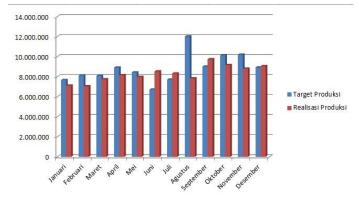
$Perhitung an\ Waktu\ Pemelihara an\ Pada^{\text{e-Proceeding of Engigeering: Vol.10, No.5 Oktober 2023 | Page 4722}}$ Mesin First

Expeller Di PTPN V Menggunakan Metode Reliability and Risk Centered Maintenance (RRCM)

1st M Taufiq Ismail Industrial Engineering Telkom University Bandung, Indonesia taufiqis@student.telkomuniversity.ac.id

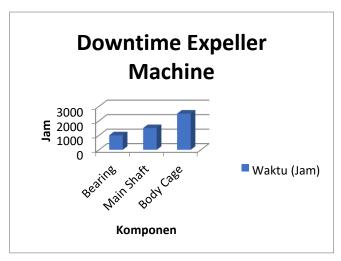
2nd Drs. Judi Alhilman, MSIE. Industrial Engineering Telkom University Bandung, Indonesia alhilman@telkomuniversity.ac.id


3rd Aji Pamoso, S.Si., M.T. Industrial Engineering Telkom University Bandung, Indonesia humamsiddiq@telkomuniversity.ac.id

Abstrak- Perusahaan menggunakan mesin First Expeller EK-150-K di PKO Tandun PTPN V dalam proses pengolahan kelapa sawit menjadi minyak setengah jadi (CPO). Dalam menentukan komponen kritis, penelitian ini menggunakan RPN dari komponen mesin First Expeller EK-150-K dan terpilih 3 komponen kritis yaitu Bearing, Mainshaft, dan Body Cage. Berdasarkan perhitungan yang dilakukan menggunakan metode RRCM, maka didapatkan 5 proposed maintenance task diantaranya, 3 schedule on condition task dan 2 schedule discard task. Pada komponen bearing yaitu untuk schedule on condition task dilakukan setiap 0,86 pekan sekali dan untuk scheduled discard task dilakukan setiap 3 pekan sekali, komponen main shaft untuk schedule on condition task dilakukan setiap 19 pekan sekali dan untuk scheduled discard task dilakukan setiap 2 pekan sekali, serta komponen body cage untuk schedule on condition task dilakukan setiap 1 pekan sekali, total biaya maintenance eksisting yaitu Rp 2.630.557.365 sedangkan untuk total biaya maintenance usulan sebesar Rp 2.362.320.483 Berdasarkan data tersebut biaya maintenance usulan memiliki harga lebih rendah sebesar Rp 268.236.882. dari total biaya pemeliharaan eksisting.

Kata kunci— Maintenance, Reliability and Risk Centered maintenance, Proposed Maintenance Task, Interval Waktu Pemeliharaan

T. PENDAHULUAN


PTPN V merupakan salah satu perusahaan BUMN di Indonesia yang berdiri sejak tahun 1996.. Perusahaan memiliki 12 unit Pabrik Kelapa Sawit (PKS) dengan total kapasitas olah terpasang sebesar 570 ton TBS per jam dengan hasil olahan berupa minyak sawit dan inti sawit. Kemudian untuk mengolah lanjut komoditi inti sawit. Perusahaan memiliki 1 unit Pabrik Palm Kernel Oil dengan kapasitas terpasang sebesar 400 ton inti sawit/hari dengan hasil olahan berupa Palm Kernel Oil (PKO) dan Palm Kernel Meal (PKM).

Gambar 1 Data Produksi Kelapa Sawit 2020

Berdasarkan Gambar 1 memberikan perbandingan antara target Produksi dan Realisasi pengolahan kelapa sawit di PTPN V. Target yang diberikan PTPN V dalam pengolahan selama bulan Januari - Desember 2020. Hasil realisasi tercapainya juga data dari Januari - Desember 2020. Melihat laporan Gambar diatas target yang tercapai hanya pada bulan Juni, Juli, September, dan Desember 2020. Hal yang membuat tidak tercapainya target tersebut dikarenakan terjadinya kerusakan pada mesin expeller ketika sedang melakukan produksi serta belum melakukan perawatan optimal dan juga beberapa sebab lainnya yang menyebakan tidak tercapainya target pengolahan PTPN V. Untuk memberikan rancangan perawatan yang optimal maka akan menggunakan Metode RRCM untuk mengatasi pencegahan kegagalan dan kerusakan pada Mesin Expeller. Diharapkan dapat memberikan jadwal perawatan yang optimal pada komponen kritis Mesin Expeller. Berikut merupakan Data

