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Preface

As the Internet continues to grow in size and complexity, the challenge of effectively
provisioning, managing, and securing it has become inextricably linked to a deep
understanding of network behaviors of networked systems and Internet applications.
While there exists an extensive body of research publications on traffic classifica-
tions, Internet measurement, network security, and digital forensics, there are few
books dedicated to network behavior analysis. This book provides a comprehensive
overview of network behavior analysis that focuses on the study of network traffic
data to provide critical insights into the behavioral patterns of networked systems
such as servers, desktops, smartphones, and the Internet of Thing (IoT) devices and
Internet applications such as web browsing, electronic mails, file transfers, online
gaming, video streaming, and social networking. The objective of this book is to fill
the book publication gap in network behavior analysis which has recently become an
increasingly important component of comprehensive network monitoring and secu-
rity solutions for backbone networks, enterprise networks, data center networks,
home networks, and emerging networks such as 5G networks, vehicle networks, and
IoT networks.

Network behavior analysis is an end-to-end process of collecting, extracting,
analyzing, modeling, and interpreting network behavior of end systems and network
application from Internet traffic data such as TCP/IP data packets and network flows.
This bookpresents the fundamental principles andbest practices for networkbehavior
analysis. Relying on datamining,machine learning, information theory, probabilistic
graphical and structural modeling, this book explains what, who, where, when,
and why of communication patterns and network behavior of networked systems
and Internet applications. The book also discusses the benefits of network behavior
analysis for the applications of cybersecurity monitoring, Internet traffic profiling,
anomaly traffic detection, and emerging application detection.

This book is of particular interest to researchers and practitioners in the fields
of Internet measurement, traffic analysis, cybersecurity since this book brings a
spectrum of innovative techniques to develop behavior models, structural models,
graphic models of Internet traffic and presents how to leverage these results from
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these models for a broad range of real-world applications in network management,
security operations, and cyber intelligent analysis.

The major benefits of reading this book include (1) learning the principles and
practices of measuring, modeling, and analyzing network behavior from massive
Internet traffic data; (2) making sense of network behavior for a spectrum of appli-
cations ranging from cybersecurity, network monitoring and emerging application
detection; and (3) understandinghow to explore networkbehavior analysis to comple-
ment traditional perimeter-based firewall and intrusion detection systems to detect
unusual traffic patterns or zero-day security threats via data mining and machine
learning techniques. The prerequisite for reading this book is a basic understanding
on TCP/IP protocols, data packets, network flows, and Internet applications.

Phoenix, AZ, USA
October 2021

Kuai Xu
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Chapter 1
Introduction

Abstract As the Internet continues to grow in devices, applications, services, users,
and traffic, network behavior analysis has increasingly become a crucial area in
research for understanding what is happening on the Internet. This chapter first intro-
duces the definition and concept of network behavior and discusses the importance
and urgent need of network behavior analysis. Subsequently, this chapter describes
the common methods, infrastructure, and frameworks for collecting, monitoring,
modeling and analyzing network behavior.Next, this chapter discusses the broad ben-
efits and applications of exploring network behavior in behavioral profiling, anomaly
detection, traffic engineering, and securitymonitoring. Finally, this chapter concludes
with an overview of the topics covered in this book and the overall organization of
the book chapters.

1.1 What is Network Behavior Analysis

As the Internet continues to grow in size and complexity, the challenge of effectively
provisioning, managing, and securing it has become inextricably linked to a deep
understanding of Internet traffic and network behavior [1–5]. The imperative and
urgency of understanding network behavior and traffic patterns gives rise to the
field of network behavior analysis (NBA), which focuses on the study of network
traffic data for providing critical insights into behavioral patterns of end systems and
network applications.

Throughout this book, the terms, networked systems, end hosts, and
end systems,will be used interchangeably for representingall Internet-connected
devices including desktops, laptops, tablets, smartphones, servers as well as Internet
of Thing (IoT) devices. We will also use the terms, Internet applications,
network applications, and application services interchangeably
for denoting the broad range of applications and services running on the Internet
infrastructure, such as e-mail, web, video andmusic streaming, gaming, online social
media, and smartphone apps.

© Springer Nature Singapore Pte Ltd. 2022
K. Xu, Network Behavior Analysis,
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2 1 Introduction

Network behavior analysis is an end-to-end process of collecting, extracting, ana-
lyzing, modeling, and interpreting network behavior of end systems and network
application from massive amount of Internet traffic data such as TCP/IP data pack-
ets and network flows. Network behavior analysis is an interdisciplinary research
field that involves a variety of disciplines such as computer science, machine learn-
ing, data mining, artificial intelligence, visualizations, statistical analysis, network
science, and information theory.

Network behavior analysis includes a suite of models, algorithms, and tools for
characterizing analyzingbehavioral patterns of networked systems and Internet appli-
cations [6, 7]. Network behavior analysis shares a number of methods, techniques,
and tools with network forensics which typically focuses on reactively investigating
cyber attacks, cyber crimes, threats, and vulnerabilities with network traffic traces.
However, network behavior analysis has a much broader range of applications such
as network engineering, capacity planning, traffic optimizations, behavior profiling,
and security monitoring. In addition, network behavior analysis could be employed
proactively or reactively (or both) for these applications.

1.2 Network Behavior Measurement and Modeling

The last two decades have witnessed significant progress in instrumenting data col-
lection systems including Internet measurement and monitoring platforms [8–14]
for high-speed networks at the core and edges of the Internet. The measurement
and monitoring platforms for network behavior analysis [9, 11, 12] are among these
instruments with specific objectives of collecting Internet traffic data for analyzing
and modeling behavioral patterns of networked systems and Internet applications.

In light of wide spread cyber attacks [15–20] and the frequent emergence of dis-
ruptive applications [21–24] that often rapidly alter the dynamics of network traffic,
and sometimes bring down valuable Internet services, network behavior modeling
has a primary objective of unveiling the underlying structures and communication
patterns from Internet traffic data for use in network operations and security man-
agement.

Due to vast quantities of traffic data, diverse networked systems, and Internet
applications, characterizing and modeling network behavior from massive network
traffic data is a daunting task for researchers and practitioners in both academia and
industry. The recent research and development on network behavior analysis [9, 25–
32] have introduced three different and complementary models characterizing and
interpreting communications patterns of networked systems and Internet applica-
tions: behavioral model [9, 33], structural model [34–36], and graphical model [27,
37–39].

The behavioral, structural and graphical models of network traffic collectively
and complementarily describe and capture who, what, when, where, and why of data
communications on the Internet. The behavioral model builds behavioral patterns of
networked systems and Internet applications via summarizing traffic features of data
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communications, while the structural model of network traffic captures and charac-
terizes the interactions between various features or dimensions in traffic data as well
as identifies the dominant feature values, if exists, for describing the communication
structure and activity for the behavioral entities. Rather than focusing on individual
network systems and Internet applications, the graphical model of network traffic
explores bipartite graphs and one-mode projections for measuring and quantifying
behavior similarity of network systems and Internet applications, and discovers the
inherent groups or clusters of networked systems and Internet applications exhibiting
similar behavioral patterns in data communications.

1.3 Benefits of Network Behavior Analysis

The insights of behavioral patterns resulted from network behavior analysis are of
practical value to a wide spectrum of applications in network operations and cyber-
security such as traffic characterization and classification [40–42], security monitor-
ing [43], and network forensics [44, 45].

The network behavior analysis provides critical insights into traffic characteri-
zation and classifications for network applications [46], end systems [47, 48], and
Internet users [49–51]. The rich set of multidimensional and multi-layer traffic fea-
tures from network behavior analysis not only characterizes traffic patterns of the
Internet “objects”, i.e., Internet applications, network systems, and end users but
also enables accurate classifications and detection on unknown or anomalous net-
work traffic [52].

The in-depth understanding of normal and abnormal behavioral patterns of Inter-
net applications and network systems supports network operators and security ana-
lysts to design and deploy effective security monitoring platforms for continuously
monitoring, detecting, alerting, filtering, and mitigating suspicious behaviors and
anomalous activities. In general, establishing the baseline behavioral patterns of
Internet applications and network systems via longitude network measurement stud-
ies leads to effective detection of intrusion activities or anomalous behavior [9, 53,
54].

Network forensics, a subfield of digital forensics, focuses on collecting, monitor-
ing, and analyzing network traffic data for investigation and analysis of cyber attacks
and cyber crimes, intrusion detection and prevention, and evidence gathering of data
communication over the Internet. The network forensic investigators can leverage
network behavior analysis for understanding the behavioral patterns of suspicious
attacker systems and the victim targets and for discovering behavioral dynamics from
the system data logs and network traffic traces before, during, and after cyber attacks
or cyber crimes. Network behavior analysis shares many similarities in network traf-
fic collection and analysis with network forensics analysis. However, the primary
objective of network behavior analysis is to uncover behavioral patterns of Internet
applications, network systems, and end users, which provide critical insights into



4 1 Introduction

network forensics, traffic analysis, and security monitoring. In other words, network
forensics is one of the practical applications of network behavior analysis.

1.4 Book Overview and Organization

This book provides a comprehensive overview of network behavior analysis that
mines Internet traffic data for extracting, modeling, and making sense of behavioral
patterns of Internet “objects”, such as smartphones, IoT, servers, web applications,
and Internet gaming. The objective of this book is to fill the book publication gap
in network behavior analysis, which has recently become an increasingly important
component of comprehensive network measurement and monitoring solutions for
data center networks, backbone networks, enterprise networks, and home networks.

This book presents the fundamental principles and best practices for measuring,
extracting, modeling, and analyzing network behavior from Internet traffic data for
network systems and Internet applications. Relying on data mining, machine learn-
ing, information theory, probabilistic graphical and structural modeling, this book
explains what, who, where, when, and why of communication patterns and network
behavior of network systems and Internet applications. The book also discusses the
benefits of network behavior analysis for the applications of cybersecurity moni-
toring, Internet traffic profiling, anomaly traffic detection, and emerging application
detection.

The remainder of this book is organized as follows. Chapter2 presents the back-
ground of network behavior analysis. Chapter3 introduces behavior models of net-
work traffic. Chapter4 describes structural models of network traffic. Chapter 5 dis-
cusses graphical models of Internet traffic. Chapter6 sheds lights on the challenges
and opportunities of real-time network behavior analysis. Chapter 7 presents the
benefits and applications of network behavior analysis, while Chap.8 discusses the
research frontiers of network behavior analysis.
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Chapter 2
Background of Network Behavior
Analysis

Abstract Network behavior analysis, a research subfield of Internet measurement
and analysis, is centered on the collection and analysis of network traffic data for
unveiling behavioral patterns and communication structure of networked systems
and Internet applications. This chapter first provides a brief background on Internet
measurement and analysis and subsequently explains the tools, instruments, and
facility of data collection for network behavior analysis. Finally, this chapter sheds
on the basic and advanced analysis of network traffic features via entropymeasures in
information theory, bipartite graphs, and one-mode projections. The basic analysis
of traffic features is the early and critical step for exploring advanced analysis of
network traffic and for developing behavioral, structural, and graphical models of
network behavior for networked systems and Internet applications.

2.1 Internet Measurement and Analysis

The last few decades have witnessed the growing impact of the Internet on the
society thanks to the continuous innovations of Internet devices such as smartphones
and Internet of things and application services such as World Wild Web, email,
social media and networks, video streaming, virtual meetings, and online education.
The applications have fundamentally changed the communication, entertainment,
commerce, media, and culture and have played a key role in rapidly transitioning
billions of people to remote working and learning from home during the coronavirus
pandemics [3]. The critical importance of the Internet calls for a deep understanding
on how the Internet works and behaves via network measurement, monitoring and
analysis, and leads to the rapid development and advance of the emerging research
field in Internet measurement and analysis.

The primary goal of Internet measurement and analysis is to provide insights
on how the Internet works and behaves via monitoring, measuring, collecting, ana-
lyzing, and modeling the Internet from a variety of perspectives including traffic,
routing, applications, performance, and security [25, 39, 48, 68, 77]. The areas of
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Internet measurement and analysis include Internet topology [16, 33, 46, 91], net-
work performance [4, 20, 21, 27, 40, 82], traffic analysis [6, 51, 58, 60, 84, 88,
94], Internet routing [29, 36], network security and forensics [64, 66, 96], diagnosis,
debugging, and troubleshooting [2, 9, 65, 90, 93], and Internetmonitoring [7, 34, 61,
83, 85]. The networks of interests are very broad, covering IP backbone and transit
networks [12, 53, 57, 71], peer-to-peer networks [23, 24, 86], overlay networks [18,
97], content distribution networks [49, 70, 72], enterprise networks [50, 75], data
center networks [8, 63, 76, 89], as well as edge networks [15, 19, 44, 69, 78, 95]
such as home networks [30, 42, 43, 52, 74], vehicle networks [13, 92], and cellular
networks [32, 47, 56].

A rich body of research literature [37, 73, 79, 80, 87] has studied Internet char-
acteristics on topology, structure, workload, application, and end users in wired
or wireless networks. The topology and structure characterizations of the Internet
attempt to map the Internet infrastructure at a variety of coarse and fine granularities
including networked systems, IP addresses, routers, autonomous systems (ASNs),
domains, and Internet service providers (ISPs). These topology maps and Internet
connectivity analysis provide critical insights on end-to-end performance, bandwidth
optimization and capacity planning, and the ASN relationship inference between
neighboring ISPs.

The research on Internet traffic analysis [41, 55, 98] has extensively studied
statistical patterns and properties in network traffic from IP backbone networks,
edge networks, enterprise networks, data center networks, and wireless networks.
The Internet traffic analysis gives insights on traffic classification and characteristics,
statistical properties, workload composition, and network traffic evolution. Given the
“big data” nature of Internet traffic, many researchers have developed effective traffic
sketching, summarizing, and streaming algorithms formeasuring, characterizing, and
modeling network traffic.

Internet routing is responsible for forwarding IP data packets from the original
end system to the destination system over the Internet. To support the massive scale
of the Internet with billions of end systems, the routing protocols of the Internet
forms a two-layered hierarchical structure: inter-domain routing and intra-domain
routing. The inter-domain routing protocol handles the exchange, announcement, and
withdrawal of routing information between different ASNs, while the intra-domain
routing protocol exchanges on the routing information for the routers within the
single ASN under the same network administration and management. The de facto
inter-domain routing protocol is BGP (Border Gateway Protocol), while the intra-
domain routing protocol is independently chosen from different protocols such as
OSPF (Open Shortest Path First), RIP (Routing Information Protocol), and IGRP
(Interior Gateway Routing Protocol) by the respective network engineering team at
different ISPs. As the fundamental infrastructure of the Internet, Internet routing has
been extensively studied in the literature, particularly on the policies, performance,
stability, convergence, security, and misconfigurations.

