
ISSN : 2355-9365 e-Proceeding of Engineering : Vol.10, No.5 Oktober 2023 | Page 4918

Forecasting of GPU Prices Using Transformer

Method

1st Risyad Faisal Hadi
School of Computing

Telkom University

Bandung, Indonesia
risyadfaisalhadi@student.telkomuniver

sity.ac.id

2nd Siti Saadah
School of Computing

Telkom University

Bandung, Indonesia
sitisaadah@telkomuniversity.ac.id

 3rd Didit Adytia
School of Computing

Telkom University

Bandung, Indonesia
adytia@telkomuniversity.ac.id

Abstract— GPU or VGA (graphic processing unit) is a vital

component of computers and laptops, used for tasks such

as rendering videos, creating game environments, and

compiling large amounts of code. The price of GPU/VGA

has fluctuated significantly since the start of the COVID-

19 pandemic in 2020. This research aims to forecast

future GPU prices using deep learning-based time series

forecasting using the Transformer model. We use daily

prices of NVIDIA RTX 3090 Founder Edition as a test

case. We use historical GPU prices to forecast 8, 16, and

30 days. Moreover, we compare the results of the

Transformer model with two other models, RNN and

LSTM. We found that to forecast 30 days; the

Transformer model gets a higher coefficient of

correlation (CC) of 0.8743, a lower root mean squared

error (RMSE) value of 34.68, and a lower mean absolute

percentage error (MAPE) of 0.82 compared to the RNN

and LSTM model. These results suggest that the

Transformer model is an effective and efficient method

for predicting GPU prices.

Keywords— GPU, Transformer, Forecasting, Time Series

Forecasting

I. INTRODUCTION

A. Background
In today's world, the shortage of graphics cards has

caused much concern and frustration for people who used
computers as their primary tools for jobs. The high cost of
these cards makes it difficult for people to afford them,
hindering their ability to play games or create content. The
fluctuating prices of GPUs further exacerbate the problem,
and NVIDIA, one of the leading producers of these cards,
must rely on third-party manufacturers for their chipsets.
Manufacturers experiencing disruptions in their operations
has led to a scarcity of graphics processing units (GPUs) and
longer wait times for their production. As a result, the cost of
GPUs such as the NVIDIA RTX 3090, which originally had
a suggested price of $699, has skyrocketed to as much as
$2,400 overnight. This scarcity and cost of graphics cards is
a pressing issue that requires attention [1].

For those reasons people are trying to find the perfect
time when they can buy a GPU. The forecasting method can
be the way to solve the problem. Forecasting is a process of
predicting based on historical data and extracting trends that
can be approached using statistical or machine learning [2].
In [3]they study the GPU NVIDIA GTX 1060, which is
affected by the bitcoin price. In this research, they are using
linear regression models to forecast the upcoming price of
GPUs. They found that the bitcoin's price affects the GPU's
price. Another research that some researchers from CEEJ
have done showed that the price of the GPU stock could be
forecast using an optimal machine learning technique, the
Nested Cross Validation algorithm [4].

One way to approach forecasting GPU prices is to use a
deep learning model. This paper uses the recently developed
transformer model initially developed to solve the NLP
problem. In the transformer, from the input sequence, the
model determines what other parts of the sequence are
essential at each step [5]. The transformer has two parts: the
encoder and the decoder. Theoretically, the transformer will
use historical data to predict the upcoming prices in the
experiment that some researchers have done. They are
comparing the transformer and RNN. Transformers show up
with excellent results and significant improvement [6]. In
another experiment comparing transformers and LSTM, the
transformer came out with a huge benefit because it is more
stable and doesn't need so much time to train [7]. For this
research, we will use the encoder layer to forecast the time
series data that we have collected from keepa.

