputStream and stores its

parameter, the input stream IS, for subsequent

use.

BufferedInputStream(InputStream

IS, int size)

It constructs the BufferedInputStream with the

speci�ed buffer size and stores the input stream

IS as an argument for subsequent usage.

Methods of the Java BufferedInputStream Class

Method Description

int available() It returns an estimate of the amount of bytes that can be read from

the input stream without causing the next invocation method for

the input stream to block.

int read() It took the next byte of data from the input stream and read it.

int read(byte[] b,

int off, int lng)

It reads bytes from the provided byte-input stream into a speci�ed

byte array, beginning at the offset indicated.

void close() It closes the input stream and frees any system resources connected

with it.

void reset() It repositions the stream at the point where the mark method on this

input stream was last invoked.

void mark(int

readlimit)

It sees the mark method's general contract for the input stream.

long skip(long x) It skips x bytes of data from the input stream and discards it.

boolean

markSupported()

It checks to see if the input stream supports the mark and reset

methods.

Example:

package com.javapoint;

import java.io.*;
public class BufferedInputStreamExample1
{
 public static void main(String args[])
{
 try{
 FileInputStream fins=new
FileInputStream("D:\\testout.txt");

 BufferedInputStream bins=new
BufferedInputStream(fin);
 int i;
 while((c=bins.read())!=-1)
{
 System.out.print((char)c);
 }
 bins.close();
 fins.close();
 }catch(Exception e)
{System.out.println(e);}
 }
}

SequenceInputStream Class in Java

The SequenceInputStream class in Java is used to read data from many

streams at once. It reads data sequentially (one by one).

Declaration of the Java SequenceInputStream class

public class SequenceInputStreams extends
InputStream

SequenceInputStream Class Constructors

Constructor Description

SequenceInputStream(InputStream

s1, InputStream s2)

It generates a new input stream by sequentially

reading the data from two input streams, s1 and

s2.

SequenceInputStream(Enumeration

e)

It reads the contents of an enumeration whose type

is InputStream to build a new input stream

Method Description

int read() It takes the next byte of data from the input stream and

reads it.

int read(byte[] ary, int off,

int leng)

It reads leng bytes of data from the input stream into the

bytes array.

Method Description

int available() It is used to return the most bytes that can be read from an

input stream.

void close() Its purpose is to shut the input stream.

SequenceInputStream Class Methods

Example:

package com.javapoint;

import java.io.*;
class InputStreamExample1
{
 public static void main(String args[])
throws Exception
{
 FileInputStream inputs1=new
FileInputStream("D:\\testin.txt");
 FileInputStream inputs2=new
FileInputStream("D:\\testout.txt");
 SequenceInputStream insta=new
SequenceInputStream(inputs1, inputs2);
 int k;
 while((k=insts.read())!=-1)
{
 System.out.print((char)k);
 }
 insts.close();
 inputs1.close();
 inputs2.close();
 }
}

Example of a program that reads data from two �les and writes it to another

package com.javapoint;

import java.io.*;
class Inputs1
{
 public static void main(String args[])
throws Exception{
 FileInputStream fins1=new
FileInputStream("D:\\testin1.txt");
 FileInputStream fins2=new
FileInputStream("D:\\testin2.txt");
 FileOutputStream fouts=new
FileOutputStream("D:\\testout.txt");
 SequenceInputStream sist=new
SequenceInputStream(fin1,fin2);
 int c;
 while((c=sist.read())!=-1)
 {
 fout.write(c);
 }
 sist.close();
 fouts.close();
 fins1.close();
 fins2.close();
 System.out.println("Success is here");
 }
}

An example of a SequenceInputStream that reads data via enumeration

Enumeration is required if we need to read data from more than two �les.

The Vector class's elements() function may be used to obtain an

enumeration object. Let's look at a basic example in which we read data

from four �les: d.txt, e.txt, f.txt, and g.txt.

package com.javatpoint;

import java.io.*;
import java.util.*;
class Inputs2
{
public static void main(String args[])
throws IOException{
// creating FileInputStream objects for all files
FileInputStream fins=new
FileInputStream("D:\\d.txt");
FileInputStream fins2=new
FileInputStream("D:\\e.txt");
FileInputStream fins3=new
FileInputStream("D:\\f.txt");
FileInputStream fins4=new
FileInputStream("D:\\g.txt");
// to all the stream creating Vector object
Vector v1=new Vector();
v1.add(fins);
v1.add(fins2);
v1.add(fins3);
v1.add(fins4);
// using the elements method to create an
enumeration object
Enumeration e=v1.elements();
//passing the enumeration object in the
constructor
SequenceInputStream bin=new
SequenceInputStream(e);
int c=0;
while((c=bin.read())!=-1){
System.out.print((char)c);
}
bins.close();
fins.close();
fins2.close();
}

}

Class Java ByteArrayOutputStream

The Java ByteArrayOutputStream class is used to write data into many �les

at once. The data in this stream is stored into a byte array, which can later

be sent to other streams.

The ByteArrayOutputStream keeps a copy of the data and sends it to

various streams.

ByteArrayOutputStream's buffer expands automatically in response to

data.

Declaration of the Java ByteArrayOutputStream Class

public class ByteArrayOutputStreams extends
OutputStream

Constructors of the Java ByteArrayOutputStream Class

Constructor Description

ByteArrayOutputStream() It create new byte array output stream with a default size

of 32 bytes that can be extended if needed.

ByteArrayOutputStream(int

size)

It create new byte array output stream with the speci�ed

buffer capacity in bytes.

Methods of the Java ByteArrayOutputStream Class

Method Description

int size() It is used to return the current buffer size.

byte[] toByteArray() It is used to allocate a new byte array.

String toString() It converts the content into a string decoding bytes using the

platform's default character set.

String toString(String

charsetName)

It is used to transform the content into string decoding bytes

using the charsetName supplied.

void write(int b) It is used to write the given byte to the byte array output

stream.

void write(byte[] b, int

off, int leng

It writes len bytes from the supplied byte array to the byte array

output stream starting at offset off.

Method Description

void

writeTo(OutputStream

out)

It writes the whole contents of a byte array output stream to the

chosen output stream.

void reset() It is used to clear the count �eld of a byte array output stream.

void close() It's used to shut off the ByteArrayOutputStream.

Example:

package com.javatpoint;
import java.io.*;
public class DataStreamExample1
{
public static void main(String args[])
throws Exception{
 FileOutputStream fouts1=new
FileOutputStream("D:\\fs1.txt");
 FileOutputStream fouts2=new
FileOutputStream("D:\\fs2.txt");

 ByteArrayOutputStream bouts=new
ByteArrayOutputStream();
 bouts.write(85);
 bouts.writeTo(fouts1);
 bouts.writeTo(fouts2);

 bouts.flush();
 bouts.close();
 System.out.println("Success is here");
 }
 }

Class Java ByteArrayInputStream

ByteArrayInputStream is made up of two words: ByteArray and

InputStream. It may be used to read byte arrays as input streams, as the

name implies.

The Java ByteArrayInputStream class has an internal buffer for reading

byte arrays as streams. The data in this stream is read from a byte array.

ByteArrayInputStream's buffer expands automatically in response to

data.

Declaration of the Java ByteArrayInputStream Class

public class ByteArrayInputStreams extends
InputStream

Constructors of the Java ByteArrayInputStream Class

Constructor Description

ByteArrayInputStream(byte[]

ary)

Creates a new byte array input stream using the buffer

array ary.

ByteArrayInputStream(byte[]

ary, int offset, int leng)

Creates a new byte array input stream using ary as its

buffer array and the ability to read up to leng bytes of

data from an array.

Methods of the Java ByteArrayInputStream Class

Methods Description

int available() It returns the number of bytes that can still be read from the

input stream.

int read() Returns the number of bytes written to the data output

stream.

int read(byte[] ary, int off,

int leng)

It is used to read up to leng bytes of data from the input

stream's array of bytes.

boolean markSupported() It is used to validate the input stream for the mark and reset

methods.

long skip(long xx) It is used to skip the xx bytes of the input stream.

void mark(int

readAheadLimit)

It is used to identify the current location in the stream.

void reset() It is used to reset a byte array's buffer.

void close() It's used to end a ByteArrayInputStream.

Example:

package com.javatpoint;
import java.io.*;

public class ReadExample1
{
 public static void main(String[] args)
throws IOException {
 byte[] bufs = { 95, 26, 39, 31 };
 // new byte array input stream Create
 ByteArrayInputStream byts = new
ByteArrayInputStream(bufs);
 int h = 0;
 while ((h = byts.read()) != -1) {
 //Conversion byte into character
 char chr = (char) h;
 System.out.println("ASCII value of
Character is:" + h + "; Special character
is: " + chr);
 }
 }
}

DataOutputStream Class in Java

The Java DataOutputStream class allows an application to write machine-

independent primitive Java data types to the output stream.

The data output stream is typically used by Java applications to write data

that a data input stream may subsequently read.

Declaration of the Java DataOutputStream Class

public class DataOutputStreams extends
FilterOutputStream implements DataOutput

Methods of the Java DataOutputStream Class

Method Description

int size() It returns the number of bytes written to the data output stream.

void write(int b) It writes the supplied byte to the underlying output stream.

Method Description

void write(byte[] b, int

off, int leng)

It writes leng bytes of data to the output stream.

void

writeBoolean(boolean

v)

It is used to write a 1-byte Boolean value to the output stream.

void writeChar(int v) It is used to write char as a 2-byte value to the output stream.

void writeChars(String

s)

It is used to write a string as a sequence of characters to the

output stream.

void writeByte(int v) It is used to write a byte as a 1-byte value to the output stream.

void writeBytes(String

s)

It is used to write a string as a sequence of bytes to the output

stream.

void writeInt(int v) Its purpose is to write an integer to the output stream.

void writeShort(int v) It's used to send a brief message to the output stream.

void writeShort(int v) It writes a short to the output stream.

void writeLong(long v) Its purpose is to write a long to the output stream.

void writeUTF(String

str)

It is used to write a string to the output stream in a portable

manner using UTF-8 encoding.

void �ush() Its purpose is to �ush the data output stream.

Example:

package com.javapoint;

import java.io.*;
public class OutputExample1
{
 public static void main(String[] args)
throws IOException {
 FileOutputStream file1 = new
FileOutputStream(D:\\testsout.txt);
 DataOutputStream data1 = new
DataOutputStream(file1);
 data1.writeInt(85);
 data1.flush();
 data1.close();
 System.out.println("Succcess is
here");
 }

}

DataInputStream Class in Java

The Java DataInputStream class enables applications to read primitive data

from an input stream in a machine-independent manner.

The data output stream is typically used by Java applications to write data

that a data input stream may subsequently read.

Declaration of the Java DataInputStream Class

public class DataInputStreams extends
FilterInputStream implements DataInput

Methods of the Java DataInputStream Class

Method Description

int read(byte[] b) It reads the number of bytes from the input stream.

int read(byte[] b, int off,

int leng)

It reads leng bytes of data from the input stream.

int readInt() It reads input bytes and returns an int value.

byte readByte() It reads and returns the single input byte.

char readChar() It takes two bytes as input and returns a char value.

double readDouble() It takes eight input bytes and returns a double value.

boolean readBoolean() It reads one input byte and returns true if the byte is not zero

and false if the byte is zero.

int skipBytes(int x) It skips over x bytes of data from the input stream.

String readUTF() It is used to read a string that has been encoded in UTF-8.

void readFully(byte[] b) It is responsible for reading bytes from the input stream and

storing them in the buffer array.

void readFully(byte[] b,

int off, int leng)

It reads len bytes from the input stream.

Example:

package com.javatpoint;
import java.io.*;
public class DataStreamExample1
{
 public static void main(String[] args)

throws IOException {
 InputStream input1 = new
FileInputStream("D:\\testsout.txt");
 DataInputStream inst1 = new
DataInputStream(input1);
 int counts = input1.available();
 byte[] arry = new byte[counts];
 inst1.read(arry);
 for (byte bt : arry) {
 char c = (char) bt;
 System.out.print(c+"-");
 }
 }
}

FilterOutputStream Class in Java

The Java FilterOutputStream class implements the OutputStream class. To

offer extra functionality, it supports subclasses such as

BufferedOutputStream and DataOutputStream. As a result, it is utilized less

frequently on an individual basis.

Declaration of the Java FilterOutputStream Class

public class FilterOutputStreams extends
OutputStream

Methods of the Java FilterOutputStream Class

Method Description

void write(int b) It writes the provided byte to the output stream.

void write(byte[] ary) It writes an ary.length byte to the output stream.

void write(byte[] b, int off, int

leng)

It is used to write len bytes to the output stream starting at

offset off.

void �ush() Its purpose is to �ush the output stream.

void close() Its purpose is to shut the output stream.

Example:

import java.io.*;
public class FilterExample1
{
 public static void main(String[] args)
 throws IOException {
 File data1 = new
File("D:\\testsout.txt");
 FileOutputStream file1 = new
FileOutputStream(data1);
 FilterOutputStream filter1 = new
FilterOutputStream(file1);
 String s1="Welcome to javaTpoint.";
 byte b1[]=s.getBytes();
 filter1.write(b1);
 filter1.flush();
 filter1.close();
 file1.close();
 System.out.println("Success is
here");
 }
}

FilterInputStream Java Class

The Java FilterInputStream class implements the InputStream. It has other

subclasses, such as BufferedInputStream and DataInputStream, that provide

extra capabilities. As a result, it is utilized less frequently on an individual

basis.

Declaration of the Java FilterInputStream Class

public class FilterInputStreams extends
InputStream

Methods of the Java FilterInputStream Class

Method Description

Method Description

int available() It gives an estimate of how many bytes can be read from the input

stream.

int read() It takes the next byte of data from the input stream and reads it.

int read(byte[] b) It reads data from the input stream up to the byte.length is

measured in bytes.

long skip(long nn) It skips over and discards nn bytes of data from the input stream.

boolean

markSupported()

It is used to determine if the input stream supports the mark and

reset methods.

void mark(int

readlimit)

It is used to indicate the current location in the input stream.

void reset() Its purpose is to reset the input stream.

void close() Its purpose is to shut the input stream.

Example:

import java.io.*;
public class FilterExample1
{
 public static void main(String[] args)
throws IOException {
 File data1 = new
File("D:\\testsout.txt");
 FileInputStream file1 = new
FileInputStream(data1);
 FilterInputStream filter1 = new
BufferedInputStream(file1);
 int c =0;
 while((c=filter1.read())!=-1){
 System.out.print((char)c);
 }
 file1.close();
 filter1.close();
 }
}

Console Class in Java

To receive input from the console, the Java Console class is utilized. It

includes methods for reading text and passwords.

If you use the Console class to read a password, it will not be displayed

to the user.1

Internally, the java.io.Console class is linked to the system console. Since

version 1.5, the Console class has been available.

1https://www.javatpoint.com/ java-console-class, javaTpoint

Example of reading text from the console:

String text1=System.console().readLine();
System.out.println("Text is: "+text1);

Declaration of the Java Console Class

public final class Console1 extends Object
implements Flushable

Methods of the Java Console Class

Method Description

Reader reader() It is used to get the reader object that is connected with the

console.

String readLine() It reads a single line of text from the console.

String readLine(String fmt,

Object… args)

It displays a prepared prompt before reading a single line

of text from the console.

char[] readPassword() It is used to read passwords that are not visible on the

terminal.

char[] readPassword(String

fmt, Object… args)

It displays a formatted prompt before reading the

password that is not visible on the console.

Console format(String fmt,

Object… args)

It writes a prepared string to the console output stream.

Console printf(String format,

Object… args)

It is used to write a string to the console output stream.

PrintWriter writer() It is used to get the PrintWriter object that is connected

with the console.

void �ush() It's used to clear the console.

How to Get the Console Object

https://www.javatpoint.com/

The System class has a static function console() that returns a singleton

instance of the Console class:

public static Console console(){}

Let's look at the code to get an instance of the Console class:

Console c1=System.console();

Example:

import java.io.Console;
class ReadStringTest1
{
public static void main(String args[])
{
Console c1=System.console();
System.out.println("Enter name: ");
String n1=c1.readLine();
System.out.println("Welcome "+n1);
}
}

Example of a Java Console Command to Read a Password

import java.io.Console;
class ReadPasswordTest1
{
public static void main(String args[]){
Console c1=System.console();
System.out.println("Enter password ");
char[] ch1=c1.readPassword();
String passw=String.valueOf(ch1);//converting char
array into string
System.out.println("Password is: "+passw);
}
}

FilePermissions Class in Java

The FilePermission class holds the permissions for a directory or �le. All

permissions are linked to a route. There are two sorts of paths:

D:\\IO\\-: This indicates that the permission is connected with all

subdirectories and �les in a recursive manner.

D:\\IO*: This speci�es that the permission applies to all directories

and �les in this directory, excluding subdirectories.

Declaration of the Java FilePermission Class

public final class FilePermissions extends
Permission implements Serializable

FilePermission Class Methods

Method Description

ByteArrayOutputStream() It create new byte array output stream with a default size

of 32 bytes that can be expanded if necessary.

ByteArrayOutputStream(int

size)

It create new byte array output stream with the speci�ed

buffer capacity in bytes.

Methods of the Java FilePermission Class

Method Description

int hashCode() It is used to return an object's hash code value.

String getActions() It is used to return an action's “canonical string

representation.”

boolean equals(Object obj) It is used to compare the equivalence of two

FilePermission objects.

boolean implies(Permission

p)

It is used to look for the provided permission in the

FilePermission object.

PermissionCollection

newPermissionCollection()

It is used to return a new PermissonCollection object that

will be used to store the FilePermission object.

