DAFTAR GAMBAR

2.1	Deteksi objek pada <i>dataset</i> VisDrone'19	7
2.2	Arsitektur CNN	8
2.3	(a). Gambaran dari sebuah filter. (b). Masukkan dari sebuah gam-	
	bar biner. (c). Gambaran dari sebuah feature maps. (d). Feature	
	maps dengan threshold sama dengan tiga. (e). Nilai piksel tetangga	
	dari poin (d).	9
2.4	Pooling layer pada CNN	9
2.5	Max pooling layer.	10
2.6	Average pooling layer.	11
2.7	Arsitektur VGG16 tanpa dense layer dan activation function [1]	12
2.8	Cara kerja mencari activation pada grid cell. (a). Objek sudah me-	
	miliki label dan bounding box, (b). Mencari titik tengah dari objek,	
	untuk mencari tahu grid cell yang mana yang memuat objek, (c).	
	Model akan membuat titik tengah dari grid cell untuk memprediksi	
	objek sebagai mobil	13
2.9	Representasi <i>feature maps</i> dengan aktivasi dari grid cell	13
2.10	Titik tengah dari <i>bounding box</i> pada <i>network</i> CenterNet	14
2.11	Akurasi kecepatan <i>network</i> CenterNet pada validasi COCO	15
2.12	Tiga bagian yang diprediksi setelah forward pass dari arsitektur ja-	
	ringan	15
2.13	(Kiri) Ground thruth dari kelas yang berbeda. (Kanan) Tiga titik	
	dari masing-masing kelas yang disebarkan dalam bentuk heatmap	17
2.14	Nilai disekitar heatmap yang dibangkitkan oleh gaussian kernel	21
2.15	Confusion matrix	22

3.1	Diagram alir sistem objek deteksi pada UAV	23
3.2	Dataset VisDrone 2019.	24
3.3	Arsitektur model CenterNet dengan menggunakan feature extra-	
	ction Deep Layer Aggregation.	28
3.4	Ilustrasi deteksi pada CenterNet. (Kiri) Keypoint Heatmap, (tengah)	
	Keypoint Offset, (Kanan) Dimensi dari bounding box [2]	29
3.5	Keluaran (weight) dari model CenterNet yang telah diuji kedalam	
	sebuah gambar.	29
4.1	Grafik loss dengan masing-masing nilai kombinasi antara α dan β .	34
4.2	Grafik perbandingan nilai mAP dengan kombinasi α dan β	35
4.3	Grafik alpha ketika alpha bernilai 0 sampai 4 dengan probabilitas	
	ground truth dengan rentang 0 sampai 1	36
4.4	Grafik beta di berbagai kondisi yang salah	37
4.5	Perbandingan nilai mAP pada konfigurasi terbaik dengan model	
	state of the art yang telah dilatih menggunakan VisDrone2019	38
4.6	Pengujian menggunakan dataset VisDrone2019 dalam kondisi cerah.	39
4.7	Pengujian menggunakan dataset VisDrone2019 dalam kondisi gelap.	39
4.8	Pengujian menggunakan dataset VisDrone2019 dengan kondisi	
	gambar terpotong sebagian.	40