B. Problem Statement

In this study, we use the transformer model to predict
GPU prices and evaluate its accuracy compared to other time
series forecasting methods. Transformer models are cutting-
edge machine learning techniques with success in natural
language processing and time series prediction. This project
evaluates the effectiveness of the transformer model in
predicting GPU prices by analyzing historical data. The
purpose of this study is to provide valuable insights to
industry stakeholders and demonstrate the model's
superiority over other commonly used forecasting methods.
C. Objective

ISSN : 2355-9365 e-Proceeding of Engineering : Vol.10, No.5 Oktober 2023 | Page 4919

This study compares Transformer models with LSTM
and RNN architectures to predict GPU prices. Transformer is
optimized for prediction on sequential data and can provide
faster predictions in a single run. Only one GPU model was
analyzed, and data was collected from September 2020 to
November 2022. Forecast results are evaluated using
coefficient correlation, mean squared error, and mean percent
error. These metrics assess the effectiveness of the developed
model.

II. THEORITICAL REVIEW

A. Literature review

In this study, we are focusing on how good the
transformer model can predict the prices of GPU. The
transformer model has been used for time series forecasting.
In [8], they found that the transformer is effective for
forecasting since they come up with a good result [8]. In [9],
the transformer is used for solving time series forecasting;
from their study, the transformer performs better than the
LSTM and RNN-based methods. In [10], the transformer was
used for forecasting both univariate and multivariate time
series forecasting.

1. Transformer

Transformer architecture has an encoder and decoder.
The encoder later will map an input sequence of sequence
symbols of continuous representation of z. Then at the same
time, the decoder will generate an output sequence of
symbols. At each step, the model uses the previously
generated symbol as additional input when generating the
next symbol. The layers on the transformer are fully
connected to each other [11]. The architecture of the
transformer will be presented on Fig 1[11].

FIG 1.

Transformer Architecture

As stated, before the encoder and the decoder are fully

connected. The left side is the encoder, and the right side is
the decoder. This architecture contains 2 main attentions, the
attention itself is used to mapping a query and set-of-key-

value pairs to an output, where all the variables are vectors
[11]. The attention that is built in the architecture is scaled
dot-product attention and multi-head attention. The scaled
dot-product attention will calculate the softmax value, which
is represented by this formula.
 �āāĆÿāÿĀÿ(Ā, �, ý) = ĀĀćāþĂþ(���√þ�)ý (1)

The formula shows the attention with parameters Q, K,

and V. Then, there are some steps to calculate the scaled dot
attention. The first one is to compute the alignment scores by
multiplying the set of queries packed in a matrix. Next, we

need to scale the score of the alignment using
1√þ�Then we are

applying a softmax operation to obtain a set of weights. This
softmax function will convert the layers into a vector of
probabilities. After we get the demanded weight, we multiply
it with the value in matrix V.
Multi-head attention allows the model to focus on
information from different representations at the same time.
Square below elsewhere [11]. This method is represented by
this equation.
 �Ăýāÿ�ĆĂą(Ā, �, ý) = �ĀÿĄĂā(/ĆĂą1,&&,/ĆĂą�)þ� ý/ĆÿĆ /ĆĂą� = �āāĆÿāÿĀÿ(Āþ�� , �þ�� , ýþ��) (2)

From the equation above as you can see, with the same

parameter we are trying to calculate the value of the
multihead attention. First thing first, we need to compute the
linearly projected versions of the queries, keys, and value
through multiplication with the parameter of (Āþ�� , �þ�� , ýþ��). Then we need to apply an attention

function on each head function by multiplying the queries and
the key matrices. Apply softmax and calculate the weight for
the output. Concentrate the outputs of the /ĆĂą� = (1 & . /).
After that, to obtain the result we need to multiply it with
weight matrix þ�. Fig 2 Will show my flowchart for
transformer architecture.

FIG 2.