Example:

package com.javatpoint;

import java.io.*;
import java.security.PermissionCollection;
public class FilePermissionExample1
{
 public static void main(String[]
args)
throws IOException {
 String srrg = "D:\\IO
Package\\java.txt";
 FilePermission files1 = new
FilePermission("D:\\IO Package\\-", "read");
 PermissionCollection permission =
files1.newPermissionCollection();
 permission.add(files1);
 FilePermission files2 = new
FilePermission(srrg, "write");
 permission.add(files2);
 if(permission.implies(new
FilePermission(srrg, "read,write"))) {
 System.out.println("Read, Write
permission is granted for the path "+srrg);
 }else {
 System.out.println("No Read,
Write permission is granted for the path
"+srrg); }
 }
}

Writer in Java

It is a general-purpose class for writing to character streams. A subclass

must implement the following methods: write(char[], int, int), �ush(), and

close (). Most subclasses will override some of the methods speci�ed here

to improve ef�ciency, functionality, or both.

Fields

Modi�er and

Type
Field Description

Modi�er and

Type
Field Description

protected Object lock This is the object that is used to synchronize operations on this

stream.

Constructor

Modi�er Constructor Description

Protected Writer() It generates a new character-stream writer, whose crucial

portions will synchronize with the writer.

Protected Writer(Object

lock)

It generates a new character-stream writer, the crucial parts

of which will synchronize with the supplied object.

Methods

Modi�er

and Type
Method Description

Writer append(char c) It adds the speci�ed character to this writer's

name.

Writer append(CharSequence csq) This writer has the given character sequence

appended to it.

Writer append(CharSequence csq,

int start, int end)

It appends to this writer a subsequence of the

supplied character sequence.

abstract

void

close() It �ushes the stream before closing it.

abstract

void

�ush() It cleans the stream.

Void write(char[] cbuf) It writes a string array of characters.

abstract

void

write(char[] cbuf, int off,

int leng)

It writes a subset of a character array.

Void write(int c) It just writes one character.

Void write(String str) It generates a string.

Void write(String str, int off, int

leng)

It writes a segment of a string.

Example:

import java.io.*;
public class WriterExample1
{
 public static void main(String[] args)
{

 try {
 Writer wr = new
FileWriter("output.txt");
 String content1 = "I love
India";
 wr.write(content1);
 wr.close();
 System.out.println("Done..");
 } catch (IOException e)
{
 e.printStackTrace();
 }
 }
}

Reader in Java

The Java Reader class is used to read character streams. The only methods

that a subclass must implement are read(char[], int, int) and close (). On the

other hand, most subclasses will override some of the methods to improve

ef�ciency, expand functionality, or both.

BufferedReader, CharArrayReader, FilterReader, InputStreamReader,

PipedReader, and StringReader are some of the implementation classes.

Fields

Modi�er and Type Field Description

protected Object lock This object is used to synchronize operations on this stream.

Constructor

Modi�er Constructor Description

Protected Reader() It creates a new character-stream reader, with crucial

portions that synchronize with the reader itself.

Protected Reader(Object

lock)

It creates a new character-stream reader, the crucial parts of

which will synchronize with the given object.

Methods

Modi�er and

Type
Method Description

Modi�er and

Type
Method Description

abstract void close() It shuts the stream and releases any related

system resources.

Void mark(int

readAheadLimit)

It denotes the current location in the stream.

Boolean markSupported() It tells whether this stream supports the mark()

operation.

Int read() It just reads one character.

Int read(char[] cbuf) It reads characters into an array.

abstract int read(char[] cbuf, int off,

int leng)

It reads characters into a section of an array.

Int read(CharBuffer target) It tries to read characters into the character

buffer given.

Boolean ready() It indicates whether or not this stream is ready

to be read.

Void reset() Resets stream.

Long skip(long n) Skips characters.

Example:

import java.io.*;
public class ReaderExample1
 {
 public static void main(String[] args)
{
 try {
 Reader reader1 = new
FileReader("file.txt");
 int data1 = reader1.read();
 while (data1!= -1) {
 System.out.print((char)
data1);
 data1 = reader1.read();
 }
 reader1.close();
 } catch (Exception ex) {
 System.out.println(ex.getMessage
());

 }
 }
}

FileWriter Class in Java

The FileWriter class in Java is used to save character-oriented data to a �le.

It is a character-oriented class that is used in Java for �le management.

Unlike the FileOutputStream class, it does not need you to transform a

string to a byte array because it includes a method for writing a string

directly.

Declaration of the Java FileWriter Class

public class FileWriter1 extends
OutputStreamWriter

FileWriter Class Constructors

Constructor Description

FileWriter(String �le) Makes a new �le. It receives the �le name as a string.

FileWriter(File �le) Creates a new �le. It obtains the �le name from the File object.

FileWriter Class Methods

Method Description

void write(String text) It's used to write the string to FileWriter.

void write(char c) It is used to write the character in FileWriter.

void write(char[] c) It is used to write a char array to a �le using FileWriter.

void �ush() It is used to �ush FileWriter's data.

void close() It is used to shut down the FileWriter.

Example:

package com.javatpoint;
import java.io.FileWriter;
public class FileWriterExample1
{
 public static void main(String args[])

{
 try{
 FileWriter fwr=new
FileWriter("D:\\testsout.txt");
 fwr.write("Welcome to java");
 fwr.close();
 }catch(Exception e)
{
System.out.println(e);
}
 System.out.println("Success is
here");
 }
}

FileReader Class in Java

To read data from a �le, the Java FileReader class is utilized. It, like the

FileInputStream class, returns data in byte format.

In Java, it is a character-oriented class that is used for �le management.

Declaration of the Java FileReader Class

public class FileReader1 extends InputStreamReader

FileReader Class Constructors

Constructor Description

FileReader(String

�le)

It gets the �lename as a string. It opens the speci�ed �le in read-

only mode. If a �le does not exist, the FileNotFoundException is

thrown.

FileReader(File �le) It gets the �lename from the �le instance. It opens the speci�ed �le

in read-only mode. If the �le does not exist, the

FileNotFoundException is thrown.

FileReader Class Methods

Method Description

Method Description

int read() It is used to return an ASCII character. At the conclusion of the �le, it returns

-1.

void

close()

It's used to close the FileReader class.

Example:

package com.javatpoint;

import java.io.FileReader;
public class FileReaderExample1
{
 public static void main(String args[])
throws Exception{
 FileReader frr=new
FileReader("D:\\testsout.txt");
 int c;
 while((c=frr.read())!=-1)
 System.out.print((char)c);
 frr.close();
 }
}

Java's Properties Class

The properties object includes both a key and a value pair as strings. The

java.util.Properties class is a Hashtable subclass.

It may be used to determine the value of a property depending on its key.

The Properties class offers methods for reading data from and writing data

to the properties �le. It may also be used to obtain the characteristics of a

system.

The properties �le has the following advantages:

An advantage of the properties �le is that recompilation is not necessary if

the information in the properties �le is changed: If any information in the

properties �le is updated, you do not need to recompile the java class. It is

used to store information that is regularly updated.

Properties Class Constructors

Method Description

Properties() It creates a property list that is empty and has no default

values.

Properties(Properties

defaults)

It creates an empty property list with the default values

given.

Properties Class Methods

Method Description

public void load(Reader r) It reads data from the Reader object.

public void load(InputStream

is)

It reads data from the InputStream object.

public void

loadFromXML(InputStream

in)

It is used to load into this properties table all of the

properties provided by the XML document on the

given input stream.

public String getProperty(String

key)

Based on the key, it returns a value.

public String getProperty(String

key, String defaultValue)

It searches for the property with the given key.

public void setProperty(String

key, String value)

It invokes Hashtable's insert function.

public void list(PrintStream

out)

It prints the property list to the given output stream.

public void list(PrintWriter

out))

It is used to print the property list to the chosen output

stream.

public Enumeration<?>

propertyNames())

It gives an enumeration of all the keys in the property

list.

public Set<String>

stringPropertyNames()

It returns a collection of keys from the property list,

where the key and its associated value are both

strings.

public void store(Writer w,

String comment)

It saves the writer object's properties.

public void store(OutputStream

os, String comment)

The properties are written to the OutputStream object.

public void

storeToXML(OutputStream

os, String comment)

It writes the properties in the writer object to generate

an XML document.

Method Description

public void storeToXML(Writer

w, String comment, String

encoding)

It writes the properties in the writer object to generate

an XML document with the given encoding.

Example:

An example of a Properties class that retrieves information from a

properties �le:

To obtain information from the properties �le, you must �rst

create it.

dtb.properties
user =systems
password =root

Let's now create the java class that will read the data from the properties

�le.

import java.util.*;
import java.io.*;
public class Test1
{
public static void main(String[] args)
throws Exception{
 FileReader reader1=new
FileReader("dtb.properties");

 Properties p1=new Properties();
 p1.load(reader);

 System.out.println(p1.getProperty("user"));
 System.out.println(p1.getProperty("password"))
;
}
}

The following is an example of a Properties class that can be used to

retrieve all of the system properties:

We can retrieve all of the system's properties using the

System.getProperties() function. Let's make the class that retrieves data

from the system properties.

import java.util.*;
import java.io.*;
public class Test1
{
public static void main(String[] args)
throws Exception{

Properties p1=System.getProperties();
Set set=p1.entrySet();

Iterator itrr=set.iterator();
while(itrr.hasNext()){
Map.Entry entry=(Map.Entry)itrr.next();
System.out.println(entry.getKey()+" =
"+entry.getValue());
}

}
}

An example of a Properties class used to create a properties �le

import java.util.*;
import java.io.*;
public class Test1
 {
public static void main(String[] args)
throws Exception{

Properties p1=new Properties();

p1.setProperty("Name","Simran Jaitin");
p1.setProperty("e-mail","simran@java.com");

p1.store(new FileWriter("info.properties"),"Java
Properties Example");

}
}

We covered java input output using Console I/O in Java, how to read from a

�le, how to create and write to a �le in this chapter. We also learned about

the Java properties class. We also talked about FileInputStream and

OutputStream.

mailto:simran@java.com

C H A P T E R 9

Java Streams

DOI: 10.1201/ 9781003229063-9

IN THIS CHAPTER

➢ Creating Streams

➢ Processing Data with Streams

➢ Steam Filter

➢ Bas64 Encode Decode

➢ Using Collectors

In the previous chapter, we covered console input-output (I/O) in Java and

how to read and write the �le. We also covered properties class in Java. In

this chapter, we will learn Java streams in which we covered how to create

streams and how to Processing Data with Streams and how to use collectors

in Java.

STREAMING IN JAVA 8

https://doi.org/10.1201/9781003229063-9

In Java 8, there is a special additional package named java.util.stream. This

package contains classes, interfaces, and enumerations that enable

operational functions on the items. By importing the java.util.stream

package, you may utilize stream.

Stream Has the Following Features

Elements are not stored in a stream. It simply transports components

from a source, such as a data structure, array, or I/O channel, through a

pipeline of computational processes.

The stream serves a purpose in nature. The actions done on a stream do

not affect its origin. Filtering a Stream received from a collection, for

example, creates a new Stream devoid of the �ltered items rather than

deleting elements from the original collection.

Stream is lazy and only evaluates code when it is needed.

During a stream's existence, the elements are only visited once. A fresh

stream, similar to an Iterator, must be produced to revisit the same

components of the source.

The stream can be used to �lter, gather, print, and convert from one data

structure to another, among other things. In the following examples, we've

used streams to perform a variety of activities.

STREAM PIPELINE IN JAVA
A stream pipeline comprises three parts: a source, intermediate operations,

and terminal operation. Because intermediate operations yield a new

modi�ed stream, several intermediate operations can be chained together.

Terminal operations, on the other hand, return a value or void. It is no

longer feasible to operate with the stream after a terminal procedure. When

a terminal action is short-circuited, the stream may end before all values

have been processed. If the stream is limitless, this is bene�cial.

Intermediate processes are time-consuming. They will not be called until

the terminal operation has been completed. This improves performance

while dealing with more signi�cant data streams.

Methods of the Java Stream Interface

Methods Description

boolean allMatch(Predicate<? super

T> predicate)

It returns all components of this stream that

satisfy the given criteria. If the stream is empty,

the predicate is not evaluated, and the true is

returned.

boolean anyMatch(Predicate<? super

T> predicate)

It returns any component of this stream that

matches the criteria supplied. If the stream is

empty, the predicate is not evaluated and

returns false.

static <T> Stream.Builder<T>

builder()

It returns a Stream builder.

<D,A> D collect(Collector<? super

T,A,D> collector)

Using a Collector, it performs a mutable

reduction operation on the elements of this

stream. A Collector encapsulates the functions

used as inputs to collect (Supplier,

BiConsumer, BiConsumer), allowing for

collection strategy reuse and the composition

of collect operations such as multiple-level

grouping or splitting.

<D> D collect(Supplier<D> supplier,

BiConsumer<D,? super T>

accumulator, BiConsumer<D,D>

combiner)

On the elements of this stream, it performs a

mutable reduction operation. A mutable

reduction is when the reduced value is a

changeable result container, as in an ArrayList,

and items are integrated rather than replaced by

changing the state of the result.

static <C> Stream<C>

concat(Stream<? extends C> a,

Stream<? extends C> b)

It creates a lazily concatenated stream with all of

the �rst stream's elements followed by all of

the second stream's elements as its elements. If

both input streams are ordered, the output

stream will be ordered, and if either input

stream is parallel, the resultant stream will be

parallel. When the resulting stream is closed,

the controllers of close for both input streams

are

called. a lengthy count (). It returns total number of items in the speci�ed

stream. This is an example of a reduction.

Stream<D> distinct() It returns total number of items in the speci�ed

stream. This is an illustration of a reduction.

static <D> Stream<D> empty() It gives back an empty sequential Stream.

Stream<D> �lter(Predicate<? super

D> predicate)

It returns a stream that contains the items of the

stream that meet the provided predicate.

Methods Description

Optional<D> �ndAny() If the stream is empty, it returns an Optional

describing some element of the stream;

otherwise, it returns an empty Optional.

Optional<T> �ndFirst() If the stream is empty, it produces an Optional

describing the �rst element of the stream; else,

it returns an empty Optional. If there is no

encounter order in the stream, element may be

returned.

<D> Stream<D> �atMap(Function<?

super T,? extends Stream<? extends

D>> mapper)

It produces a stream that contains the results of

replacing each element of this stream with the

contents of a mapped stream created by

applying the supplied mapping function to

each element. After its contents have been put

into this stream, each mapped stream is closed.

(In the event that a mapped stream is null, an

empty stream is utilized instead.)

DoubleStream

�atMapToDouble(Function<? super

C,? extends DoubleStream>

mapper)

It produces a DoubleStream that contains the

results of replacing each element of this stream

with the contents of a mapped stream created

by applying the supplied mapping function to

each element. After its contents have been put

into this stream, each mapped stream is closed.

(In the event that a mapped stream is null, an

empty stream is utilized instead.)

IntStream �atMapToInt(Function<?

super C,? extends IntStream>

mapper)

It produces an IntStream that contains the results

of replacing each element of this stream with

the contents of a mapped stream generated by

applying the supplied mapping function to

each element. After its contents have been put

into this stream, each mapped stream is closed.

(If mapped stream is null, an empty stream is

used)

LongStream

�atMapToLong(Function<? super

C,? extends LongStream> mapper)

It produces a LongStream that contains the results

of replacing each element of this stream with

the contents of a mapped stream created by

applying the supplied mapping function to

each element. After its contents have been put

into this stream, each mapped stream is closed.

(In the event that a mapped stream is null, an

empty stream is utilized instead.)

void forEach(Consumer<? super T>

action)

It takes action on each element of this stream.

Methods Description

void forEachOrdered(Consumer<?

super T> action)

If the stream has a set encounter order, it executes

an action for each element in the stream's

encounter order.

static <C> Stream<C>

generate(Supplier<C> s)

It returns an endless sequential unordered stream,

each element of which is created by the

supplied Supplier. This is ideal for producing

continuous streams, random streams, and so

forth.

static <C> Stream<C> iterate(T

seed,UnaryOperator<C> f)

It returns an in�nite sequential ordered Stream

created by iteratively applying a function f to

an initial element seed, resulting in a Stream

composed of seed, f(seed), f(f(seed)), and so

on.

Stream<> limit(long maxSize) It returns a stream of this stream's items, trimmed

to be no longer than maxSize in length.

<D> Stream<D> map(Function<?

super C,? extends D> mapper)

It produces a stream containing the results of

applying the speci�ed function on the stream's

elements.

DoubleStream

mapToDouble(ToDoubleFunction<?

super T> mapper)

It produces a DoubleStream containing the results

of applying the speci�ed function on the

stream's items.

IntStream mapToInt(ToIntFunction<?

super C> mapper)

It produces an IntStream with the results of

applying the speci�ed function on the stream's

items.

LongStream

mapToLong(ToLongFunction<?

super C> mapper)

It produces a LongStream containing the results

of applying the speci�ed function on the

stream's items.

Optional<T> max(Comparator<?

super T> comparator)

It returns the most signi�cant element of this

stream based on the Comparator given. This is

an example of a reduction.

Optional<T> min(Comparator<? super

T> comparator)

It returns the stream's smallest element based on

the supplied Comparator. This is a particular

instance of a reduction.

boolean noneMatch(Predicate<? super

T> predicate)

It returns items from this stream that meets the

given criteria. If the stream is empty, the

predicate is not evaluated, and the true is

returned.