Downtime dari mesin Expeller di PTPN V

Gambar 2 Data Downtime Mesin First Expeller (Sumber: PTPN V)

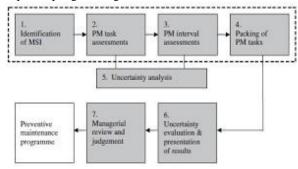
Gambar 2 yang diberikan oleh Pembimbing Lapangan Bapak Rudiwansyah yaitu PTPN V memiliki kerusakan terbesar pada 3 komponen salah satunya *Bearing* Perusahaan selalu mengganti dengan waktu 1000 Jam (42 hari) selalu melakukan pergantian namun terkadang rusak sebelum perhitungan tersebut sehingga dapat dikatakan belum optimal. Pada *Main Shaft* Perusahaan harus mengganti dengan waktu 1500 Jam (63 hari) tetapi juga sering rusak sebelum waktunya yang menyebabkan perhitungan tersebut belum optimal. Komponen Body Cage memiliki waktu lebih lama dalam pergantian yaitu 2700 Jam (104 hari) namun sama dengan komponen lainnya seringkali rusak sebelum waktunya. Dengan seringnya kerusakan terjadi sebelum waktunya maka dapat dikatakan PTPN V belum memiliki waktu pemeliharaan mesin *Expeller* secara optimal.

II. KAJIAN TEORI

A. RPN

Menurut Yssad, Khiat, & Chaker (2013) [1] Risk priority number adalah definisi kekritisan yang dihitung dari tiga faktor occurrence (frekuensi kejadian), severity (keparahan), dan detection (deteksi kegagalan). Tujuan dari RPN adalah untuk menunjukkan tingkat risiko yang menjadi prioritas perbaikan. Nilai RPN didapatkan dari perkalian severity, occurrence, dan detection. Nilai tertinggi yang sudah didapatkan dari RPN menentukan bagian mana yang menjadi prioritas utama untuk menentukan objek utama dalam penelitian.

 $RPN = Severity \ x \ Occurance \ x \ Detection$

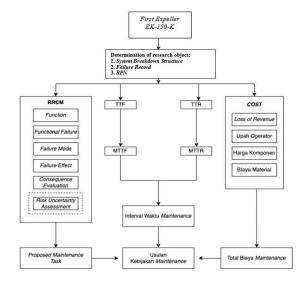

 $RPN = S \times O \times D$

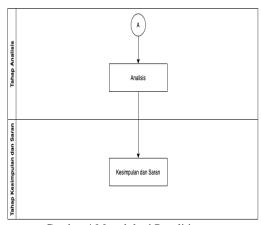
Nilai keseluruhan RPN dapat dilihat pada Tabel 3

B. Reliability and Risk Centered Maintenance (RRCM)

Menurut (Selvik & Aven, 2011) dalam kutipan [2] RRCM adalah metode pemeliharaan mesin yang akurat, fokus, serta optimal dengan tujuan mencapai keandalan (*reliability*) fasilitas yang optimal dengan mempertimbangkan risiko (*risk*) sebagai

referensi analisis, yang mana ketidakpastian merupakan komponen utama dari risiko selain adanya peristiwa yang terjadi dan konsekuensi yang terkait. Metode RRCM meruapakan pengembangan dari metode RCM.


Gambar 3 Kerangka Kerja Metode RRCM


Berdasarkan Gambar 3 diketahui terdapat empat kotak pertama yang merupakan bagian dari RCM, kemudian pada kotak kelima merupakan pengintegrasian untuk penilaian uncertainty analysis yang akan digabungkan ke dalam kerangka kerja RRCM untuk menjelaskan faktor ketidakpastian. Faktor ketidakpastian diperoleh dari tahap kedua dan ketiga yaitu pada penilaian tugas dan interval preventive maintenance. Pada kotak kelima berisi faktorfaktor ketidakpastian, seperti identifikasi dan kategorisasi faktor ketidakpastian.

