
I. INTRODUCTION

Unit testing is one of white box testing methods that aims
to check the implemented source codes of a particular
component or function independently (low-level design). In
unit testing, code coverage is a metric commonly used to
measure the written unit test codes quality [1]. Code coverage
has a relationship with the number of potential bugs that exist
in the software. The higher the code coverage in an
application, the less the number of potential bugs in the
application. In addition, code coverage plays an important role
in software fault revelation [2]. Regardless of which criteria
exist in the code coverage that has a very big influence on the
fault revelation, code coverage can be used as a guide to
maintain and improve the quality of the software and reduce
the possibility of software failures and bugs.

Unit testing requires various resources such as time and
expensive costs to achieve high quality software indicated by
high code coverage [1, 3, 4]. Since high resources are
required, a tool is essential to automate the creation unit test
codes. Currently, research related to automation unit test
generation (AUTG) only focuses on one language such as
Java with the tools EvoSuite and Randoop [5-7]. In addition,
the use of machine learning in AUTG is still limited to predict
branch coverage that can be achieved from the test data
generated by the AUTG tools [6]. The datasets used in the
research on this topic mostly were public project repositories
on the internet as there is still no dataset that can specifically
be used for research on this research area.

The use of preprocessing in machine learning aims to
provide some transformations to the dataset before it is being
used as input for the machine learning models. In the case of
natural language processing, especially in the case study of
text classification, the selection of preprocessing or text
preprocessing used has an influence on the performance of the
resulting models [8, 9]. For example, the preprocessing text
used in the Turkish news classification case study will be
different from the preprocessing text in the English news
classification case study [8, 10]. In the case study of news
classification in Turkish, it is recommended to use the
following text preprocessing: tokenization, lowercase and
stemming [8]. Meanwhile, in the case study of English news
classification, tokenization is not required to obtain the best
performance [8, 10].

In the case of “source code” as the input of the machine
learning models, based on our review of literature, there has
been no gold standard or recommendation in terms of
appropriate text preprocessing methods. Also, there is no
study that discussed in depth about the impacts of different
preprocessing methods to “source code” input on machine
learning model performances. There are few studies that tried
to explore this area, but there are some limitations to these
studies. For example, in the research conducted by Reyes [11]
and Gilda [12], the text preprocessing methods used were not
the same between the two studies and they are simplified and
not exhaustive. In addition, these two studies did not explain
in depth regarding the preprocessing methods selection
justifications and the impacts of the selected methods used on
the accuracy of the machine learning model. Furthermore, the
datasets used for these two studies were not shared publicly,
thus future studies will not be able to replicate or continue
extending the study.

This research contribution is twofold. First, the study
provides analysis to better understand on the influences of
several text preprocessing methods to the performance metrics
of machine learning models in the case of a simple code
coverage classification (i.e., branch/non-branch). The
preprocessing methods used are regular expression (regex),
and vectorization including Vector Count, TF-IDF, and
Word2Vec. Further, this study aims to investigate the effect of
using different preprocessing method and its combination on
the machine learning model performance. This analysis and
investigation will provide several recommendations for future
studies that use “source code” as the input. The second
contribution is to generate and provide a public dataset
containing “source code” that will be used in this study and
future related research.