@SafeVarargs static <C> Stream<C>

of(C… values)

It returns a sequentially ordered stream with the

supplied values as elements.

static <C> Stream<C> of(C c) It returns a single element in a sequential Stream.

Methods Description

Stream<C> peek(Consumer<? super

C> action)

It returns a stream containing the elements of this

stream, as well as doing the speci�ed action on

each element when items from the resultant

stream are consumed.

Optional<C>

reduce(BinaryOperator<C>

accumulator)

It applies an associative accumulation function on

the items of this stream and returns an Optional

explaining the decreased value if any.

T reduce(T identity,

BinaryOperator<T> accumulator)

It reduces the components of this stream by

utilizing the given identity value and an

associative accumulation function and then

returns the reduced value.

<K> K reduce(K identity,

BiFunction<U,? super T,U>

accumulator, BinaryOperator<K>

combiner)

It reduces the items of this stream using the

identity, accumulation, and combining

functions supplied.

Stream<C> skip(long n) After rejecting the �rst n items of the stream, it

returns a stream containing the remaining

elements of the stream. If this stream has less

than n items, an empty stream is returned.

Stream<C> sorted() It returns a stream containing the components of

this stream, sorted in the natural order. If the

components of this stream are not Comparable,

a java.lang. When the terminal action is

executed, a ClassCastException may be

thrown.

Stream<T> sorted(Comparator<?

super T> comparator)

It returns a stream with the elements of this

stream sorted by the supplied Comparator.

Object[] toArray() It returns an array holding the stream's items.

 B[] toArray(IntFunction<B[]>

generator)

It returns an array containing the items of this

stream, allocating the returned array and any

extra arrays that may be necessary for

partitioned execution or resizing using the

given generator function.

Example:

import java.util.*;
class Product1
{
 int Id;

 String names;
 float prices;
 public Product1(int Id, String names,
float prices)
{
 this.Id = Id;
 this.names = names;
 this.prices = prices;
 }
}
public class JavaStreamExample1
 {
 public static void main(String[] args)
{
 List<Product1> productsList1 = new
ArrayList<Product1>();
 //Products Adding
 productsList1.add(new
Product1(1,"Apple Laptop",52000f));
 productsList1.add(new Product1(2,"HP
Laptop",33000f));
 productsList1.add(new
Product1(3,"Dell Laptop",32000f));
 productsList1.add(new
Product1(4,"Sony Laptop",27000f));
 productsList1.add(new Product1(5,"
Lenevo Laptop",30000f));
 List<Float> productPriceList = new
ArrayList<Float>();
 for(Product1 product: productsList1)
{

 // filtering data of list
 if(product.prices<30000){
 productPriceList.add(product
.prices); // adding price to a

productPriceList
 }
 }
 System.out.println(productPriceList)
; // displaying data
 }
}

Output:

[27000.0]

Java Stream Example: Using a Stream to Filter a Collection

import java.util.*;
import java.util.stream.Collectors;
class Product1
{
 int Id;
 String names;
 float prices;
 public Product1(int Id, String names, float
prices)
{
 this.Id = Id;
 this.names = names;
 this.prices = prices;
 }
}
public class JavaStreamExample1
 {
 public static void main(String[] args)
{
 List<Product1> productsList1 = new
ArrayList<Product1>();
 //Adding Products

 productsList1.add(new Product1(1,"Dell
Laptop",28000f));
 productsList1.add(new Product1(2,"Lenovo
Laptop",303000f));
 productsList1.add(new Product1(3," HP
Laptop",38000f));
 productsList1.add(new Product1(4,"Apple
Laptop",82000f));
 productsList1.add(new Product1(5," Sony
Laptop",30000f));
 List<Float> productPriceList2
=productsList1.stream()
 .filter(p ->
p.prices > 30000)// filtering data
 .map(p-
>p.prices) // fetching price
 .collect(Coll
ectors.toList()); // collecting as list
 System.out.println(productPriceList2);
 }
}

Output:

[303000.0, 38000.0, 82000.0]

Example of Iterating a Java Stream

We can iterate many times as we want using stream. To deal with the logic

you build, Stream provides preset methods. In the example below, we are

iterating, �ltering, and passing a limit to correct the loop.

import java.util.stream.*;
public class JavaStreamExample1
{
 public static void main(String[] args)
{

 Stream.iterate(1, element->element+1)
 .filter(element->element%5==0)
 .limit(4)
 .forEach(System.out::println);
 }
}

Output:

5
10
15
20

Filtering and Iterating Collection in a Java Stream Example

import java.util.*;
class Product1
{
 int Id;
 String names;
 float prices;
 public Product1(int Id, String names, float
prices)
{
 this.Id = Id;
 this.names = names;
 this.prices = prices;
 }
}
public class JavaStreamExample1
{
 public static void main(String[] args)
{
 List<Product1> productsList1 = new
ArrayList<Product1>();

 //Products Adding
 productsList1.add(new Product1(1,"HP
Laptop",29000f));
 productsList1.add(new Product1(2," Sony
Laptop",31000f));
 productsList1.add(new Product1(3,"Lenevo
Laptop",28500f));
 productsList1.add(new Product1(4,"Dell
Laptop",33000f));
 productsList1.add(new Product1(5,"Apple
Laptop",90000f));
 // This is a more concise way to data
filtering.
 productsList1.stream()
 .filter(product ->
product.prices == 29000)
 .forEach(product ->
System.out.println(product.names));
 }
}

Output:

HP Laptop

Example of a Java Stream: reduce() Method in a Collection

import java.util.*;
class Product1
{
 int Id;
 String names;
 float prices;
 public Product1(int Id, String names, float
prices) {
 this.Id = Id;

 this.names = names;
 this.prices = prices;
 }
}
public class JavaStreamExample1
 {
 public static void main(String[] args) {
 List<Product1> productsList1 = new
ArrayList<Product1>();
 // Products Adding
 productsList1.add(new Product1(1,"HP
Laptop",27000f));
 productsList1.add(new Product1(2,"Dell
Laptop",33000f));
 productsList1.add(new Product1(3,"Lenevo
Laptop",26000f));
 productsList1.add(new Product1(4,"Sony
Laptop",29000f));
 productsList1.add(new Product1(5,"Apple
Laptop",92000f));
 //compact approach for filtering data
 Float totalPrice = productsList1.stream()
. map(product->product.prices)
. reduce(0.0f,(sum, prices)-
>sum+prices); // price accumulating
 System.out.println(totalPrice);
 // More precise code
 float totalPrice2 = productsList1.stream()
 .map(product->product.prices)
 .reduce(0.0f,Float::sum); // by
referring method of Float class accumulating
price,
 System.out.println(totalPrice2);

 }
}

Output:

207000.0
207000.0

Summation of a Java Stream Example Using Collector Methods

import java.util.*;
import java.util.stream.Collectors;
class Product1
{
 int Id;
 String names;
 float prices;
 public Product1(int Id, String names, float
prices)
{
 this.Id = Id;
 this.names = names;
 this.prices = prices;
 }
}
public class JavaStreamExample1
 {
 public static void main(String[] args) {
 List<Product1> productsList1 = new
ArrayList<Product1>();
 // Products Adding
 productsList1.add(new Product1(1,"Dell
Laptop",25000f));
 productsList1.add(new Product1(2,"Hp
Laptop",30000f));
 productsList1.add(new Product1(3,"Song
Laptop",28000f));
 productsList1.add(new Product1(4," Lenevo
Laptop",28000f));

 productsList1.add(new Product1(5,"Apple
Laptop",92000f));
 // To total the prices, use Collectors'
technique.
 double totalPrice3 =
productsList1.stream()
 .collect(Collectors.summing
Double(product->product.prices));
 System.out.println(totalPrice3);

 }
}

Output:

203000.0

Example of a Java Stream: Determine the Maximum and Minimum

Product Price

import java.util.*;
class Product1
{
 int Id;
 String names;
 float prices;
 public Product1(int Id, String names, float
prices)
{
 this.Id = Id;
 this.names = names;
 this.prices = prices;
 }
}
public class JavaStreamExample1
 {

 public static void main(String[] args) {
 List<Product1> productsList1 = new
ArrayList<Product1>();
 //Adding Products
 productsList1.add(new Product1(1,"HP
Laptop",29000f));
 productsList1.add(new Product1(2,"Dell
Laptop",32000f));
 productsList1.add(new Product1(3,"Lenevo
Laptop",23000f));
 productsList1.add(new Product1(4,"Sony
Laptop",29000f));
 productsList1.add(new Product1(5,"Apple
Laptop",91000f));
 // max() method to get max Product1 prices
 Product1 productX =
productsList1.stream().max((product1, product2)-
>product1.prices > product2.prices? 1: -1).get();
 System.out.println(productX.price);
 // min() method to get min Product prices
 Product productY =
productsList.stream().min((product1, product2)-
>product1.prices > product2.prices? 1: -1).get();
 System.out.println(productB.prices);

 }
}

Output:

91000.0
23000.0

Example of a Java Stream: count() Method in a Collection

import java.util.*;

class Product1
{
 int Id;
 String names;
 float prices;
 public Product1(int Id, String names, float
prices)
{
 this.Id = Id;
 this.names = names;
 this.prices = prices;
 }
}
public class JavaStreamExample1
 {
 public static void main(String[] args) {
 List<Product1> productsList1 = new
ArrayList<Product1>();
 // Products Adding
 productsList1.add(new Product1(1,"HP
Laptop",27000f));
 productsList1.add(new Product1(2,"Dell
Laptop",35000f));
 productsList1.add(new Product1(3,"Lenevo
Laptop",23000f));
 productsList1.add(new Product1(4,"Sony
Laptop",26000f));
 productsList1.add(new Product1(5,"Apple
Laptop",94000f));
 // count number
 long counts = productsList1.stream()
 .filter(product-
>product.prices<30000)
 .count();
 System.out.println(counts);
 }

}

Output:

3

Converting List to Set Using Java Streams Example

import java.util.*;
import java.util.stream.Collectors;
class Product1
{
 int Id;
 String names;
 float prices;
 public Product1(int Id, String names, float
prices)
{
 this.Id = Id;
 this.names = names;
 this.prices = prices;
 }
}
public class JavaStreamExample1
 {
 public static void main(String[] args)
{
 List<Product1> productsList1 = new
ArrayList<Product1>();
 //Adding Products
 productsList1.add(new Product1(1,"Dell
Laptop",26000f));
 productsList1.add(new Product1(2,"HP
Laptop",31000f));
 productsList1.add(new Product1(3,"Song
Laptop",27000f));

 productsList1.add(new Product1(4," Lenevo
Laptop",29000f));
 productsList1.add(new Product1(5,"Apple
Laptop",93000f));
 // Converting product List into Set
 Set<Float> productPriceList =
 productsList.stream()
 .filter(product->product.prices <
30000) // on the base of price filter product
 .map(product->product.prices)
 .collect(Collectors.toSet()); //
collect it as Set(remove duplicate elements)
 System.out.println(productPriceList);
 }
}

Output:

[27000.0, 29000.0, 26000.0]

Converting a List to a Map Using Java Streams Example

import java.util.*;
import java.util.stream.Collectors;
class Product1
{
 int Id;
 String names;
 float prices;
 public Product1(int Id, String names, float
prices)
{
 this.Id = Id;
 this.names = names;
 this.prices = prices;
 }

}

public class JavaStreamExample1
 {
 public static void main(String[] args) {
 List<Product1> productsList1 = new
ArrayList<Product1>();
 // Products Adding
 productsList1.add(new Product1(1,"HP
Laptop",29000f));
 productsList1.add(new Product1(2,"Dell
Laptop",32000f));
 productsList1.add(new Product1(3,"Lenevo
Laptop",27000f));
 productsList1.add(new Product1(4,"Sony
Laptop",23000f));
 productsList1.add(new Product1(5,"Apple
Laptop",92000f));

 // Converting Product List into a Map
 Map<Integer,String> productPriceMap =
 productsList1.stream()
. collect(Collectors.toMap(
p->p.Id, p->p.names));

 System.out.println(productPriceMap);
 }
}

Output:

{1=HP Laptop, 2=Dell Laptop, 3=Lenevo
Laptop, 4=Sony Laptop, 5=Apple Laptop}

Stream Method Reference

import java.util.*;
import java.util.stream.Collectors;
class Product1{
 int Id;
 String names;
 float prices;

 public Product1(int Id, String names, float
prices)
{
 this.Id = Id;
 this.names = names;
 this.prices = prices;
 }

 public int getId() {
 return Id;
 }
 public String getName() {
 return names;
 }
 public float getPrice() {
 return prices;
 }
}

public class JavaStreamExample1 {

 public static void main(String[] args) {

 List<Product1> productsList1 = new
ArrayList<Product1>();

 // Products Adding
 productsList1.add(new Product1(1,"HP
Laptop",22000f));

 productsList1.add(new Product1(2,"Dell
Laptop",31000f));
 productsList1.add(new Product1(3,"Lenevo
Laptop",29000f));
 productsList1.add(new Product1(4,"Sony
Laptop",21000f));
 productsList1.add(new Product1(5,"Apple
Laptop",91000f));

 List<Float> productPriceList =
 productsList.stream()
. filter(p -> p.prices
> 30000) // data filtering
. map(Product1::getPric
es) // fetching price
. collect(Collectors.to
List()); // collecting list
 System.out.println(productPriceList);
 }
}

Output:

[31000.0, 91000.0]

STREAM FILTER IN JAVA
Java stream has a �lter() method for �ltering stream components based on a

speci�ed criterion. If you want to obtain just even entries from your list, you

can easily accomplish so using the �lter technique.1

1https://www.javatpoint.com/ java-8-stream-�lter, javaTpoint

This method accepts a predicate as an input and returns a stream of

resulting items.

Signature

https://www.javatpoint.com/

The signature of the Stream �lter() function is as follows:

Stream<T> filter(Predicate<? super T> predicate)

Parameter

Predicate: It accepts Predicate reference as an argument. The predicate is a

helpful interface. As a result, you may also pass a lambda expression here.

Return

It will return a new stream.

Example of a Java Stream filter()

import java.util.*;
class Product1
{
 int Id;
 String names;
 float prices;
 public Product1(int Id, String names, float
prices)
{
 this.Id = Id;
 this.names = names;
 this.prices = prices;
 }
}
public class JavaStreamExample1
{
 public static void main(String[] args) {
 List<Product1> productsList1 = new
ArrayList<Product1>();
 //Adding Products
 productsList1.add(new Product1(1,"Dell
Laptop",27000f));

 productsList1.add(new Product1(2,"Hp
Laptop",32000f));
 productsList1.add(new Product1(3," Sony
Laptop",29000f));
 productsList1.add(new Product1(4,"Lenevo
Laptop",25000f));
 productsList1.add(new Product1(5,"Apple
Laptop",91000f));
 productsList1.stream()
. filter(p ->p.prices>
30000) // filtering price
. map(pm -
>pm.prices) // fetching price
. forEach(System.out::println);
 // iterating price
 }
}

Output:

32000.0
91000.0

Example 2 of a Java Stream filter()

import java.util.*;
import java.util.stream.Collectors;
class Product1
{
 int Id;
 String names;
 float prices;
 public Product1(int Id, String names, float
prices)
{
 this.Id = Id;

 this.names = names;
 this.prices = prices;
 }
}
public class JavaStreamExample1 {
 public static void main(String[] args) {
 List<Product1> productsList1 = new
ArrayList<Product1>();
 //Products Adding
 productsList1.add(new Product1(1,"HP
Laptop",22000f));
 productsList1.add(new Product1(2,"Dell
Laptop",32000f));
 productsList1.add(new Product1(3,"Lenevo
Laptop",26000f));
 productsList1.add(new Product1(4,"Sony
Laptop",27000f));
 productsList1.add(new Product1(5,"Apple
Laptop",91000f));
 List<Float> pricesList1
= productsList1.stream()
 .filter(p ->p.prices>
30000) // price filtering
 .map(pm -
>pm.prices) // price fetching
 .collect(Collectors.toList());
 System.out.println(pricesList1);
 }
}

Output:

[32000.0, 91000.0]

BASE64 ENCODE AND DECODE IN JAVA

To cope with encryption, Java offers the Base64 class. You can encrypt and

decrypt your data using the techniques given. To utilize its methods, you

must import java.util.Base64 into your source �le.

This class has three distinct encoders and decoders for encrypting data at

each level. These approaches are applicable at the following levels.

Encoding and Decoding Fundamentals

It employs the Base64 alphabet provided by Java for encoding and decoding

operations in RFC 4648 and RFC 2045. The encoder adds no line separator

character. The decoder rejects data that contains characters that are not part

of the base64 alphabet.

Encoding and Decoding of URLs and Filenames

For encoding and decoding, it employs the Base64 alphabet provided by

Java in RFC 4648. The encoder adds no line separator character. The

decoder rejects data that contains characters that are not part of the base64

alphabet.

Multipurpose Internet Main Extensions (MIME)

For encoding and decoding, it employs the Base64 alphabet as de�ned in

RFC 2045. The encoded output must be expressed in lines of no more than

76 characters. The line separator is a carriage return “\r” followed

immediately by a linefeed “\n.” There is no line separator after the encoded

output. All line separators and other characters not included in the base64

alphabet table are disregarded throughout the decoding process.

Base64 Nested Classes

Class Detail

Base64.Decoder Class implements decoder for decoding byte data using the RFC 4648

and RFC 2045 encoding schemes.

Base64.Encoder Class implements encoder for encoding the byte data using the RFC

4648 and RFC 2045 encoding schemes.