Fowchart of Trasnformer

Figure 2 shows the Transformer model initialization,
parameter initialization, and input after data sharing. Then the

ISSN : 2355-9365 e-Proceeding of Engineering : Vol.10, No.5 Oktober 2023 | Page 4920

nested loops are executed, with the outer loop being the
transformer block and the inner loop being the transformer
head. The training start time is recorded, and after training is
completed, the stop time and validation loss are recorded and
the computation time is calculated. The model with the
highest score is saved in the "h5" file. Next, the model's
performance is evaluated and predictions are made. If you are
satisfied, the investigation will be closed. Otherwise,
hyperparameter tuning is performed to improve results.

2. Recurrent Neural Network

Recurrent Neural Network (RNN)is a type of artificial
neural network that can process sequential data. It consists of
a series of interconnected units that pass their output as input
to the next unit, forming a directed graph. This allows the
network to have an internal state or memory, enabling it to
exhibit temporal dynamic behaviors. RNNs are particularly
useful for recognizing patterns in sequential data, such as
handwriting or speech recognition, or for predicting time-
series data[12]. The simple RNN architecture can be seen on
Fig 3 [13].

FIG 3.

Simple RNN Architecture

From the figure above we can see that every output will

move to every RNN cell, well the RNN cell has its own
architecture that will be shown in Fig 4 [14].

FIG 4.

RNN unit Architecture

The architecture of an RNN can be depicted as shown in

Fig 6. At each time step t the state Ăþ is calculated based on
the input Āþ and the previous state �þ21using the formula.

 �þ = tanh(þ�ýĀþ + þ�ý�þ21 + Ąý) (3)

In the equation, the matrices þ�ý and þ�ý are the weight
matrices at the input and hidden layers, respectively, and Ąý
is the bias term. The activation function used in the equation
is the hyperbolic tangent function, which is defined as
follows.
 tanh(þ) = ÿý2ÿ−ýÿý+ÿ−ý (4)

The range of the hyperbolic tangent function is from -1 to 1.
The output value āþ is calculated using the following formula.

 āþ = þĀý�þ + Ąþ (5)

In the equation, āþ represents the output, þĀý is the

weight matrix at the output layer, �þ is the state, and Ąþ is the

bias term. Here is the flowchart for my RNN model.

FIG 5.

RNN Flowchart

From Fig 5, the flowchart for the Recurrent Neural

Network (RNN) can be seen. The process begins by splitting
the data into train and test sets. The RNN model is then
initialized, as previously mentioned, the RNN uses two types
of activation functions, tanh and linear activation. After that,
the trained model is then evaluated using validation data,
predictions are made, and the results are obtained. If the
results are not satisfactory, hyperparameter tuning is
performed until the desired outcome is achieved.

3. Long Short-Term Memmory

Long Short-Term Memory (LSTM) neural network, first
introduced by Hochreiter and Schmidhuber in 1997, has an
input layer, one or more hidden layers, and an output layer.
The hidden layers contain memory cells with input, output
and forget gates to regulate the flow of information. The core
component of each hidden layer is a memory block, made up
of a group of memory cells that share the same gate units. It
was later improved by Gers et al. by adding a forget gate
[15].The architecture itself will be shown by Fig 6.

FIG 6.

LSTM architecture

Fig 8 describe that the inputs will go through LSTM cell

and every cell has their own structure that will be show on
Fig 7 [14].

ISSN : 2355-9365 e-Proceeding of Engineering : Vol.10, No.5 Oktober 2023 | Page 4921

FIG 7.

LSTM cell architecture

From the architecture above we can see that there are 3

main gates on LSTM. Forget gate, Input Gate and Output
Gate. Each gate receives two input vectors: the current input, ÿþ, and the previous output, �þ21. The input gate determines
which input values will be used in the current time step, the
forget gate determines which values from the previous time
step should be forgotten, and the output gate determines
which values should be output in the current time step.
Together, these gates allow the LSTM cell to effectively store
and retrieve information over long periods of time [16].
From its we can also see that the first step of LSTM is the
forget gate. In this function (6) X is the input value, and the
output is a value between 0 and 1. If the output of the sigmoid
function is close to 0, the data will be discarded. If the output
is close to 1, the data will be updated or passed through.
In the context of an LSTM (Long Short-Term Memory) cell,
the sigmoid function is used to determine the values of the
input, forget, and output gates. The input x is a combination
of the current input value, ÿþ, and the hidden state of the

previous time step, �þ21. The coefficients W and b are learned
during the training process and are used to weight the input
values.

