Solver Algorithms and Tractable Subproblem Analysis of Suguru Puzzles

Butrahandisya¹, Muhammad Arzaki², Gia Septiana Wulandari³

^{1,2,3}School of Computing, Telkom University, Bandung ¹andyyy@student.telkomuniversity.ac.id, ²arzaki@telkomuniversity.ac.id, ³giaseptiana@telkomuniversity.ac.id

Abstract

This paper explores algorithmic and mathematical aspects of Suguru puzzles, a single-player pencil-andpaper puzzle introduced in 2001 and proven NP-complete in 2022. Two algorithmic approaches are presented for solving Suguru puzzles: the backtracking approach and the SAT-based approach. The backtracking approach demonstrates an asymptotic running time of $O(R \cdot (mn - H + 2)!)$ for solving a Suguru puzzle of size $m \times n$, R regions, and H hint cells. Furthermore, a SAT encoding of the puzzle rules into propositional formulas is proposed, where the number of variables and clauses are bounded above by $O(m^3n^3)$ for an $m \times n$ Suguru instance. In addition, it is proven that any Suguru puzzle of size $m \times n$ with either m = 1 or n = 1can be solved in linear time in terms of the puzzle size. Experimental results show that the backtracking approach is faster for solving Suguru puzzles of sizes 10×10 or smaller, while the SAT-based technique is superior for solving larger puzzles.

Keywords: asymptotic complexity, backtracking, SAT encodings, Suguru puzzles, tractable subproblems