Methods Using Base64

Methods Description

Methods Description

public static Base64.Decoder

getDecoder()

It returns a Base64.Decoder that uses the Basic type

base64 encoding scheme to decode.

public static Base64.Encoder

getEncoder()

It returns a Base64 string. Encoder that uses the

Basic type base64 encoding method to encode

data.

public static Base64.Decoder

getUrlDecoder()

It returns a Base64.Decoder that uses the URL and

Filename safe type base64 encoding scheme to

decode.

public static Base64.Decoder

getMimeDecoder()

It returns a Base64.Decoder that uses the MIME type

base64 decoding technique to decode.

public static Base64.Encoder

getMimeEncoder()

It returns a Base64 string. Encoder that uses the

MIME type base64 encoding technique to encode.

public static Base64.Encoder

getMimeEncoder(int lineLength,

byte[] lineSeparator)

It returns a Base64 string. Encoder that uses the

MIME type base64 encoding method with given

line lengths and separators.

public static Base64.Encoder

getUrlEncoder()

It returns a Base64.Encoder that uses the URL and

Filename safe type base64 encoding method to

encode.

Methods for Base64.Decoder

Methods Description

public byte[]

decode(byte[] src)

It uses the Base64 encoding method to decode all bytes from the

input byte array and write the results to a freshly created output

array. Length of the returned byte array is the length of the

generated bytes.

public byte[]

decode(String src)

It uses the Base64 encoding strategy to decode a Base64 encoded

String into a freshly allocated byte array.

public int

decode(byte[] src,

byte[] dst)

It decodes all bytes in the input byte array using the Base64

encoding technique, then writes the results to the speci�ed

output byte array, beginning at offset 0.

public ByteBuffer

decode(ByteBuffer

buffer)

It uses the Base64 encoding method to decode all bytes from the

input byte buffer and writes the results to a freshly allocated

ByteBuffer.

public InputStream

wrap(InputStream

is)

It returns an input stream that may be used to decode a Base64

encoded byte stream.

Methods for Base64.Encoding

Methods Description

Methods Description

public byte[]

encode(byte[] src)

It uses the Base64 encoding method to encode all bytes from

the given byte array into a newly allocated byte array. Length

of the returned byte array is the length of the generated

bytes.

public int encode(byte[]

src, byte[] dst)

It uses the Base64 encoding technique to encode all bytes from

the provided byte array and writes the resultant bytes to the

chosen output byte array, beginning at offset 0.

public String

encodeToString(byte[]

src)

It uses the Base64 encoding technique to convert the supplied

byte array to a String.

public ByteBuffer

encode(ByteBuffer

buffer)

It uses the Base64 encoding method to encode all remaining

bytes from the given byte buffer into a newly allocated

ByteBuffer. The location of the source buffer will be updated

to its limit upon return; the limit will not have changed. The

location of the returned output buffer will be zero, and its

limit will be the amount of encoded bytes returned.

public OutputStream

wrap(OutputStream

os)

It encloses an output stream to encode byte data using the

Base64 encoding technique.

public Base64.Encoder

withoutPadding()

It returns an encoder instance that encodes the same way as this

one but without padding characters at the end of the encoded

byte data.

DEFAULT METHODS IN JAVA
Java allows you to establish default methods within the interface. Methods

created within an interface and tagged with default are referred to as default

methods. These are non-abstract techniques.

Example of a Java Default Method

Sayable is a functional interface in the following example, with default and

an abstract method. The term “default method” refers to a method that has a

default implementation. You may also offer a more customized

implementation for the function by overriding the default method.

Let's look at a basic example.

interface Sayable{
 // method Default

 default void say(){
 System.out.println("Hello, this is
default");
 }
 // method Abstract
 void sayMore(String msg);
}
public class DefaultMethods1 implements Sayable{
 public void sayMore(String msg){ //
abstract method implementing
 System.out.println(msg);
 }
 public static void main(String[] args) {
 DefaultMethods dm = new DefaultMethods();
 dm.say(); // default method calling
 dm.sayMore("Work is worship"); //
abstract method calling
 }
}

Output:

Hello, this is default
Work is worship

Java 8 Interface Static Methods

Static methods can also be de�ned within the interface. Utility methods are

de�ned using static methods. The example demonstrates how to implement

static method in an interface.

interface Sayable{
 // default method
 default void say(){
 System.out.println("Hello, default
method");
 }

 // method Abstract
 void sayMore(String msg);
 // method static
 static void sayLouder(String msg){
 System.out.println(msg);
 }
}
public class DefaultMethods implements Sayable{
 public void sayMore(String msg){ //
implementing abstract method
 System.out.println(msg);
 }
 public static void main(String[] args) {
 DefaultMethods dm = new DefaultMethods();
 dm.say(); // default
method calling
 dm.sayMore("Work worship"); //
abstract method calling
 Sayable.sayLouder("Hello.."); // static
method calling
 }
}

Output:

Hello, default method
Work worship
Hello..

Java 8 Interface vs. Abstract Class

We consider the requirement for an abstract class in Java after having

default and static methods within the interface. An interface and an abstract

class are nearly identical, except that constructors can be created in the

abstract class, not in the interface.

abstract class AbstractClass1

{
 public AbstractClass1() { //
constructor
 System.out.println("You can create
constructor in abstract class");
 }
 abstract int add(int x, int y); // abstract
method
 int sub(int x, int y){ // non-abstract
method
 return x-y;
 }
 static int multiply(int x, int y)
{ // static method
 return x*y;
 }
}
public class AbstractTest extends AbstractClass1{
 public int add(int x, int y)
{ // implementing abstract method
 return x+y;
 }
 public static void main(String[] args)
{
 AbstractTest x = new AbstractTest();
 int result1 = x.add(20, 10); // calling
abstract method
 int result2 = x.sub(20, 10); // calling
non-abstract method
 int result3 = AbstractClass1.multiply(30,
20); // calling static method
 System.out.println("Addition: "+result1);
 System.out.println("Substraction:
"+result2);
 System.out.println("Multiplication:
"+result3);

 }
}

Output:

You can create constructor in abstract class
Addition: 30
Substraction: 10
Multiplication: 600

FOREACH LOOP IN JAVA
To iterate through the items, Java provides a new method forEach(). It is

speci�ed by the Iterable and Stream interfaces. It is a built-in method in the

Iterable interface. To iterate elements, collection classes that extend the

Iterable interface can utilize the forEach loop.

This method only accepts one parameter, in which it is a functional

interface. As a result, lambda expression can be sent as an argument.

Iterable Interface forEach() Signature

default void forEach(Consumer<super T>action)

forEach() example 1 in Java 8

import java.util.ArrayList;
import java.util.List;
public class ForEachExample1
{
 public static void main(String[] args) {
 List<String> gamesList1 = new
ArrayList<String>();
 gamesList1.add("Batball");
 gamesList1.add("Basketball");
 gamesList1.add("Chess");
 gamesList1.add("Football ");
 System.out.println("--Iterating passing
lambda expression--");

 gamesList1.forEach(games ->
System.out.println(games));
 }
}

Output:

--Iterating passing lambda expression--
Batball
Basketball
Chess
Football

forEach() example 2 in Java 8

import java.util.ArrayList;
import java.util.List;
public class ForEachExample1{
 public static void main(String[] args) {
 List<String> gamesList1 = new
ArrayList<String>();
 gamesList1.add("Basketball");
 gamesList1.add("Football ");
 gamesList1.add("Cricket");
 gamesList1.add("Hocky");
 System.out.println("--Iterating passing
method reference--");
 gamesList1.forEach(System.out::println);
 }
}

Output:

--Iterating passing method reference--
Basketball
Football
Cricket

Hocky

Method forEachOrdered() in Java Stream

Along with the forEach() function, Java includes the forEachOrdered()

method (). It is used to iterate through elements in the stream's given order.

Signature

void forEachOrdered(Consumer<? super T> action)

Java Stream forEachOrdered() Method Example

import java.util.ArrayList;
import java.util.List;
public class ForEachOrderedExample1
{
 public static void main(String[] args) {
 List<String> gamesList1 = new
ArrayList<String>();
 gamesList1.add("Basketball");
 gamesList1.add("Football ");
 gamesList1.add("Cricket");
 gamesList1.add("Hocky");
 System.out.println("—Iterating passing
lambda expression--");
 gamesList1.stream().forEachOrdered(games -
> System.out.println(games));
 System.out.println("--Iterating passing
method reference--");
 gamesList1.stream().forEachOrdered(System.
out::println);
 }
}

Output:

--Iterating passing lambda expression--
Basketball
Football
Cricket
Hocky
--Iterating by passing method reference--
Basketball
Football
Cricket
Hocky

JAVA COLLECTORS
Collectors are a subclass of the Object class. It supports reduction

operations such as grouping components into collections, summarizing

elements based on various criteria, and so on.

The Java Collectors class includes several methods for dealing with

items.

Methods Description

public static <D> Collector<D,?,Double>

averagingDouble(ToDoubleFunction<?

super T> mapper)

It returns a Collector that computes the

arithmetic mean of a double-valued

function on the input items. The result

is 0 if no items are present.

public static <D> Collector<D,?,D>

reducing(D identity, BinaryOperator<D> op)

It returns a Collector that reduces its

input elements using the supplied

identity and a de�ned BinaryOperator.

public static <D>

Collector<D,?,Optional<D>>

reducing(BinaryOperator<D> op)

It returns a Collector that reduces its

input elements using the provided

BinaryOperator. The end product is

referred to as an Optional<D>.

public static <D,C> Collector<D,?,C>

reducing(C identity, Function<? super D,?

extends C> mapper, BinaryOperator<C> op)

It returns a Collector that reduces its

input elements using a given mapping

function and BinaryOperator. This

generalization of reducing(Object,

BinaryOperator) that allows for

element modi�cation before

reduction.

Methods Description

public static <D,T>

Collector<D,?,Map<T,List<D>>>

groupingBy(Function<? super D,? extends

T> classi�er)

It returns a Collector that performs a

“group by” action on input items of

type T, classifying them based on a

classi�cation function and returning

the results in a Map.

public static <T,K,A,D>

Collector<T,?,Map<K,D>>

groupingBy(Function<? super T,? extends

K> classi�er, Collector<? Super T,A,D>

downstream)

It returns a Collector that performs a

cascaded “group by” operation on

input elements of type T, grouping

items according to a classi�cation

function, and then reducing the values

associated with a particular key using

the provided downstream Collector.

public static <T,K,D,A,M extends Map<K,D>>

Collector<T,?,M> groupingBy(Function<?

super T,? extends K> classi�er,

Supplier<M> mapFactory, Collector<? super

T,A,D> downstream)

It returns a Collector that performs a

cascaded “group by” operation on

input elements of type T, grouping

items according to a classi�cation

function, and then reducing the values

associated with a particular key using

the provided downstream Collector.

The Collector's Map is constructed

using the factory method provided.

public static <T,K>

Collector<T,?,ConcurrentMap<K,List<T>>>

groupingByConcurrent(Function<? super T,?

extends K> classi�er)

It returns a concurrent Collector that

performs a “group by” action on type

T input elements, classifying them

according to a classi�cation function.

public static <T,K,A,D>

Collector<T,?,ConcurrentMap<K,D>>

groupingByConcurrent(Function<? super T,?

extends K> classi�er, Collector<? super

T,A,D> downstream)

It returns a concurrent Collector that

uses the provided downstream

Collector to conduct a cascaded

“group by” action on input elements

of type T, grouping elements

according to a classi�cation function,

and then executing a reduction

operation on the values associated

with a particular key.

Methods Description

public static <T,K,A,D,M extends

ConcurrentMap<K,D>> Collector<T,?,M>

groupingByConcurrent(Function<? super T,?

extends K> classi�er, Supplier<M>

mapFactory, Collector<? super T,A,D>

downstream)

It returns a concurrent Collector that

uses the provided downstream

Collector to conduct a cascaded

“group by” action on input elements

of type T, grouping elements

according to a classi�cation function,

and then executing a reduction

operation on the values associated

with a particular key. The Collector's

ConcurrentMap is constructed using

the provided factory function.

public static <T>

Collector<T,?,Map<Boolean,List<T>>>

partitioningBy(Predicate<? super T>

predicate)

It returns a Collector that divides the

input items based on a Predicate and

organizes them in a Map<Boolean,

ListT>>. There are no assurances

about the Map's type, mutability,

serializability, or thread safety.

public static <T,D,A>

Collector<T,?,Map<Boolean,D>>

partitioningBy(Predicate<? super T>

predicate, Collector<? Super T,A,D>

downstream)

It returns a Collector that splits the input

elements based on a Predicate,

reduces the values in each partition

based on another Collector, and

arranges them into a Map<Boolean,

P> whose values are results of the

downstream reduction.

public static <T,K,U>

Collector<T,?,Map<K,U>>

toMap(Function<? super T,? extends K>

keyMapper, Function<? super T,? extends

U> valueMapper)

It returns a Collector that gathers

elements into a Map whose keys and

values result from applying the

mapping functions supplied to the

input elements.

public static <T,K,U>

Collector<T,?,Map<K,U>>

toMap(Function<? super T,? extends K>

keyMapper, Function<? super T,? extends

U> valueMapper, BinaryOperator<U>

mergeFunction)

It returns a Collector that gathers

elements into a Map whose keys and

values result from applying the

supplied mapping functions to the

input elements.

public static <T,K,U,M extends Map<K,U>>

Collector<T,?,M> toMap(Function<? super

T,? extends K> keyMapper, Function<?

super T,? extends U> valueMapper,

BinaryOperator<U> mergeFunction,

Supplier<M> mapSupplier)

It returns a Collector, which accumulates

elements into a Map, the keys and

values of which are the result of

applying the supplied mapping

functions to the input elements.

Methods Description

public static <T,K,U>

Collector<T,?,ConcurrentMap<K,U>>

toConcurrentMap(Function<? super T,?

extends K> keyMapper, Function<? super

T,? extends U> valueMapper)

It returns a concurrent Collector that

gathers elements into a

ConcurrentMap whose keys and

values are applying the mapping

functions supplied to the input

elements.

public static <T,K,U>

Collector<T,?,ConcurrentMap<K,U>>

toConcurrentMap(Function<? super T,?

extends K> keyMapper, Function<? super

T,? extends U> valueMapper,

BinaryOperator<U> mergeFunction)

It returns a concurrent Collector that

gathers elements into a

ConcurrentMap whose keys and

values result from applying the

supplied mapping functions to the

input elements.

public static <T,K,U,M extends

ConcurrentMap<K,U>> Collector<T,?,M>

toConcurrentMap(Function<? super T,?

extends K> keyMapper, Function<? super

T,? extends U> valueMapper,

BinaryOperator<U> mergeFunction,

Supplier<M> mapSupplier)

It returns a concurrent Collector that

collects elements into a

ConcurrentMap, the keys, and values

of which are the results of applying

the supplied mapping functions to the

input elements.

public static <T>

Collector<T,?,IntSummaryStatistics>

summarizingInt(ToIntFunction<? super T>

mapper)

It returns a Collector that applies an int-

producing mapping function to each

input element and returns summary

statistics for the results.

public static <T>

Collector<T,?,LongSummaryStatistics>

summarizingLong(ToLongFunction<? super

T> mapper)

It returns a Collector that performs a

long-producing mapping function to

each input element and delivers

summary statistics for the results.

public static <T>

Collector<T,?,DoubleSummaryStatistics>

summarizingDouble(ToDoubleFunction<?

super T> mapper)

It provides a Collector that performs a

double-producing mapping function

on each input element and returns

summary statistics for the results.