III. METODE

Pemeliharaan harus dilakukan dengan cara merancang, mengatur, melaksanakan, dan memeriksa pekerjaan untuk menjamin fungsi barang selama waktu kerja dan untuk meminimalkan terjadinya *downtime* yang disebabkan oleh kerusakan atau perbaikan.

Pemeliharaan tersebut dapat efektif jika terdapat interval waktu untuk melakukan kegiatan tersebut. Dalam menentukan interval waktu, akan berpengaruh terhadap total biaya pemeliharaan yang akan dikeluarkan. Pada Gambar 4 merupakan langkah-langkah penentuan interval waktu pemeliharaan dan total biaya pemeliharaan yang harus dikeluarkan.

Gambar 4 Metodologi Penelitian

IV. HASIL DAN PEMBAHASAN

A. Pemilihan Komponen Kritis

Pemilihan komponen kritis bertujuan untuk menentukan komponen yang akan menjadi fokus penelitian. Metode yang digunakan dalam menentukan komponen kritis yaitu dengan menggunakan *Risk Priority Number* (RPN). Pada pergitungan Nilai RPN didapatkan dari perkalian *Severity (S), Occurrence (O)*, dan *Detection (D)* lalu didapatkan hasil nilai RPN. Dari 10 komponen yang dihitung pada *Expeller Machine* didapatkan 3 komponen yang mengalami level *Very High*, 2 komponen *High*, 1 komponen *Medium*, dan 4 komponen *Low*. Komponen yang berada pada level *Critically* yaitu *Body Cage, Main Shaft, Bearing*.

B. Perhitungan MTTF dan MTTR

Mean Time to Failure (MTTF) merupakan rata-rata selang waktu kerusakan dari distribusi kerusakan yang digunakan untuk memprediksi terjadinya kerusakan.

Tabel 1 MTTF

Tabel I MITTE											
Komponen	Distribusi	Pa	arameter	MTTF (Jam)							
		μ	288.341	200 244							
Bearing	Normal	σ	377.381	288.341							
3.6 : 1.6	N 7 1	μ	380.5	200 5							
Mainshaft	Normal	σ	309.915	380.5							
D 1 G	N 1	μ	345.4	245.4							
Body Cage	Normal	σ	266.895	345.4							

Mean Time to Repair (MTTR) merupakan rata-rata selang waktu maintenance untuk setiap perbaikan suatu komponen yang rusak.

Tabel 2 MTTR

Komp onen	Distri busi	Paramete r		1+(1/β)	r	MTTR (Jam)
Bearin	Norm	μ	1.137 25			1.13725
g	al	ь	0.581 525			1.13723
Mains	Weib	η	1.031 82	1.45656	0.88	0.9138
haft	ull	β	2.190 25	8885	56	0.9136
Body	Norm	μ	1.049 8			1.0498
Cage	al	σ	0.572 273			1.0498

C. Pembuatan RCM Decision Worksheet

Pada tahap RCM Decision Worksheet dari Failure Mode pada setiap komponen kritis dilakukan menggunakan Logic Tree Analysis (LTA) bertujuan buat memberikan prioritas pada setiap mode kerusakan dan melakukan peninjauan terhadap fungsi serta kegagalan fungsi.

Prioritas suatu mode kerusakan bisa diketahui menggunakan menjawab pertanyaan pertanyaan yg telah disediakan dalam LTA ini. Pengerjaan terhadap Logic Tree Analysis akan dilakukan dari adanya kegagalan apakah pengaruh kegagalan tersembunyi (H), keselamatan seseorang (S), Kesehatan lingkungan [E], serta pengaruh terhadap kerugian operasional (O). Hasil analisis dari Logic Tree

Analysisi (LTA) ditampilkan secara keseluruhan pada Tabel 4.

D. Penentuan Interval Waktu *Preventive Maintenance Task* Penentuan interval waktu *preventive maintenance* didapatkan dari hasil analisis RCM *Decision Worksheet*. Berdasarkan Tabel 5, 2 proposed maintenance task yaitu, untuk komponen bearing adalah schedule discard task, dan komponen main shaft adalah scheduled on condition task dan scheduled discard task, dan komponen body cage adalah scheduled on condition task. Untuk melihat secara keseluruhan ditampilkan pada Tabel.

