
I. INTRODUCTION 

Unit testing is one of white box testing methods that aims 
to check the implemented source codes of a particular 
component or function independently (low-level design). In 
unit testing, code coverage is a metric commonly used to 
measure the written unit test codes quality [1]. Code coverage 
has a relationship with the number of potential bugs that exist 
in the software. The higher the code coverage in an 
application, the less the number of potential bugs in the 
application. In addition, code coverage plays an important role 
in software fault revelation [2]. Regardless of which criteria 
exist in the code coverage that has a very big influence on the 
fault revelation, code coverage can be used as a guide to 
maintain and improve the quality of the software and reduce 
the possibility of software failures and bugs. 

Unit testing requires various resources such as time and 
expensive costs to achieve high quality software indicated by 
high code coverage [1, 3, 4]. Since high resources are 
required, a tool is essential to automate the creation unit test 
codes. Currently, research related to automation unit test 
generation (AUTG) only focuses on one language such as 
Java with the tools EvoSuite and Randoop [5-7]. In addition, 
the use of machine learning in AUTG is still limited to predict 
branch coverage that can be achieved from the test data 
generated by the AUTG tools [6]. The datasets used in the 
research on this topic mostly were public project repositories 
on the internet as there is still no dataset that can specifically 
be used for research on this research area. 

The use of preprocessing in machine learning aims to 
provide some transformations to the dataset before it is being 
used as input for the machine learning models. In the case of 
natural language processing, especially in the case study of 
text classification, the selection of preprocessing or text 
preprocessing used has an influence on the performance of the 
resulting models [8, 9]. For example, the preprocessing text 
used in the Turkish news classification case study will be 
different from the preprocessing text in the English news 
classification case study [8, 10]. In the case study of news 
classification in Turkish, it is recommended to use the 
following text preprocessing: tokenization, lowercase and 
stemming [8]. Meanwhile, in the case study of English news 
classification, tokenization is not required to obtain the best 
performance [8, 10]. 

In the case of “source code” as the input of the machine 
learning models, based on our review of literature, there has 
been no gold standard or recommendation in terms of 
appropriate text preprocessing methods. Also, there is no 
study that discussed in depth about the impacts of different 
preprocessing methods to “source code” input on machine 
learning model performances. There are few studies that tried 
to explore this area, but there are some limitations to these 
studies. For example, in the research conducted by Reyes [11] 
and Gilda [12], the text preprocessing methods used were not 
the same between the two studies and they are simplified and 
not exhaustive. In addition, these two studies did not explain 
in depth regarding the preprocessing methods selection 
justifications and the impacts of the selected methods used on 
the accuracy of the machine learning model. Furthermore, the 
datasets used for these two studies were not shared publicly, 
thus future studies will not be able to replicate or continue 
extending the study. 

This research contribution is twofold. First, the study 
provides analysis to better understand on the influences of 
several text preprocessing methods to the performance metrics 
of machine learning models in the case of a simple code 
coverage classification (i.e., branch/non-branch). The 
preprocessing methods used are regular expression (regex), 
and vectorization including Vector Count, TF-IDF, and 
Word2Vec. Further, this study aims to investigate the effect of 
using different preprocessing method and its combination on 
the machine learning model performance. This analysis and 
investigation will provide several recommendations for future 
studies that use “source code” as the input. The second 
contribution is to generate and provide a public dataset 
containing “source code” that will be used in this study and 
future related research. 

  


