

1

CHAPTER I

INTRODUCTION

1.1. Background

Virtualization has recently emerged as a crucial cloud computing technique. In

particular, container-based virtualization is a quick way to build a virtual

environment that operates on the host machine's software level [1]. Due to its

minimal resource utilization and excellent mobility, it has been expanding quickly

with rotating virtual machines (VMs). Additionally, the methodologies of

application design are being revolutionized by container-based microservices. The

container-based micro-services enable an application to be made of several

lightweight containers over a large number of nodes as opposed to the conventional

single monolithic architecture wherein all components are merged into a single unit

[2]. Multiple containers are scattered throughout the network in large-scale systems,

necessitating the use of an orchestration tool to deploy the containers and manage

resources. Microservices are small, self-contained modules of an application that

are linked together to function as a whole. Along with the microservices design,

enterprises must have stable application releases and shorten the time from

development to deployment. This is enabled through the use of continuous

deployment procedures [3]. Software containers and orchestration tools, such as

Kubernetes, have made microservice creation and maintenance easier. To manage

the horizontal elasticity of containers, Kubernetes employs a decentralized

threshold-based policy that necessitates setting thresholds on system-oriented

metrics (i.e., CPU utilization). This may not be suitable for scaling latency sensitive

applications that must express needs in terms of reaction time [4].

Kubernetes is one of many open-source platforms used in the managing of

containerized services, including setup and deployment. The Kubernetes platform

is also used for running highly available distributed systems. They make up what is

known as Kubernetes Clusters, where clusters contain a master node and worker

nodes. Each worker node hosts Pods that make up the workload of an application.

And each worker in every pod is managed by the control plane, where commands

2

are given by scripts to be distributed among the cluster for deployment. Because of

the multitude in pods containing workers in clusters, this allows for a high

availability service. To achieve high availability, Kubernetes runs clones of various

containers, much like virtual machines. This allows for the service to avoid

numerous failures should in case numerous apps are running in one single container

[5].

To maximize the service's scalability and availability, Kubernetes load

balancing entails dividing network traffic among pod replicas in accordance with

load balancing algorithms [6]. In other words, one of the replicas responds to user

queries, and users are not required to be aware of the internal procedure. A stateful

application must provide consistency across these distributed data stores because

each replica in Kubernetes can have its own data store. Several distributed systems

use a leader-based consistency maintenance approach, where an elected leader is

entirely in charge of updating data and subsequently replicating it to the followers,

to address this consistency challenge. The container automation process, using

Kubernetes technology, can be implemented based on the number of concurrent

users. With a few additional options, the scalability mechanism of this container

may be applied to Kubernetes. Scalability is supposed to improve performance and

server response time to users without diminishing server utility capabilities [7].

Since problems can occur when the webserver fails while being accessed for

data and services hosted by servers, steps are taken to ensure server is running in a

healthy manner. An example would be of a university website being accessed by a

large number of users applying or submitting a form at the same time is an example

of this; if the server cannot accommodate a large number of users, the service may

degrade leading to a bottleneck and users may experience some latency when

viewing the website. To compensate, Kubernetes can be used to scale the clusters

hosting the microservices in order to obtain the optimal mix of performance results.

This affects either the pods used by the container in a vertical fashion that affects

the pod or the entire cluster by influencing the nodes. When there is a tremendous

load, as previously described by the large number of users accessing, Kubernetes

will scale up to match the load by raising the amount of CPU and memory

3

constraints, and then scale back down after the load has lessened to save costs and

efficiency.

Kubernetes can manage cloud applications and microservices' resource

allocation and traffic. Kubernetes excels when the applications consist of multiple

services running in different containers. This may be more than sufficient for a

monolithic program with a static user base. Because of containers, developers are

divided into teams that must focus on one service at a time. This assured that these

teams become specialists in their respective fields. When there is a problem, they

can fix it quickly and without disrupting other service areas. The speed, quality, and

manageability of new development are immediately improved [8].

1.2. Problem Formulation

Setting up a cluster with policies for autoscaling nodes and pods as well as finding
parameters that deems the tested result to be positive.

 The server not being able to handle a huge number of users resulting in a
bottleneck.

 Ensuring Kubernetes cost-efficiency across many potential clusters.

1.3. Objectives and Benefits

The objective and benefit of this thesis is to determine and analyze the performance

of a Kubernetes cluster. By conducting this simulation, network and resource

optimization can be achieved to determine if Kubernetes is cost effective for use in

a multitude of services that can be deployed and managed using Kubernetes.

1.4. Scope and Limitations

This thesis sets some scope and limitations:

1. Clusters are deployed in a Kubernetes environment hosted by an E2 machine,

which has a 2vCPU, 4GB memory, and a 100 GB persistent disk provided by

Google Cloud Platform.

2. A predetermined number of virtual users access the test website hosted by

NGINX using a load testing program within a time frame to test the data packet

type to be utilized during simulation trials.

3. The cluster will be tested with different autoscaling methods which are Vertical

Pod Autoscaling and Cluster Autoscaling.

4

1.5. Research Methodology

This thesis considers the following methods:

1. Researching into Kubernetes for designing a type of clusters that can

be used by a high number of users for services.

2. Research regarding Google Kubernetes Engine and methods of

implementation inside a cluster network to understand Kubernetes.

3. Set virtual users parameters and demands in GKE Clusters.

4. Simulate different cluster parameters to deduce cost efficiency.