Selanjutnya dengan hasil proposed maintenance task, maka dilakukan penentuan interval waktu pemeliharaan terhadap maintenance task terpilih. Pada komponen bearing yaitu untuk schedule on condition task dilakukan setiap 0,86 pekan sekali dan untuk scheduled discard task dilakukan setiap 3 pekan sekali, komponen main shaft untuk schedule on condition task dilakukan setiap 19 pekan sekali dan untuk scheduled discard task dilakukan setiap 2 pekan sekali, serta komponen body cage untuk schedule on condition task dilakukan setiap 1 pekan sekali yaitu Scheduled Restoration Task dan Scheduled Discard Task. Pada Tabel 5 menunjukkan hasil interval waktu pemeliharaan untuk Scheduled Restoration Task yaitu setiap 6 pekan sekali, dan untuk Scheduled Discard Task dilakukan setiap 5 pekan sekali.

E. Penentuan Uncertainty Assessment

Penentuan faktor *uncertainty assessment* dilakukan dengan pengumpulan data historis perusahaan serta diskusi dengan ahli penilaian mesin di PTPN V. Hasil penentuan faktor *uncertainty assessment* untuk kegagalan terhadap komponen kritis dapat dilihat secara keseluruhan pada Tabel 6. Berdasarkan hasil *uncertainty assessment*, dapat disimpulan bahwa tidak terdapat *failure mode* yang berada pada level *High* untuk *degree of importance*, sehingga tidak terjadi perubahan untuk *proposed maintenance task*. Hasil dari *uncertainty assessment* yang telah disatukan dengan interval waktu pemeliharaan yang diajukan sebelumnya dapat dilihat secara keseluruhan pada

F. Perhitungan Biaya Maintenance

Perhitungan total biaya *maintenance* didapatkan dari *maintenance task* dan interval waktu pemeliharaan dengan metode RRCM yang telah dilakukan sebelumnya. Hasil perhitungan interval waktu pemeliharaan dapat digunakan untuk menentukan *frequency maintenance* (Fm) dalam penentuan total biaya *maintenance*. Terdapat perbandingan antara total biaya *maintenance* eksisting dan total biaya *maintenance* usulan untuk perusahaan. Perbandingan total biaya *maintenance* eksisting dan usulan tertera pada Tabel 7 dan Tabel 8.

Perhitungan biaya *maintenance* didapatkan dari perkalian *cost maintenance* (C_m) dengan frekuensi *maintenance* (F_m). Terdapat beberapa ketentuan dalam menghitung biaya *maintenance*, yaitu:

1. Dalam menentukan nilai F_m pada perhitungan biaya maintenance eksisting perusahaan, didapatkan dari *engineer* atau jumlah pemeliharaan komponen selama satu tahun.

- 2. Perhitungan nilai F_m pada biaya maintenance usulan diperoleh dari lamanya waktu sistem beroperasi selama satu tahun dibagi dengan interval waktu maintenance yang telah diperoleh sebelumnya, lalu nilai F_m dibulatkan ke atas.
- 3. Nilai C_m sudah diketahui pada perhitungan sebelumnya.

V. KESIMPULAN DAN SARAN

V.1. Kesimpulan

Total pengeluaran biaya *maintenance* usulan berdasarkan *proposed maintenance task* dan interval waktu perawatan senilai Rp2.362.320.483 selama setahun, biaya *maintenance* usulan lebih rendah dari total biaya *maintenance* eksisting yaitu senilai Rp2.630.557.365 selama setahun. Perbedaan biaya *maintenance* sebesar Rp268.236.882 maka perusahaan akan menghemat biaya *maintenance* jika menerapkan usulan kebijakan yang diberikan.

V.2. Saran

- 1. Peneliti selanjutnya dapat meneliti dengan mesin lainnya sebagai objek penelitian
- 2. Penelitian selanjutnya dapat mengkaji secara lebih dalam mengenai Tugas Akhir ini.