Due to the prevalent and continuous threats and cyberattacks towards networked
systems and Internet infrastructure, a significant number of the research efforts
on Internet measurement and analysis is devoted to network security and digital
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forensics. These measurement-based approaches collect and analyze traffic and rout-
ing data from networked systems and devices tomine anomalous patterns and emerg-
ing zero-day behaviors for anomaly detection, threatmodeling, and forensic analysis.

Internet monitoring is a crucial component for analyzing how the Internet works,
behaves, and most importantly evolves over time. Towards establishing scalable
Internet monitoring platforms for collecting long-term, trustworthy, and representa-
tive Internet measurement, the networking and system research communities have
developed several planet-scale platforms and testbeds, designed a suite of new traffic
sampling and sketching strategies, and introduced privacy-preserving anonymization
methods for data sharing.

The research topic of network behavior analysis is at the intersections of Inter-
net characterization, traffic analysis, network security and forensics, and Internet
monitoring. Network behavior analysis shares data collection techniques, analy-
sis methodologies, and monitoring strategies with Internet characterization, traffic
analysis, and Internet monitoring. Network behavior analysis has a wide range of
mission-critical applications for network operation and management, including net-
work security and digital forensics

2.2 Data Collection for Network Behavior Analysis

Network behavior analysis relies on raw or processed Internet traffic data such as IP
data packets and network flow records for making sense of the underlying behaviors
of networked systems and Internet applications. Figure 2.1 illustrates the end-to-end
process of network behavior analysis. The process starts with network traffic data
collections, data storage and preprocessing, and continues with network behavioral
analysis and modeling after behavioral feature selection and explorations. Finally,
the process produces actionable behavioral insights for various applications. Thus,
collecting, storing, and archiving traffic data is a crucial and early component of
network behavior analysis and its applications [26].

Internet measurement is typically performed in one of two different infrastruc-
tures: active measurement and passive measurement [28]. The active measurement
infrastructure creates carefully crafted probing packets into the networks for specific
measurement tasks such as quantifying end-to-end latency, measuring available net-
work bandwidth, and discovering the Internet topology [38, 54].Different fromactive
measurement, the passive measurement infrastructure strategically selects vantage
points such as network routers in ISPs and broadband home routers in residential
networks for measuring and monitoring various network characteristics and prop-
erties [1, 10]. In other words, the key difference between active measurement and
passive measurement infrastructures lies in the creation of new data packets into the
networks under measurement.

Data collection for network analysis often relies on passive measurement infras-
tructures to passively monitor and collect traffic data at network routers and end sys-
tems. The temporal frequency of such data collection can be continuous, periodical,
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Network Traffic
Data Collection

Network Behavior
Analysis and Modeling

Data Storage 
and Preprocessing

Behavioral Insights and 
Applications

Behavioral Feature 
Selection and Exploration

Fig. 2.1 The end-to-end process of network behavior analysis

or on-demand. For example, the network telescope project at University of California
San Diego (UCSD) builds an always-on and passive monitoring platform [22] based
on a lightly utilized class A network, represented as /8 in classless inter-domain rout-
ing (CIDR) notation, to continuously monitor and collect unproductive or unwanted
data traffic towards networked systems and the very large unused IP address space
in the network. The traffic data from the network telescope provides insights on the
prevalence and intensity of anomaly traffic on the Internet due to self-replicating
and propagating computer worms, Internet backscatters, vulnerability scanning by
botnets, and many other Internet background radiation events.

The collected data for network behavior analysis has two major types: raw IP
data packets and aggregated network flows [99]. The benefit of collecting raw IP
data packets lies in the availability of all features in data communications. However,
collecting and storing raw IP traffic has an inherent challenge of storing and archiving
the sheer volume of data, e.g., Netflix has estimated 4.5 GB traffic data for the
streaming or downloading of a single 90-minute high-definition (HD) movie. In the
practice of raw IP data packet collections, some systems choose to collect the entire
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IP packet including both the packet header and the full payload, while the other
systems, which are mostly interested in the features in the packet headers and the
first few bytes in the payload, choose to only collect the first 40 bytes of the IP packets
for reducing unnecessary data storage and processing [14].

The network flow data, summarizing IP data packets in data communications
between end systems, requires far less data for each network conversation. For exam-
ple, the same video streaming session, if collected in the form of network flows, costs
only hundreds of bytes, thus saving data storage and processing for several orders of
magnitude. On the other hand, network flow data lacks the complete picture and traf-
fic features of data communications between end systems, e.g., inter-packet arrival
times and the distributions of IP data packet sizes in the same data communication.

In addition to raw IP data packets and network flow records, networking
researchers also collect auxiliary datasets for network behavior analysis. The auxil-
iary datasets include Internet routing tables for characterizing network prefix origins
and best route selections by ISPs, Internet exchange points (IXPs) peering database
for understanding where ISPs and CDNs exchange network traffic, and IP geolo-
cation data for mapping the geographical locations of IP addresses and network
prefixes [59, 62, 67].

2.3 Preliminaries of Network Behavior Analysis

2.3.1 Information Theory and Entropy

In the literature, network traffic analysis relies on volume-based and distribution-
based approaches to study traffic features. The volume-based approach focuses on
the simple counting on the observations on the traffic features, and often provides
many valuable summaries on network traffic, e.g., how many networked systems
does a smartphone communicate with or how many outgoing and incoming IP data
packet counts and byte counts does a web server send and receive during a 5-minute
time window. However, the volume-based approach lacks the ability to shed light on
the variations, distributions, or patterns inside the absolute volumes. For example,
twoweb servers, receiving the equal amount of onemillion IP data packets during the
same timeperiod,might exhibit dramatically different behavioral patterns.One server
might communicate with thousands of random web browsers across the Internet
which collectively send one million IP data packets, while another server might be
under distributed denial-of-service (DDoS) attacks from exactly one million unique
source IP addresses each of which sends one single TCP SYN segment. Therefore,
the networking research community has developed distribution-based approaches
for effectively distinguishing such different patterns under the same traffic volumes.



12 2 Background of Network Behavior Analysis

2.3.1.1 Entropy Measures

To complement the volume-based approach on traffic feature analysis, several
research studies [5, 11, 31, 45] have introduced the distribution-based approach to
characterize the distributions of traffic features via probability and entropy concepts
from probability theory and information theory. Information essentially quantifies
“the amount of uncertainty” contained in data [81]. Consider a randomvariable X that
may take NX discrete values. Supposewe randomly sample or observe X form times,
which induces an empirical probability distribution on X , p(xi ) = mi/m, xi ∈ X ,
where mi is the frequency or number of times we observe X taking the value xi . The
(empirical) entropy of X is then defined as

H(X) := −
∑

xi∈X
p(xi ) log p(xi ), (2.1)

where by convention 0 log 0 = 0.
Entropy measures the “observational variety” in the observed values of X [17].

Note that unobserved possibilities (due to 0 log 0 = 0) do not enter the measure,
and 0 ≤ H(X) ≤ Hmax (X) := logmin{NX ,m}. Hmax (X) is often referred to as the
maximum entropy of (sampled) X , as 2Hmax (X) is the maximum number of possible
unique values (i.e., “maximum uncertainty”) that the observed X can take in m
observations.

2.3.1.2 Standardized Entropy and Relative Uncertainty

Clearly, the entropy measure H(X) is a function of the support size NX and sample
size m. Assuming that m ≥ 2 and NX ≥ 2 (otherwise there is no “observational
variety” to speak of), we define the standardized entropy below—referred to as
relative uncertainty (RU), as it provides an index of variety or uniformity regardless
of the support or sample size:

RU (X) := H(X)

Hmax (X)
= H(X)

logmin{NX ,m} . (2.2)

Clearly, if RU (X) = 0, then all observations of X are of the same kind, i.e.,
p(x) = 1 for some x ∈ X ; thus observational variety is completely absent. More
generally, let A denote the (sub)set of observed values in X , i.e., p(xi ) > 0 for xi ∈ A.
Suppose m ≤ NX . Then RU (X) = 1 if and only if |A| = m and p(xi ) = 1/m for
each xi ∈ A. In other words, all observed values of X are different or unique, thus the
observations have the highest degree of variety or uncertainty. Hence, whenm ≤ NX ,
RU (X) provides a measure of “randomness” or “uniqueness” of the values that the
observed X may take—this is what is mostly used in network traffic analysis, as in
general m � NX .
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Fig. 2.2 Modeling host
communications using
bipartite graphs

In the case of m > NX , RU (X) = 1 if and only if mi = m/NX , thus p(xi ) =
1/NX for xi ∈ A = X , i.e., the observed values are uniformly distributed over X .
In this case, RU (X) measures the degree of uniformity in the observed values of
X . As a general measure of uniformity in the observed values of X , we consider
the conditional entropy H(X |A) and conditional relative uncertainty RU (X |A) by
conditioning X based on A. Then we have H(X |A) = H(X), Hmax (X |A) = log |A|,
and RU (X |A) = H(X)/ log|A|. Hence, RU (X |A) = 1 if and only if p(xi ) = 1/|A|
for every xi ∈ A. In general, RU (X |A) ≈ 1 means that the observed values of X
are closer to being uniformly distributed, thus less distinguishable from each other,
whereas RU (X |A) � 1 indicates that the distribution is more skewed, with a few
values more frequently observed.

2.3.2 Graphical Analysis

2.3.2.1 Bipartite Graphs of Host Communications

Host communications observed in network traffic of Internet links could be naturally
modeledwith a bipartite graphG = (A,B,E), whereA andB are two disjoint vertex
sets, and E ⊆ A × B is the edge set [35]. Specifically, all the source IP addresses
observed in network traffic from one single direction of an Internet link form the
vertex set A, while the vertex set B consists of all the destination addresses
observed in the same traffic. Each of the edges, ek in G connects one vertex ai ∈ A
and another vertex b j ∈ B.
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(a) One-mode projection graph of source hosts (b) One-mode projection graph of destination
hosts

Fig. 2.3 Modeling the social-behavior similarity of networked systems with one-mode projection
of bipartite graphs

Figure 2.2 illustrates an example of a simple bipartite graph that shows data
communications between six source IP addresses (s1 - s6) and four destination IP
addresses (d1 - d4). Note that an Internet link carries network traffic from two direc-
tions, thus we separate network traffic based on traffic directions and use bipartite
graphs to model network traffic from two directions separately.

2.3.2.2 One-Mode Projections of Bipartite Graphs

To study the social-behavior similarity of end hosts in network traffic, we leverage
one-mode projection graphs of bipartite graphs that are used to extract hidden infor-
mation or relationships between nodes within the same vertex sets [35]. Figure 2.3[a]
illustrates the one-mode projection of the bipartite graph on the vertex set of the six
left-side nodes, i.e., the source hosts (s1 - s6) in Fig. 2.2, while Fig. 2.3[b] is the one-
mode projection on the four destination hosts d1 - d4 in Fig. 2.2. An edge connects
two nodes in the one-mode projection if and only if both nodes have connections
to at least one same node in the bipartite graph. Thus studying one-mode projec-
tion graphs could potentially reveal the similarity or dissimilarity of communication
patterns and traffic behaviors for networked systems and Internet applications.
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Chapter 3
Behavior Modeling of Network Traffic

Abstract Given the size and scale of the Internet, networked systems and Inter-
net applications often send and receive a large number of data packets with a wide
spectrum of traffic features, such as unique numbers of source and destination IP
addresses, unique numbers of source and destination ports, and total numbers of
flows, packets, and bytes. Clearly, it is impractical for network operators and secu-
rity analysts to examine every IP data packet or network flow in order to understand
communication patterns and traffic behaviors of networked systems and Internet
applications. Thus, we need effective models, techniques, and tools to analyze and
summarize traffic behaviors on the Internet. This chapter starts with an introduction
of the concepts, features, and models of network behavior, and then introduces an
entropy-based adaptive thresholding algorithm to extract significant networked sys-
tems and Internet applications. Subsequently, this chapter presents an information-
theoretic approach to characterize traffic patterns of behavioral entities on the Internet
and shows that this leads to a natural behavioral classification scheme for grouping
networked systems and Internet applications into behavior classes (BC) with dis-
tinct behavior patterns. By examining the characteristics of these behavior classes
and individual hosts and applications over time, this chapter also sheds light on the
stability and temporal dynamics of network behavior and traffic patterns of networked
systems and Internet applications.

3.1 Behavior-Oriented Network Traffic Modeling

3.1.1 What is Network Behavior

As the Internet continues to grow in users, devices, applications, Services, and traffic,
what is happening on the internet has become a daunting task for network operators
and security analysts. The concept of network behavior refers to the behaviors of net-
worked systems and Internet applications, which are observable from and embedded
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in the underlying traffic data exchanged between networked systems on the Inter-
net. Understanding network behavior from unstructured traffic data can not only tell
who talks to whom on the Internet, when does the conversation happen, for how
long, and why, but also answer many basic and advanced questions such as what are
the top ten Internet applications measured by network traffic volume and where the
most aggressive cyber attack traffic comes from. Given the wide spectrum of criti-
cal applications in network operations and engineering, network behavior analysis
has become a critical research field in the networking, system, and security research
communities.

3.1.2 Traffic Features in Network Behavior

Networked systems communicate with each other via exchanging TCP/IP data pack-
ets on the Internet. Each data packet consists of a network layer header and packet
payload which encapsulates data from the transport layer such as TCP and UDP seg-
ments [1]. A single data communication or “conversation” between two networked
systemson the Internet could incur hundreds or thousands of IPdata packets that share
many fields in the IP, TCP, or UDP headers. Therefore, aggregating IP data packets
from the same conversation into a network flow is a common practice in network
traffic analysis. All the operating systems of major internet routers such as Cisco
IOS Software [2] and Junos OS [3] embed and support real-time instrumentation
of exporting network flows for many mission-critical applications such as network
engineering, capacity planning, performance monitoring, network troubleshooting,
anomaly detection, and network behavior analysis.

A network flow is defined based on the well-known 5-tuple, i.e., the source IP
address (srcIP), destination IP address (dstIP), source port number (srcPort),
destination port number (dstPort), and protocol, which collectively describe a
unique conversation between two networked systems [4]. In addition to these five
key traffic features characterizing network flows, the start and end timestamps of
the flow, packet and byte counts of the flow often provide valuable information and
critical insights into the conversation between networked systems. In the literature
of network behavior analysis, the three terms—traffic features, traffic dimensions,
and traffic fields are often used exchangeably.

3.1.3 Behavioral Entities

Similar to the classic 5 W questions, i.e., who, what, where, when, and why, in story
writing and telling, network behavior analysis characterizes and interpretswho,what,
when, where, and why of data communications between networked systems on the
Internet. Thewho element in network behavior analysis represents the source and the
destination of data communications, andwhat represents the Internet applications and
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services of the communication. The when element captures the start and end times-
tamps of data communications, while wheremeans the geographical locations of the
source and destinations. The final why element often requires careful investigations,
analysis, and mining on the current and historical network traffic for establishing
plausible interpretations of each data communication between networked systems.

