ISSN: 2442-5826

Implementasi Sistem Sensor Kualitas Air untuk Analisis Perbandingan Air Minum Dalam Kemasan

1st Diki Agus Pangestu
Fakultas Ilmu Terapan
Universitas Telkom
Bandung, Indonesia
dikiagus@student.telkomuniversity.ac.i

2nd Muhammad Ikhsan Sani
Fakultas Ilmu Terapan
Universitas Telkom
Bandung, Indonesia
ikhsansani@telkomuniversity.ac.id

3rd Giva Andriana Mutiara
Fakultas Ilmu Terapan
Universitas Telkom
Bandung, Indonesia
giva.andriana@tass.telkomuniversity.ac.id

Abstrak—Saat ini air sudah menjadi kebutuhan yang sangat penting bagi kehidupan kita. Air sendiri memiliki banyak kandungan zat didalamnya diantaranya adalah pH dan TDS atau Total Dissolve Solid. Mengkonsumsi air dengan pH dan TDS yang aman tentu penting bagi kita karena jika kita mengkonsumsi air dengan tingkat pH yang terlalu asam atau basa maka akan mengakibatkan masalah otot, pencernaan dan lain sebagainya. Lalu jika kita mengkonsumsi air dengan tingkat TDS terlalu tinggi maka akan mengakibatkan penurunan fungsi pada ginjal. Oleh sebab itu diperlukan sebuah sistem yang dapat mengukur tingkat pH dan TDS pada suatu larutan. Pada sistem ini menggunakan pH sensor dan TDS sensor untuk mengukur tingkat pH dan TDS larutan. Lalu data sensor yang telah diolah nantinya akan ditampilkan dalam bentuk display digital pada LCD 16x2. Pada proses kalibrasi pH sensor dan TDS sensor menggunakan metode regresi linear. Berdasarkan hasil pengujian yang telah dilakukan sistem yang dibuat dapat mengukur tingkat pH mulai dari 3,74 sampai dengan 9,17 dan untuk tingkat TDS mulai dari 54 ppm sampai dengan 391 ppm.

Kata kunci-pH sensor, TDS sensor, Arduino

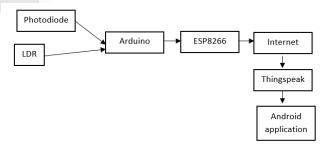
I. PENDAHULUAN

Saat ini air sudah menjadi kebutuhan yang sangat penting bagi kehidupan kita [1]. Air sendiri memiliki banyak kandungan zat didalamnya diantaranya adalah pH dan TDS. Mengkonsumsi air dengan pH dan TDS yang aman tentu penting bagi kita karena jika kita mengkonsumsi air dengan tingkat pH yang terlalu asam atau basa maka akan mengakibatkan masalah otot, pencernaan dan lain sebagainya [2]. Lalu jika kita mengkonsumsi air dengan tingkat TDS terlalu tinggi maka akan mengakibatkan penurunan fungsi pada ginjal [3]. Oleh sebab itu diperlukan sebuah sistem yang dapat mengukur tingkat pH dan TDS pada suatu larutan. Oleh karena itu diperlukan suatu alat yang dapat mendeteksi tingkat pH dan TDS untuk air minum agar nilai pH dan tds air bisa diketahui sesuai dengan kebutuhan. Lalu nantinya data dari sensor yang telah diolah akan ditampilkan dalam bentuk digital pada display LCD 16x2.

II. KAJIAN TEORI

Pengujian kualitas air terutama menguji tingkat kekeruhannya menggunakan sensr cahaya yaitu *Light Dependent Resistor*(LDR) dan fotodioda. Data dalam sensor

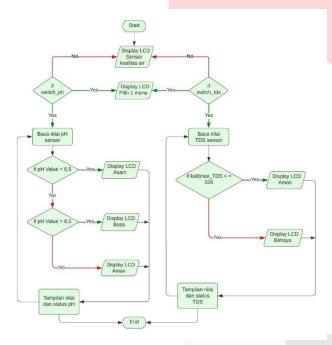
disimpan dalam database Internet of Things cloud server dan juga bisa diakses secara jarak jauh pada perangkat berbasis android. Sistem yang dibuat berhasil mendeteksi tingkat kekeruhan air dengan skala NTU dan rata rata pembaruan data sensor sekitar 16 detik [1].