ISSN: 2355-9365

Tabel 3 Hasil Nilai RPN

	FMEA WORKSHEET											
	FIRST EXPELLER-EK-150K											
	Failure Mode Effect Analysis											
N o	Equipmen t	Function	Functional Failure	Failure Effect	S	0	D	RP N	Criticall y	Risk category		
1	Gearbox	Untuk memutar spindel mesin maupun melakukan gerakan feeding	Akurasi koaksial yang rendah	Menyebabka n keausan bearing	2	8	6	96	High	Tolerable		
2	Body Cage	Mempress inti sawit	Kurangnya panas suhu air dan sulit dimonitor	Menyumbat saluran press	4	9	6	216	Very High	Unceptable		
3	Coupling	Penghubung 2 transmisi daya	Coupling bocor	tidak bisa menaikkan kecepatan RPM	3	7	2	42	Low	Acceptable		
4	Feeding Cover	Masuknya minyak setengah jadi	Kotoran masuk	Minyak tercampur kotoran	2	6	3	36	Low	Acceptable		
5	Clamping Bar	Menentukan kemampuan pencekam maksimum mesin	Kelebihan muatan	Mesin malfungsi	3	5	3	45	Low	Acceptable		
6	Main Shaft	Penghubung steering gear	Beban berulang	Main Shaft Patah	3	9	8	216	Very High	Unceptable		
7	Oil Seal	Melindungi mesin untuk mencegah keluar masuk oli	Telat mengganti oli	Terjadinya kebocoran	3	6	3	54	Mediu m	Acceptable		
8	Bearing	Mengurangi gesekan	Muatan berlebih, terjadinya panas	Mesin malfungsi	3	9	9	243	Very High	Unceptable		

9	Motor	Sebagai penggerak komponen dari mesin produksi	Beban yang tidak sesuai kapasitas	Mesin panas dan terhentinya pengolahan	6	2	7	84	High	Tolerable
10	Fan	Membantu mendinginka n mesin	terjadinya panas ketika berputar dengan RPM tinggi	Tidak dapat membantu mendinginka n mesin	2	7	2	28	Low	Acceptable

Tabel 4 Hasil Decision Worksheet

	RC		Information		Unit	or Eq					F	irst E	xpeli	ler EK-150-K	
		W	orksheet	Unit or Item						Bearing					
								H 1	H 2	<i>H</i> 3					
1	Infor	mat	ion Reference		S 1	S 2	S 3	Default Action			Proposed				
					Lvan	uation		O 1	O 2	O 3	. 1	10110		Maintenance	
F	F F		FM	Н	S	Е	О	N 1	N 2	N 3	H H S 4 5 4				
		1	Suhu yang tinggi	Y	N	N	Y	N	N	Y				Schedule Discard Task. Mengganti Bearing	
1	1	2	salah satu titik pada impeller memiliki berat yang tidak seimbang	Y	N	N	Y	Y						Schedule On Condition Task. Melakukan tes balancing pada poros	

	RC		nformation		Unit	or Eq	јиірт	ent				F	irst l	Expeller EK-150-K		
		Wo	rksheet		U	nit or	· Item			Mainshaft						
								H 1	H 2	<i>H</i> 3						
	1	Info	wa ati on	,	Conse	0.0	S	S	S	Default						
		•	rmation ^f erence	(1	2	3		Sejai Actio							
		πej	erence		Eval	0	0	0	1	10110	'11	Proposed Maintenance				
								1	2	3						
	F							N	N	N	Н	Н	S			
F	F		FM	Н	S	Е	О	1	2	3	4	5	4			
		1	Perputaran dengan RPM tinggi	Y	N	N	Y	Y						Schedule on Condition Task. Mengurangi kecepatan pengolahan		
1	1	2	Suhu yang tinggi mengakiba tkan pembengk okan	Y	N	N	Y	N	N	Y				Schedule Discard Task. Mainshaft diganti		

RC	CM Information	Unit or Equipment						First Expeller EK-150-K				
	Worksheet	Unit or Item				Body Cage						
						Н	Н	H				
						1	2	3				
Lufou	mation Defense	(Conse	quenc	ee.	S	S	S	1	Defau	lt	
Injori	mation Reference		Evali	uation		1	2	3	1	Actio	n	Proposed
						О	О	О				Maintenance
						1	2	3				
F	EM	TT	C	17		N	N	N	Н	Н	S	
FF	FM	Н	S	E	О	1	2	3	4	5	4	

ISSN: 2355-9365

Tabel 5 Interval Waktu Pemeliharaan

RCM Decisi Workshee					Date : 27/11/2022				
	Sub Sistem : Bearing								
		Info	rmati	ion Reffrence	Proposed	MTTF	Interval Waktu Pemeliharaan	Interval Waktu Pemeliharaan	
Komponen	F FF FM			FM	Maintenance Task	(Jam)	(Jam)	(Pekan)	
			1	Suhu yang tinggi	Schedule Discard Task. Mengganti Bearing	289	489	3	
Bearing	1	1	2	salah satu titik pada impeller memiliki berat yang tidak seimbang	Schedule On Condition Task. Melakukan tes balancing pada poros	288.341	145.115	0.863779762 ~ 1	

