**ABSTRACT** 

Weather conditions are closely related to our daily basis. Various sectors

depend on weather conditions or are directly affected by the weather. The

plantation, fisheries, and transportation sectors are sectors that are closely related

to weather conditions. Information on weather conditions can help determine the

level of productivity of a sector. This information can be used to determine

appropriate steps in anticipating extreme weather changes.

Long Range (LoRa) is a spread spectrum modulation technique that utilizes

long-distance transmission capabilities using low power consumption. This

technique can be integrated with sensors that detect various changes in

environmental conditions. This final project designs a model system using Long

Range Wide Area Network (LoRaWAN) as a means to unify weather conditions

by connecting LoRa nodes and device users. Users can view all observations

using a mobile application called Wever.

Wever can provide 100% of the observation data sent from the Antares

server. LoRa shows high performance in measurements at a distance of 50 meters.

The RSSI value when using SF 7 is -75.36 dBm and at SF 11 is -93.94 dBm. At a

distance of 250 meters, the use of SF 11 succeeded in sending 36 out of 40 data,

while SF 7 experienced a packet loss of 77.5%. All measurements have an SNR of

no more than -18 dB with a maximum delay of about 0.09 ms.

**Keyword:** Internet of Things, LoRa, Antares., Android, User Interface.

V