In general, the behavioral entities, also referred to as behavioral objects and behav-
ioral units, in network traffic refer to networked systems and Internet applications.
The networked systems observed in TCP/IP packets or network flows aresrcIP and
dstIP, while the Internet applications in IP packets or network flows are srcPort
and dstPort. To extract network traffic for individual behavioral entities, we start
by slicing network traffic along each dimension of the four-feature space, srcIP,
dstIP, srcPrt, or dstPrt, and build traffic clusters for these four dimensions.
Making sense of the extracted srcIP and dstIP clusters yields the host behaviors
and communication patterns for a set of networked systems, while understanding the
srcPort and dstPort clusters yields the port behaviors for Internet applications
and services which reflect the aggregate behaviors of individual end hosts on the cor-
responding application ports. Next, we present a multidimensional view of network
traffic data for modeling network behaviors of these entities.

3.1.4 Real-World Network Traffic Datasets

To systematically evaluate network behaviormodeling,we obtain real-world network
traffic datasets from multiple links in a large ISP network at the core of the Internet
(Table3.1). For every 5-min time slot, we aggregate packet header (the first 40 bytes
of each packet) traces into network flows with a timeout value of 60 s [5]. The 5-min
time slot is used as a trade-off between timeliness of traffic behavior profiling and
the amount of data to be processed in each slot.

As shown in Table3.1, the packet trace lengths range in duration from 3 to 24h,
and the links vary in capacity from 155 Mbps to 10 Gbps. Moreover, they carry
diverse types of traffic—access links carry traffic to and from a set of customers,
wireless links carry traffic between a 3G wireless data network and the rest of the
Internet, while backbone links carry a mix of customer and peer traffic in the middle
of the ISP’s network. These links have been chosen carefully in order to demonstrate
the general applicability of our approach to a number of representative traffic mixes.
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Table 3.1 Multiple links used in network behavior analysis

Link Link type Utilization Duration Packets Trace size

L1 Backbone 78 Mbps 24 h 1.60 * 109 95 GB

L2 Access 86 Mbps 24 h 1.65 * 109 98 GB

L3 Access 40 Mbps 3 h 2.03 * 108 12 GB

L4 Access 52 Mbps 3 h 1.91 * 108 11 GB

L5 Wireless 207 Mbps 3 h 5.18 * 108 28 GB

3.2 Identifying Significant Behavioral Entities

3.2.1 Significant Behavioral Entities

Network traffic on the Internet typically have a very diverse traffic mixes since the
Internet carries network traffic for different networked systems on a large number of
network applications in a very short time window. Thus, it is not practical to analyze
the mixed behavior of all observed networked systems and network applications.
As a result, network behavioral analysis often focuses on analyzing network traffic
of significant behavioral entities, i.e., individual networked systems and network
applications, which are associated with a significant amount of traffic.

Using the four-dimensional (srcIP, dstIP, srcPort, and dstPort)
feature space, we extract “clusters” of significance along each dimension, where each
cluster consists of flowswith the same feature value in the said dimension. This results
in four collections of significant traffic clusters—srcIP clusters, dstIP clusters,
srcPrt clusters, and dstPrt clusters. The srcIP and dstIP clusters represent
the collections of end hosts, while the srcPort and dstPort clusters represent the
collections of network applications or services.

Traditional approaches in extracting traffic clusters of significance rely on a fixed
threshold based on volume, such as packet, byte, and flow counts [4]. However, given
the diverse traffic mixes in hundreds of Internet links in an IP backbone network,
simple fixed thresholds could not fit well into all the links. Therefore, we develop an
information-theoretic approach that culls interesting clusters based on the underlying
feature value distribution (or entropy) in the fixed dimension. Intuitively, clusterswith
feature values (cluster keys) that are distinct in terms of distribution are considered
significant and extracted; this process is repeated until the remaining clusters appear
indistinguishable from each other. This yields a cluster extraction algorithm that
automatically adapts to the traffic mix and the feature in consideration.
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3.2.2 Adaptive Thresholding Algorithm

Westart by focusing on each dimension of the four-feature space,srcIP, dstIP,
srcPrt, or dstPrt, and extract significant clusters of interest along this dimen-
sion. The extracted srcIP and dstIP clusters yield a set of interesting host behav-
iors (communication patterns), while the srcPrt and dstPrt clusters yield a set
of interesting service/port behaviors, reflecting the aggregate behaviors of individual
hosts on the corresponding ports. In the following, we introduce our definition of
significance/interestingness using the (conditional) relative uncertainty measure (cf.
Appendix A).

Given one feature dimension X and a time interval T , letm be the total number of
flows observed during the time interval, and A = {a1, . . . , an}, n ≥ 2, be the set of
distinct values (e.g., srcIP’s) in X that the observed flows take. Then the (induced)
probability distribution PA on X is given by pi := PA(ai ) = mi/m, where mi is
the number of flows that take the value ai (e.g., having the srcIP ai ). Then the
(conditional) relative uncertainty, RU (PA) := RU (X |A), measures the degree of
uniformity in the observed features A. If RU (PA) is close to 1, say, > β = 0.9, then
the observed values are close to being uniformly distributed, and thus nearly indis-
tinguishable. Otherwise, there are likely feature values in A that “stand out” from the
rest. We say a subset S of A contains the most significant (thus “interesting”) values
of A if S is the smallest subset of A such that (i) the probability of any value in S is
larger than those of the remaining values; and (ii) the (conditional) probability dis-
tribution on the set of the remaining values, R := A − S, is close to being uniformly
distributed, i.e., RU (PR) := RU (X |R) > β. Intuitively, S contains the most signif-
icant feature values in A, while the remaining values are nearly indistinguishable
from each other.

To see what S contains, order the feature values of A based on their proba-
bilities: let â1, â2, . . . , ân be such as PA(â1) ≥ PA(â2) ≥ · · ·PA(ân). Then S =
{â1, â2, . . . , âk−1}, and R = A − S = {âk, âk+1, . . . , ân}, where k is the smallest
integer such that RU (PR) > β. Let α∗ = âk−1. Then α∗ is the largest “cut-off”
threshold such that the (conditional) probability distribution on the set of remaining
values R is close to being uniformly distributed. To extract S from A (thereby, the
clusters of flows associated with the significant feature values), we take advantage of
the fact that in practice the probability distribution of the feature valuesPA in general
obeys a power-law: only a relatively few values (with respect to n) have significant
larger probabilities, i.e., |S| is relatively small, while the remaining feature values are
close to being uniformly distributed. Hence, we can efficiently search for the optimal
cut-off threshold α∗.

Algorithm 1 presents an efficient approximation algorithm (in pseudo-code) for
extracting the significant clusters in S from A (thereby, the clusters of flows associated
with the significant feature values). The algorithm starts with an appropriate initial
value α0 (e.g., α0 = 2%), and searches for the optimal cut-off threshold α∗ from
above via “exponential approximation” (reducing the thresholdα by an exponentially
decreasing factor 1/2k at the kth step). As long as the relative uncertainty of the
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Algorithm 3.1 Entropy-based Significant Cluster Extraction
1: Parameters: α := α0; β := 0.9; S := ∅;
2: Initialization: S := ∅; R := A; k := 0;
3: compute prob. dist. PR and its RU θ := RU (PR);
4: while θ ≤ β do
5: α = α × 2−k ; k + +;
6: for each ai ∈ R do
7: if PA(ai ) ≥ α then
8: S := S ∪ {ai }; R := R − {ai };
9: end if
10: end for
11: compute (cond.) prob. dist. PR and θ := RU (PR);
12: end while

(conditional) probability distribution PR on the (remaining) feature set R is less
than β, the algorithm examines each feature value in R and includes those whose
probabilities exceed the threshold α into the set S of significant feature values. The
algorithm stops when the probability distribution of the remaining feature values is
close to being uniformly distributed (>β = 0.9). Let α̂∗ be the final cut-off threshold
(an approximation to α∗) obtained by the algorithm.

3.2.3 Extracting Significant Traffic Clusters

Our algorithm adaptively adjusts the “cut-off” threshold α̂∗ based on the underlying
feature value distributions to extract significant clusters. In our study, we have found
that α0 = 0.02 provides a good starting point, and α̂∗ is typically in the range of
[0.0001, 0.02] based on the feature value distributions.

Figure3.1 presents the results we obtain by applying the algorithm to the 24-h
packet trace collected on L1, where the significant clusters are extracted in every 5-
min time slot along each of the four feature dimensions. In each plot, we show both
the total number of distinct feature values as well as the number of significant clusters
extracted in each 5-min slot over 24h for the four feature dimensions (note that the
y-axis is in log scale). We see that, while the total number of distinct values along
a given dimension may not fluctuate very much, the number of significant feature
values (clusters),which is less than the total number of distinct values in several orders
of magnitude, may vary dramatically, due to changes in the underlying feature value
distributions.

Figure3.2 shows the corresponding final cut-off threshold obtained by the algo-
rithm. It is very interesting to observe that different cut-off thresholds being used in
extracting the significant feature values (clusters) during the 24-h period, which sug-
gests that the entropy-based thresholding algorithm could adjust to the underlying
traffic patterns. In fact, the dramatic changes in the number of significant clusters
(or equivalently, the cut-off threshold) also signifies major changes in the underlying



3.2 Identifying Significant Behavioral Entities 27

Fig. 3.1 The total number of distinct values and significant clusters extracted from four feature
dimensions of L1 over a 1-day period

Table 3.2 The number of significant clusters extracted from L1 during the 15th time period using
adaptive threshold

Dimension # Distinct values Threshold # significant clusters

srcIP 89261 0.0625% 117

dstIP 79660 0.03125% 273

srcPort 49511 0.25% 8

dstPort 50602 1% 12

traffic patterns. In addition, the adaptive thresholds across four feature dimensions
are also different, and indicate that fixed thresholds for multiple dimensions will
often fail to uncover different size distributions for four traffic dimensions.

To provide some specific numbers, consider the 15th time slot. As shown in
Table3.2, there are a total of 89261 distinct srcIP’s, 79660 distinct dstIP’s,
49511 srcPrt’s, and 50602 dstPrt’s. Our adaptive-threshold algorithm extracts
117 significant srcIP clusters, 273 dstIP clusters, 8 srcPrt clusters and 12
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Fig. 3.2 The final cut-off threshold of four feature dimensions of L1 over a 1-day period obtained
by the cluster extraction algorithm

dstPrt clusters, with the resulting cut-off threshold being 0.0625%, 0.03125%,
0.25%, and 1%, respectively. We see that the number of significant clusters is far
smaller than the number of feature values, and that the cut-off thresholds for the
different feature dimensions also differ. This shows that no single fixed threshold
would be adequate in the definition of “significant” behavior clusters. In fact, we will
show later that significant clusters themselves are quite diverse in their sizes, whether
measured in the number of flows (flow count), packets (packet count), or bytes (byte
count). Therefore, focusing only on top clusters based purely on volumes may miss
many otherwise significant behaviors that are interesting, rare or anomalous, and
thus warrant special attention.
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Table 3.3 Convention of free dimension denotations in traffic clusters

Cluster key Free dimensions

X Y Z

srcIP srcPrt dstPrt dstIP

dstIP srcPrt dstPrt srcIP

srcPrt dstPrt srcIP dstIP

dstPrt srcPrt srcIP dstIP

3.3 Network Behavior Modeling

3.3.1 Network Behavior Modeling

Modeling network behavior for the clusters of networked systems and Internet appli-
cations start from characterizing traffic features of data communications in each
cluster and capturing the interactions among these features. Consider the set of, say,
srcIP, clusters extracted from flows observed in a given time slot. The flows in
each srcIP cluster share the same behavioral entity, also called cluster key, while
they can take any possible value along the other three free dimensions, i.e., four
basic dimensions except the cluster dimension. In this case, dstIP, srcPort, and
dstPort are free dimensions. Hence, the flows in a cluster induce a probability
distribution on each of the three “free” dimensions, and thus a relative uncertainty
(cf. Chap. 2) measure can be defined.

For each cluster extracted along a fixed dimension, we use X , Y and Z to denote
its three “free” dimensions, using the convention listed in Table3.3. Hence, for a
srcIP cluster, X , Y , and Z denote the srcPrt, dstPrt, and dstIP dimensions,
respectively. This cluster can be characterized by an RU vector [RUX , RUY , RUZ ].
In other words, the multidimensional RU vector characterizes the traffic patterns of
the behavioral entity, i.e., the cluster key.

In Fig. 3.3a, we represent the RU vector of each srcIP cluster extracted in each
5-min time slot over a 1-h period from L1 as a point in a unit-length cube. We
see that most points are “clustered” (in particular, along the axes), suggesting that
there are certain common “behavior patterns” among them. Fig. 3.4 shows similar
results using the srcIP clusters on four other links. This “clustering” effect can be
explained by the “multi-modal” distribution of the relative uncertainty metrics along
each of the three free dimensions of the clusters, as shown in Fig. 3.3b–d where we
plot the histogram (with a bin size of 0.1) of RUX , RUY , and RUZ of all the clusters
on links L1–L5, respectively. For each free dimension, the RU distribution of the
clusters is multi-modal, with two strong modes (in particular, in the case of srcPrt
and dstPrt) residing near the two ends, 0 and 1. Similar observations also hold for
dstIP, srcPrt, and dstPrt clusters extracted on these links.
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Fig. 3.3 The distribution of relative uncertainty on free dimensions for srcIP clusters from L1
during a 1-h period

3.3.2 Network Behavior Classifications

As a convenient way to group together clusters of similar behaviors, we divide each
RU dimension into three categories (assigned with a label): 0 (low), 1 (medium), and
2 (high), using the following criteria:

L(ru) =

⎧
⎪⎨

⎪⎩

0(low), if 0 ≤ ru ≤ ε,

1(medium), if ε < ru < 1 − ε,

2(high), if 1 − ε ≤ ru ≤ 1,

(3.1)

where for the srcPrt and dstPrt dimensions, we choose ε = 0.2, while for the
srcIP and dstIP dimensions, ε = 0.3. This labeling process classifies clusters
into 27 possible behavior classes (BC in short), each represented by a (label) vec-
tor [L(RUX ), L(RUY ), L(RUZ )] ∈ {0, 1, 2}3. For ease of reference, we also treat
[L(RUX ), L(RUY ), L(RUZ )] as an integer (in ternary representation)
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Fig. 3.4 The distribution of relative uncertainty on free dimensions for srcIP clusters from L2,3,4,5
during a 1-h period

id = L(RUX ) · 32 + L(RUY ) · 3 + L(RUZ ) ∈ {0, 1, 2, . . . , 26}, and refer to it as
BCid . Hence srcIP BC6 = [0, 2, 0], which intuitively characterizes the communi-
cating behavior of a networked system using a single or a few srcPrt’s to talk with
a single or a few dstIP’s on a larger number of dstPrt’s. We remark here that for
clusters extracted using other fixed feature dimensions (e.g., srcPrt, dstPrt or
dstIP), theBC labels and id’s have a differentmeaning and interpretation, as the free
dimensions are different (see Table3.3). We will explicitly refer to the BCs defined
along each dimension as srcIP BCs, dstIP BCs, srcPrt BCs and dstPrt
BCs. However, when there is no confusion, we will drop the prefix.
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3.4 Network Behavior Dynamics

3.4.1 Temporal Properties of Behavior Classes

The RU-based behavioral analysis leads to a natural classification of network behav-
iors and communication patterns of networked systems and Internet applications.
However, such behavioral analysis relies on traffic features from datasets collected
at a certain time window. Thus, it is crucial to analyze the temporal properties of the
behavior classes for the time-series analysis, stability analysis and change detection
of network behavior.