_	CM Decisi Worksheet					Date : 27/11/2022			
Information Reffrence					nation Reffrence	Proposed	MTTF	Interval Waktu	Interval Waktu
Kor	mponen	F	FF		FM	Maintenance Task	(Jam)	Pemeliharaan (Jam)	Pemeliharaan (Pekan)
Mai	in Shaft	1	1	1	Perputaran dengan RPM tinggi	Schedule on Condition Task. Mengurangi kecepatan pengolahan	381	191	1.13

ISSN	:	235	5-9	365
------	---	-----	-----	-----

	Suhu yang tinggi	Schedule Discard		
2	mengakibatkan	Task. Mainshaft	3184	19
	pembengkokan	diganti		

RCM Decision Worksheet		T					Date : 27/11/2022	
Workshee		Sub Sistem : Body Cage					21/11/2022	
		Info	orma	tion Reffrence	Proposed Maintenance	MTTF	Interval Waktu Pemeliharaan	Interval Waktu Pemeliharaan
Komponen	F	FF		FM	Task	(Jam)	(Jam)	(Pekan)
Body Cage	1	1	1	Penyumbatan yang disebabkan cangkang yang kecil	Schedule on Condition Task. Membuka dan membersihkan lubang lubang yang tersumbat	346	173	1.02

Tabel 6 Uncertainty Assesment

Nilai	Keterangan (Degree of Uncertainty)
L	Asumsi yang dibuat dianggap sangat masuk akal
M	Kondisi yang mencirikan ketidakpastian antara rendah dan tinggi
Н	Fenomena yang terlibat tidak dipahami dengan baik; model tidak ada atau diketahui

Nilai	Keterang	Keterangan (Degree of Sensitivity)				
L	Perubahan yang sangat besar dalam penilaian dasar diperlukan untuk menghasilkan proposed					
	main	<i>tenance</i> yang berul	oah			
M	Perubahan nilai kasus dasar yang re	•	•	silkan <i>proposed</i>		
111	main	<i>tenance</i> yang berul	oah			
Н	Perubahan yang relatif kecil dalam nila	ni kasus dasar diper	lukan untuk meng	ghasilkan <i>proposed</i>		
- 11	main	<i>tenance</i> yang berul	oah			
	Uncertai	nty Assesment				
F	FF	FM				
1	1	1	Suhu yang tinggi			
	Unit or Equipment	Firs	t Expeller EK-15	0-K		
	Unit or Item		Bearing			
NO	Assumption	Degree of Uncertainty	Degree of Sensitivity	Degree of Importance		
1	Data mampu menggambarkan item karakteristik kegagalan	M	L	M/L		

2	Riwayat mobilisasi dalam database bersifat representatif	M	M	M
3	Semua item lainnya berfungsi	М	М	М
4	Hanya satu kegagalan yang terjadi pada saat / dalam selang waktu singkat	L	М	L/M
5	Kegagalan item diamati segera setelah terjadi	L	L	L
6	Persyaratan perusahaan dan industri telah diikuti	L	М	L/M
7	Item diuji dan diperiksa dengan benar sebelum dan selama pemasangan	L	M	L/M

Uncertainty Assesment					
F FF		FM			
1	1	salah satu titik pada impeller memili berat yang tidak seimbang			
Unit or Equipment		First Expeller EK-150-K			
Unit or Item		Bearing			
NO	Assumption	Degree of Uncertainty	Degree of Sensitivity	Degree of Importance	
1	Data mampu menggambarkan item karakteristik kegagalan	М	L	M/L	

2	Riwayat mobilisasi dalam database bersifat representatif	М	М	М
3	Semua item lainnya berfungsi	M	М	М
4	Hanya satu kegagalan yang terjadi pada saat / dalam selang waktu singkat	L	М	L/M
5	Kegagalan item diamati segera setelah terjadi	L	L	L
6	Persyaratan perusahaan dan industri telah diikuti	L	М	L/M
7	Item diuji dan diperiksa dengan benar sebelum dan selama pemasangan	L	М	L/M