Example of a Java Collector: Obtaining Data as a List

import java.util.stream.Collectors;
import java.util.List;
import java.util.ArrayList;
class Product1
{
 int Id;

 String names;
 float prices;
 public Product1(int Id, String names, float
prices)
{
 this.Id = Id;
 this.names = names;
 this.prices = prices;
 }
}
public class CollectorsExample1
{
 public static void main(String[] args) {
 List<Product1> productsList1 = new
ArrayList<Product1>();
 // Products Adding
 productsList1.add(new Product1(1,"Dell
Laptop",26000f));
 productsList1.add(new Product1(2,"Hp
Laptop",31000f));
 productsList1.add(new Product1(3,"Lenevo
Laptop",28000f));
 productsList1.add(new Product1(4,"Apple
Laptop",91000f));
 productsList1.add(new Product1(5,"Song
Laptop",34000f));
 List<Float> productPriceList =
 productsList1.stream()
. map(x-
>x.prices) // fetching price
. collect(Collectors.toList(
)); // collecting as list
 System.out.println(productPriceList);
 }
}

Output:

[26000.0, 31000.0, 28000.0, 91000.0,
34000.0]

Example of Using the Sum Function in Java Collectors

import java.util.stream.Collectors;
import java.util.List;
import java.util.ArrayList;
class Product1
{
 int Id;
 String names;
 float prices;

 public Product1(int Id, String names, float
prices)
{
 this.Id = Id;
 this.names = names;
 this.prices = prices;
 }
}
public class CollectorsExample1
 {
 public static void main(String[] args)
{
 List<Product1> productsList1 = new
ArrayList<Product1>();
 //Adding Products
 productsList1.add(new Product1(1,"Dell
Laptop",28000f));
 productsList1.add(new Product1(2,"HP
Laptop",31000f));

 productsList1.add(new Product1(3,"Lenevo
Laptop",29000f));
 productsList1.add(new Product1(4,"Apple
Laptop",89000f));
 productsList1.add(new Product1(5,"Sony
Laptop",30000f));
 Double sumPrices =
 productsList1.stream()
. collect(Collectors.summing
Double(x->x.prices)); // collecting as list
 System.out.println("Sum of prices:
"+sumPrices);
 Integer sumId =
 productsList1.stream().collect(Col
lectors.summingInt(x->x.Id));
 System.out.println("Sum of id's: "+sumId);
 }
}

Output:

Sum of prices: 207000.0
Sum of id's: 15

Example of Java Collectors: Obtaining Average Product Price

import java.util.stream.Collectors;
import java.util.List;
import java.util.ArrayList;
class Product1
{
 int Id;
 String names;
 float prices;

 public Product1(int Id, String names, float
prices)
{
 this.Id = Id;
 this.names = names;
 this.prices = prices;
 }
}
public class CollectorsExample1
{
 public static void main(String[] args) {
 List<Product1> productsList1 = new
ArrayList<Product1>();
 // Products Adding
 productsList1.add(new Product1(1,"Dell
Laptop",29000f));
 productsList1.add(new Product1(2,"HP
Laptop",31000f));
 productsList1.add(new Product1(3,"Sony
Laptop",27000f));
 productsList1.add(new Product1(4," Lenevo
Laptop",25000f));
 productsList1.add(new Product1(5,"Apple
Laptop",91000f));
 Double averages = productsList1.stream()
 .collect(Collectors.averagi
ngDouble(p->p.prices));
 System.out.println("Average price:
"+averages);
 }
}

Output:

Average price: 40600.0

Counting Elements in Java Collectors Example

import java.util.stream.Collectors;
import java.util.List;
import java.util.ArrayList;
class Product1
{
 int Id;
 String names;
 float prices;
 public Product1(int Id, String names, float
prices)
{
 this.Id = Id;
 this.names = names;
 this.prices = prices;
 }
 public int getId()
 {
 return Id;
 }
 public String getName()
 {
 return names;
 }
 public float getPrice()
{
 return prices;
 }
}
public class CollectorsExample1
{
 public static void main(String[] args)
{
 List<Product1>productsList1 = new
ArrayList<Product1>();

 // Products Adding
 productsList1.add(new Product1(1,"HP
Laptop",258000f));
 productsList1.add(new Product1(2,"Dell
Laptop",31000f));
 productsList1.add(new Product1(3,"Lenevo
Laptop",27000f));
 productsList1.add(new Product1(4,"Sony
Laptop",26000f));
 productsList1.add(new Product1(5,"Apple
Laptop",91000f));
 Long noOfElements = productsList1.stream()
. collect(Collectors.countin
g());
 System.out.println("Total elements are:
"+noOfElements);
 }
}

Output:

Total elements are: 5

We explored java streams in this chapter, where we learned how to

construct streams and handle data with streams. We also taught about Java

stream �lters, and base64 encode/decode. In Java, we studied default

methods, the foreach() method, and the collectors class.

C H A P T E R 10

Functional Programming with

Lambda Expressions

DOI: 10.1201/ 9781003229063-10

IN THIS CHAPTER

➢ Functional Programming

➢ Pure Functions

➢ Lambda Expressions

We explored Java streams in the previous chapter, where we learned how to

create a stream, how to process it, what a collector is, and how to use a

stream �lter. This chapter will teach us about functional programming and

what a pure function is. We also go over Lambda Expressions.

WHAT IS FUNCTIONAL PROGRAMMING IN JAVA?
In essence, functional programming is a method of designing computer

programs in which calculations are seen as evaluating mathematical

functions. So, in mathematics, what is a function?

https://doi.org/10.1201/9781003229063-10

A function is a mathematical expression that connects an input set to an

output set.1

Signi�cantly, the outcome of a function is solely determined by its input.

Even more intriguing, we can combine two or more functions to create a

new function.

1. The Lambda Calculus: We have to understand why these de�nitions

and characteristics of mathematical functions are essential in

programming. Alonzo Chruch, a mathematician, devised a formal

method for expressing computations based on function abstraction in

the 1930s. The Lambda Calculus was named after this universal

paradigm of computing.

Lambda calculus had a signi�cant effect on the development of

programming language theory, exceptionally functional programming

languages. Lambda calculus is typically implemented in functional

programming languages.

Functional programming languages give expressive techniques to

construct software in function composition since lambda calculus

focuses on function composition.

1https://www.baeldung.com/ java-functional-programming, Baeldung

2. Programming Paradigms Classi�cation: Of fact, functional

programming isn't the only programming style used in the real world.

Programming techniques are broadly classi�ed into imperative and

declarative programming paradigms:

According to the imperative method, a program is de�ned as a

series of statements that alter the program's state until it achieves the

end state. Procedural programming is imperative programming in

which programs are built using procedures or subroutines. Object-

oriented programming (OOP), a popular programming paradigm,

expands procedural programming ideas.

On the other hand, the declarative method communicates the logic

of a computation without de�ning its control �ow in terms of a series

of assertions. Simply said, the declarative method focuses on de�ning

what the program must accomplish rather than how it should

https://www.baeldung.com/

accomplish it. Functional programming languages are a subset of

declarative programming languages. These groups are further

subdivided, and the taxonomy becomes highly complicated.

3. Programming Language Classi�cation: Today, every attempt to

of�cially classify programming languages is an academic endeavor in

and of itself! However, for our purposes, we'll try to grasp how

programming languages are classi�ed based on their support for

functional programming.

Pure functional languages, such as Haskell, support only pure

functional programming.

On the other hand, other languages support both functional and

procedural programming and are regarded as impure functional

languages. Scala, Kotlin, and Java are among the many languages that

�t under this group. It's critical to realize that most of today's popular

programming languages are general-purpose languages, which means

they accept many programming paradigms.

Fundamental Concepts and Principles: This part will go over some of

the fundamental ideas of functional programming and how to use them

in Java. Keep in mind that many of the features we'll be utilizing

haven't always been part of Java, and it's recommended that you use

Java 8 or later to practice functional programming successfully.

1. Functions of First and Higher Orders: If a programming language

considers functions as �rst-class citizens, it is said to have �rst-

class functions. Essentially, it implies that functions are permitted

to support all activities generally available to other entities.

Assigning functions to variables, giving them as arguments to other

functions, and returning them as values from other functions are all

examples.

This feature allows higher-order functions to be de�ned in

functional programming. Higher-order functions can take functions

as inputs and return a function as a result. This supports other

functional programming methods such as function composition and

currying.

Traditionally, functions could only be sent through structures

such as functional interfaces or anonymous inner classes in Java.

Functional interfaces, commonly known as Single Abstract Method

(SAM) interfaces, have precisely one abstract method.

Assume we need to give a custom comparator to Collections.sort

method:

Collections.sort(number, new
Comparator<Integer>()
{
 @Override
 public int compare(Integer c1, Integer
c2) {
 return c1.compareTo(c2);
 }
});

As we can see, this is a time-consuming and verbose method that is unlikely

to inspire developers to choose functional programming. Fortunately, Java 8

introduced many new tools to help with this, including lambda expressions,

method references, and speci�ed functional interfaces.

Let's have a look at how a lambda expression may assist us with the same

task:

Collections.sort(numbers, (c1, c2) ->
c1.compareTo(c2));

This is more concise and understandable. Please keep in mind that, while

this may create the idea that functions are �rst-class citizens in Java, this is

not the case.

Java still encapsulates lambda expressions in functional interfaces

underneath the syntactic sugar. As a result, Java regards lambda expressions

as Objects, the actual �rst-class citizens in Java.

2. Pure Functions: The de�nition of a pure function stresses that it

should return a result based only on its parameters and should have no

side effects. This may appear to contradict all of Java's best practices.

Encapsulation is an introductory programming approach in Java, which is

an object-oriented language. It promotes concealing an object's internal

state and exposing just the methods required to access and alters it. As a

result, some techniques are not strictly pure functions.

Of course, with Java, encapsulation and other object-oriented notions are

simply suggestions, not requirements.

In reality, developers have only lately begun to recognize the need to

design immutable states and functions with no side effects.

Assume we wish to get the sum of the integers we just sorted:

Integer sum(List<Integer> number)
{
 return
number.stream().collect(Collectors.summingInt(Inte
ger::intVal));
}

This technique is deterministic since it is based only on the parameters it

gets. Furthermore, it has no negative side effects.

Side effects might be anything other than the method's intended behavior.

Side effects, for example, might be as easy as changing a local or global

state or storing to a database before returning a response. Purists regard

logging as a side consequence, but we all have our limits to establish.

However, we can reason about how we handle genuine side effects. For

example, we may need to preserve the outcome in a database for legitimate

reasons. In functional programming, there exist ways for dealing with side

effects while maintaining pure functions.

1. Immutability: Immutability is a fundamental notion of functional

programming that refers to the fact that an entity cannot be changed

after its creation. This is now supported by language design in a

functional programming language. However, with Java, we must make

our own decision to construct immutable data structures.

Keep in mind that Java has numerous immutable types by default, such as

String. This is mainly for security considerations, as we utilize String

extensively in class loading and as keys in hash-based data structures.

Other built-in immutable types include basic wrapper and math types.

And what about the data models that we build in Java? They are, of course,

not immutable by default, and we must make a few adjustments to achieve

immutability. It is the use of the last keyword, but it doesn't end there:

public class ImmutableData1
{
 private final String someData1;
 private final AnotherImmutableData
anotherImmutableData1;
 public ImmutableData(final String someData1,
final AnotherImmutableData1 anotherImmutableData1)
{
 this.someData 1= someData1;
 this.anotherImmutableData1 =
anotherImmutableData1;
 }
 public String getSomeData1() {
 return someData1;
 }
 public AnotherImmutableData1
getAnotherImmutableData1() {
 return anotherImmutableData1;
 }
}

public class AnotherImmutableData1 {
 private final Integer someOtherData1;
 public AnotherImmutableData1(final Integer
someData1) {

 this.someOtherData1 = someData1;
 }
 public Integer getSomeOtherData1() {
 return someOtherData1;
 }
}

It is crucial to mention that we rigorously follow the following rules:

Each �eld of an irreversible data structure must be immutable.

This includes all nested types and collections.

As needed, one or more constructors should be provided for

initialization.

There should just be accessor functions, with no adverse effects if

possible.

It's challenging to get it entirely right every time, especially as data

structures become more complicated. Several additional packages, however,

can make dealing with immutable data in Java easier. Immutable and

Project Lombok, for example, provide a ready-to-use framework for

building unchanging data models in Java.

4. Transparency in Referential: Referential transparency is one of the

most challenging features of functional programming to comprehend.

The notion, on the other hand, is relatively straightforward. If

substituting an expression with its equivalent value does not affect the

program's behavior, we call it referentially transparent.

This enables speci�c strong functional programming methods such as

higher-order functions and lazy evaluation. Here's an example to help you

understand:

public class SimpleData1
{
 private Logger logger1 = Logger.getGlobal();

 private String data1;
 public String getData() {
 logger1.log(Level.INFO, "Get the data
called for SimpleData");
 return data1;
 }
 public SimpleData setData(String data1) {
 logger1.log(Level.INFO, " Set the data for
SimpleData. ");
 this.data1 = data1;
 return this;
 }
}

This is a standard POJO class in Java, but we want to see if it supports

referential transparency. Consider the following statements:

String data1 = new
SimpleData().setData("Baeldung").getData();
logger1.log(Level.INFO, new
SimpleData().setData("Baeldung").getData());
logger1.log(Level.INFO, data1);
logger1.log(Level.INFO, "Baeldung");

The three logger calls are semantically similar, but they are not referentially

transparent. Because it has a side effect, the initial call is not referentially

transparent. We'll miss the logs if we replace this call with its value, as we

did in the third call.

Because SimpleData is changeable, the second call is likewise not

referentially transparent. A data request. The presence of setData anyplace

in the program would make it impossible to replace it with its value.

So, in order to achieve referential transparency, our functions must be

pure and immutable. These are the two prerequisites we discussed before.

We generate context-free code as an intriguing result of referential

transparency. In other words, we may execute them in any sequence and

context, which opens up new opportunities for optimization.

Techniques for Functional Programming: The functional programming

principles that we mentioned previously allow us to pro�t from

functional programming by employing various approaches. This part

will go through some of the most popular approaches and see how they

may be implemented in Java.

1. Composition of Functions: The process of creating complicated

functions by combining more straightforward functions is referred

to as function composition. In Java, this is largely accomplished by

using functional interfaces, which are target types for lambda

expressions and method references.

Any interface with a single abstract method may often serve as a functional

interface. As a result, we can simply create a functioning interface.

However, under the package java.util.function, Java 8 has a plethora of

functional interfaces by default for a variety of use scenarios.

Many of these functional interfaces enable function composition via

default and static methods. To further grasp this, let's look at the Function

interface. The function is a straightforward and general functional interface

that takes one input and returns a result.

It also has two default methods, compose andThen, to aid us with

function composition:

Function<Double, Double> log = (val) ->
Math.log(val);
Function<Double, Double> sqrt = (val) ->
Math.sqrt(val);
Function<Double, Double> logThenSqrt =
sqrt.compose(log);
logger1.log(Level.INFO,
String.valueOf(logThenSqrt.apply(3.14)));
// Output is: 1.06
Function<Double, Double> sqrtThenLog =
sqrt.andThen(log);
Logger1.log(Level.INFO,
String.valueOf(sqrtThenLog.apply(3.14)));

// Output is: 0.57

Both approaches enable us to combine several functions into a single

function, but they have distinct meanings. While compose applies the

function provided in the argument �rst, followed by the function on which it

is executed, reversing the process.

Several additional functional interfaces contain intriguing methods for

function composition, such as the Predicate interface's default methods and,

or, and negate. While these functional interfaces only take one argument,

there exist two-arity specializations such as BiFunction and BiPredicate.

2. Monads: Many functional programming notions are derived from

Category Theory, a broad theory of functions in mathematics. It

introduces various category ideas, such as functors and natural

transformations. The only thing that matters is that this is the

foundation for using monads in functional programming.

A monad is a formal concept that allows for the general structure of

programs. So, in essence, a monad allows us to wrap a value, perform a

series of transformations, and then return the value with all transformations

applied. Of course, each monad must obey three laws: left identity, right

identity, and associativity, but we won't go into these now.

In Java, there are few monads that we frequently utilize, such as Optional

and Stream:

Optional.of(2).flatMap(f ->
Optional.of(3).flatMap(t -> Optional.of(f + t)))

So, why is Optional referred to as a monad? This example optionally allows

us to wrap a value with the approach and apply a sequence of changes.

Using the �atMap method, we're doing the transition of adding another

wrapped item. We may demonstrate that Optional obeys the three rules of

monads if we wish. However, opponents will point out that an Optional

does, in some cases, violate the monad rules. However, for most practical

purposes, it should suf�ce.

If we grasp the fundamentals of monads, we'll notice many additional

instances in Java, such as Stream and CompletableFuture.

They assist us in achieving various goals, but they all have a common

composition in which context modi�cation or transformation is handled.

Of course, we may create our monad types in Java to ful�l speci�c goals,

such as log monad, report monad, or audit monad. Remember how we

spoke about dealing with side effects in functional programming? As it

turns out, the monad is one of the functional programming approaches for

accomplishing this.

3. Currying: Currying is a mathematical technique for turning a function

with several parameters into a series of functions with just one

argument. But why are they required in functional programming? It

provides a strong composition method that eliminates the requirement

to call a function with all of its parameters.

Furthermore, the impact of a curried function is not realized until it gets all

of the parameters.

Currying is widely supported in pure functional programming languages

such as Haskell. In fact, by default, all functions are curried. However, with

Java, this is not that simple:

Function<Double, Function<Double, Double>> weight
= mass -> gravity -> mass * gravity;
Function<Double, Double> weightOnEarth =
weight.apply(7.81);
logger1.log(Level.INFO, "Weight on Earth: " +
weightOnEarth.apply(50.0));
Function<Double, Double> weightOnMars =
weight.apply(4.75);
logger1.log(Level.INFO, "Weight on Mars: " +
weightOnMars.apply(50.0));

In this section, we developed a function to determine our weight on a

planet. While our mass remains constant, gravity �uctuates depending on

whatever planet we are on. We may use the function in part by supplying

only the gravity to construct a function for a single planet. Furthermore, we

may use this partly applied function as an input or return value in any

composition.

Currying is reliant on the language providing two essential features:

lambda expressions and closures. Lambda expressions are anonymous

functions that allow us to treat code as if it were data. We've already seen

how to use functional interfaces to build them.

A lambda expression can now shut on its lexical scope, which we call

closure. Here's an example:

private static Function<Double, Double>
weightOnEarth()
{
 final double gravity = 8.81;
 return mass -> mass * gravity;
}

Notice how the lambda phrase we return in the method above depends on

the enclosing variable, which we refer to as closure. Unlike other functional

programming languages, Java requires the enclosing scope to be �nal or

nearly so.

As an intriguing side effect, currying allows us to build arbitrary arity

functional interfaces in Java.

4. Recursion: Another helpful method in functional programming is

recursion, which allows us to break down a problem into smaller

pieces. The signi�cant advantage of recursion is that it will enable us

to avoid the side effects common in any imperative style looping.

Let's see how we can use recursion to get the factorial of a number:

Integer factorial(Integer number)
{
 return (number = = 2)? 2 : number
* factorial(number - 2);
}

We call the same procedure recursively until we get to the base case when

we start calculating our outcome. It's worth noting that we're performing the

recursive call before computing the result at each step or the beginning of

the calculation. As a result, this type of recursion is sometimes referred to

as head recursion.

The disadvantage of this recursion is that each step must hold the state of

all previous stages until we reach the base case. This isn't a big problem for

small groups, but keeping the state for large groups can be wasteful.

A way is to use tail recursion, which is a somewhat different version of

recursion. Here, we verify that the recursive call is the function's �nal call.

