LIST OF FIGURE

2.1	Signals obtained from respiratory activity. (Source: H. Hamdi,	
	dkk., Emotion assessment for affective computing based on physi-	
	ological responses, 2012)	8
2.2	Block diagram of radar systems in general	9
2.3	The working principle of radar	9
2.4	The FMCW radar waveform	11
2.5	The FFT signal path to range-doppler frame	12
2.6	Diagram of FMCW radar system for respiration detection	13
2.7	Illustration of the radar wave propagation	14
2.8	The block diagram of FMCW radar system to detect human respi-	
	ration behind the wall.	15
2.9	The illustration of A-scan.	18
2.10	The illustration of B-scan.	19
2.11	The illustration of C-scan.	19
3.1	The radar FMCW 24 GHz.	31
3.2	The illustration of the laboratory experiment setup	31
3.3	Measurement of the first scenario.	32
3.4	Measurement second scenario	32
3.5	Measurement third scenario.	33
3.6	The workflow to detect human respiration under rubble	36
3.7	Magnitude response of LPF output in the frequency domain when	
	the target is laid down under rubble with other objects	37
3.8	Time domain representation of phase detector output in ROI	38
3.9	Frequency domain representation of phase detector output in ROI.	39
4.1	The magnitude response of LPF output in the frequency domain	43
4.2	Phase detector output for each FFT index ROI in time domain rep-	
	resentation.	44
4.3	Phase detector output for each FFT index ROI in frequency domain	
	representation.	44
4.4	Phase detector output comparison between with and without a target	
	in the time domain for the first scenario	45

4.5	Phase detector output comparison between with and without a target	
	in the frequency domain for the first scenario	46
4.6	Magnitude response of LPF output comparison between with and	
	without a target in the frequency domain for the first scenario	47
4.7	Comparison of the magnitude response in the frequency domain for	
	different concrete brick thicknesses.	48
4.8	The phase detection result obtained several points in the first scenario.	49
4.9	B-scan image for the first scenario. (a) With target. (b) Without target.	50
4.10	The Weighting process method to reduce clutter in the first scenario.	51
4.11	The Eigen 1 of SVD method to reduce clutter in the first scenario.	52
4.12	The LTS method to reduce clutter in the first scenario	54
B .1	The magnitude response of LPF output in the frequency domain for	
	the second scenario.	
B.2	Comparison of the magnitude response in the frequency domain for	
	the second scenario.	
B.3	The magnitude response of LPF output in the frequency domain for	
	the third scenario.	
B.4	Comparison of the magnitude response in the frequency domain for	
	the third scenario	
C.1	Phase detector output in the time domain using BPF	
C.2	Phase detector output in the frequency domain using BPF	
C.3	Phase detector output for each FFT index ROI in time domain rep-	
	resentation in the second scenario.	
C.4	Phase detector output for each FFT index ROI in frequency domain	
	representation in the second scenario.	
C.5	Comparison of phase detector output in the time domain in the sec-	
	ond scenario.	
C.6	Comparison of phase detector output in the frequency domain in the	
	second scenario.	
C.7	Phase detector output for each FFT index ROI in time domain rep-	
	resentation in the third scenario.	
C.8	Phase detector output for each FFT index ROI in frequency domain	
	representation in the third scenario	
C.9	Comparison of phase detector output in the time domain in the third	
	scenario	

viii

C.10	Comparison of phase detector output in the frequency domain in the
	third scenario
C.11	The phase detection result obtained several points in the second sce-
	nario
C.12	The phase detection result obtained several points in the third scenario.
D.1	B-scan image for the second scenario. (a) With target. (b) Without target.
D.2	B-scan image for the third scenario. (a) With target. (b) Without
	target
D.3	The Weighting process method to reduce clutter in the second sce-
	nario
D.4	The Eigen 1 of SVD method to reduce clutter in the second scenario.
D.5	The LTS method to reduce clutter in the second scenario
D.6	The Weighting process method to reduce clutter in the third scenario.
D.7	The Eigen 1 of SVD method to reduce clutter in the third scenario. $% \mathcal{S}^{(1)}$.
D.8	The LTS method to reduce clutter in the third scenario. \ldots .
D.9	The Eigen 2 of SVD method to reduce clutter in the first scenario
D.10	The Eigen 3 of SVD method to reduce clutter in the first scenario. $\ .$
D.11	The Eigen 2 of SVD method to reduce clutter in the second scenario.
D.12	The Eigen 3 of SVD method to reduce clutter in the second scenario.
D.13	The Eigen 2 of SVD method to reduce clutter in the third scenario. $% \mathcal{S}^{(1)}$.
D.14	The Eigen 3 of SVD method to reduce clutter in the third scenario. $% \mathcal{S}^{(1)}$.