Overall, the sigmoid function plays a crucial role in the
LSTM cell's ability to effectively store and retrieve
information over long periods of time.
 ćþ = �(þĀýÿþ + þĀý�þ21 + ăĀ) (6)

After the first step is done, then we are moving to next

step which is the input gate. The output of the input gate can
be calculated by using these formula
 ÿþ = �(þ�ýÿþ + þ�ý�þ21 + ă�) (7)
 Ąþ̃ = tanh(þýýÿþ + þýý�þ21 + ăý) (8)
 �þ = ćþ × Ąþ21 + ÿþ × Ąþ̃ (9)

Finally, the last gate which is output gate that can be
interpreted by this equation. Āþ = �(þĀýÿþ + þĀý�þ21 + ăĀ)
 (10) �þ = Āþ × tanh(�þ)
 (11)

The output gate is calculated using the sigmoid function,
as defined in equation (10). The output value, namely the cell
state value �þ, is then forwarded to the next memory cell

calculation, and the current hidden state �þ is generated using
the hyperbolic tangent function, as defined in equation (11).
Overall, the output gate plays a crucial role in the LSTM cell's
ability to store and retrieve information over long periods of
time. It allows the cell to selectively pass on information from
one time step to the next, enabling it to capture long-term
dependencies in data. The flowchart can be seen on Fig 8.

FIG 8.

LSTM flowchart

Figure 8 above shows the flow chart of the LSTM model.

It is very similar to RNN flow chart. The main difference is
in the activation layer. As you can see from the above
architecture, LSTM has three activation layers, here iterative
activation layer of Sigmoid. After the model is trained, we
can use the validation data to evaluate the results and make
predictions. If the results are unacceptable, the load should be
repeated. So the research stopped.

4. Evaluation Matrix

For evaluating every model and to comparing each
model we are using three evaluation metrices. CC, RMSE and
MAPE. Coefficient Correlation (CC) is a statistical measure
of the relationship between two variables. When two
variables are correlated, a change in the value of one variable
is associated with a change in the value of the other variable.
The direction of this association can be positive, meaning that
the two variables increase or decrease together, or negative,
meaning that one variable increases as the other decreases.

The Pearson correlation coefficient is a common
measure of correlation that is used to quantify the strength
and direction of a linear relationship between two continuous
variables. It is typically used when the data follows a bi-
variate normal distribution, meaning that the variables are
jointly normally distributed. The Pearson correlation
coefficient can range from -1 to 1, with values closer to -1
indicating a strong negative correlation, values closer to 1
indicating a strong positive correlation, and values closer to
0 indicating a weaker or no correlation [17]. The coefficient
correlation is represented by this equation.

ISSN : 2355-9365 e-Proceeding of Engineering : Vol.10, No.5 Oktober 2023 | Page 4922

ÿ =
ÿ(∑ ýþ)2(∑ ý)(∑ þ)[ÿ ∑ 2ý 2(∑ ý)2][ÿ ∑ 2þ 2(∑ þ)2] (12)

The symbols represent various sums and products of two

values (þ and ÿ) in a dataset with n = amount of data and ∑ þ represent the sum of the first value, ∑ ÿ represent the
sum of the second value, ∑ þÿ represent the sum of product
of the first and the second value, ∑ 2ý represents the sum of
the square of the first value, and ∑ 2þ represents the sum of

the square of the second value.
Root Mean Squared Error (RMSE) is a measure of the

difference between the predicted values of a model and the
actual values. It is often used as a metric for evaluating the
performance of a predictive model, such as a regression
model. The RMSE is a measure of the average magnitude of
the error in the model's predictions. A lower RMSE indicates
a better fit of the model to the data, while a higher RMSE
indicates a poorer fit. The RMSE can be show by this
equation. ā�Ăý = √1ÿ ∑ (ÿ�̂ 2 ÿ�)2ÿ�=1 (13)

From the equation there is ÿ�̂ and ÿ� . The first variable

relies on the result of the prediction value and the other one
is the actual value from the data. Last, we have n, where it is
implied to the amount of the prediction [18].