Let's see how we can change the preceding function to utilize tail recursion:

Integer factorial(Integer number, Integer result)
{
 return (number = = 2)? result :
factorial(number - 2, result * number);
}

The function makes use of an accumulator, which eliminates the need to

retain the state at each stage of the recursion. The actual bene�t of this

approach is that it allows you to make use of compiler optimizations such as

tail-call elimination, which allows the compiler to determine whether or not

to let go of the current function's stack frame.

Although several languages, including Scala, offer tail-call removal, Java

does not. This is in the Java queue and may appear in some form as part of

the bigger improvements suggested by Project Loom.

Why Is Functional Programming Important?

After going through this, we must ask why we are putting in this much

effort. For someone coming from a Java background, the transition to

functional programming is not easy. As a result, there should be some very

promising advantages to using functional programming in Java.

The most signi�cant bene�t of using functional programming in any

language, including Java, is pure functions and immutable states. In

retrospect, most programming dif�culties are founded on side-effects and

changeable states in one way or another. Simply removing them simpli�es

our program's reading, reasoning, testing, and maintenance.

Declarative programming, as a result, produces programs that are

extremely short and understandable. As a subset of declarative

programming, functional programming includes features such as higher-

order functions, function composition, and function chaining. Consider the

advantages that the Stream API has introduced to Java 8 for handling data

operations.

But don't give in to the temptation until we're totally prepared. Please

keep in mind that functional programming is not a straightforward design

pattern that we can use and pro�t from right away. Functional programming

is more of a shift in how we think about issues and their solutions and how

we organize algorithms.

Is Java a Good Fit?

While it's impossible to dispute the bene�ts of functional programming, we

can't help but wonder if Java is a good �t for it. Java has historically evolved

as a general-purpose programming language that is better suited for object-

oriented programming. Even contemplating the use of functional

programming prior to Java 8 was time-consuming! However, things have

altered signi�cantly with Java 8.

The fact that there are no genuine function types in Java contradicts the

fundamental concepts of functional programming.

Functional interfaces disguised as lambda expressions more than make

up for it, at least syntactically. The fact that types in Java are inherently

changeable and that we have to write so much boilerplate to construct

immutable types doesn't help either.

Other features of a functional programming language that are lacking or

dif�cult to implement in Java are expected. In Java, for example, the default

evaluation technique for arguments is eager. However, in functional

programming, lazy evaluation is a more ef�cient and preferred method.

We can still achieve slow evaluation in Java by combining operator short-

circuiting and functional interfaces, but it's a little more complicated.

The list is by no means exhaustive and may include generics support with

type-erasure, a lack of support for tail-call optimization, and other issues.

We do, however, obtain a general sense. Java is unsuitable for beginning a

functional programming application from scratch.

But what if we already have a Java application, most likely in object-

oriented programming? Nothing prevents us from reaping some of the

bene�ts of functional programming, especially now that Java 8 is available.

For a Java developer, here is where the majority of the bene�ts of

functional programming are found. A mix of object-oriented programming

with the advantages of functional programming can be quite bene�cial.

JAVA'S PURE FUNCTIONS
A function is a pure function if and only if the following conditions are met:

The function's execution has no side effects.

The function's return value is solely determined by the input arguments

provided to it.

Here's an example of a Java pure function (method):

public class ObjectWithPureFunction1
{

 public int sum(int x, int y)
{
 return x + y;
 }
}

Take note of how the input arguments solely determine the sum()

function's return value. It's also worth noting that sum() has no side effects,

which means it doesn't change any state (variables) outside of the method in

any way.2

In contrast, consider the following non-pure function:

public class ObjectWithNonPureFunction1
{

 private int val = 0;

 public int add(int nextVal)
{
 this.val += nextVal;
 return this.val;
 }
}

Take note of how the method add() calculates its return value using a

member variable and alters the state of the value member variable, resulting

in a side effect.

LAMBDA EXPRESSIONS IN JAVA
The lambda expression is a new and essential Java feature introduced in

Java SE 8. It represents one method interface using an expression cleanly

and concisely. It is pretty bene�cial in a library collection. It aids in

iterating, �ltering, and extracting data from a collection.

2http://tutorials.jenkov.com/ java-functional-programming/ index.html, Jenkov.com

The Lambda expression is used to offer an interface implementation that

has a functional interface. It saves a signi�cant amount of code. We don't

need to declare the method again in the case of a lambda expression to

provide the implementation. We just write the implementation code here.

Because a lambda expression in Java is considered a function, the

compiler does not generate a b.class �le.

What Is a Functional Interface?

The lambda expression implements the functional interface. An available

interface contains only one abstract method. The annotation

@FunctionalInterface in Java is used to designate an interface as a

functional interface.

Why Should You Utilize Lambda Expression?

http://tutorials.jenkov.com/
http://jenkov.com/

To offer Functional interface implementation.

There is less coding.

Syntax:

(argumentlist) -> {body}

A Java lambda expression is made up of three parts:

1. Argument-list: It can be either empty or non-empty.

2. Arrow-token: It is used to connect the arguments-list with the body of

the expression.

3. Body: It includes lambda expression expressions and statements.

Syntax with No Parameters

() -> {
// no parameter lambda body
}

Syntax with one Parameter

(k1) -> {
//single parameter lambda body
}

Syntax with two Parameters

(k1,k2) -> {
//multiple parameter lambda body
}

Example of a Java Lambda Expression

To print every item in the list, use a lambda expression in the ArrayList's

forEach() method:

import java.util.ArrayList;

public class Main {
 public static void main(String[] args) {
 ArrayList<Integer> number = new
ArrayList<Integer>();
 number.add(51);
 number.add(19);
 number.add(28);
 number.add(11);
 number.forEach((n1) -> {
System.out.println(n1); });
 }
}

Output:

51
19
28
11

We studied functional programming and pure functions in Java in this

chapter. In addition, we learned about Lambda Expression. This brings us to

the end of our journey with Java.

Appraisal

DOI: 10.1201/ 9781003229063-11

Java is the most widely used and well-known object-oriented programming

(OOP) language. The security characteristic of Java makes it popular and

widely used. Many Java enthusiasts use it for a wide range of applications.

We may use Java to develop a wide variety of programs, including business

applications, network applications, desktop applications, Internet

applications, games, Android apps, and so many more.

Java provides a broad and diverse set of Application Programming

Interfaces (APIs) that aid programmers in the development of applications.

We can use Java to create a variety of apps for a variety of reasons.

The majority of �rms, including Uber, Pinterest, Google, Instagram,

Spotify, Net�ix, and Airbnb, utilize Java in their software stack. We have

included a few businesses or organizations as well as their initiatives. It will

assist you in deciding which programming language to use for your next

project. Java is simple because of its straightforward and easy-to-understand

syntax. Java removes many of C++'s complicated and confusing notions.

Java, for example, does not provide explicit pointers or operator

overloading.

In Java, everything takes the form of an object. In other words, it has

some data as well as some activity. At least one class and object must be

present in a Java application. Java always attempts to detect problems

during runtime and compilation. To provide a robust memory management

mechanism, Java employs a garbage collector. Java is strong or powerful

because of features such as exception handling and garbage collection.

Because Java does not utilize explicit pointers, it is a secure language. The

https://doi.org/10.1201/9781003229063-11

virtual machine is where all Java applications execute. Furthermore, Java

has a security manager that speci�es the access levels of Java classes.

Java guarantees that you can write code once and run it anywhere (at any

platform). The generated byte code is platform-agnostic, and it may be

executed on any machine, regardless of the operating system. Java enables

you to create robust, scalable, and multi-tiered programs for various

business needs; many bespoke software development �rms provide smooth

custom software development services. Java allows you to create everything

from simple applications to massive end-to-end corporate systems.

A java developer is required to have abilities such as:

Understanding and troubleshooting the code of others

Deployment to internal or external servers

How to Use a Java Virtual Machine

Java integration with current online and business apps

However, because Java is the dominant language in numerous industries,

each java employment opportunity necessitates a unique set of abilities.

JAVA JOB OPPORTUNITIES

Junior Programmer

Senior Programmer

Web Developer in Java

Java architect

Android Developer in Java

Java EE programmer

Java is an ancient programming language that has done well in keeping up

with the market's shifting expectations. According to newrelic.com, Java 8

is the most widely used version of Java in the market, with Oracle having

http://newrelic.com/

been the primary seller and maintainer of the Java language and the Java

Virtual Machine (JVM) since its purchase of Sun Microsystems in 2010.

Despite being named the most popular programming language of 2019,

others argue that Java is losing favor to rising languages such as Python.

However, even the most contradictory arguments from reliable sources

provide the same results.

WHY YOU SHOULD LEARN JAVA TODAY?

In most cases, the code is written in a human-readable programming

language and then converted by a compiler into a machine language

that your system executes to run the intended program.

If you've ever looked at Java, you've probably heard the expression

“write once, run anywhere.” Because Java was designed to be a

platform-independent language, this fact is linked with Java

programming. If you wish to execute Java, you must install a virtual

machine on your computer. JVM may be installed on any system,

regardless of its operating system. As a result, any machine, operating

system, or architecture that supports the JVM may run a Java

application.

The development of Covid-19, its effects on the global economy, and

the battle against the advent of e-commerce. This worldwide surge in e-

commerce has created a speci�c need for Java developers in various

roles, including Android, Web, and Enterprise Level Apps.

There has been a de�nite storm of android app development and

consumption over the last several years. This amount is expected to

increase to 184 billion in the near future, according to Sensor Tower

(Mobile App Store Marketing Intelligence). The majority of Android

apps use Java as their primary backend language. With this predicted

increase, these �gures demonstrate why you should learn Java in 2021.

Many novices struggle with deciding on a programming language to

begin with. If you're starting to learn java online from scratch, it's very

likely that you'll be advised to learn Java as your �rst language from

various sources.

This is because Java is object-oriented, robust, and understandable,

and it handles storage space, de-allocation, and reallocation. Despite

the fact that Java has commercial customers, it nevertheless provides

free support, endless libraries, and free sophisticated APIs for anybody

to utilize. If you are a freshman and want to get started with a real-time

project, Java is the way to go. Java will offer you a complete toolbox

for any small size to vast, scalable, or enterprise-level programs, from

beginning tools to expert APIs.

Java was created in 1995, making it 27 years old by the time you read

this in 2022. Java has been a top language from its inception and

continues to remain so to this day. This essay is not a biased assessment

of Java as my personal favorite, but rather the truth that throughout the

past 26 years, and particularly during this epidemic, the need for Java

developers has increased. Recruiters have ranked it in the top three for

the previous two years, with over 60,000 positions available online.

Since 2019, we have witnessed the growth of work-from-home culture

unfold in front of our eyes. Because of this compulsion, many

workplaces were unable to equip their employees at home adequately.

They were also intended to inculcate whatever gadgets they possessed.

This feature also served as another reason why Java was bene�cial in

most companies.

The Java community is highly active and helpful, and you will never

feel alone in your learning path. We constantly recommend that

novices, no matter what language they are studying, become a member

of an actively participating community to feel connected, remain

current, and learn from the errors of others.

Everyone was once a novice or an amateur, therefore don't be afraid to

ask questions about topics you don't understand or report inaccuracies.

However, we recommend that you �nish your study before reporting a

mistake. There are already many answers for the exact issues you're

dealing with most of the time.

This textbook is a great way to begin if you want to learn how to code in

Java. We believe Android will continue its global market dominance for a

variety of reasons. We covered a wide range of java topics in this book. Let

us now go through the contents of this text to review and reinforce the facts

and information we acquired about Java. We started Chapter 1 by covering

an introduction to Java, its key features, and syntax. In Chapter 2, we

learned how to install Java on a computer and about java primitives, control

structures, loops, and packages. We learned about OOP in Chapter 3, where

we discussed access modi�ers, interfaces, inheritance, and Java enums. In

Chapter 4, we discussed what a string is, how to compare strings, and

convert strings. Chapter 5 went through arrays, lists, sets, and maps. In

addition, in Chapter 6, we learned about libraries, packages, and modules.

We went over java database connections and relational databases.