Towards this end, we introduce three metrics to capture three different aspects of
the characteristics of the BC’s over time: (i) popularity: which is the number of times
we observe a particular BC appearing (i.e., at least one cluster belonging to the BC is
observed); (ii) (average) size: which is the average number of clusters belonging to a
given BC, whenever it is observed; and (iii) (membership) volatility: which measures
whether a given BC tends to contain the same clusters over time (i.e., the member
clusters re-appear over time), or new clusters.

Formally, consider an observation period of T time slots. For each BCi , let Ci j

be the number of observed clusters that belong to BCi in the time slot τ j , j =
1, 2, . . . , T , Oi the number of time slots that BCi is observed, i.e.,

Oi = |{Ci j : Ci j > 0}|, (3.2)

andUi be the number of unique clusters belonging to BCi over the entire observation
period. Then the popularity of BCi is defined as:

�i = Oi

T
; (3.3)

its average size �i is defined as:

�i =
T∑

j=1

Ci j

Oi
; (3.4)

and its (membership) volatility 	i is defined as:

	i = Ui
∑T

j=1 Ci j

= Ui

�i Oi
. (3.5)

If a BC contains the same clusters in all time slots, i.e., Ui = Ci j , for every j such
thatCi j > 0, then	i = 0. In general, the closer	i is to 0, the less volatile the BC is.
Note that the membership volatility metric is defined only for BC’s with relatively
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high frequency, e.g., � > 0.2, as otherwise it contains too few “samples” to be
meaningful.

In Fig. 3.5a–c we plot �i , �i and 	i of the srcIP BC’s for the srcIP clusters
extracted using link L1 over a 24-h period, where each time slot is a 5-min interval
(i.e., T = 288). From Fig. 3.5a we see that 7 BC’s, BC2 [0, 0, 2], BC6 [0, 2, 0],
BC7 [0, 2, 1], BC8 [0, 2, 2], BC18 [2, 0, 0], BC19 [2, 0, 1] and BC20 [2, 0, 2], are
most popular, occurring more than half of the time; while BC11 [2, 0, 2] and BC12

[2, 1, 0] and BC24 [2, 2, 1] have moderate popularity, occurring about one-third
of the time. The remaining BC’s are either rare or not observed at all. Figure3.5b
shows that the five popular BC’s, BC2, BC6, BC7, BC18, and BC20, have the largest
(average) size, each having around 10 or more clusters; while the other two popular
BC’s, BC8 and BC19, have four or fewer BC’s on the average. The less popular
BC’s are all small, having at most one or two clusters on the average when they
are observed. From Fig. 3.5c, we see that the two popular BC2 and BC20 (and the
less popular BC11, BC12 and BC24) are most volatile, while the other five popular
BC’s, BC6, BC7, BC8, BC18 and BC19 are much less volatile. To better illustrate
the difference in the membership volatility of the 7 popular BC’s, in Fig. 3.5d we plot
Ui as a function of time, i.e., Ui (t) is the total number of unique clusters belonging
to BCi up to time slot t . We see that for BC2 and BC20, new clusters show up in
nearly every time slot, while for BC7, BC8 and BC19, the same clusters re-appear
again and again. For BC6 and BC18, new clusters show up gradually over time and
they tend to re-occur, as evidenced by the tapering off of the curves and the large
average size of these two BC’s.

3.4.2 Behavior Dynamics of Individual Clusters

We now investigate the behavior characteristics of individual clusters over time. In
particular, we are interested in understanding (i) the relation between the frequency
of a cluster (i.e., how often it is observed) and the behavior class(es) it appears in; and
(ii) the behavior stability of a cluster if it appears multiple times, namely, whether a
cluster tends to re-appear in the same BC or different BC’s?

We use the set of srcIP clusters extracted on links with the longest duration, L1

and L2, over a 24-h period as two representative examples to illustrate our findings.
Figure3.6 shows the frequency distribution of clusters in log-log scale, where the
x-axis is the cluster id ordered based on its frequency (the most frequent cluster
first). The distribution is “heavy-tailed”: for example more than 90.3% (and 89.6%)
clusters in L1 (and L2) occur fewer than 10 times, of which 47.1% (and 55.5%) occur
only once; 0.6% (and 1.2%) occur more than 100 times. Moreover, the most frequent
clusters all fall into the five popular but non-volatile BC’s, BC6, BC7, BC8, BC18

and BC19, while a predominant majority of the least frequent clusters belong to BC2

and BC20. The medium-frequency clusters belong to a variety of BCs, with BC2 and
BC20 again dominant.
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Fig. 3.5 Temporal properties of srcIP BCs using srcIP clusters on L1 over a 24-h period

Fig. 3.6 Frequencies of all
srcIP clusters on L1 and
L2
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Fig. 3.7 Behavior transitions along srcPrt, dstPrt and dstIP dimensions as well as Man-
hattan and Hamming distances for “multi-BC” srcIP clusters on L1

Next, for those clusters that appear at least twice (2,443 and 4,639 srcIP clusters
from link L1 and L2, respectively), we investigate whether they tend to re-appear
in the same BC or different BC’s. We find that a predominant majority (nearly 95%
on L1 and 96% on L2) stay in the same BC when they re-appear. Only a few (117
clusters on L1 and 337 on L2) appear in more than 1 BC. For instance, out of the
117 clusters on L1, 104 appear in 2 BC’s, 11 in 3 BC’s and 1 in 5 BC’s. We refer to
these clusters as “multi-BC” clusters.

We perform an in-depth analysis on the “behavior transitions” of these “multi-BC”
clusters in terms of their RU vectors (RUVs). In Fig. 3.7 we examine the behavior
transitions of those 117 “multi-BC” clusters along each of the three dimensions
(srcPrt, dstPrt and dstIP), where each point represents an RU transition
(RU (t1), RU (t2)) in the corresponding dimension. We see that for each dimension,
most of the points center around the diagonal, indicating that the RU values typically
do not change significantly. For those transitions that cross the boundaries, causing
a BC change for the corresponding cluster, most fall into the rectangle boxes along
the sides, with only a few falling into the two square boxes on the upper left and
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lower right corners. This means that along each dimension, most of the BC changes
can be attributed to transitions between two adjacent labels.

To measure the combined effect of the three RU dimensions on behavior tran-
sitions, we define two distance metrics: Manhattan distance (dm) and Hamming
distance (dh):

dm = |RUX (t1) − RUX (t2)| + |RUY (t1) − RUY (t2)|
+ |RUZ (t1) − RUZ (t2)|, (3.6)

and

dh = |LX (t1) − LX (t2)| + |LY (t1) − LY (t2)|
+ |LY (t1) − LY (t2)|, (3.7)

where L is the labeling function (cf., Eq. (3.1)).
Figure3.7d plots the Manhattan distance and Hamming distance of those behav-

ior transitions that cause a BC change (a total of 658 such instances) for one of the
“multi-BC” clusters. These behavior transitions are indexed in the decreasing order
of Manhattan distance. We see that over 90% of the “BC-changing” behavior transi-
tions have only a small Manhattan distance (e.g.,≤0.4), and most of the BC changes
are within akin BC’s, i.e., with a Hamming distance of 1. Only 60 transitions have
a Manhattan distance larger than 0.4, and 31 have a Hamming distance of 2 or 3,
causing BC changes between non-akin BC’s. Hence, in a sense, only these behavior
transitions reflect a large deviation from the norm. These “deviant” behavior tran-
sitions can be attributed to large RU changes in the srcPrt dimension, followed
by the dstIP dimension. Out of the 117 “multi-BC clusters, we find that only 28
exhibit one or more “deviant” behavior transitions (i.e., with dm ≥ 0.4 or dh = 2, 3)
due to significant traffic pattern changes, and thus are regarded as unstable clusters.
The above analysis has therefore enabled us to distinguish between this small set
of clusters from the rest of the multi-BC clusters for which behavior transitions are
between akin BCs, and a consequence of the choice of ε in Eq. (3.1), rather than any
significant behavioral changes.

We conclude the analysis on network behavior dynamics by commenting that
our observations and results regarding the temporal properties of behavior classes
and behavior dynamics of individual clusters hold not only for the srcIP clusters
extracted on L1 but also on other dimensions and linkswe studied. Furthermore, qual-
itatively similar observations can also be made regarding the behavior characteristics
of dstIP, srcPrt and dstPrt BCs and individual clusters.
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3.5 Summary

This chapter demonstrates that behaviormodeling of Internet traffic characterizes and
differentiates behavioral patterns of networked systems and Internet applications via
capturing the probability distributions and interactions of a wide spectrum of traffic
features in TCP/IP data packets and network flows. The behavior classes defined by
our entropy-based behavior classification scheme manifest distinct temporal char-
acteristics, as captured by the frequency, populousness, and volatility metrics. In
addition, traffic clusters formed by behavioral entities such as networked systems
and Internet applications in general exhibit consistent behaviors over time, with only
a very few occasionally exhibiting unstable behaviors.

In summary, the RU-based behavior classification scheme inherently captures cer-
tain behavior similarity among traffic clusters. This similarity is in essence measured
by how varied (e.g., random or deterministic) the flows in a cluster assume feature
values in the other three free dimensions. Thus, the resulting behavior classifica-
tion provides meaningful and quantifiable measures for characterizing individual
behaviors of networked systems and Internet applications during both the short-
time snapshot and the long-term observations of network traffic. In other words,
the entropy-based behavior classification scheme is a robust and consistent behavior
model of network traffic. The next two chapters will present how to develop structural
and graphical models, complement to RU-based behavioral model, to make sense of
network data traffic for networked systems and Internet applications.
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Chapter 4
Structural Modeling of Network Traffic

Abstract The behavior modeling of network traffic characterizes the distributions
of traffic features for networked systems and Internet applications but sheds little
light on the interactions between traffic features. The structural modeling of network
traffic fills this void by capturing the interactions between features and identifying
the dominant feature values, if they exist, for describing the communication structure
and activity for the behavioral entities, i.e., networked systems and Internet applica-
tions. This chapter first presents the dominant state analysis technique for modeling
the inherent structure of data communications and characterizing the interaction of
features within traffic clusters of individual networked systems and Internet applica-
tions. In addition, this chapter examines additional cluster features to provide further
support and interpretation of network behavior analysis.

4.1 Communication Structure Analysis

4.1.1 Dominant State Analysis

The idea of dominant state analysis originates from structural modeling or recon-
structability analysis in system theory [3, 4] as well as more recent graphical models
in statistical learning theory [1]. The intuition behind the dominant state analysis is
described below. Given a cluster, say a srcIP cluster, all flows in the cluster can be
represented as a 4-tuple (ignoring the protocol field) 〈u, xi , yi , zi 〉, where the srcIP
has a fixed value u, while the srcPrt (X dimension), dsrPrt (Y dimension), and
dstIP (Z dimension) may take any legitimate values. Hence, each flow in the clus-
ter imposes a “constraint” on the three “free” dimensions X,Y , and Z , as illustrated
in Table 3.3 Treating each dimension as a random variable, the flows in the cluster
constrain how the random variables X , Y , and Z “interact” or “depend” on each
other, via the (induced) joint probability distribution P(X,Y, Z). The objective of
dominant state analysis is to explore the interaction or dependence among the free
dimensions by identifying “simpler” subsets of values or constraints (called struc-
tural models in the literature [2]) to represent or approximate the original data in
their probability distribution. We refer to these subsets as dominant states of a traffic
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cluster. Hence, given the information about the dominant states, we can reproduce
the original distribution with reasonable accuracy.

We use some examples to illustrate the basic ideas and usefulness of dominant
state analysis. Suppose we have a srcIP cluster consisting mostly of scans (with
a fixed srcPrt 220) to a large number of random destinations on dstPrt 6129.
Then the values in the srcPrt, dstPrt, and dstIP dimensions these flows take
are of the form 〈220, 6129, ∗〉, where ∗ (wildcard) indicates random or arbitrary
values. Clearly, this cluster belongs to srcIP BC2 [0, 0, 2], and the cluster is dom-
inated by the flows of the form 〈220, 6129, ∗〉. Hence, the dominant state of the
cluster is 〈220, 6129, ∗〉, which approximately represents the nature of the flows in
the cluster, even though there might be a small fraction of flows with other states.
As a slightly more complicated example, consider a srcIP cluster which consists
mostly of scanning traffic from the source (with randomly selected srcPrt) to a
large number of random destinations on either dstPrt 139 (50% of the flows)
or 445 (45%). Then the dominant states of the cluster (belonging to BC20) are
{〈∗, 139, ∗〉[50%], 〈∗, 445, ∗〉[45%]}, where [·] indicates the percentage of flows
captured by the corresponding dominant state. To emphasize the “interaction” or
“dependence” among the dimensions, we represent the dominant states in the fol-
lowing form: {dstPrt(139) → (srcPrt(∗),dstIP(∗))[0.5], dstPrt(445) →
(srcPrt(∗),dstIP(∗))[0.45]}, sometimes in short {dstPrt(139)[0.5],dstPrt}
{(445)[0.45]}. Intuitively, it says that the dstPrt dimension determines the
srcPrt and dstIP dimensions: by choosing 139with probability 0.5 and 445with
probability 0.45 for the dstPrt, and then picking random values for the srcPrt
and dstIP, we can reproduce a cluster that closely approximates the original cluster
in terms of joint feature value distribution.

Figure 4.1 depicts the general procedure of dominant state analysis to extract
dominant states from a cluster. Let {A, B,C} be a re-ordering of the three free
dimensions X,Y, Z of the cluster based on their RU values: A is the free dimension
with the lowest RU, B the second lowest, andC the highest; in case of a tie, X always
precedes Y or Z , and Y precedes Z . The dominant state analysis procedure starts
by finding substantial values in the dimension A (step 1). A specific value a in the
dimension A is substantial if the marginal probability

p(a) :=
∑

b

∑

c

p(a, b, c) ≥ δ, (4.1)

where δ is a threshold for selecting substantial values. If no such substantial value
exists, we stop. Otherwise, we proceed to step 2 and explore the “dependence”
between the dimension A and dimension B by computing the conditional (marginal)
probability, p(b j |ai ), of observing a value b j in the dimension B given ai in the
dimension A:

p(b j |ai ) :=
∑

c

p(ai , b j , c)

p(ai )
. (4.2)
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Fig. 4.1 General procedure
for dominant state analysis

Wefind those substantialb j ’s such that p(b j |ai ) ≥ δ. If no substantial value exists, the
procedure stops.Otherwise,we proceed to step 3 compute the conditional probability,
p(ck |ai , b j ), for each ai , b j and find those substantial ck’s, such that p(ck |ai , b j ) ≥ δ.
The dominant state analysis procedure produces a set of dominate states of the
following forms: (∗, ∗, ∗) (i.e., no dominant states), or ai → (∗, ∗) (by step 1),
ai → b j → ∗ (by step 2), or ai → b j → ck (by step 3). The set of dominate states
is an approximate summary of the flows in the cluster, and in a sense captures the
“most information” of the cluster. In other words, the set of dominant states of a
cluster provide a compact representation of the cluster.