Another method to measure the accuracy of prediction
models is MAPE. MAPE or Mean Absolute Percentage Error
is performance matrix beside RMSE that can be used to
measure the accuracy of prediction on forecasting. The
difference is we are using percentage as the benchmark. This
method can be represented by this equation.

 ��ÿý = 1ÿ ∑ |��2��||��|ÿ�=1 (14)

From the equation above,
1ÿ can be changed to 100%

since the result would be on percentage value. The �� variable
is implying the actual value form the data and we have þ�
which is the forecast value of the data. Lastly just like RMSE
we have n where it relies on the amount of the total number
of observation data [19].

III. METHOD

A. System Design
To do forecasting using a transformer, they are several

steps to do shown in Fig. 9.

FIG 9.

Flowchart of Research Architecture

A flowchart of the architecture is shown in Figure 9. It

details the steps from data collection to survey completion.
Select Time Series Forecasting as the forecasting method.
After data preprocessing is performed to ensure data purity,
the data is split into training, validation, and test sets.
Transformer, LSTM and RNN models have been trained,
validated and tested. Accuracy is evaluated and analyzed. If
the accuracy is greater than 97%, the best results for each
model are analyzed and the results are evaluated using
coefficient correlation, RMSE and MAPE. Study ends when
all steps are completed and eligibility criteria are met.

1. Dataset

The dataset that will be used in my research is the time
series dataset. This dataset is downloaded or obtained from
the keepa website that can be accessed through keepa website
[20]. The dataset contains 783 rows and 4 attributes, where
the dataset shows the price from the first time the GPU is
launched until November 2022 which will be shown in Table
I.

TABLE 1.
Dataset Example

Date Price

(USD)

Last

(USD)

Future

(USD)

2020-09-21 2000 0 4000

2020-09-22 4000 2000 4000

2020-09-23 4000 4000 3500

2020-09-24 3500 4000 3500

From Table 1 above, we can see that the data is the daily

prices of the GPU. The Last Future and Difference is an
additional feature that has been added manually. The used
attribute in this paper is the first two columns which is Date
and Price column.

2. Preprocessing Data

On this research, we do several preprocessing
techniques. The data is recorded daily, we check every
possibility on our dataset so that we can choose the
proportional preprocessing technique. Firstly, we try to detect
outlier, after we are dealing with the outlier we are using
interpolated data to fill in the missing value on the data. Next,
we are using the preprocessing technique where to reshape
the data inputation so that it can go through the models. After
that we do scaling or normalization so that the inputation will
change into value from 0 - 1. Then we split the data with a
ratio of 80% training data, 10% validation data, and 10%
testing data. The visualization of these data will be shown in
this Fig 10.

FIG 10.

Visualization of splitted data

ISSN : 2355-9365 e-Proceeding of Engineering : Vol.10, No.5 Oktober 2023 | Page 4923

IV. RESULTS AND DISCUSSION

A. Evaluation

The GPU pricing data used in this study covers the
period from September 2020 to November 2022 and is split
into 8-, 16-, and 30-day forecasts for usage. Hyperparameters
are checked before training for fair model comparison. An
analysis was performed to find the optimal epoch and stack
size, and the results are stable at 300 epochs with a stack size
of 16. The best dropout rate is defined as shown in Table III.
Larger epoch sizes and smaller batch sizes can lead to more
accurate solutions because there are more steps to update the
weights during the optimization process.

TABLE 3.