Pada penelitian ini menguji tingkat *TDS*, kekeruhan dan pH di lokasi rusunawa Rejosari. Sensor yang digunakan yaitu sensor pH dan sensor *TDS* meter. Mikrokontroler yang digunakan yaitu arduino uno. Selain itu juga digunakan solenoid valve mengatur jika air dengan pengukuran normal maka air akan dialirkan langsung dan pengukuran air tidak normal maka air akan mengalir ke filter [4].

Pada penelitian ini menganalisis cara kerja sensor pH-E4502C dan menggunakan mikrokontroler arduino uno dan menggunakan *LCD* 16x2 I2C sebagai output. Beberapa larutan yang diuji yaitu larutan buffer pH 4.01, larutan buffer pH 6.86, air teh, air minum isi ulang dan deterjen [5].

III. METODE

A. Gambaran Sistem saat ini


Pada gambaran sistem saat ini mengukur tingkat kekeruhan air menggunakan sensor *photodiode* dan *LDR*. Data dalam sensor disimpan dalam database Internet of Things cloud server dan juga bisa diakses secara jarak jauh pada perangkat berbasis android. Sistem yang dibuat berhasil mendeteksi tingkat kekeruhan air dengan skala NTU dan rata rata pembaruan data sensor sekitar 16 detik.

Gambar 1 Gambaran sistem saat ini

B. Gambaran Sistem

Cara kerja dari sistem yang dibangun adalah yang pertama saat sistem pertama kali dinyalakan dengan kondisi switch pH dan TDS dalam kondisi tidak ditekan maka akan muncul tampilan pada LCD 16x2 Sensor kualitas air. Lalu jika kedua switch ditekan maka akan muncul tampilan pada LCD 16x2 Silahkan pilih 1 Menu. Lalu jika switch pH saja yang ditekan maka pH sensor akan membaca nilai dan akan menampilkan nilai yang terbaca pada LCD 16x2 dan jika nilainya kurang dari 6,5 maka tampilan pada LCD 16x2 akan menunjukkan status Asam, dan jika nilainya lebih dari 8,5 maka tampilan pada LCD 16x2 akan menunjukkan status Basa, dan jika nilainya berada di 6,5 sampai dengan 8,5 maka tampilan pada LCD 16x2 akan menunjukkan status Aman. Lalu jika switch TDS saja yang ditekan maka TDS sensor akan membaca nilai dan akan menampilkan nilai yang terbaca pada LCD 16x2 dan jika nilainya kurang dari sama dengan 500 maka tampilan pada LCD 16x2 akan menunjukkan status Aman dan jika nilainya lebih dari sama dengan 500 maka tampilan pada LCD 16x2 akan menunjukkan status Bahaya.

Gambar 2 Flowchart sistem

C. Metode

Metode pengerjaan proyek akhir ini menggunakan Metode Pengembangan *Prototyping*. Tahapannya adalah sebagai berikut: Pengumpulan kebutuhan, Membangun *prototyping*, Evaluasi *prototyping*, Mengkodekan sistem, Menguji sistem, Evaluasi sistem, Menggunakan sistem.

D. Kebutuhan perangkat keras dan lunak

Berikut ini adalah perangkat keras dan perangkat lunak yang digunakan dalam membuat sistem

Tabel 1 Perangkat Keras

No	Nama Perangkat	Jumlah
1.	pH sensor	1

2.	TDS sensor	1
3.	LCD 16x2 I2C	1
4.	Arduino Uno R3	1
5.	Rocker Switch	2

Tabel 2 Perangkat Lunak

No.	Nama Software
1.	Arduino IDE
2.	Microsoft Excel

IV. HASIL DAN PEMBAHASAN

A. Pengujian pH

Pada pengujian ini menguji nilai pH dari produk AMDK dan non AMDK. Dan juga menguji tingkat klasifikasi dari status larutan dan berikut adalah tabel dari hasil pengujian yang telah dilakukan