Uncertainty Assesment				
F FF FM				
1	1	1	Perputaran deng	gan RPM tinggi
	Unit or Equipment	First Expeller EK-150-K		
	Unit or Item	Main Shaft		
NO	Assumption	Degree of Uncertainty	Degree of Sensitivity	Degree of Importance

1	Data mampu menggambarkan karakteristik kegagalan komponen	L	L	L
2	Riwayat mobilisasi dalam database bersifat representatif	M	M	M
3	Semua item lainnya berfungsi	M	L	M/L
4	Hanya satu kegagalan yang terjadi pada saat / dalam selang waktu singkat	M	M	М
5	Kegagalan item diamati segera setelah mereka terjadi	L	M	L/M
6	Persyaratan perusahaan dan industri telah diikuti	L	L	L
7	Item diuji dan diperiksa dengan benar sebelum dan selama pemasangan	L	M	L/M

	Uncertaint	y Assesment		
F	FF	FM		
1	1	2	Pembengkol	kan karena suhu
	Unit or Equipment	Fire	st Expeller EK-1	150-K
	Unit or Item		Main Shaft	
NO	Assumption	Degree of Uncertainty	Degree of Sensitivity	Degree of Importance
1	Data mampu menggambarkan item karakteristik kegagalan	M	L	M/L
2	Riwayat mobilisasi dalam database bersifat representatif	M	М	M
3	Semua item lainnya berfungsi	M	M	M

4	Hanya satu kegagalan yang terjadi pada saat / dalam selang waktu singkat	L	М	L/M
5	Kegagalan item diamati segera setelah mereka terjadi	L	М	L/M
6	Persyaratan perusahaan dan industri telah diikuti	L	L	L
7	Item diuji dan diperiksa dengan benar sebelum dan selama pemasangan	L	М	L/M

	Uncertainty Assesment					
F	FF	FM				
1	1	1 Penyumbatan serpihan cangk				
	Unit or Equipment	F	irst Expeller EK-150)-K		
	Unit or Item		Body Cage			
NO	Assumption	Degree of Uncertainty	Degree of Sensitivity	Degree of Importance		
1	Data mampu menggambarkan item karakteristik kegagalan	M	L	M/L		
2	Riwayat mobilisasi dalam database bersifat representatif	L	L	L		
3	Semua item lainnya berfungsi	М	М	М		
4	Hanya satu kegagalan yang terjadi pada saat / dalam selang waktu singkat	L	М	L/M		
5	Kegagalan item diamati segera setelah mereka terjadi	L	L	L		
6	Persyaratan perusahaan dan industri telah diikuti	L	L	L		
7	Item diuji dan diperiksa dengan benar sebelum dan selama pemasangan	L	L	L		

Tabel 7 Biaya Maintenance Eksisting

W.	Information Reference			E	Con (Day)	Dia a Maintanana (talan)
Komponen	F	FF	FM	Fm	Cm (Rp)	Biaya Maintenance (tahun)
	1	1	2	64	13.422.014	859.008.896
Bearing	1	1	1	20	13.422.014	268.440.280
Main Clark	1	1	1	48	13.328.746	639.779.808
Main Shaft	1	1	2	8	13.328.746	106.629.968
Body Cage	1	1	1	56	13.512.471,67	756.698.413,3
	Total					2.630.557.365

Tabel 8 Biaya Maintenance Usulan

Komponen	Information Reference				6 (5)	D: M: (1)
	F	FF	FM	Fm	Cm (Rp)	Biaya Maintenance (tahun)
Bearing	1	1	2	60	13.422.014	805.320.840
			1	18	13.422.014	241.596.252
Main Shaft	1	1	1	45	13.328.746	599.793.570
			2	3	13.328.746	39.986.238
Body Cage	1	1	1	50	13.512.471,67	675.623.583,3
Total						2.362.320.483

REFERENSI

- [1] B. Yssad, M. Khiat and A. Chaker, "Reliability centered maintenance optimization for power distribution systems," *Electrical Power and Energy Systems*, 2014.
- [2] F. T. Dwi Atmaji, "OPTIMASI JADWAL PERAWATAN PENCEGAHAN PADA MESIN TENUN UNIT SATU DI PT KSM, YOGYAKARTA," Jurnal Rekayasa Sistem & Industri Volume 2, Nomor 2, 2015.