Analysis of dropout

 Accuracy

Dropout CC RMSE MAPE

0 0.971 32.12 1.11

0.15 0.909 196.37 10.99

0.25 0.890 200.57 11.25

0.5 0.8911 202.86 11.41

0.75 0.8837 215.01 12.21

According to the table, the best dropout value is 0, the

dropout itself is used to prevent overfitting in the neural
network model. Increasing the dropout rate decreases the
model's ability to fit the training data and lowers accuracy.
Also, in this case by adding small amount of dropout making
the model less complex, leading to underfitting of the model.
Therefore, we set the dropout rate to 0 for all models. We also
selected a head size of 128 and a patience of 100. We tested
various numbers of heads and transformer blocks which is
[1,2,3] and number of heads of [1, 2], then the model
determined the optimal combination to be 1 transformer
block and 2 heads.

All the hyper parameter tunning is doing using all 10%
of data test splitting. This optimum setting then applied on
the other model. The prediction results from the three models
will be compared using the Coefficient of Correlation (CC),
Root Mean Squared Error (RMSE), and Mean Absolute
Percentage Error (MAPE). The CC, RMSE and MAPE for
each prediction method will be presented in tables. Before we
training the data using the model, we first see how the model
is built. The Figure 11, 12, and 13 will show how every model
build their model. Then after we have the model, the model
then used to do the training. The results will be used to
evaluate the performance of each prediction method and
determine the most accurate and efficient method for
predicting the target variable. The result will be shown in
Table IV Table V, and Table VI.

FIG 11.

Visualization of how the RNN model is built

TABLE 2.
Analysis on epoch and batch size

Batch Size

16 32 64

Epo

chs
CC

RM
SE

MA
PE

CC
RM
SE

MA
PE

CC
RM
SE

MA
PE

50
0.9
71

360
.72

16.6
3

0.9
71

630
.11

25.8
4

0.9
71

724
.31

28.5
8

100
0.9
7

59.
22 2.78

0.9
71 331

15.4
8

0.9
71

628
.65

25.7
9

150 0.9
71

62.
94 3.15

0.8
5

238
.69

13.8
1

0.8
51
1

238
.55 13.8

200 0.9
71

54.
66 2.68

0.8
5

238
.69

13.8
1

0.8
51
1

238
.55 13.8

250 0.9
71

57.
19 2.83

0.8
5

238
.69

13.8
1

0.8
51
1

238
.55 13.8

300 0.9
71

32.
12 1.11

0.8
5

238
.69

13.8
1

0.8
51
1

238
.55 13.8

350 0.9
71

32.
12 1.11

0.8
5

238
.69

13.8
1

0.8
51
1

238
.55 13.8

400 0.9
71

32.
12 1.11

0.8
5

238
.69

13.8
1

0.8
51
1

238
.55 13.8

ISSN : 2355-9365 e-Proceeding of Engineering : Vol.10, No.5 Oktober 2023 | Page 4924

FIG 12,

Visualization of how the transformer model is built

FIG 13.

Visualization of how the LSTM model is built

1. Result

TABLE 4.
Accuracy of transformer

 Accuracy

Days CC RMSE MAPE

8 0.7387 33.1 0.861

16 0.682 44.82 0.96

30 0.8743 34.68 0.82

TABLE 5.

Accuracy of LSTM

 Accuracy

Days CC RMSE MAPE

8 0.7387 52.12 2.63

16 0.6817 72.27 3.09

30 0.8739 65.37 3.00

TABLE 6.

Accuracy of RNN

 Accuracy

Days CC RMSE MAPE

8 0.7387 61.03 3.03

16 0.6816 75.01 3.54

30 0.8738 75.01 3.51

From the table we can see that the accuracy on

transformer is better than LSTM and RNN. The result is
surpassing the result on other models. The ability of
transformer to forecast are really close to the real data.

ISSN : 2355-9365 e-Proceeding of Engineering : Vol.10, No.5 Oktober 2023 | Page 4925

FIG 14.