Tabel 3 Pengujian pH

Nomor	Merek	Nilai	Status	Kondisi	Delay
		pН		diminum	
1.	Alfamart	7,06	Aman	Sebelum	2
	330 ml	,,,,,		diminum	menit
2.	Alfamart	7,21	Aman	Sebelum	2
	550 ml	,,_1		diminum	menit
3.	Alfamart	7,01	Aman	Sesudah	2
3.	330 ml	7,01	7 Milian	diminum	menit
4.	Alfamart	7,16	Aman	Sesudah	2
	550 ml			diminum	menit
5.	Aqua	7,11	Aman	Sebelum	2
	330 ml			diminum	menit
6.	Aqua	7,06	Aman	Sebelum	2
	600 ml			diminum	menit
7.	Aqua	7,01	Aman	Sesudah	2
	330 ml			diminum	menit
8.	Aqua	7,01	Aman	Sesudah	2
	600 ml			diminum	menit
9.	Le	6,84	Aman	Sebelum	2
	Minerale			diminum	menit
	330 ml				
10.	Le	7,06	Aman	Sebelum	2
	Minerale			diminum	menit
	600 ml				

11.	Le	7,11	Aman	Sesudah	2
	Minerale			diminum	menit
	330 ml				
12.	Le	7,06	Aman	Sesudah	2
	Minerale			diminum	menit
	600 ml				
13.	Pristine	8,30	Aman	Sebelum	8
	8.6+ 400			diminum	menit
	ml				30
					detik
14.	Pristine	8,39	Aman	Sesudah	29
11.	8.6+ 400	0,37	7 Hillian	diminum	menit
	ml			diminum	incint
15.	Perfect	9,17	Basa	Sebelum	19
13.	9.5 500),17	Dasa	diminum	menit
	ml			diffilliani	mem
16.	Perfect	9,07	Basa	Sebelum	2
10.		9,07	Dasa		
	9.5 1			diminum	menit
17	liter	0.12	D	0 11	2
17.	Perfect	9,12	Basa	Sesudah	2
	9.5 500			diminum	menit
	ml				
18.	Perfect	9,03	Basa	Sesudah	2
	9.5 1			diminum	menit
	liter				
19.	Depot isi	7,01	Aman	Sebelum	2
	ulang			diminum	menit
20.	Depot isi	6,96	Aman	Sesudah	2
	ulang			diminum	menit
21.	Air	5,69	Asam		2
	mentah				menit
22.	Air hujan	6,13	Asam		2
					menit
Danda	<u> </u>	l	l	L	I

Berdasarkan hasil pengujian diatas merek alfamart, aqua, le minerale, pristine 8.6+ dan depot air minum isi ulang berada ditingkat yang aman. Lalu merek perfect 9.5 berada ditingkat basa. Dan air mentah dan juga air hujan berada ditingkat yang asam

B. Pengujian TDS

Pada pengujian ini menguji nilai *TDS* dari produk AMDK dan non AMDK. Dan juga menguji tingkat klasifikasi dari status larutan dan berikut adalah tabel dari hasil pengujian yang telah dilakukan