Index

A

Absent modules, detection of, 287

Abstraction, 86

Abstract keyword in Java, 18

Access modi�ers, 272

with method overriding in Java, 278–279

private constructor's role, 274–278

add() function, 214

addAll() function, 211, 213, 215

Aggregation, 87–88

Anonymous object, 101–103

API, see Application Programming Interface

append() function, 155, 175

Application Programming Interface (API), 256, 286–287, 304, 306, 467

Architecture's neutrality, 10

Arithmetic expressions, 44–45

ArrayIndexOutOfBoundsException, 201

Array in Java, 194

adding two matrices, 208

advantages, 194–195

ArrayIndexOutOfBoundsException, 201

cloning an array, 206–207

declaration, instantiation, and initialization, 196–197

disadvantages, 195

for each loop, 197–200

jagged array, 203–204

Java array copy, creating, 205–206

method returning an array, 200

multidimensional array, 201–203

multiplying two matrices, 208–210

name of Java array class, 204–205

single dimensional array, 195–196

types, 195

ArrayList, 230

vs. Java List, 232–233

ASCII code, 48–49

Assignments expressions and assignment statements, 39–40

Association, 87

Automatic Garbage Collection feature, 8

B

Base64 encode and decode in Java, 419

fundamentals, 419

multipurpose internet main extensions (MIME), 420

of URLs and �lenames, 419

Binary literal, 24

Blank lines, 27

inheritance, 27

interfaces, 27

Block styles, 56

Boolean keyword in Java, 18

Break keyword in Java, 18

Break statement, 74

BufferedInputStream class, 357

constructors of, 358–359

declaration of, 357

BufferedOutputStream class, 355–357

Builder, user vs., 263

Built-in packages, 77

ByteArrayInputStream class, 366

declaration of, 366–367

ByteArrayOutputStream class, 363

declaration of, 364–365

Bytecode, 3, 10, 35

Byte keyword in Java, 18

C

capacity() function, 172, 178

Case keyword in Java, 18

Catch keyword in Java, 19

Character data type and operations, 48

Character literals, 25

Character User Interface (CUI), 13

Char and numeric types, casting between, 50–51

charAt() function, 163–164

Char keyword in Java, 19

CharSequence, interface for, 142–143

Class, 19, 85, 90, 92–94

Class �les/JAR �les, methods for loading, 271

ClassLoader, 35, 149

Classpath, 258–259

CLASSPATH, 31–32

Class read-only, 281

Class write-only, 281–282

clone() function, 216, 282, 283

drawbacks of, 283

object cloning, bene�t of, 283

object copying, disadvantages of, 283–285

Cloud database, 329

bene�ts of, 329

Cohesion, 87

Collection interface, 210, 230

Collections.sort() function, 237

Collector methods, summation of a Java stream example using, 406–407

Column, 334

Comments, 25, 54

compareTo() function, 152

Compiled and interpreted, Java as, 8

Composition, 88

concat() function, 155

Console class, 374–375

Console object, getting, 375–376

Constants, 40–42, 92

Constructors, 103

constructor overloading, 108–109

copy constructor in Java, 110–111

copying values without, 111–112

default constructor, 104–106

and enum, 137

parameterized constructor, 106–107

contains() function, 217

containsAll(), 218–219

Continue keyword in Java, 19

Continue statement, 75

Control structures, 59

if-else-if statement, 62–64

if-else statement, 61–62

if statement, 60–61

jump statements, 73–76

loop statements, 68–73

nested if statement, 64–66

switch statement, 66–68

Copy constructor in Java, 110–111

Copying values without constructor, 111–112

count() method, 409–410

Coupling, 86–87

CUI, see Character User Interface

Currying, 456–457

D

Data, 325

Database, 322, 325–326

Database evolution, 326

cloud database, 329

bene�ts of, 329

�le-based, 326–327

hierarchical data model, 327

network data model, 328

relational database, 328–329, 332

Database language, 343–346

Database management system (DBMS), 322–323

architecture, three schema of, 338–339

architecture types, 337

1st-tier architecture, 337

2-tier architecture, 337–338

3-tier architecture, 338

bene�ts of, 324

disadvantages, 325

�le system vs., 336

vs. Relational Database Management Systems (RDBMS), 334–336

Data Control Language (DCL), 345–346

Data De�nition Language (DDL), 344

Data independence, 342

database language, 343–346

DataInputStream class, 370

declaration of, 370–371

Data Integrity, 334

Data Manipulation Language (DML), 344–345

Data model, 339–341

schema and instance of, 341–342

DataOutputStream class, 368

declaration of, 368–369

Data Source Name (DSN), 316

connecting a Java application to, 318

connecting a Java application without, 317–318

DBMS, see Database management system

DCL, see Data Control Language

DDL, see Data De�nition Language

Debugging, 58

Decision-Making statements, 60

Declarative programming, 459

Default block of code, 19

Default constructor, 104–106

Default methods in Java, 422

example of, 423–424

Java 8 interface

vs. abstract class, 425–426

static methods, 424–425

Default modi�er, 272, 275

delete() function, 170, 177

Directory structure, constructing, 290–291

Distributed applications, developing, 12

DML, see Data Manipulation Language

Documentation and programming style, 54

Do keyword in Java, 19

Domain integrity, 334

Double keyword in Java, 19

Do-while loop, 72–73

DriverManager class, 319

interface of connection, 319–320

statement interface, 320–322

DSN, see Data Source Name

Dynamic and extensible, Java as, 13–14

E

Eclipse, 6

EJB, see Enterprise JavaBeans

Else keyword in Java, 19

Encapsulation, 279

bene�ts of, 279–281

class read-only, 281

class write-only, 281–282

Encapsulation, 86

endIndex, 160

endsWith() function, 163

ensureCapacity() function, 172, 179

Enterprise JavaBeans (EJB), 12

Entity integrity, 334

Entity-relationship data model (ER model), 340

Enumeration, 362

Enum keyword in Java, 19

Enums, 23–24, 131

constructor and, 137

enumeration and methods, 138–139

inheritance and enumeration, 135–137

Environment variables, establishing

equals() method, 150

ER model, see Entity-relationship data model

Errors in programming, 56

debugging, 58

logic errors, 58

runtime errors, 57

syntax problems “compilation errors,” 56–57

executeQuery() function, 311

Extend keyword in Java, 19

Extensible and dynamic, Java as, 13–14

Extensible Markup Language (XML), 341

F

Features of Java programming language, 6

compiled and interpreted the data, 8

distributed applications, developing, 12

extensible and dynamic, 13–14

interactive and multi-threaded, 12–13

neutral in architecture, 10

object-oriented language, Java as, 10–11

outstanding performance, 13

platform freedom, 9

portability, 10

robust, 11

security, 11–12

simplicity, 7–8

well-known, 8

Field, 333

File-based database, 326–327

FileInputStream class, 353

declaration of, 353–355

FileOutputStream class, 350

declaration of, 350

FilePermissions class, 377

declaration of, 377–379

FileReader class, 384

declaration of, 384–385

File Transfer Protocol (FTP), 12

FileWriter class, 383

declaration of, 383–384

�lter() method, 415

FilterInputStream Java class, 373

declaration of, 373–374

FilterOutputStream class, 371

declaration of, 372–373

Final keyword in Java, 19–20

Finally keyword in Java, 20

Floating-point literals, 24–25, 44

Float keyword in Java, 20

�ush() method, 356

For-each loop, 70–71

Foreach loop in Java, 427

forEachOrdered() in Java stream, 429

forEachOrdered() method example, 429–430

signature, 429

forEach method, 250

For keyword in Java, 20

For loop, 69–70

FTP, see File Transfer Protocol

Functional interface, 463

Functional programming, 444–461, 459

function valueof(), 136–137

G

get() function, 235

getClass().getName() method, 204

Gosling, James, 2

Gradle, 299

conventions, 300

�exibility, 300

fundamental concepts, understanding, 300–301

high performance, 299

JVM foundation, 299–300

vs. Maven, 301–302

Graphical User Interface (GUI), 13

Groovy-based Domain-Speci�c Language (DSL), 301

GUI, see Graphical User Interface

Guide to Java packages, 76

package kinds in Java, 77–81

subpackages in Java, 81–82

H

hashCode() method, 220

HashCode test for Strings and StringBuffers, 182–183

Hexadecimal literal, 24s

Hierarchical Database, 327

HTTP, see Hypertext Transfer Protocol

Hypertext Transfer Protocol (HTTP), 12

I

IDE, see Integrated development environment

Identi�ers in Java, 17–18, 37–38

IDS, see Integrated Data Store

If keyword in Java, 20

If statement, 60–61

if-else-if statement, 62–64

if-else statement, 61–62

loop statements, 68–73

nested if statement, 64–66

switch statement, 66–68

Immutability, 449

Immutable class, 185

toString() function, 186

bene�t, 186–188

Java StringTokenizer, 189

StringTokenizer class methods, 190–191

StringTokenizer constructors, 189

Immutable String in Java, 147

String class, 150

String objects, 149

Implements in Java, 20

Importance of Java, 3–4

Import keyword in Java, 20

Indentation, 55

IndexOutOfBoundException, 160

Inheritance, 27, 86

Input/output in Java, 347

BufferedInputStream class, 357–359

BufferedOutputStream class, 355–357

ByteArrayInputStream class, 366–367

ByteArrayOutputStream class, 363–365

console class, 374–375

console object, getting, 375–376

DataInputStream class, 370–371

DataOutputStream class, 368–369

FileInputStream class, 353–355

FileOutputStream class, 350

FilePermissions class, 377–379

FileReader class, 384–385

FileWriter class, 383–384

FilterInputStream Java class, 373–374

FilterOutputStream class, 371–373

InputStream, 349

InputStream class, 350

OutputStream, 349

OutputStream class, 349

properties class of Java, 386–390

reader in Java, 381–383

SequenceInputStream class, 359–363

stream, 348

writer in Java, 379–381

InputStream class, 349, 350

insert() function, 169, 175

Installing JAVA IDE, 32–35

Instanceof keyword in Java, 20

Instance variable, 94

Integer literals, 24, 43

Integrated Data Store (IDS), 328

Integrated development environment (IDE), 5, 32–35

IntelliJ IDEA, 6

Interactive and multi-threaded, Java as, 12–13

Interface, 27, 90

Interface keyword in Java, 20

intern()method, 165

Internal package encapsulation, 287

Internet of Things (IoT), 5

Interpreter, 35

Int keyword in Java, 20

isEmpty() function, 221

Iterating collections, 248

four Java collection iteration methods, 248–251

Java Collection iterator(), method of, 251–254

iterator() function, 222, 251–254

J

Jagged array, 203

JAR �le, see Java Archive �le

Java 8 interface

static methods, 424–425

vs. abstract class, 425–426

Java ABC library, 256

Java Archive (JAR) �le, 257, 271

Java BuzzWords, 6

Java class library, 259–260

Java-classpath switch, using, 270–271

Java Collectors, 430

average product price, obtaining, 438–439

counting elements in example of, 439–441

obtaining data as a list, 434–436

using sum function in, 436–437

Java Compiler, 34

Java Database Connectivity (JDBC), 303

Application Programming Interface (API), 306

architecture of DBMS, 337

DBMS architecture types, 337–339

three schema of, 338–339

bene�ts of using, 305–306

database evolution, 326

cloud database, 329

�le-based, 326–327

hierarchical data model, 327

network data model, 328

relational database, 328–329, 332

database management system (DBMS), 322–323

bene�ts of, 324

disadvantages, 325

�le system vs., 336

data independence, 342

database language, 343–346

data model, 339

schema and instance of, 341–342

Data Source Name (DSN), 316

connecting a Java application to, 318

connecting a Java application without, 317–318

driver for, 306–311

DriverManager class, 319

interface of connection, 319–320

statement interface, 320–322

NoSQL database, 330

bene�t of, 330

disadvantage of, 330–331

object-oriented databases (OODs), 331–332

Oracle Database Connectivity in Java, 312

creating a table, 312

example, 313–314

MySQL Database Connectivity in Java, 315–316

permanent classpath, con�guring, 314–315

temporary classpath, con�guring, 314

Relational Database Management Systems (RDBMS), 332

column, 334

DBMS vs., 334–336

�eld, 333

history, 333

row/record, 333

table, 333

working, 332

Java Development Kit (JDK), 2, 30, 299

Java Jigsaw, 285

Java native keyword, 21

Java Package, 264

bene�ts, 264

compiling, 265

going to a package from another package, 266–269

launching, 265

Java Platform Module System (JPMS), 285

Java runtime environment (JRE), 3, 289

Java StringTokenizer, 189

Java Virtual Machine (JVM), 3, 9, 11, 13, 93, 144, 201, 299–300, 300, 469

JDBC, see Java Database Connectivity

JDBC-ODBC bridge driver, 306–307

JDK, see Java Development Kit

JFreeChart API documentation, 257

Job opportunities, 469

joining() method, 159

JPMS, see Java Platform Module System

JRE, see Java runtime environment

Jump statements, 73–76

Just In Time compiler in Java, 13

JVM, see Java Virtual Machine

K

Keywords in Java, 18–23

L

Lambda calculus, 444–445

Lambda expressions, 462, 472

functional interface, 463

need for utilizing, 463–465

length() function, 164

Library classes in Java, 260–262

Library in Java, 256

classpath, 258–259

documentation in, 257–258

.jar �les downloading, 257

Java class library, 259–260

library classes in Java, 260–262

locating, 256–257

making use of, 262–263

Software Development Kit (SDK), 263–264

user vs. builder, 263

LinkedList, 230

list.add() function, 233

List in Java, 230

ArrayList vs. Java List, 232–233

converting an array to a list, 233–234

get and set an element in a list, 235–236

how to convert a list to an array, 234–235

interface for Java Listiterator, 238–240

sorting a list, 237–238

Listiterator, 238–240

Literals in Java, 24–25

Logic errors, 58

Long keyword in Java, 20

Loop statements, 68–73

M

Map interface in Java, 241

hierarchy of Java map, 241–244

interface of Map.Entry, 244–248

Matrix

adding two matrices, 208

multiplying two matrices, 208–210

Maven, 292–293

bene�ts of using, 297

core ideas, 293–294

drawbacks of using, 298

Gradle vs., 301–302

installation procedure, 294–295

pom.xml �le elements, 297

pom.xml Maven �le, 295–296

elements utilized in creating, 296

in practical application, 298

repository, 298–299

Maximum and minimum product price, determining, 407–409

Method in Java, 90–91, 94

methods values(), 136–137

MIME, see Multipurpose internet main extensions

Mobility of Java-based applications, 2

Modi�ers in Java, 23

Modularized Java 9 JDK, 290

Module name, 290

Modules in Java, 285

absent modules, detection of, 287

bene�ts of, 286

compiling, 291–292

directory structure, constructing, 290–291

execution, 292

internal package encapsulation, 287

module basics in Java, 288

naming a Java module, 288

root directory of, 288

smaller application distribution, modular Java platform for, 286–287

source code for Java, 291

Module system, 289–290

Monads, 454–455

Multidimensional array, 201

Multi-line comments in Java, 26

Multiplication class, 81

Multipurpose internet main extensions (MIME), 420

Multithreading, 12–13

Mutable String, 168–173

MyDependency, 258

MySQL Database Connectivity in Java, 315–316

N

Naming, conventions for, 55

Naming a Java module, 288

Naming conventions, Java, 89

bene�ts of, 89

class, 90, 93–94

constant, 92

interface, 90

Java objects and classes, 92–93

method, 90–91

object, 93

package, 92

variable, 91

Native API driver, 307

Native techniques, 14

Nested if statement, 64–66

NetBeans, 6

Network data model, 328

Network Protocol driver, 308

New keyword in Java, 21

Non-access modi�ers, 273

NoSQL database, 330

bene�t of, 330

disadvantage of, 330–331

Null keyword in Java, 21

NULL value, 334

Numbers, 24

converting string to

strings to doubles conversion, 52

string to integers conversion, 52

Numerical data types and operations, 42

Numerical operators, 42

Numeric literals, 43

�oating-point literals, 44

integer literals, 43

notations in scientist, 44

Numeric type conversions, 46

character data type and operations, 48

unicode and ASCII code, 48–49

O

Object, 85, 92–93

Object.clone() method, 283–284

Object and class, difference between, 88

Object-based data model, 340

Object cloning, bene�t of, 283

Object copying, disadvantages of, 283–285

Object creation in Java, 100

Object-oriented architecture of Java, 4

Object-oriented databases (OODs), 331–332

Object-oriented language, Java as, 10–11

Object-oriented programming (OOP), 2, 13, 83, 84, 331, 445

abstraction, 86

aggregation, 87–88

association, 87

class, 85

cohesion, 87

composition, 88

constructors, 103

constructor overloading, 108–109

copy constructor in Java, 110–111

copying values without constructor, 111–112

default constructor, 104–106

parameterized constructor, 106–107

coupling, 86–87

encapsulation, 86

enums, 131

constructor and, 137

enumeration and methods, 138–139

inheritance and enumeration, 135–137

inheritance, 86

instance variable, 94

Java OOPs concepts, 84

method, 94

naming conventions, Java, 89

bene�ts of, 89

class, 90, 92–94

constant, 92

interface, 90

method, 90–91

object, 92–93

package, 92

variable, 91

new keyword, 95

anonymous object, 101–103

object creation in Java, 100

object, 85

object and class, difference between, 88

polymorphism, 86

vs. procedure-oriented programming languages, 88–89

static keyword, 112

counter program with no static variables, 115

counter program with static variables, 116–120

“this” keyword, 120–131

Octal literals, 24

OODs, see Object-oriented databases

OOP, see Object-oriented programming

Operating System (OS), 9

Oracle Database Connectivity in Java, 312

creating a table, 312

example, 313–314

MySQL Database Connectivity in Java, 315–316

permanent classpath, con�guring, 314–315

temporary classpath, con�guring, 314

ordinal(), 136–137

OS, see Operating System

OutputStream class, 349

Outstanding performance of Java, 13

Overridden method, 278

P

Package kinds in Java, 77–81

Packagename, using, 266–267

packagename.classname, using, 267–268

Packages in Java, 21, 92, 264

bene�ts, 264

compiling, 265

going to a package from another package, 266–269

launching, 265

Parameter, 416

Parameterized constructor, 106–107

PATH variable, 31–32

Permanent classpath, con�guring, 314–315

Platform freedom, 9

Polymorphism, 86

POM, see Project Object Model

pom.xml �le elements, 297

pom.xml Maven �le, 295–296

elements utilized in creating, 296

Portability of Java, 10

Primitive data types, 35

appropriate comments and style of comments, 54

arithmetic expressions, 44–45

assignments expressions and assignment statements, 39–40

block styles, 56

casting between char and numeric types, 50–51

constants, 40–42

conventions for naming, 55

converting a string to a number

strings to doubles conversion, 52

string to integers conversion, 52

documentation and programming style, 54

errors in programming, 56

debugging, 58

logic errors, 58

runtime errors, 57

syntax problems “compilation errors,” 56–57

identi�ers, 37–38

numerical data types and operations, 42

numerical operators, 42

numeric literals, 43

�oating-point literals, 44

integer literals, 43

notations in scientist, 44

numeric type conversions, 46

character data type and operations, 48

unicode and ASCII code, 48–49

shortcut operators, 45–46

simple programs to write, 35–37

in a single step, declare and initialize variables, 40

spacing lines and proper indentation, 55

special character escape sequences, 50

string type, 51

string concatenation, 51–52

using the console for input

using a scanner to getting information, 53–54

variable declaration, 38–39

variables, 38

print()method, 260

println() method, 260

Private access modi�er, 273

Private constructor's role, 274–278

Private keyword in Java, 21

Private modi�er, 272

Procedure-oriented programming languages vs. OOPs, 88–89

Programming language classi�cation, 445

Programming paradigms classi�cation, 445

Project Jigsaw, 285

Project Object Model (POM), 292, 293, 295

Properties class of Java, 386–390

Protected access modi�er, 275

Protected keyword in Java, 21

Protected modi�er, 272

Proxy class, 204

Public access modi�er, 277

Public keyword in Java, 21

Public modi�er, 273

Pure functions, 448, 461–462

Q

Quali�ed name, using, 268–269

R

RDBMS, see Relational Database Management Systems

