TABLE OF CONTENTS

APP	ROVAL PAGE	i
SEL	F DECLARATION AGAINST PLAGIARISM	ii
ABS	TRACT	iii
	KNOWLEDGMENTS	
	FACE	
TAE	BLE OF CONTENTS	vi
LIS	T OF PICTURE	xi
LIS	T OF TABLES	xviii
CHA	APTER I	1
1.1	Background	1
1.2	Identification of problems	2
1.3	Purpose	2
1.4	Scope of problem	2
1.5	Expected Results	3
1.6	Research methods	3
1.7	Writing system	3
CHA	APTER II_BASIC THEORY	4
2.1	Through the Wall Radar (TWR)	4
2.2	Convolution	6
2.3	Deconvolution Method	6
2.4	Delay Estimation method	8
2.5	Radar Modeling using Vector Network Analyzer (VNA)	11
2.6	Types and properties of barrier wall materials	13
2.7	Improved Through the Wall Radar performance	15
CHA	APTER III_RESEARCH METHODOLOGY	19
3.1	Through the Wall Radar System Method	19
3.2	Signal Processing Methods	20
3.3	Lab experiment stage	21
CH A	APTER VI RESULTS AND ANALYSIS	24

4.1	S21 Data Retrieval without Walls and Objects	24
4.2	S21 data retrieval uses a barrier wall without using objects	26
4.2.1	Testing a one-layer light brick wall without using objects	27
4.2.2	Testing of light brick walls without using objects	28
4.2.3	Testing 1 layer plywood walls without using objects	31
4.2.4	Testing of two-layer plywood walls without using objects	33
4.3	S ₂₁ data retrieval of barrier walls using objects	35
4.3.1	Testing of light brick walls with objects at a variance distance from the wall	35
	Testing a two-layer printed brick wall with an object at a variance distance (d) the wall	
4.3.3	Testing of single-layer plywood walls at a distance of variance cm from the wa	all
4.3.4	Testing of two-layer plywood walls at a distance of variance cm from the wall 72	l
4.4	The reconstruction signal processing results from the reference signal	85
	The reconstruction signal results from the effect of a one-layer light brick wall an object with a distance of 30 cm	
	The reconstruction signal results from the effect of a one-layer printed brick using an object with a distance of 40 cm	89
	The reconstruction signal results from the effect of a one-layer printed brick using an object with a distance of 50 cm	92
	The reconstruction signal results from the effect of a one-layer light brick wall an object with a distance of 60 cm	
	The reconstruction signal results from the effect of a one-layer light brick wall an object with a distance of 70 cm	
	The reconstruction signal results from the effect of a one-layer light brick wall an object with a distance of 80 cm	
	The reconstruction signal results from the effect of a two-layer light brick wall an object with a distance of 30 cm	
	The reconstruction signal results from the effect of a two-layer light brick wal an object with a distance of 40 cm	
	The reconstruction signal results from the effect of a two-layer light brick wal an object with a distance of 50 cm	

	4.4.10 the reconstruction signal results from the effect of a two-layer light brick wall using an object with a distance of 60 cm
	4.4.11 The reconstruction signal results from the effect of a two-layer light brick wall using an object with a distance of 70 cm
	4.4.12 The reconstruction signal results from the effect of a two-layer light brick wall using an object with a distance of 80 cm
	4.4.13 the reconstruction signal results from the effect of a one-layer plywood wall using an object with a distance of 30 cm
	4.4.14 the reconstruction signal results from the effect of a one-layer plywood wall using an object with a distance of 40 cm
	4.4.15 the reconstruction signal results from the influence of the single-layer plywood wall using an object with a distance of 50 cm
	4.4.16 the reconstruction signal results from the effect of a one-layer plywood wall using an object with a distance of 60 cm
	4.4.17 the reconstruction signal results from the effect of a one-layer plywood wall using an object with a distance of 70 cm
	4.4.18 the reconstruction signal results from the effect of a one-layer plywood wall using an object with a distance of 80 cm
	4.4.19 the reconstruction signal results from the effect of a two-layer plywood wall using an object with a distance of 30 cm
	4.4.20 the reconstruction signal results from the effect of a two-layer plywood wall using an object with a distance of 40 cm
	4.4.21 The reconstruction signal results from the influence of the two-layer plywood wall using an object with a distance of 50 cm
	4.4.22 the reconstruction signal results from the effect of a two-layer plywood wall using an object with a distance of 60 cm
	4.4.23 the reconstruction signal results from the effect of a two-layer plywood wall using an object with a distance of 70 cm
	4.4.24 the reconstruction signal results from the effect of a two-layer plywood wall using an object with a distance of 80 cm
1	4.5 The results of processing the reference signal using the Delay Estimation method
	4.5.1 The result of the delay estimation method of the effect of a one-layer light brick wall uses an object with a distance of 30 cm
	4.5.2 The result of the delay estimation method of the effect of a one-layer light brick wall uses an object with a distance of 40 cm

4.5.3 The result of the delay estimation method of the effect of a one-layer light brick wall uses an object with a distance of 50 cm
4.5.4 The result of the delay estimation method of the effect of a one-layer light brick wall uses an object with a distance of 60 cm
4.5.5 The result of the delay estimation method of the effect of a one-layer light brick wall uses an object with a distance of 70 cm
4.5.6 The result of the delay estimation method of the effect of a one-layer light brick wall uses an object with a distance of 80 cm
4.5.7 The result of the delay estimation method of the effect of a two-layer printed brick wall uses an object with a distance of 30 cm
4.5.8 The result of the delay estimation method of the effect of a two-layer light brick wall uses an object with a distance of 40 cm
4.5.9 The result of the delay estimation method of the effect of a two-layer printed brick wall uses an object with a distance of 50 cm
4.5.10 The result of the delay estimation method of the effect of a two-layer printed brick wall uses an object with a distance of 60 cm
4.5.11 The result of the delay estimation method of the effect of a two-layer printed brick wall uses an object with a distance of 70 cm
4.5.12 The result of the delay estimation method of the effect of a two-layer printed brick wall uses an object with a distance of 80 cm
4.5.13 the results of the delay estimation method of the effect of the single-layer plywood wall using objects with a distance of 30 cm
4.5.14 the results of the delay estimation method of the effect of the single-layer plywood wall using objects with a distance of 40 cm
4.5.15 the results of the delay estimation method of the effect of the single-layer plywood wall using objects with a distance of 50 cm
4.5.16 the results of the delay estimation method of the effect of the single-layer plywood wall using objects with a distance of 60 cm
4.5.17 the results of the delay estimation method of the effect of the single-layer plywood wall using objects with a distance of 70 cm
4.5.18 the results of the delay estimation method of the effect of the single-layer plywood wall using objects with a distance of 80 cm
4.5.19 the results of the delay estimation method of the effect of the two-layer plywood wall using objects with a distance of 30 cm
4.5.20 the results of the delay estimation method of the effect of the two-layer plywood wall using objects with a distance of 40 cm

ATTACHMENT	167
REFERENCE	166
CHAPTER IV CONCLUTION	165
4.5.24 the results of the delay estimation method of the effect of the two-layer plywood wall using objects with a distance of 80 cm	163
4.5.23 the results of the delay estimation method of the effect of the two-layer plywood wall using objects with a distance of 70 cm	162
4.5.22 the results of the delay estimation method of the effect of the two-layer plywood wall using objects with a distance of 60 cm	161
4.5.21 the results of the delay estimation method of the effect of the two-layer plywood wall using objects with a distance of 50 cm	160