4.1.2 Communication Structure of Networked Systems and
Internet Applications

We apply the dominant state analysis to the clusters of four feature dimensions
extracted on all links with varying δ in [0.1, 0.3]. The results with various δ are
very similar, since the data is amenable to compact dominant state models. Table 4.1
(ignoring columns 4–7 for the moment, which we will discuss in the next section)
shows dominant states ofsrcIP clusters extracted from link L1 over a 1-hour period
using δ = 0.2. For each BC, the first row gives the total number of clusters belonging
to the BC during the 1-hour period (column 2) and the general or prevailing form
of the structural models (column 3) for the clusters. The subsequent rows detail the
specific structural models shared by subsets of clusters and their respective numbers.
The notations dstIP(·), srcPrt(· · · ), etc., indicate a specific value and multiple
values (e.g., in dstIP) that are omitted for clarity, and [>90%] denotes that the
structural model captures at least 90% of the flows in the cluster (to avoid too much
clutter in the table, this information is only shown for clusters in BC2). The last
column provides brief comments on the likely nature of the flows the clusters contain,
which will be analyzed in more depth in next chapter.
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The results in the table demonstrate two main points. First, clusters within a
BC have (nearly) identical forms of structural models; they differ only in specific
values they take. For example, BC2 and BC20 consist mostly of hosts engaging in
various scanning or worm activities using known exploits, while srcIP clusters in
BC6, BC7, and BC8 are servers providingwell-known services. They further support
our assertion that the RU-based behavior classification scheme, presented in Chap. 3,
automatically groups together clusters with similar behavior patterns, despite that the
classification is done oblivious of specific feature values that flows in the clusters
take. Second, the structural model of a cluster presents a compact summary of its
constituent flows by revealing the essential information about the cluster (substance
feature values and interaction among the free dimensions). It in itself is useful, as
it provides interpretive value to network operators for understanding the cluster
behavior. These points also hold for clusters extracted from other dimensions. For
instance, Table 4.2 presents the summarized results obtained for dstPrt clusters
extracted from the same 1-hour period on L2.

4.2 Exploring More Traffic Features

So far, we have focused the analysis on the four key feature dimensions, srcIP,
dstIP, srcPrt, and dstPrt, and use RU measures along these dimensions
to automatically classify significant cluster behaviors—that the behavior classes
indeed characterize clusters of similar behavior patterns is corroborated by the dom-
inant state analysis presented above. We now investigate whether additional features
(beyond the four basic features, srcIP, dstIP, srcPrt, and dstPrt) can (i)
provide further affirmation of similarities among clusters within a BC, and in case
of wide diversity, (ii) be used to distinguish sub-classes of behaviors within a BC.
Examples of additional features we consider are cluster sizes (defined in total flow,
packet, and byte counts), average packet/byte count per flow within a cluster and
their variability, etc. In the following, we illustrate the results of additional feature
exploration using the average flow sizes per cluster and their variability.

For each flow fi , 1 ≤ i ≤ m, in a cluster, let PKTi and BTi denote the number of
packets and bytes, respectively, in the flow. The average number of packets for the
cluster, μ(PKT ), is computed as

μ(PKT ) =
∑

i PKTi
m

, (4.3)

while the average number of bytes for the cluster, μ(BT ), is computed as

μ(BT ) =
∑

i BTi
m

. (4.4)
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We also measure the flow size variability in packets,CV (PKT ), using coefficient
of variance

CV (PKT ) = σ(PKT )

μ(PKT )
(4.5)

and measure the flow size variability in bytes, CV (BT ), which is calculated as

CV (BT ) = σ(BT )

μ(BT )
, (4.6)

where σ(PKT ) and σ(BT ) are the standard deviation of PKTi and BTi .
In Table 4.1, columns 4–7, we present the ranges of μ(PKT ), CV (PKT ),

μ(BT ), and CV (BT ) of subsets of clusters with the similar dominant states, using
the 1-hour srcIP clusters on L1. Columns 4–7 in the top row of each BC are high-
level summaries for clusters within a BC (if it contains more than one cluster): small,
medium, or large average packet/byte count, and low or high variability. We see that
for clusters within BC6, BC7, BC8, and BC18, BC19, the average flow size in packets
and bytes are at least 5 packets and 320 bytes, and their variabilities (CV (PKT ) and
CV (BT )) are fairly high. In contrast, clusters in BC2 and BC20 have small average
flow size with low variability, suggestingmost of the flows contain a singleton packet
with a small payload. The same can be said of most of the less popular and rare BCs.

Finally, Fig. 4.2a–d show the average cluster sizes in flow, packet and byte counts
for all the unique clusters from the dataset L1 within four different groups of BC’s:
{BC6, BC7, BC8}, {BC18, BC19}, {BC2, BC20}, and the fourth group containing
the remaining less popular BC’s. Note that the average sizes for clusters are computed
only for clusters appearing twice or more. If a cluster is observed only once, the aver-
age cluster sizes will be the same as the actual flow, packet, and byte counts Clearly,
the characteristics of the cluster sizes of the first two BC groups are quite different
from those of the second two BC groups. Such differences could potentially pro-
vide valuable insights into anomaly detection. To conclude, our results demonstrate
that BC’s with distinct behaviors, e.g., non-akin BC’s, often also manifest dissim-
ilarities in other features. Clusters within a BC may also exhibit some diversity in
additional features, but in general the intra-BC differences are much less pronounced
than inter-BC differences.
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Fig. 4.2 Average cluster size (in flow, packet, and byte count) distributions for clusters within four
groups of BC’s for srcIP clusters on L1. Note that in c and d, the lines of flow count and packet
count are indistinguishable, since most flows in the clusters contain a singleton packet

4.3 Summary

In summary, the dominant state analysis and additional feature inspection have collec-
tively provided plausible interpretation of behavioral patterns of networked systems
and Internet applications. Such a compact structural model for traffic clusters based
on dominant states captures the most common or significant feature values and their
interaction. In other words, dominant state analysis is an intuitive and effective tech-
nique for modeling communication structures of network traffic characterizing the
interaction of featureswithin traffic clusters, and capturing similarities/dissimilarities
among behavior classes and individual clusters.

The dominant state analysis provides two critical contributions in network behav-
ior analysis. First, it provides support for the behavior classification—we find that
clusters within a behavior class have nearly identical forms of structural models. Sec-
ond, it yields compact summaries of cluster information which provides interpretive
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value to network operators for explaining observed behavior, and helps in narrowing
down the scope of a deeper investigation into specific clusters.
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Chapter 5
Graphical Modeling of Network Traffic

Abstract As networked systems and Internet applications continue to grow, it
becomes increasingly important to understand their traffic patterns for efficient net-
work management and security monitoring. A number of research studies have
focused on traffic behavior analysis of individual hosts and applications. However,
an increasingly large number of networked systems, a wide diversity of applications,
and massive traffic data pose significant challenges for such fine-granularity analy-
sis for backbone networks or enterprise networks. This chapter presents a graphical
approach to profiling traffic behavior by identifying and analyzing clusters of hosts or
applications that exhibit similar communication patterns. With each cluster abstract-
ing behavior patterns of a plurality of hosts or applications, the cost of traffic analysis
is significantly reduced. This chapter first explains the rationale, importance, benefits,
and challenges of performing cluster-aware networkbehavior analysis. Subsequently,
this chapter discusses how to explore bipartite graphs for modeling data communica-
tion in network traffic and the one-mode projection for capturing behavior similarity
of networked systems and describes the similarity matrices and clustering coefficient
of one-mode projection graphs. The availability of similarity matrices motivates the
usage of clustering algorithms to leverage similarity matrices and clustering coeffi-
cient for discovering behavior clusters of networked systems in the same prefixes or
engaging in the same applications. Finally, this chapter presents the distinct traffic
characteristics of end-host behavior clusters within the same network prefixes and
explores the behavior similarity of Internet applications.

5.1 Cluster-Aware Network Behavior Analysis

As Internet hosts and applications continue to grow, it becomes increasingly impor-
tant to understand traffic patterns of networked systems and Internet applications
for efficient network management and security monitoring. A number of research
studies [1–4] have focused on traffic behavior analysis of individual systems and
applications. However, an increasingly large number of networked systems, a wide
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diversity of applications, andmassive traffic data pose significant challenges for such
fine-granularity analysis for backbone networks or enterprise networks.

This chapter introduces a new approach of profiling traffic behavior by identifying
and analyzing clusters of hosts or applications that exhibit similar communication
patterns. With each cluster abstracting behavior patterns of a plurality of hosts or
applications, the cost of traffic analysis is significantly reduced. We first use bipartite
graphs to model network traffic of Internet backbone links or Internet-facing links
of border routers in enterprise networks. As one-mode projections can effectively
extract hidden relationships between nodes within the same vertex sets of bipartite
graphs [5], we subsequently construct one-mode projections of bipartite graphs to
connect source hosts that communicate with the same destination host(s), and to
connect destination hosts that communicate with the same source host(s).

The derived one-mode projection graphs enable us to further build similarity
matrices of networked systems, with similarity being characterized by the shared
number of destinations or sources between twohosts. Based on the similaritymatrices
of networked systems in the same network prefixes, we apply a simple yet effective
spectral clustering algorithm to discover the inherent end-host behavior clusters.
Each cluster consists of a group of hosts that communicatewith similar sets of servers,
clients, or peers. The behavior clusters not only reduce the number of behavior
profiles for analysis compared with traffic profiling on individual hosts, but also
reveal detailed behavior patterns for a group of networked systems in the same
network prefixes.

Similarly, we use a vector of graph properties including clustering coefficient
to capture the similarity of traffic behavior for networked systems engaging in the
same Internet applications, and discover the inherent application behavior clusters,
each of which consists of a number of applications. For each application cluster, we
examine characteristics of the aggregated traffic, such as host symmetry, the fan-out
degree of source IP addresses, and the fan-in degree of destination IP addresses. The
experimental results based on real Internet backbone traffic confirm that application
behavior clusters indeed capture applications with similar traffic characteristics and
behavior patterns.

5.2 Modeling Host Communications with Bipartite Graphs
and One-Mode Projections

Data communications observed unidirectional Internet links can naturally be repre-
sented by bipartite graphs where all IP packets originate from one set of nodes, i.e.,
source IP addresses, to another disjoint set of nodes, i.e., destination IP addresses. Let
G represent the bipartite graph to model such data communications G = (A,B,E),
whereA andB represent the disjoint vertex sets of source anddestination IP addresses
in the graph, and E ⊆ A × B is the edge set in the bipartite graph G.
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To analyze the traffic behavior for network prefixes which include networked sys-
temswith the same network bits in their IP addresses, we could further decompose the
bipartite graph of all the traffic into a set of smaller disjoint bipartite subgraphs such
that each bipartite subgraph captures the host communications for a single source or
destination IP prefix, e.g., source host behavior graph (SHBG) GP = (AP,B,EP)

and destination host behavior graph (DHBG) GQ = (A,BQ,EQ) representing the
bipartite subgraphs of host communications for the source IP prefix P and the des-
tination IP prefix Q, respectively.

Similarly, for a given application port, its traffic also forms a natural subgraph of
the bipartite graph. LetAport_number andBport_number denote the sets of source and
destination IP addresses engaging in the application port port_number, respec-
tively. Then we could build two bipartite subgraphs source port behavior graph
(SPBG) Gsrcport = (Asrcport,B,Esrcport) and destination port behavior graph
(DPBG) Gdstport = (A,Bdstport,Edstport) for representing host communica-
tions for the source port srcport and the destination port dstport, respectively.

The one-mode projection of the bipartite graphs uses edges between networked
systems in the same network prefixes or engaging in the same application to quantify
the similarity of their network connection patterns. For example, in Fig. 2.2, the
edge between s1 and s2 reflects the observation that both s1 and s2 talk with the same
destination host d1 in the bipartite graph (Fig. 2.2), and the edge between d2 and
d3 in Fig. 2.3b captures the observation that s3 talks with both destinations d2 and
d3. Therefore, given a bipartite graph GP = (AP,B,EP) for a source prefix P, we
could construct the one-mode projection graph of SHBG on source prefix P, G′

AP =
(AP,E′AP), whereAP consists of all source hosts observed inP and {pi , p j } ∈ E′AP
if and only if two hosts pi and p j talk with at least one same destination host.
The similar process could generate the one-mode projection graph of DHBG on
destination prefix Q for any destination prefix Q as well. Using the same approach,
we could build one-mode projection graphs of SPBGon portsrcport and ofDPBG
on port dstport. In this study, we leverage one-mode projection graphs to explore
the social-behavior similarity of source or destination IP addresses that share the
same network prefixes or engage in the same Internet applications.

5.3 Similarity Matrices and Clustering Coefficient
of One-Mode Projection Graphs

5.3.1 Similarity Matrices

To capture the information on the degree of the social-behavior similarity among
networked systems, we use the normalized weight for the edges in the one-mode
projection graph. Let Npi and Np j represent the numbers of Internet hosts which
two hosts pi and p j in the prefix P have communicated with, respectively. We then
use w{pi ,p j } to denote the weight for the edge between pi and p j in the one-mode
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Fig. 5.1 Visualization of the adjacency matrix for one-mode projections of bipartite graphs for
three network prefixes

projection,

w{pi ,p j } = |Npi

⋂Np j |
|Npi

⋃Np j |
, (5.1)

where |Npi

⋂Np j | denotes the total number of the shared destination hosts in the
bipartite graph between the two hosts pi and p j , and |Npi

⋃Np j | denotes the total
number of the uniquely combined destinations of pi and p j . Note that w{pi ,pi } = 1.
The weighted adjacency matrix of the one-mode projection graph for the network
prefix P then becomes MP = (mi, j )|P|×|P|, m(i, j) = w{pi ,p j }. The similar process
could lead to the weighted adjacency matricesMQ,Msrcport, andMdstport of the
one-mode projection graph for the destination prefix Q, the source port srcport,
and the destination port dstport, respectively.