Forecasting visualization for 30 days of transformer, LSTM, and RNN
respectively

2. Analysis of result

According to the visualization results shown in Figure 14
and the numerical comparisons in Tables IV, V, and VI, the
Transformer model appears to be more accurate than the
LSTM and RNN models in predicting the target variable.
This is due to the optimized layer structure. Additionally, a
self-aware mechanism that allows the transformer to assign a
weight to each input token and output the optimal weight for
multiple input tokens. Also, the 16-day forecast results seem
to follow a different pattern than the 8-day and 30-day
forecasts. This performance difference can be attributed to
several factors affecting the 16-day forecast horizon,
including: B. Data quality and presentation, data variability,
and data trend smoothness. Overall, these results demonstrate
that the Transformer model is a more effective and efficient
method for predicting the target variable compared to the
LSTM and RNN models.
 From the result we can see that the result is very
different with the previous result [3]. Where the result by
using only linear regression technique show the accuracy of
98.57%. compared with 99.18%. The transformer can also be
used to forecast more than 1 day with more accurate results.

V. CONCLUSION
A. Conclusion
 This paper investigates the Transformer model's ability to
predict daily GPU prices over 8, 16, and 30-day periods using
a dataset of NVIDIA RTX 3090 Founders Edition prices over

2 years. The Transformer model outperformed the RNN and
LSTM models in terms of accuracy, demonstrating higher
correlation coefficients and lower root mean squared and
mean absolute percentage errors. This study concludes that
the Transformer model is effective in predicting daily GPU
prices and provides better accuracy compared to the RNN and
LSTM models.
 In recent years, the prices of GPUs have become an
increasingly popular topic of interest, with many studies
focused on forecasting their prices. The use of Transformer
networks for this purpose has shown promising results.
However, there is still much room for further research in this
area. Compared to traditional methods like LSTM and RNN,
transformer-based model could provide a better performance
and accuracy. Nonetheless, it would be beneficial to evaluate
the computational time and cost-effectiveness of the
transformer-based model and compare it with other popular
models. In addition, using more data or utilizing multiple
GPUs during training could potentially improve the
performance of the transformer model.

REFRENCES

[1] The Economist, <Crypto-miners are probably to
blame for the graphics-chip shortage,= 2021.
https://www.usnews.com/news/top-news/articles/2022-09-
20/nvidia-unveils-new-gaming-chip-with-ai-features-taps-
tsmc-for-
manufacturing#:~:text=Nvidia%20designs%20its%20chips
%20but,by%20Samsung%20Electronics%20Co%20Ltd.
(accessed Apr. 25, 2022).
[2] Z. Zhao et al., <Short-Term Load Forecasting Based
on the Transformer Model,= Information (Switzerland), vol.
12, no. 12, Dec. 2021, doi: 10.3390/INFO12120516.
[3] S. A. A. Leksono, Z. G. Prastyawan, and I.
Veriawati, <Prediksi Harga Kartu Grafis Yang Dipengaruhi
oleh Nilai Bitcoin,= JURNAL ILMIAH FIFO, vol. XI, no. 1,
pp. 65–74, Apr. 2019.
[4] M. Chlebus, M. Dyczko, and M. Woźniak,
<Nvidia’s Stock Returns Prediction Using Machine Learning
Techniques for Time Series Forecasting Problem,= Central

European Economic Journal, vol. 8, no. 55, pp. 44–62, Jan.
2021, doi: 10.2478/ceej-2021-0004.
[5] Maxime, <What is Transformer?,= 2019.
https://medium.com/inside-machine-learning/what-is-a-
transformer-d07dd1fbec04 (accessed Mar. 09, 2022).
[6] E. Yalta Soplin et al., <A Comparative Study on
Transformer Vs RNN in Speech Applications,= ASRU, 2019.
[Online]. Available: http://www.merl.com
[7] A. Zeyer, P. Bahar, K. Irie, R. Schluter, and H. Ney,
<A Comparison of Transformer and LSTM Encoder Decoder
Models for ASR,= in 2019 IEEE Automatic Speech

Recognition and Understanding Workshop, ASRU 2019 -

Proceedings, Dec. 2019, pp. 8–15. doi:
10.1109/ASRU46091.2019.9004025.
[8] G. A. Galindo Padilha, J. R. Ko, J. J. Jung, and P. S.
G. de Mattos Neto, <Transformer-Based Hybrid Forecasting
Model for Multivariate Renewable Energy,= Applied

Sciences (Switzerland), vol. 12, no. 21, Nov. 2022, doi:
10.3390/app122110985.