Reader in Java, 381–383

Recursion, 457–458

reduce() method, 404–406

Referential integrity, 334

Referential transparency, 451

Regulate statements, 60

Relational database, 328–329, 332

Relational Database Management Systems (RDBMS), 332

column, 334

database management system (DBMS) vs., 334–336

�eld, 333

�le system vs. DBMS, 336

history, 333

row/record, 333

table, 333

working, 332

Relational data model, 340

Remote Method Invocation (RMI), 12

remove(), 223

removeAll() method, 211, 225, 228

replace() function, 166, 170, 176

retainAll() method, 211, 213, 226

Return, 416

Return keyword in Java, 21

reverse() function, 171, 177

RMI, see Remote Method Invocation

Robust, Java as, 11

Root directory of module, 288

Row/record, 333

Runtime errors, 57

S

SAM interfaces, see Single Abstract Method interfaces

Sandbox, 11

Sayable, 423

Scanner, using, 53–54

SDK, see Software Development Kit

SE (Standard Edition) version of Java, 10

Security, 11–12

Semistructured data model, 341

SequenceInputStream class, 359

constructors, 360

declaration of, 359

methods, 360–363

set() method, 235

Set interface, 210

methods of set, 214–230

operations, 211–214

Shortcut operators, 45–46

Short keyword in Java, 21

Signature, 416

Simplicity of Java, 7–8

Single Abstract Method (SAM) interfaces, 447

Single-line comments, 26

size() method, 227

Smaller application distribution, modular Java platform for, 286–287

Software Development Kit (SDK), 263–264

Source code for Java, 291

Spacing lines and proper indentation, 55

Special character escape sequences, 50

SQL, see Structured Query Language

startIndex, 160

startsWith() function, 163

Static block in Java, 119–120

Static keyword, 21, 112

counter program

with no static variables, 115

with static variables, 116–120

Static method in Java, 116–119

Static variable in Java, 113

Stream, 348

Stream �lter in Java, 415

Java Stream �lter(), examples of, 416–419

parameter, 416

return, 416

signature, 416

Streaming in Java 8, 392

Stream pipeline in Java, 393

converting a list to a map using Java streams example, 412–413

converting list to set using Java streams example, 410–412

example of a Java stream

count() method in a collection, 409–410

maximum and minimum product price, determining, 407–409

reduce() method in a collection, 404–406

example of Java stream, 401–402

�ltering and iterating collection in Java stream example, 403–404

iterating a Java stream, example of, 402–403

methods of Java stream interface, 393–400

stream method reference, 413–415

summation of a Java stream example using collector methods, 406–407

Streams, 391

Base64 encode and decode in Java, 419

encoding and decoding fundamentals, 419

encoding and decoding of URLs and �lenames, 419

multipurpose internet main extensions (MIME), 420

default methods in Java, 422

example of a Java default method, 423–424

Java 8 interface static methods, 424–425

Java 8 interface vs. abstract class, 425–426

foreach loop in Java, 427

forEachOrdered() in Java stream, 429

forEachOrdered() method example, 429–430

signature, 429

Java Collectors, 430

average product price, obtaining, 438–439

counting elements in example of, 439–441

obtaining data as a list, 434–436

using sum function in, 436–437

Strictfp, 22

String.format() function, 156

String.join() function, 157

String and StringBuffer performance tests, 180–182

StringBuffer and String, difference between, 180

example of StringBuffer, 184

HashCode test for Strings and StringBuffers, 182–183

String and StringBuffer performance tests, 180–182

StringBuilder, example of, 184

StringBuilder and StringBuffer, difference between, 183

StringBuffer class, 167

important constructors, 167–168

Mutable String, 168–173

StringBuilder class, 154, 173

example of, 175–179, 184

vs. StringBuffer class, 183

String class in Java, 145–147, 150

String comparison, 150–153

String concatenation, 153–159

String in Java, 141, 143

beginner's guide, 142

CharSequence, interface for, 142–143

methods of String class in Java, 145–147

String object, making, 143–145

immutable class, 185–191

immutable String in Java, 147

String class, 150

String objects, 149

methods of, 161

charAt() function, 163–164

intern()method, 165

length() function, 164

replace () function, 166

startsWith() and endsWith(), 163

toUpperCase() and toLowerCase() methods, 161–162

trim() function, 162–163

valueOf() function, 165–166

StringBuffer and String, difference between, 180

example of StringBuffer, 184

HashCode test for Strings and StringBuffers, 182–183

String and StringBuffer performance tests, 180–182

StringBuilder, example of, 184

StringBuilder and StringBuffer, difference between, 183

StringBuffer class, 167

important constructors, 167–168

Mutable String, 168–173

StringBuilder class, 173

examples, 175–179

String comparison, 150–153

String concatenation, 153–159

substring, 159–161

toString() function, 186

bene�t, 186–188

Java StringTokenizer, 189

StringTokenizer class methods, 190–191

StringTokenizer constructors, 189

String objects, 149

Strings to doubles conversion, 52

String to integers conversion, 52

StringTokenizer class methods, 190–191

StringTokenizer constructors, 189

String type, 51

string concatenation, 51–52

Structured Query Language (SQL), 303, 326

Subpackage in Java, 81–82, 269

class �les/JAR �les, methods for loading, 271

combining two public classes into single package, 271–272

Java-classpath switch, using, 270–271

transferring the class �le to a different directory/drive, 270

Substring, 159–161

Sun Microsystems, 2, 7, 269

Super keyword in Java, 22

Switch keyword in Java, 22

Switch statement, 66–68

Synchronized keyword in Java, 22

Syntax of Java, 14–16

for beginners, 16–17

blank lines, 27

inheritance, 27

interfaces, 27

comments in Java, 25

enums in Java, 23–24

identi�ers in Java, 17–18

keywords in Java, 18–23

literals in Java, 24–25

modi�ers in Java, 23

variables in Java, 23

Syntax problems “compilation errors,” 56–57

T

Table, 333

TCL, see Transaction Control Language

Technical advantages of Java, 4–5

Temporary classpath, con�guring, 314

Thin driver, 308

“This” keyword in Java, 22, 120–131

Throw keyword in Java, 22

toString() function, 186

bene�t, 186–188

Java StringTokenizer, 189

StringTokenizer class methods, 190–191

StringTokenizer constructors, 189

toUpperCase() and toLowerCase() methods, 161–162

Transaction Control Language (TCL), 346

trim() function, 162–163

Try keyword in Java, 22

U

Unicode and ASCII code, 48–49

Uniform Resource Identi�er (URI) system, 290

URI system, see Uniform Resource Identi�er system

User-de�ned integrity, 334

User-de�ned package, 77

User vs. builder, 263

V

valueOf() function, 165–166

Variable declaration, 38–39

Variables in Java, 23, 38, 91

Void keyword in Java, 23

Volatile keyword in Java, 23

W

WAR, see Web Application Resources

Web Application Resources (WAR), 293

Well-known, Java as, 8

While keyword in Java, 23

While loop, 71–72

Windows computer, JAVA on, 30

environment variables, establishing, 31–32

Workplace, Java's advantages in, 5–6

Writer in Java, 379–381

X

XML, see Extensible Markup Language

	Cover Page
	Half-Title Page
	Series Page
	Title Page
	Copyright Page
	Contents
	About the Editor
	Chapter 1 ◾ Introduction to Java
	What is Java?
	How Does Java Work?
	Why Is Java Important?
	Java's Technical Advantages Include
	Java's Advantages in the Workplace

	The Java Programming Language has the Following Features
	Simple and Well-Known
	Compiled and Interpreted the Data
	Independent of the Platform
	Portable
	Neutral in Architecture
	Object-Oriented
	Robust
	Safe
	Distributed
	Interactive and Multi-Threaded
	Outstanding Performance
	Extensible and Dynamic

	Basic Syntax
	What Is the Syntax of Java?
	First Java Program
	Syntax for Beginners
	Identifiers in Java
	Keywords in Java
	Modifiers in Java
	Variables in Java
	Enums in Java
	Literals in Java
	Comments in Java
	Blank Lines
	Inheritance
	Interfaces

	Chapter 2 ◾ Getting Started with Java
	How to Setup Java on a Windows Computer
	In Java, Here's How to Establish Environment Variables: Classpath and Path

	Installing a Java Integrated Development Environment (IDE)
	Internal Java Program Details
	What Occurs throughout the Compilation Process?
	What Occurs When the Program Is Running?

	Types of Primitive Data
	Simple Programs to Write
	Identifiers
	Variables
	Variable Declaration
	Assignments Expressions and Assignment Statements
	In a Single Step, Declare and Initialize Variables
	Constants
	Numerical Data Types and Operations
	Numerical Operators
	Numeric Literals
	Integer Literals
	Floating-Point Literals
	Notations in Scientist

	Arithmetic Expressions
	Shortcut Operators
	Numeric Type Conversions
	Character Data Type and Operations
	Unicode and ASCII Code

	Special Character Escape Sequences
	Casting between Char and Numeric Types
	String Type
	String Concatenation

	Converting a String to a Number
	String to Integers Conversion
	Strings to Doubles Conversion

	Using the Console for Input
	Using a Scanner to Getting Information

	Documentation and Programming Style
	Appropriate Comments and Style of Comments
	Conventions for Naming
	Spacing Lines and Proper Indentation
	Block Styles
	Errors in Programming
	Syntax Problems “Compilation Errors”
	Runtime Errors
	Logic Errors
	Debugging

	Control Structures
	If
	if Statement
	if-else Statement
	if-else-if Ladder
	Nested if Statement
	Switch Statement
	Loop Statements

	Jump Statements

	A Guide to Java Packages
	Package Kinds in Java
	Subpackages in Java

	Chapter 3 ◾ Object-Oriented Programming
	Java Object-Oriented Programmings (OOPs) Concepts
	OOPs
	Object
	Class
	Inheritance
	Polymorphism
	Abstraction
	Encapsulation
	Coupling
	Cohesion
	Association
	Aggregation
	Composition

	In Java, What Is the Difference between an Object and a Class?
	Advantages of OOPs over Procedure-Oriented Programming Languages
	Java Naming Conventions
	Benefits of Java Naming Conventions
	Class
	Interface
	Method
	Variable
	Package
	Constant

	Java Objects and Classes
	In Java, What Is an Object?
	In Java, What Is a Class?

	In Java: Instance Variable
	In Java: Method
	In Java: New Keyword
	What Are the Many Methods of Creating an Object in Java?
	Anonymous Object

	Constructors
	Default Constructor
	What Is a Default Constructor's Purpose?

	Parameterized Constructor
	Why Utilize the Parameterized Constructor?

	Constructor Overloading
	In Java, What Is the Difference between a Constructor and a Method?

	Copy Constructor in Java
	Copying Values without Constructor

	Static Keyword
	Counter Program with No Static Variables
	Counter Program with Static Variables

	In Java, “This” Keyword
	Java Enum's
	Inheritance and Enumeration
	Methods values(), ordinal(), and function valueOf()

	Constructor and Enum
	Enumeration and Methods

	Chapter 4 ◾ Creating and Using Java Strims
	A Beginner's Guide to Strings
	Interface for CharSequence
	In Java, What Is a String?
	What Is the Best Way to Make a String Object?
	Methods of the String Class in Java

	Immutable String in Java
	Why Are String Objects in Java Immutable?
	Why Is the String Class in Java Final?

	String Comparison
	String Concatenation
	In Java Substring
	Methods of Java String Class
	Methods toUpperCase() and toLowerCase() in Java String
	Method to Java String trim():
	The Methods startsWith() and endsWith() in Java String
	Method to Java String charAt()
	Method to Java String length()
	Method to Java String intern()
	Method to Java String valueOf()
	Method to Java String replace ()

	StringBuffer Class in Java
	StringBuffer Class's Important Constructors
	Mutable String

	StringBuilder Class in Java
	Examples of StringBuilders

	Difference Between StringBuffer and String
	String and StringBuffer Performance Tests
	HashCode Test for Strings and StringBuffers
	Difference between StringBuilder and StringBuffer?
	Example of StringBuffer
	Example of StringBuilder

	How Can we Make an Immutable Class?
	The Function toString() Method in Java
	Benefit
	Java StringTokenizer
	StringTokenizer Constructors
	StringTokenizer Class Methods

	Chapter 5 ◾ Collections, Lists, and Java's Built-in APIs
	What are Java Arrays?
	Advantages
	Disadvantages
	Array Types in Java
	Java Single Dimensional Array
	Java Array Declaration, Instantiation, and Initialization
	Java Array for Each Loop
	Passing an Array to a Method

	Method Returning an Array
	ArrayIndexOutOfBoundsException
	Java Multidimensional Array
	Java's Jagged Array
	What Is the Name of the Java Array Class?
	Creating a Java Array Copy
	In Java, Clone an Array
	In Java, Add Two Matrices
	In Java, Multiply Two Matrices

	Java Sets
	The Set Interface's Operations
	Methods of Set

	List in Java
	ArrayList vs. Java List
	How to Make a List

	Converting an Array to a List
	How to Convert a List to an Array
	Get and Set an Element in a List
	Sorting a List
	Interface for Java ListIterator

	Map Interface in Java
	Hierarchy of Java Map
	The interface of Map.Entry

	In Java, Iterating Collections
	The Four Java Collection Iteration Methods
	Method of Java Collection iterator()

	Chapter 6 ◾ Libraries, Packages, and Modules
	What is the Library in Java?
	Locating a Library
	.jar Files Downloading
	Documentation in the Library
	Classpath
	What Exactly Is a Java Class Library?
	Library Classes in Java
	Making Use of Java Libraries
	User vs. Builder
	What Is Included in the Java SDK?

	What are the Packages in Java?
	To Compile a Java Package, Follow These Steps
	To Launch a Java Package Application, Follow These Steps
	How Do I Go to a Package from Another Package?

	Java Subpackage
	How Do I Transfer the Class File to a Different Directory or Drive?
	Another Approach to Execute this Program Is to Use the Java -Classpath Switch
	Methods for Loading Class Files or Jar Files Include
	How Do You Combine Two Public Classes into a Single Package?

	Java Access Modifiers
	Private Constructor's Role
	Access Modifiers with Method Overriding in Java

	Encapsulation
	The Benefits of Encapsulation in Java
	Class Read-Only
	Class Write-Only

	Cloning Objects in Java
	Why Should You Use the Clone() Method?
	The Benefit of Object Cloning
	Object Copying Has the Following Disadvantages

	Modules in Java
	Benefits of Java Modules
	Modular Java Platform for Smaller Application Distribution
	Internal Package Encapsulation
	Start Detection of Absent Modules
	Module Basics in Java
	Naming a Java Module
	Module's Root Directory
	Module System
	Modularized Java 9 JDK
	Module for Java 9

	Module Name
	How to Make a Java Module

	Construct a Directory Structure
	Source Code for Java
	Compile Java Module
	Module Execution

	What Exactly is Maven?
	What Does Maven Do?
	Maven's Core Ideas
	Maven Installation Procedure
	pom.xml Maven File
	Elements Utilized in Creating the pom.xml File
	Other Pom.xml File Elements
	The Benefits and Drawbacks of Using Maven
	Benefits
	Drawbacks

	When Should Maven be Used?
	Maven in Practical Application
	Maven Repository

	What Exactly is Gradle?
	High Performance
	The JVM Foundation
	Conventions
	Flexibility
	Gradle: Five Things You Should Know
	What Is the Difference between Gradle and Maven?

	Chapter 7 ◾ Java Database Connectivity
	What is JDBC In Java?
	What Are the Benefits of Using JDBC?
	What Exactly Is API?

	Driver for JDBC
	5 Steps to Connecting a Java Database

	Oracle Database Connectivity in Java
	Creating a Table
	Example
	How to Configure the Temporary Classpath
	How to Configure the Permanent Classpath
	MySQL Database Connectivity in Java

	Connectivity with Access without Data Source Name (DSN)
	Example of Connecting a Java Application without a DSN
	Example of Connecting a Java Application to a DSN

	Drivermanager Class
	Interface of Connection
	Statement Interface

	Database Management System
	What Exactly Is a Database?
	Database Management System
	DBMS Features Include the Usage of a Digital Repository Built on a Server to Store and Manage Information
	Benefits of DBMS
	DBMS Disadvantages

	Database
	What Exactly Is Data?
	What Exactly Is a Database?

	Database Evolution
	File-Based
	Hierarchical Data Model
	Network Data Model
	Relational Database
	Cloud Database
	Benefits of a Cloud Database

	NoSQL Database
	The Benefit of NoSQL Is Its Scalability
	The Disadvantage of NoSQL Is That It Is Open Source

	Object-Oriented Databases
	What Exactly is Relational Database Management?
	How Does It Work?
	RDBMS History
	What Actually Is a Table?
	What Exactly Is a Field?
	What Is Row or Record?
	What Basically Is a Column?
	What Is the Distinction between DBMS and RDBMS?
	File System vs. DBMS

	Architecture of DBMS
	DBMS Architecture Types
	1st-Tier Architecture
	2-Tier Architecture
	3-Tier Architecture

	The Architecture Consists of Three Schema

	Models of Data
	Schema and Instance of a Data Model
	Independence of Data
	Language of Database
	Database Language Varieties

	Chapter 8 ◾ Java I/O
	What is Input/Output in Java?
	Stream
	OutputStream versus InputStream
	OutputStream
	InputStream

	Class OutputStream
	Class InputStream Class
	FileOutputStream Class in Java
	Declaration of the FileOutputStream Class

	FileInputStream Class in Java
	Declaration of the Java FileInputStream Class

	BufferedOutputStream Class in Java
	BufferedOutputStream Class Example

	BufferedInputStream Class in Java
	Declaration of the Java BufferedInputStream Class
	Constructors of the Java BufferedInputStream Class
	SequenceInputStream Class in Java
	Declaration of the Java SequenceInputStream class
	SequenceInputStream Class Constructors
	SequenceInputStream Class Methods

	Class Java ByteArrayOutputStream
	Declaration of the Java ByteArrayOutputStream Class

	Class Java ByteArrayInputStream
	Declaration of the Java ByteArrayInputStream Class

	DataOutputStream Class in Java
	Declaration of the Java DataOutputStream Class

	DataInputStream Class in Java
	Declaration of the Java DataInputStream Class

	FilterOutputStream Class in Java
	Declaration of the Java FilterOutputStream Class

	FilterInputStream Java Class
	Declaration of the Java FilterInputStream Class

	Console Class in Java
	How to Get the Console Object
	FilePermissions Class in Java
	Declaration of the Java FilePermission Class

	Writer in Java
	Reader in Java
	FileWriter Class in Java
	Declaration of the Java FileWriter Class

	FileReader Class in Java
	Declaration of the Java FileReader Class

	Java's Properties Class

	Chapter 9 ◾ Java Streams
	Streaming in Java 8
	Stream Has the Following Features

	Stream Pipeline In Java
	Methods of the Java Stream Interface
	Java Stream Example: Using a Stream to Filter a Collection
	Example of Iterating a Java Stream
	Filtering and Iterating Collection in a Java Stream Example
	Example of a Java Stream: reduce() Method in a Collection
	Summation of a Java Stream Example Using Collector Methods
	Example of a Java Stream: Determine the Maximum and Minimum Product Price
	Example of a Java Stream: count() Method in a Collection
	Converting List to Set Using Java Streams Example
	Converting a List to a Map Using Java Streams Example
	Stream Method Reference

	Stream Filter in Java
	Signature
	Parameter
	Return
	Example of a Java Stream filter()
	Example 2 of a Java Stream filter()

	Base64 Encode and Decode in Java
	Encoding and Decoding Fundamentals
	Encoding and Decoding of URLs and Filenames
	Multipurpose Internet Main Extensions (MIME)

	Default Methods in Java
	Example of a Java Default Method
	Java 8 Interface Static Methods
	Java 8 Interface vs. Abstract Class

	Foreach Loop in Java
	Method forEachOrdered() in Java Stream
	Signature
	Java Stream forEachOrdered() Method Example

	Java Collectors
	Example of a Java Collector: Obtaining Data as a List
	Example of Using the Sum Function in Java Collectors
	Example of Java Collectors: Obtaining Average Product Price
	Counting Elements in Java Collectors Example

	Chapter 10 ◾ Functional Programming with Lambda Expressions
	What is Functional Programming in Java?
	Why Is Functional Programming Important?
	Is Java a Good Fit?

	Java's Pure Functions
	Lambda Expressions in Java
	What Is a Functional Interface?
	Why Should You Utilize Lambda Expression?
	Example of a Java Lambda Expression

	Appraisal
	Index