Tabel 4 Pengujian TDS

NI	Manul	NT:1.:	Charl	V and the	D-1:
Nomor	Merek	Nilai	Status	Kondisi	Delay
		TDS		diminum	
1.	Alfamart	237	Aman	Sebelum	30
	330 ml	ppm		diminum	detik
2.	Alfamart	54	Aman	Sebelum	30
	550 ml	ppm		diminum	detik
3.	Alfamart	104	Aman	Sesudah	30
	330 ml	ppm		diminum	detik
4.	Alfamart	55	Aman	Sesudah	30
	550 ml	ppm		diminum	detik
5.	Aqua	236	Aman	Sebelum	30
	330 ml	ppm		diminum	detik
6.	Aqua	108	Aman	Sebelum	30
	600 ml	ppm		diminum	detik
7.	Aqua	116	Aman	Sesudah	30
	330 ml	ppm		diminum	detik
8.	Aqua	109	Aman	Sesudah	30
	600 ml	ppm		diminum	detik
9.	Le	275	Aman	Sebelum	30
	Minerale	ppm		diminum	detik
	330 ml				
10.	Le	156	Aman	Sebelum	30
	Minerale	ppm		diminum	detik
	600 ml				
11.	Le	194	Aman	Sesudah	30
	Minerale	ppm		diminum	detik
	330 ml				
12.	Le	163	Aman	Sesudah	30
	Minerale	ppm		diminum	detik
	600 ml				
13.	Pristine	261	Aman	Sebelum	30
	8.6+ 400	ppm		diminum	detik
	ml				
14.	Pristine	125	Aman	Sesudah	30
	8.6+ 400	ppm		diminum	detik
	ml				
15.	Perfect	154	Aman	Sebelum	30
	9.5 500	ppm		diminum	detik
	ml				
	l .	l	<u> </u>		l l

16.	Perfect	149	Aman	Sebelum	30
	9.5 1	ppm		diminum	detik
	liter				
17.	Perfect	104	Aman	Sesudah	30
	9.5 500	ppm		diminum	detik
	ml				
18.	Perfect	65	Aman	Sesudah	30
	9.5 1	ppm		diminum	detik
	liter				
19.	Depot isi	238	Aman	Sebelum	30
	ulang	ppm		diminum	detik
20.	Depot isi	143	Aman	Sesudah	30
	ulang	ppm		diminum	detik
21.	Air	391	Aman		30
	mentah	ppm			detik
22.	Air hujan	219	Aman		30
		ppm			detik

- [4] Y. Irawan, A. Febriani, R. Wahyuni, and Y. Devis, "Water quality measurement and filtering tools using Arduino Uno, PH sensor and TDS meter sensor," *J. Robot. Control*, vol. 2, no. 5, pp. 357–362, 2021, doi: 10.18196/jrc.25107.
- [5] G. A. Saputra, "Analisis Cara Kerja Sensor Ph-E4502c Menggunakan Mikrokontroler Arduino Uno Untuk Merancang Alat Pengendalian Ph Air Pada Tambak," no. December, pp. 1–45, 2020, doi: 10.13140/RG.2.2.32110.84809.

Berdasarkan hasil pengujian yang telah dilakukan semua larutan masih berada ditingkat yang aman. Untuk air mentah menjadi air dengan tingkat TDS yang paling tinggi yaitu dengan nilai 391 ppm dan merek alfamart menjadi air dengan tingkat TDS yang paling rendah yaitu dengan nilai 54 ppm

V. KESIMPULAN

Sistem yang dibuat dapat mengukur tingkat derajat keasaman air dan jumlah zat padat terlarut, pada hasil pengujian yang dilakukan sistem yang dibuat dapat mengukur tingkat derajat keasaman mulai dari pH 3,74 sampai dengan pH 9,17 dan pada jumlah zat padat terlarut mulai dari 54 ppm sampai dengan 391 ppm. Data sensor yang telah diolah akan ditampilkan dalam bentuk digital melalui *display LCD* 16x2 dan sistem yang dibuat dapat mengklasifikasikan tingkat nilai suatu larutan.

REFERENSI

- [1] I. A. Siahaan, G. A. Mutiara, and M. I. Sani, "A Low-Cost Water Quality Monitoring Based on Photodiode and LDR," *Proc. 2021 IEEE Asia Pacific Conf. Wirel. Mobile, APWiMob 2021*, pp. 141–146, 2021, doi: 10.1109/APWiMob51111.2021.9435280.
- [2] R. Manfaat, "Manfaat pH dalam Tubuh dan Fungsinya." [Online]. Available: https://manfaat.co.id/manfaat-ph-dalam-tubuh
- [3] Alvawater, "Hati-hati, Air Minum dengan TDS Tinggi Bisa Membahayakan Kesehatan," Apr. 01, 2021. [Online]. Available: https://alvawater.co.id/2021/04/01/hati-hati-air-minum-dengan-tds-tinggi-bisa-membahayakan-kesehatan/