ABSTRACT

The heart is a vital human organ that has the function of eliminating blood

throughout the body. One of the common heart diseases that occur in humans is

arrhythmia. Cardiac arrhythmia, also known as abnormal heart rhythm, is a

disorder of the heart's rhythm pattern. Arrhythmia causes the heart to not be able

to work optimally so that it can cause chest aches and pains. In previous studies,

Arrhythmia detection has been successfully carried out using the ANN

classification method. However, the data training process with the ANN method

takes a long time. To overcome this, DNN is known as a classification method that

offers high accuracy with a shorter training process time.

Therefore, in this study an Arrhythmia detection system will be designed

using the development of the Deep Neural Network (DNN) algorithm which

supports increasing the accuracy of Arrhythmia classification by classifying ECG

signals. In this study using a dataset from DataHub.io with a total of 444 data.

In this Final Project, the dataset obtained from DataHub.io is divided into

two classes. Then several test scenarios will be carried out to find the best

hyperparameter. The accuracy obtained when using the best hyperparameters

obtains an accuracy validation of 71,91% and a loss validation of 0.6647.

Keywords: Arrhythmia, Deep Neural Network (DNN), Electrocardiogram (EKG)

5