One interesting observation of the one-mode projection graphs for host commu-
nications lies in the clustered patterns in the weighted adjacency matrix. The scatter
plots in Fig. 5.1 visualize the adjacency matrices of the one-mode projection graphs
for three different network prefixes with 44, 61, and 92 networked systems, respec-
tively. For each prefix, we sort the IP addresses based on the hosts’ degree (number
of neighbors in the one-mode project graph) in a non-increasing order. Both x-axis
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and y-axis represent the indices of IP addresses in the same prefix, and each “+”
point (i, j) in the plots denotes an edge with a positive weight between two sorted
hosts pi and p j in the one-mode projection graph, i.e., m(i, j) = w{pi ,p j } > 0. As
shown in Fig. 5.1, each prefix has a few well-separated blocks that divide networked
systems into different clusters. This observation on the adjacency matrix leads to
the next step of further exploring cluster analysis techniques and graph partitioning
algorithm [6] to uncover these behavior clusters of networked systems that share the
same network prefixes or engage in the same Internet applications.

5.3.2 Clustering Coefficients

Clustering coefficient is a widely used measure to study the “closeness”, or the
“small-world” patterns of nodes in one-mode projection graphs [7]. This measure
can be applied to individual nodes as local clustering coefficient (LCC) and can
also be applied to the entire graph as global clustering coefficient (GCC). For a given
node u, the local clustering coefficient, LCCu , is provided by the number of the edges
among u’s neighbors over the number of all possible edges among u’s neighbors.
Let Nu represent the set of all the neighbors of the node u, where |Nu | = m, and let
Eu represent the set of edges among these neighbors. The number of all possible
edges among m neighbors is m×(m−1)

2 . The local clustering coefficient (LCC) of u is
calculated as follows:

LCCu = |Eu |
(m ∗ (m − 1))/2

= |Eu | ∗ 2

m ∗ (m − 1)
. (5.2)

Clearly LCCu ∈ [0, 1]. LCCu is 0 if there is no edge among u’s neighbors, while
LCCu is 1 if u’s neighbors form a complete graph (clique). Note that the local
clustering coefficient (LCC) for nodes with 0 or 1 neighbor is 0 due to zero edges.
The global clustering coefficient (GCC) of the entire graph, GCCG , is the average
local clustering coefficient (LCC) over all n nodes, where

GCCG = 1

N
∗

∑
LCCu, (5.3)

where u ∈ G. Because of the existence of nodes with 0 or 1 neighbor which affect the
calculation of the global clustering coefficient, we adopt an adaptive global clustering
coefficient (AGCC), introduced in [8],

AGCCG = 1

1 − θ
∗ GCCG, (5.4)

where θ is the percentage of the isolated nodes in one-mode projection graphs. In
addition, we alsomeasure the percentage of the nodes that have at least two neighbors
(or non-isolated nodes) in the graphs. In Sect. 5.5.3, we will show how clustering
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Fig. 5.2 The schematic process of network-aware behavior clustering algorithm for discovering
behavior clusters of network prefixes

coefficient captures social behavior of source or destination IP addresses engaging
in the same applications with real network traffic datasets and helps uncover groups
of Internet applications exhibiting similar traffic patterns.

5.4 Discovering Behavior Clusters via Clustering
Algorithms

5.4.1 Partitioning Similarity Matrix with Spectral Clustering
Algorithm

Clustering algorithms have been used to analyze and profile hosts on the Internet.
For example, the study in [3] uses an agglomerative clustering algorithm to char-
acterize networked systems based on traffic features in IP packet headers, such as
the number of distinct destination IP addresses, the daily count of network traffic
volumes in bytes, average TTL (time-to-live) value, etc. In the study of graphical
modeling of network traffic, we focus on the social behavior of networked systems
in data communications through bipartite graphs and one-mode projection graphs,
and are interested in exploring the social-behavior similarity of networked systems
to discover inherent traffic clusters.

Figure 5.2 illustrates the schematic process of our clustering approach from con-
structing bipartite graphs based on IP packets to discovering and analyzing behavior
clusters of network prefixes.

An important starting point of a clustering algorithm is to define the appropriate
similarity matrix between data points. Here, we use the weighted edge between two
hosts u and v of the same prefix in the one-mode projection graph as the similarity
measure su,v between u and v, because the weighted edges capture and quantify the
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social-behavior similarity of host communications in network traffic. Therefore, the
weighted adjacency matrix of the one-mode projection graphs for the prefix MP
essentially becomes the similarity matrix SP which will be used as an input to the
spectral clustering algorithm outlined below.

This study applies a simple spectral clustering algorithm developed in [6] due to
its wide applications in graph partitioning and its small running time. The original
spectral clustering algorithm [6] requires an explicit input of k as the expected number
of clusters. Given the infeasibility of predicting the optimal number of behavior
clusters in network prefixes without analyzing the traffic data, we therefore augment
the algorithm by adding a step of automatically selecting an appropriate value of k
as the desired number of the clusters based on the eigenvalue distribution. The detail
of this step is explained in the following algorithm:

Algorithm2Algorithmof discovering behavior clusters using an augmented spectral
clustering algorithm
Input: network flow traces during a given time window and a source or destination prefix P;

1: Construct bipartite graphs of host communications from flow traces;
2: Generate the one-mode projection of bipartite graphs and its weighted adjacency matrix MP

for networked systems in the prefix P, and then obtain the similarity matrix SP ∈ R
n×n for the

prefix P;
3: Let A be the diagonal matrix with A(i, i) = ∑n

j=1 si, j , where i = 1, . . . , n;

4: Compute the Laplacian matrix L = A−1/2SA−1/2;
5: Find the largest k eigenvalues, λ1, λ2, . . ., λk such that

∑k
i=1 λi ≥ α × ∑n

j=1 λn and (λk −
λk+1) ≥ β × (λk−1 − λk);

6: Use the corresponding k eigenvectors (e1, e2, . . ., ek ) as columns to construct the matrix E =
[e1e2 . . . ek ] ∈ R

n×k ;
7: Construct the matrix Z through renormalizing E such that each row has a unit length, and

consider each row as a point;
8: Run k-means clustering algorithm to cluster the points of Z into k clusters (Y1, Y2, . . ., Yk )
9: Assign the original IP address pi to the cluster C j if the row i ofZ is assigned to the clusterY j .
Output: clusters C1, C2, . . ., Ck , where Ci = {p j |z j ∈ Y j }.

Algorithm 1 outlines the major steps of the spectral clustering algorithm with the
augmented change of automatically selecting k clusters based on the traffic patterns.
The input of this algorithm is network flow traces during a given time window and a
source or destination prefixP. The first step is to use flow traces to construct bipartite
graphs of host communications, while the second step is to generate the one-mode
projection of bipartite graphs and its weighted adjacency matrixMP for networked
systems in the prefix P, and then to obtain the similarity matrix SP ∈ R

n×n .
Next, we compute the Laplacian matrix L = A−1/2SA−1/2, where A is the diago-

nal matrix with A(i, i) = ∑n
j=1 si, j and i = 1, . . . , n. Then in the augmented stepwe

search for the largest k eigenvalues, λ1, λ2, . . ., λk such that
∑k

i=1 λi ≥ α × ∑n
j=1 λn

and (λk − λk+1) ≥ β × (λk−1 − λk). In other words, the augmented step searches an
appropriate value for k by finding the largest k eigenvalues that account for at least
α of the total variances and stopping at the eigenvalue λk where the distribution of



56 5 Graphical Modeling of Network Traffic

0 20 40 60 80 100 120 140 160 180 200
0

10

20

30

40

50

60

70

Network prefixes

N
um

be
r 

of
 c

lu
st

er
s

alpha=0.8
alpha=0.85
alpha=0.9
alpha=0.95

(a) Sensitivity analysis of

0 20 40 60 80 100 120 140 160 180 200
0

10

20

30

40

50

60

70

Network prefixes

N
um

be
r 

of
 c

lu
st

er
s

beta=1.5
beta=2.0
beta=2.5

(b) Sensitivity analysis of

Fig. 5.3 Sensitivity analysis of α and β used in the proposed algorithm of discovering behavior
clusters

eigenvalues exhibits a sharp slope change. In our experiments, we have evaluated a
variety of values for α and β, and found that there are no significant changes for α in
the range of [0.8, 0.95] and β in the range of [1.5, 2.5]. For example, Fig. 5.3a shows
the similar numbers of discovered clusters by the proposed algorithm for all source
network prefixes during a 1-min time window with β = 2 and α being set as 0.8,
0.85, 0.09, and 0.95, respectively, while Fig. 5.3b also shows the similar numbers of
clusters for the same set of network prefixes with α = 0.9 and β being set as 1.5,
2.0, and 2.5, respectively. Thus, in the remaining of this chapter, we use 0.9 and 2
for the α and β, respectively, to present the experimental results.

In the experiments with real traffic traces, we find that it is common to observe
that a few eigenvectors account for the majority of the variances in the similarity
matrix for IP prefixes. Thus, we use the corresponding top k eigenvectors (e1, e2, . . .,
ek) as columns to construct the matrix E = [e1e2 . . . ek] ∈ R

n×k , and subsequently
construct the matrixZ through renormalizing E such that each row has a unit length.
Considering each row as a point, the final step of the algorithm is to run a k-means
clustering algorithm to cluster the points ofZ into k clusters (Y1, Y2, . . ., Yk), and
then assign the original IP address pi to the cluster C j if the row i of Z is assigned
to the cluster Y j .

The output of this algorithm is a set of k clusters (C1, C2, . . ., Ck), each of
which includes a group of networked systems sharing similar social-behavior patterns
in network traffic. In the following section, we will study traffic characteristics of
end-host behavior clusters discovered by the spectral clustering algorithm, and then
demonstrate the practical benefits of these clusters for discovering traffic patterns
and detecting anomalous behaviors.
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Fig. 5.4 Distribution of adaptive global clustering coefficient for source and destination behavior
graphs of Internet applications

5.4.2 Clustering Analysis of Internet Applications

For the source and destination behavior graphs generated from the traffic of each
Internet application, we calculate the adaptive global clustering coefficient. In this
study, we consider a unique combination of port number and transport protocol (TCP
or UDP) as one Internet application. For example, all network traffic on port 80/TCP
is considered as an Internet application. In addition, we focus on network applica-
tions with consistent port numbers. Some applications, e.g., peer-to-peer file sharing
that use random port numbers to obfuscate their traffic behavior, require additional
information, e.g., packet payload and hosts with labeled traffic patterns, to study
social behavior of source and destination hosts. In this book, we refer to the adap-
tive global clustering coefficient as clustering coefficient for simplicity. Figure 5.4
shows the distribution of clustering coefficient for all Internet applications observed
from an OC192 Internet backbone link during a 1-min time window. An interesting
observation is that the clustered pattern of clustering coefficient, which leads to our
next step of applying clustering algorithms to discover the inherent clusters formed
by Internet applications sharing similar behavior patterns.

Based on clustering coefficient and other graph properties of Internet applications,
we apply a simple K -means clustering algorithm [9] to group them into distinct
application behavior clusters. The choice of selecting this algorithm is due to its
simplicity and wide usage. The features used in the clustering algorithm include
clustering coefficients of source and destination behavior graphs, and the ratios of
nodes with two or more neighbors in these graphs. In other words, for each source
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Fig. 5.5 Determining the optimal k based on sum of squared error (SSE)

or destination port p, we obtain a vector of four features, i.e., AGCCSp , AGCCDp ,
rSp , and rDp , where the first two features are clustering coefficients of source and
destination hosts engaging in the application port p and the last two features are
ratios of hosts with at least two or more neighbors in one-mode projection graphs on
source and destination hosts.

A challenging issue of applying K -means clustering algorithms is to find an
optimal value of k, since the choice of k plays an important role of archiving the high
quality of clustering results. Towards this end, we search the optimal value of k by
running K -means algorithms using a variety of k values and evaluate the best choice
of k by comparing the sum of squared error (SSE) with Euclidean distance function
between nodes in each cluster [9]. For example, Fig. 5.5 illustrates the distribution
of SSE with varying values of k from 1 to 16. We select k = 9 as the choice since
increasing k from 9 to 10 and above does not bring significant benefits of reducing
SSE.
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5.5 Traffic Characteristics and Similarity of Behavior
Clusters

5.5.1 Making Sense of End-Host Behavior Clusters

5.5.1.1 Datasets

The datasets used in our analysis are collected from CAIDA’s equinix-chicago and
equinix-sanjose network monitors [10] on bidirectional OC192 Internet backbone
links of a large Internet service provider during December 17, 2009. The CAIDA
Internet traffic traces are anonymized usingCryptoPAn prefix-preserving anonymiza-
tion [11] for privacy reasons, however such prefix-preserving process does not affect
our analysis that explores behavior similarity of networked systems within the same
network prefixes or engaging in the same Internet applications.

Similar to the observations in previous studies [12], Internet links carry large
volumes of network traffic, which poses a challenging problem for real-time or near-
real-time traffic analysis. The total size of the compressed dataset used in this study
is over 200 GB. As a first step to reduce the data size, we aggregate packet traces into
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Fig. 5.6 Statistics of CAIDA Internet traffic trace
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the well-known 5-tuple network flows. Figure 5.6a shows an average of 8.6 Gbps
link usage during a 1-hour duration, and Fig. 5.6b illustrates millions of network
flows for every minute during this period. In our analysis, we use 1-min time bin
to analyze traffic data due to vast amounts of packets and flows to be processed in
each time bin. In addition, Fig. 5.6c, d show the total numbers of unique source and
destination IP addresses, respectively. Such a large number of unique IP addresses in
the packet traces make it very challenging to analyze traffic behavior at host level [3],
and therefore the focus on behavior clusters of network prefixes becomes an intuitive
alternative for scalable analysis on Internet backbone traffic.

In our analysis, we use /24 block as the network prefix granularity for analysis
for two reasons. First, /24 is a common block size of BGP routing prefixes based on
the observations on BGP routing tables. Based on the block size distribution of BGP
prefixes in a recent snapshot of BGP routing table from the RouteView project [13],
the /24 blocks account for over 50% of all the total prefixes on the Internet. In
addition, multiple /24 prefixes could form larger prefixes by prefix aggregations.
For example, two neighboring /24 prefixes could form /23 prefixes, thus the clusters
identified in these two /24 prefixes could become separate clusters or be merged
together to form a large cluster due to common traffic behavior. Secondly, the prefix-
preserving anonymization process makes it impractical to aggregated IP addresses
into real BGP prefixes or larger network prefixes. On the other hand, our proposed
algorithm could be applied to BGP prefixes if data packets are not anonymized in
other datasets. Our analysis is applied to both source and destination prefixes, since
the bipartite graphs and one-mode projection graphs in the previous sections could
be established for both sides.