ISSN : 2355-9365 e-Proceeding of Engineering : Vol.10, No.5 Oktober 2023 | Page 4926

[9] S. Li et al., <Enhancing the Locality and Breaking
the Memory Bottleneck of Transformer on Time Series
Forecasting,= Jun. 2019.
[10] N. Wu, B. Green, X. Ben, and S. O’Banion, <Deep
Transformer Models for Time Series Forecasting: The
Influenza Prevalence Case,= Jan. 2020, [Online]. Available:
http://arxiv.org/abs/2001.08317
[11] A. Vaswani et al., <Attention Is All You Need,= Jun.
2017.
[12] Han’guk T’ongsin Hakhoe, IEEE Communications
Society, Denshi J漃Ѐh漃Ѐ Ts甃Ѐshin Gakkai (Japan). Ts甃Ѐshin
Sosaieti, and Institute of Electrical and Electronics Engineers,
RNN-based Deep Learning for One-hour ahead Load

Forecasting. 2020.
[13] H. Apaydin, H. Feizi, M. T. Sattari, M. S. Colak, S.
Shamshirband, and K. W. Chau, <Comparative analysis of
recurrent neural network architectures for reservoir inflow
forecasting,= Water (Switzerland), vol. 12, no. 5, May 2020,
doi: 10.3390/w12051500.
[14] D. Zhang, Q. Peng, J. Lin, D. Wang, X. Liu, and J.
Zhuang, <Simulating reservoir operation using a recurrent
neural network algorithm,= Water (Switzerland), vol. 11, no.
4, Apr. 2019, doi: 10.3390/w11040865.
[15] M. S. Hossain and H. Mahmood, <Short-term
photovoltaic power forecasting using an LSTM neural
network and synthetic weather forecast,= IEEE Access, vol.

8, pp. 172524–172533, 2020, doi:
10.1109/ACCESS.2020.3024901.
[16] S. R. Venna, A. Tavanaei, R. N. Gottumukkala, V.
v. Raghavan, A. S. Maida, and S. Nichols, <A Novel Data-
Driven Model for Real-Time Influenza Forecasting,= IEEE

Access, vol. 7, pp. 7691–7701, 2019, doi:
10.1109/ACCESS.2018.2888585.
[17] P. Schober and L. A. Schwarte, <Correlation
coefficients: Appropriate use and interpretation,= Anesth

Analg, vol. 126, no. 5, pp. 1763–1768, May 2018, doi:
10.1213/ANE.0000000000002864.
[18] M. A. Istiake Sunny, M. M. S. Maswood, and A. G.
Alharbi, <Deep Learning-Based Stock Price Prediction Using
LSTM and Bi-Directional LSTM Model,= in 2nd Novel

Intelligent and Leading Emerging Sciences Conference,

NILES 2020, Oct. 2020, pp. 87–92. doi:
10.1109/NILES50944.2020.9257950.
[19] A. de Myttenaere, B. Golden, B. le Grand, and F.
Rossi, <Mean Absolute Percentage Error for regression
models,= Neurocomputing, vol. 192, pp. 38–48, Jun. 2016,
doi: 10.1016/j.neucom.2015.12.114.
[20] Keepa, <NVIDIA GeForce RTX 3090 Founders
Edition Graphics Card,= 2019.
https://keepa.com/#!product/1-B08HR6ZBYJ (accessed
May 04, 2022).

.