To determine an appropriate timescale for analyzing network traffic, we run the
proposed algorithms with six different timescales including 10 s, 30 s, 1 min, 2 min,
3 min, and 5 min. Figure 5.7a–c illustrates the number of prefixes (top figure), the
average number of hosts per prefix (middle figure), and the average number of clusters
per prefix (bottom figure) for these timescales. Apparently, the number of prefixes
increases as a result of increasing scale of observations. However, the average number
of hosts and clusters per prefix tends to decrease when the timescale increases from
1 min to 2 and more minutes. Our in-depth study reveals that during the longer time
windows we tend to observe more single-packet and short-lived flows to a smaller
number of random hosts in the same network prefixes due to pervasive scanning
activities on the Internet. During time windows with a smaller timescale we mainly
observe normalmultiple-packet and long-lived flows such as traffic from server farms
of popular websites and video streaming services. As a result, the decreasing number
of hosts per prefix leads to smaller traffic clusters. The three timescales 10 s, 30 s, and
1 min have the highest numbers of average cluster size. In addition, Fig. 5.8 shows
the percentage of hosts in the first cluster over all hosts in the prefix across varying
timescales. As the timescale of observation increases, each prefix tends to include
additional hosts in the prefix that do not share similar traffic behavior with other
hosts. In other words, the increased timescale of observation leads to an increased
number of clusters with one or a few hosts. As shown in Fig. 5.8, the timescales
10 s, 30 s, and 1 min have the highest percentages of hosts in the top cluster. Thus,
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Fig. 5.7 The observations with using varying timescales to analyze 1-hour traffic data: a number
of prefixes; b average number of hosts per prefixes; c average cluster size

we consider these three timescales as good candidates for appropriate timescales for
traffic analysis.

To evaluate the operational feasibility of the clustering algorithm, we run the
clustering process on a commodity Linux server with a 2.93 GHz CPU and 2G
memory using the traffic data. Figure 5.9 illustrates the running time of the clustering
process in discovering end-host behavior clusters of both source and destination
network prefixes for three timescales: 10 s (bottom figure), 30 s (middle figure),
and 1 min (top figure). In average, it takes 27.5, 42.9, and 47.8 s to complete the
clustering process for both source and destination IP prefixes observed in 10 s, 30
s, and 1 min timescales, respectively. The clustering step is able to keep up with the
continuous input of 1-min traffic data, but is unable to keep up with the input of 30 s
or 10 s traffic data. Thus, we choose 1 min as the timescale for our further analysis.
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Fig. 5.10 The number of observed hosts and behavior clusters in all the prefixes with at least 16
hosts during 1-min time window

5.5.2 Distinct Traffic Characteristics of Behavior Clusters

The network-aware behavior clustering of networked systems shifts traffic analysis
from host-level to prefix-level clusters, and increases the granularity of traffic anal-
ysis compared with host-level traffic profiling, and thus could successfully reduce
the number of behavior profiles for analysis. Figure 5.10 illustrates the size of the
prefixes with at least 16 networked systems and the number of their clusters during a
1-min time window. As we can see, the number of clusters is much smaller than the
size of prefixes, as each behavior cluster groups many networked systems together
due to their common social-behavior patterns. This observation holds for other time
windows as well. From Fig. 5.10, it is also interesting to see that there exists lit-
tle correlation between the number of observed hosts and the number of behavior
clusters. The number of behavior clusters for an IP prefix largely depends on the
similarity of the social behavior patterns among the observed hosts, rather than the
count of observed hosts. For example, the IP prefixes of data center networks that
include hundreds of servers tend to have less diverse behavior, while the IP prefixes
of residential Internet service providers could have more diverse behavior since the
hosts in residential networks could have very different communication patterns.

After obtaining separate behavior clusters, the next question we ask is do net-
worked system behavior clusters indeed exhibit distinct traffic characteristics?
Towards answering this question, we study the distributions of traffic features in
each of behavior clusters, and then compare them with the aggregated traffic of the
prefixes. We use relative uncertainty (RU ), which is an information-theoretic mea-
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Fig. 5.11 Histograms of relative uncertainty distributions for behavior clusters and the aggregated
traffic

sure explained in Sect. 2.3.1, to analyze the traffic features in individual clusters and
the aggregated traffic.

Our results show that behavior clusters separate different traffic patterns of the
same prefixes for improved understanding and interpretation. Figure 5.11 shows the
distribution of relative uncertainty on destination IP addresses, source ports, and
destination ports, respectively, for all the source prefixes and their behavior clusters
during a 1-min time window. Compared with relative uncertainty values for network
prefixes, the behavior clusters have much larger percentages of relative uncertainty
values on all of these features being 0 and 1 or approximately being 0 and 1, which
reveal concentrated patterns on a few ports and IP addresses, or random patterns on
ports and addresses. This result shows that the clustering algorithm extracts behavior
clusters with distinct traffic characteristics from the aggregated traffic in the network
prefixes, thus significantly improving the understanding of the traffic patterns with
detailed and meaningful interpretations.
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Fig. 5.12 Temporal stability of behavior clusters in a network prefix

5.5.2.1 Temporal Stability of Behavior Clusters

The second question on the characteristics of end-host behavior clusters we ask is
are the clusters stable over time? In other words, do networked systems in the same
prefixes change clusters over time? To address this question, we study the temporal
stability of behavior clusters and the dynamics of cluster changes for networked
systems over time. Figure 5.12a illustrates the high temporal stability of behavior
clusters for one IP prefix during the 1-hour time window. As shown by the top line
in Fig. 5.12a, the number of networked systems in the prefix fluctuates slightly over
time, since some hosts do not continuously send or receive traffic. More importantly,
the number of behavior clusters, illustrated by the bottom line in Fig. 5.12a, also
exhibits slight fluctuations over time. Similar observations hold for other prefixes.

In addition, we find the majority of networked systems stay in the same behavior
cluster over time. Figure 5.12b shows the high percentage of networked systems in
the network prefix in Fig. 5.12a without changing clusters over consecutive 1-min
time windows. In average, 71.8% of all the networked systems in the traffic traces
do not change clusters during the 1-hour time period. Our experiments with varying
timescales also show similar observations hold for other timescales as well. For
example, Fig. 5.13a, b illustrate the high percentages of networked systems do not
change clusters over continuous 30-s and 2-min time windows, respectively. These
observations confirm that network-aware behavior clustering separates networked
systems of network prefixes into distinct and stable behavior clusters.
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Fig. 5.13 Temporal stability of behavior clusters in a network prefix for different timescales
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(a) Application ports with TCP protocol
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Fig. 5.14 Distribution of network traffic for Internet applications observed from Internet backbone
links

5.5.3 Exploring Similarity of Internet Applications

Figure 5.14a, b illustrates the distribution of IP packets for Internet application traffic
observed from one backbone link during 1-min timewindow for TCP andUDP ports,
respectively. It is interesting to observe that a large number of application ports,
regardless transport protocols (TCP or UDP) and traffic directions (source ports or
destination ports), carry non-trivial data traffic. For example, there are over 2550 TCP
destination ports with more than 5000 IP packets on the link during the 1-min time
window. In other words, the traditional top N approaches of focusing on a few top
ports with the largest amount of traffic is not sufficient, since it is also very important
to study the other applications with significant volumes of IP traffic.

Building source and destination behavior graphs for each application port in our
proposedmethod provides an opportunity to understand the social behavior of source
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Fig. 5.15 Distinctive traffic characteristics of application clusters

and destination hosts engaging in the same applications. In addition, grouping these
applications based on clustering coefficient of source and destination behavior graphs
into distinct clusters helps understand unknown applications that share similar pat-
terns with well-known applications.

To evaluate the quality of the clustering results, we study traffic characteristics
of application clusters and compare the similarity in traffic characteristics among
application ports in the same clusters as well as the dissimilarity among ports in
different clusters. Our experiment results show that the application clusters indeed
exhibit distinctive traffic characteristics. Specifically, for each application port p,
we study IP symmetry i psym p, fan-out degree of source hosts f anoutp, and fan-in
degree of destination hosts f anin p. The IP symmetry i psym p is given by the ratio
between unique source hosts and unique destination hosts engaging in the application
port p. The fan-out degree for the application is the average fan-out degree of all
source hosts involving in the application, while the fan-in degree is the average fan-in
degree of all destination hosts.

Figure 5.15a–c illustrates the distinctive characteristics in IP symmetry, fan-out
degrees of source hosts, and fan-in degree of destination hosts for application clusters
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during one time window, respectively. The similar observations hold for other time
windows as well. This observation confirms that our proposed method of behavioral
graph analysis on Internet applications is indeed able to discover distinct clusters of
application ports that not only exhibit similar clustering coefficient in their source
and destination behavior graphs, but also share similar traffic characteristics in IP
symmetry, fan-out and fan-in degrees.

5.6 Summary

This chapter studies graphical models for characterizing traffic patterns of networked
systems and Internet applications, specifically explores bipartite graphs and one-
mode projection graphs to analyze social behavior of networked systems within the
same network prefixes or engaging in the same Internet applications. By applying
clustering algorithms on the similarity matrices of one-mode projection graphs, we
find the clustered behavior of end hosts in the samenetwork prefixes. Through cluster-
ing coefficient and other graph properties, we also find interesting similarity of social
behavior among different Internet applications and discover distinctive application
behavior clusters that group applications with similar social behavior. The practi-
cal benefits and applications of exploring behavior similarity and discovering host
and application behavior clusters include profiling network behaviors, discovering
emerging network applications, and detecting anomalous traffic patterns. In addi-
tion, the idea of applying bipartite graphs and one-mode projections has also been
successfully extended to analyze other networks such as online social networks [14].
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Chapter 6
Real-Time Network Behavior Analysis

Abstract Recent years have seen significant progress in real-time, continuous net-
work traffic monitoring and measurement systems on the Internet. However, real-
time traffic summaries reported bymany such systems focusmostly on volume-based
heavy hitters, which are not sufficient for finding interesting or anomalous behav-
ior patterns. This chapter discusses the feasibility of building a real-time network
behavior analysis system that analyzes vast amounts of traffic data in IP networks and
reports comprehensive behavior patterns of networked systems and Internet applica-
tions. This chapter first discusses the importance and challenges of building real-time
network behavior analysis systems. Subsequently, this chapter presents the real-time
network behavior analysis system and discusses its functional modules as well as
the interfaces with continuous monitoring systems and an event analysis engine, and
discusses the performance benchmarking and stress test of the real-time system using
a variety of packet-level traces from Internet backbone links, and synthetic traces that
mix various attacks into real backbone packet traces. Finally, this chapter introduces
and evaluates sampling-based filtering algorithms to enhance the robustness of the
network behavior analysis system against sudden traffic surges.

6.1 Real-Time Network Measurement and Monitoring

Recent years have seen significant progress in real-time, continuous network traffic
monitoring and measurement systems in IP networks [1, 2]. However, real-time
traffic summaries reported by many such systems focus mostly on volume-based
heavy hitters (e.g., top N ports or IP addresses that send or receive most traffic) or
aggregated metrics of interest (total packets, bytes, flows, etc.) [3], which are not
sufficient for finding interesting or anomalous behavior patterns. In this chapter, we
explore the feasibility of building a real-time network behavior analysis system that
characterizes and models vast amount of traffic data in an IP backbone network
and reports comprehensive behavior patterns of networked systems and Internet
applications.

Towards this end, we answer a specific question in this chapter: is it feasible to
build a robust real-time network behavior analysis system that is capable of con-
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tinuously extracting and analyzing “interesting” and “significant” traffic patterns on
high-speed (OC48 or higher speed) Internet links, even in the face of sudden surge
in traffic (e.g., when the network is under a denial-of-service attack)? We address
this question in the context of the network behavior analysis framework we have
developed for IP networks. The behavior and structural models in the framework
employ a combination of data-mining and information-theoretic techniques to build
comprehensive behavior profiles of Internet backbone traffic in terms of communi-
cation patterns of networked systems and Internet applications. It consists of three
key steps: significant cluster extraction, automatic behavior classification, and struc-
tural modeling for in-depth interpretive analysis. This three-step network behavior
analysis framework extracts networked systems and Internet applications that gen-
erate significant traffic, classifies them into different behavior classes that provide a
general separation of various common “normal” (e.g., web server and service traf-
fic) and “abnormal” (e.g., scanning, worm, or other exploit traffic) traffic as well as
rare and anomalous traffic behavior patterns. The framework has been extensively
validated offline using packet traces collected from a variety of backbone links in an
IP backbone network.

To demonstrate the operational feasibility of performing online network behavior
analysis on high-speed Internet backbone links, we build a prototype system [4, 5]
using general-purpose commodity PCs and integrate it with an existing real-time
traffic monitoring and collection system operating in an Internet backbone network.
The real-time traffic monitoring and collection system captures packets on a high-
speed link (from OC12 to OC192) and converts them into 5-tuple flows (based on
source IP, destination IP, source port, destination port, protocol fields), which are
then continuously fed to the real-time network behavior analysis system we built.
The large volume of traffic flows observed from these links creates great challenges
for the network behavior analysis system to process them quickly on commodity PCs
with limited memory capacity. We incorporate several optimization features in our
implementation such as efficient data structures for storing and processing cluster
information to address these challenges.

6.2 Real-Time System for Network Behavior Analysis

In this section, we first describe the design guidelines for our network behavior
analysis system and then present the overall architecture, functional modules, and
some key implementation details.
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6.2.1 Design Guidelines

The design and implementation of our network behavior analysis system follow
four key principles: high scalability, strong robustness, flexible modularity, and great
usability:

• High Scalability: The network behavior analysis system is targeted at high-speed
(1 Gbps or more) backbone links and hencemust scale to the traffic load offered by
such links. Specifically, if the system has to continuously build behavior profiles of
significant clusters once every time interval T (e.g., T = 5min), then it has to take
less than time T to process all the flow records aggregated in every time interval
T . And this has to be accomplished on a commodity PC platform.

• Strong Robustness: The network behavior analysis system should be robust to
anomalous traffic patterns such as those caused by denial-of-service attacks, flash
crowds, worm outbreaks, etc. These traffic patterns can place a heavy demand on
system resources. At the same time, it is vital for the network behavior analysis
system to be functioning during such events since it will generate data for effective
response and forensic analysis. Therefore, the system must adapt gracefully to
these situations and achieve a suitable balance between the accuracy of behavioral
and structural models and resource utilization.

• Flexible Modularity: The system should be designed in a modular fashion with
each module encapsulating a specific function or step in the network behavior
analysis framework. Information exchange between modules should be clearly
specified. In addition, the system should be designed to accept input from any
packet or flowmonitoring system that exports a continuous stream of flow records.
However, the flow record export format has to be known to the system.

• Great Usability: The network behavior analysis system should be easy to con-
figure and customize so that a network operator can focus on specific events of
interest and obtain varying levels of information about these events. At the same
time, it should expose minimal details about the methodology to an average user.
Finally, it should generate meaningful and easy-to-interpret event reports, instead
of streams of statistics.

These design considerations form a guideline of our system design and drive each
stage of our system implementation. In the rest of the section, we will discuss the
overall architecture of the real-time network behavior analysis system, its functional
modules, and key implementation details that achieve design goals.

6.2.2 System Architecture

Figure6.1 depicts the architecture of the network behavior analysis system that is
integrated with an “always-on” monitoring system and an event analysis engine. The
flow-level information used by the network behavior analysis system are generated
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Fig. 6.1 System architecture for real-time network behavior analysis

from continuous packet or flow monitoring systems that capture packet headers on
a high-speed Internet link via an optical splitter and a packet capturing device, i.e.,
DAG card. The monitoring system aggregates packets into 5-tuple flows and exports
the flow records for a given time interval into disk files. In general, the network
behavior analysis system obtains flow records through three ways: (i) shared disk
access, (ii) file transfer over socket, and (iii) flow transfer over a streaming socket.
The option in practice will depend on the locations of the profiling and monitoring
systems. The first way works when both systems run on the same machine, while the
last two can be applied if they are located in different machines.

In order to improve the efficiency of the network behavior analysis system, we use
distinct process threads to carry out multiple task in parallel. Specifically, one thread
continuously reads flow records in the current time interval Ti from the monitoring
systems, while another thread profiles flow records that are complete for the previous
time interval Ti−1.

The event analysis engine analyzes a behavior profile database, which includes
current andhistorical behavior profiles of endhosts andnetwork applications reported
by the behavior profiling and profile trackingmodules in the network behavior anal-
ysis system.

The real-time network behavior analysis system consists of four functional mod-
ules (shadowed boxes), namely, “cluster construction”, “adaptive thresholding”,
“behavior profiling”, and “profile tracking”. These four modules are responsible
for constructing traffic clusters for behavioral entities observed from traffic data,
identifying and extracting significant networked systems and Internet applications
based on adaptive thresholds, developing behavioral and structure models of these
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systems and applications, and tracking the dynamics of network behaviors over time,
respectively. Their main functions are briefly summarized below:

• Cluster Construction: This module has two initialization tasks. First it starts to
load a flow table (FTable) in a time interval T into memory once the network
behavior analysis system receives a signal indicatingFTable is ready. The second
task is to group flows in FTable associated with the same feature values (i.e.,
cluster keys) into clusters.

• Adaptive Thresholding: This module analyzes the distribution of flow counts in
the four feature dimensions and computes a threshold for extracting significant
clusters along each dimension.

• Behavior Profiling: This module implements a combination of behavior classifi-
cation and structural modeling that builds behavior profiles in terms of communi-
cation patterns of significant end hosts and applications.

• Profile Tracking: This module examines all behavior profiles built from the net-
work behavior analysis system from various aspects to find interesting and suspi-
cious network events.

6.2.3 Key Implementation Details

6.2.3.1 Data Structures

High-speed backbone links typically carry a large amount of traffic flows. Efficiently
storing and searching these flows is critical for the scalability of our real-time network
behavior analysis system. We design two efficient data structures, namely, FTable
and CTable for efficient storage and fast lookups during cluster extraction and
behavior modeling.

Figure6.2 illustrates the data structure of FTable and CTable with an exam-
ple. FTable, an array data structure, provides an index of 5-tuple flows through a
commonly used hash function,

FH = srcip∧dstip∧srcport∧dstport∧ proto%(FTableEntries − 1), (6.1)

where FTableEntries denotes the maximum entries of FTable. For example, in
Fig. 6.2, flow 1 is mapped to the entry 181 in FTable, while flow 2 is mapped to
the entry 1. In case of hashing collision, i.e., two or more flows mapping to the same
table entry, we use a linked list to manage them. In our experiments, the (average)
collision rate of this flow hash function is below 5% with FTableEntries = 220.
While constructing clusters, the naive approach would be to make four copies of
5-tuple flows, and then group each flow into four clusters along each dimension.
However, this method dramatically increases thememory cost of the system since the
flow table typically has hundreds or millions of flows in each time interval. Instead
of duplicating flows, which is expensive, we add four flow pointers (i.e., next



76 6 Real-Time Network Behavior Analysis

Fig. 6.2 Data structure of flow table and cluster table

srcIP, next dstIP, next srcPrt, and next dstPrt) in each flow. Each
flow pointer will link the flows sharing the same feature value in the given dimension.
For example, the next srcIP pointer of flow 4 links to flow 3 since they share
the same srcIP 10.0.0.1. Similarly, the next srcPrt pointer of flow 4 links to
flow 1 since they share the same srcPrt 80. However, the question is how to
quickly find the “old” flows of the same clusters when adding a new flow in the flow
table.

To address this problem, we create another data structure, CTable, which links
the first flow of each cluster in FTable. Since there are four types of clusters,
we create four instances of CTable for managing clusters along four dimensions.
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Table 6.1 Notations used in the complexity analysis

Notation Definition

F set of 5-tuple flows in a time interval

i dimension id (0/1/2/3 = srcIP/dstIP/

srcPort/dstPort)

Ci set of clusters in dimension i

Si set of significant clusters in dimension i

ci a cluster in dimension i

si a significant cluster in dimension i

r f size of a flow record

rv size of the volume information of a cluster

rb size of behavior information of a sig. cluster

rs size of dominant states of a significant cluster

Considering srcPrt and dstPrt dimensions with 65536 possible clusters (ports),
we use an array with a size of 65536 to manage the clusters for each of these two
dimensions. The index of the array for each port is the same as the port number.
For srcIP and dstIP dimensions, we use a simple hash function that performs
a bitwise exclusive OR (XOR) operation on the first 16 bits and the last 16 bits of
IP address to map each srcIP or dstIP into its CTable entry. When adding a
new flow, e.g., flow 3 in Fig. 6.2, in the given dstPrt, we first locate the first
flow (flow 2) of the cluster dstPrt 443 and make the next dstPrt pointer
of flow 3 to flow 2. Finally, the first flow of the cluster dstPrt 443 is updated
to flow 3. This process is similar for the cluster srcPrt 1208, as well as the the
clusters srcIP 10.0.0.1 and dstIP 192.168.0.2.

In addition to pointing to the first flow in each cluster, each CTable entry also
includes flow count for the cluster and significant bit for marking significant clusters.
The former maintains flow counts for cluster keys, and the flow count distribution
will determine the adaptive threshold for extracting significant clusters.

6.2.3.2 Space and Time Complexity of Modules

The space and time complexity ofmodules essentially determines the CPU andmem-
ory cost of the network behavior analysis system. Thus, we quantify the complexity
of each module in the system. For convenience, Table6.1 shows the definitions of
the notations that will be used in the complexity analysis.

The time complexity of cluster construction is

O(|F | +
3∑

i=0

|Ci |) (6.2)



78 6 Real-Time Network Behavior Analysis

for FTable and CTable constructions. Similarly, the space complexity is

O(|F | ∗ s f r +
3∑

i=0

(|Ci | ∗ rv)). (6.3)

The time complexity of adaptive thresholding is

3∑

i=0

(|Ci | ∗ ei ). (6.4)

This module does not allocate additional memory, since its operations are mainly on
the existing CTable. Thus, the space complexity is zero.

The time complexity of behavior profiling is

O

⎛

⎝
3∑

i=0

|Si |∑

j=0

|s j |
⎞

⎠ , (6.5)

while the space complexity is

O

(
3∑

i=0

[|Si | ∗ (rb + rs)]
)

. (6.6)

The output of this step is the behavior profiles of significant clusters, which are
recorded into a database along with the timestamp for further analysis.

Due to a small number of significant clusters extracted, the computation complex-
ity of profile tracking is often less than the others in two or three orders of magnitude,
so for simplicity we will not consider its time and space requirement.

6.2.3.3 Parallelization of Input and Profiling

In order to improve the efficiency of the network behavior analysis system, we use
threadmechanisms for parallelizing tasks in multiple modules, such as continuously
importing flow records in the current time interval Ti , and profiling flow records that
are complete for the previous time interval Ti−1. Clearly, the parallelization could
reduce the time cost of the network behavior analysis system. The disadvantage
of doing so is that we have to maintain two set of FTable and CTable for two
consecutive time intervals.
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Table 6.2 Total CPU and memory cost of the real-time network behavior analysis system on 5-min
flow traces

Link Util. CPU time (sec) Memory (MB)

min avg max min avg max

L1 207 Mbps 25 46 65 82 96 183

L2 86 Mbps 7 11 16 46 56 71

L3 78 Mbps 7 12 82 45 68 842

6.2.3.4 Event Analysis Engine

To discover interesting or suspicious network events, we build an event analysis
engine with three aspects: (i) temporal behavior analysis, (ii) feature dimension cor-
relation, and (iii) event configurations. The objective of temporal behavior analysis is
to characterize temporal properties of behavior classes as well as individual clusters
from the behavior profile database that records behavior profiles built from the net-
work behavior analysis system. Prior work in [6, 7] has demonstrated that temporal
properties could help distinguish and classify behavior classes. Feature dimension
correlation attempts to find the correlation between clusters from various dimensions
to detect emerging exploit and worm activities [8–10] that often trigger new clusters
from srcIP, dstIP, and dstPrt dimensions.

We develop a simple event configuration language that enables network operators
or security analysts to extract information on events of interest from behavior profiles
for network management or troubleshooting. To express the policy, we use four
distinct fields: Dimension, Event Type, Filter, and Description. The options of these
fields include the following:

• Dimension = srcIP | dstIP | srcPrt | dstPrt | all
• Event Type = rare | deviant | exploit | unusual service ports | all
• Filter = high frequency | high intensity | matching selected ports | ......
• Description = full | summary

For example, if a network operator wants to monitor rare behavior of srcIP end
hosts, she could use the rule srcIP (Dimension) AND rare (Event Type) AND all
(Filter) AND full (Description), which expresses the policy of reporting full profiles
of all srcIP clusters with rare behavior. Similarly, we could construct other filter
rules using the combinations of all available options.

In the next section, we will demonstrate the operational feasibility of this system
by performing extensive benchmarking of CPU andmemory costs using packet-level
traces from OC48 backbone links. To evaluate the robustness of the system, we also
test the system against anomalous traffic patterns under emulated denial-of-service
attacks or worm outbreaks.
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6.3 Performance Evaluation

After designing and implementing this real-time network behavior analysis system,
we perform extensive benchmarking of CPU and memory costs using packet-level
traces from Internet backbone links to identify the potential challenges and resource
bottlenecks. We find that CPU and memory costs increase linearly with number of
flows seen in a given time interval. Nevertheless, resources on a commodity PC are
sufficient to continuously process flow records and build behavior profiles for high-
speed links in operational networks. For example, on a dual 1.5GHz PC with 2048
MB of memory, building behavior profiles once every 5min for an 2.5 Gbps link
loaded at 209 Mbps typically takes 45s of CPU time and 96 MB of memory.

In this section, we first conduct performance benchmarking of CPU and memory
cost of the network behavior analysis system using a variety of packet traces from
OC48 backbone links. Subsequently, we evaluate the performance bottlenecks of the
system under anomalous traffic patterns such as those caused by denial-of-service
attacks and worm outbreaks.

6.3.1 Benchmarking

We measure CPU usage of the behavioral profiling process by using a system call,
namely, getrusage(), which queries actual system and user CPU time of the process.
The system call returnswith the resource utilization including ru_utime and ru_stime,
which represent the user and system time used by the process, respectively. The sum
of these two times indicates the total CPU time that the profiling process uses. Let T
denote the total CPU time, and Tl , Ta , and Tp denote the CPU usage for the modules
of cluster construction, adaptive thresholding, and behavior profiling, respectively.
Then we have

T = Tl + Ta + Tp. (6.7)

Similarly, we collect memory usage with another system call, mallinfo(), which
collects information of the dynamic memory allocation. Let M denote the total
memory usage, and Ml , Ma , and Mp denote the memory usage in three key modules.
Then we have

M = Ml + Ma + Mb. (6.8)

In order to track the CPU and memory usages of each module, we use these two
system calls before and after the module. The difference of the output becomes the
actual CPU and memory consumption of each module. Next, we show the CPU
time and memory cost of the network behavior analysis system on three OC48 links
during a continuous 18-hour period with an average link utilization of 209 Mbps, 86
Mbps, and 78 Mbps. For convenience, let L1, L2, and L3 denote these three links,
respectively.
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Fig. 6.3 CPU and memory cost of the real-time network behavior analysis system on flow records
in 5-min time interval collected in L1 for 18 consecutive hours

Fig. 6.4 Input of flow traces in 5-min time interval collected in L1 for 18 consecutive hours

Table6.2 shows a summary of CPU time andmemory cost of the network behavior
analysis system on L1 to L3 for 18 consecutive hours. It is not surprising to see that
the average CPU and memory costs for L1 are larger than the other two links due to a
higher link utilization. Figure6.3 shows the CPU and memory cost of the system on
all 5-min intervals for L1 (the link with the highest utilization). For the majority of
time intervals, the network behavior analysis system requires less than 60s (1min)
of CPU time and 150MB of memory using the flow records in 5-min time intervals
for L1.

Figure6.4a further illustrates the number of flow records over time that ranges
from 600K to 1.6M, while Fig. 6.4b shows the number of all clusters as well as the
extracted significant clusters. It is very interesting to observe the similar patterns in the
plot of memory cost (Fig. 6.3b) and that of the flow count over time (Fig. 6.4a). This
observation leads us to analyze the correlation between these two measurements.
By examining the breakdown of the memory cost, we find that Ml in the cluster
constructionmodule accounts for over 98%of the totalmemory consumptions.Recall
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Fig. 6.5 Correlation
between memory cost in
cluster constructions and size
of FTable
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that the space complexity of thismodule is larger than the others by twoor three orders
of magnitude, and dominated by the size of flow table |F |. The scatter plot of |F |
vs. Ml in Fig. 6.5 reflects the linear relationship between them. Therefore, this strong
correlation suggests that the memory cost of the network behavior analysis system
is mainly determined by the number of flow records collected by the monitoring
system in a given time interval.

Figure6.6a shows a breakdown in CPU usage of the various modules in the net-
work behavior analysis system, and suggests that cluster construction and behavior
profiling account for a large fraction of CPU time. Similar to the space complexity,
the time complexity in cluster construction is also determined by |F |. The linear
relationship demonstrated by the scatter plot of |F | versus Tl in Fig. 6.6b confirms
this complexity analysis. Figure6.6c shows the scatter plot of the number of signifi-
cant clusters versus CPU time in behavior profiling. Overall, we observe an approxi-
mately linear relationship between them. This suggests that the CPU cost in behavior
profiling is largely determined by the number of significant clusters whose behavior
patterns are being analyzed. Recent work [11, 12] has developed efficient algorithms
computing information-theoretic functions such as entropy and relative uncertainty
on data streams. Thus, the time consumptions of our network behavior analysis
system could potentially be improved if these algorithms are incorporated into the
system.

To understand how performance is affected by time granularity, we also evaluate
the system on L1 using 1-min, 2-min, 10-min, and 15-min flow traces. The results are
shown in Table6.3. In general, the CPU time and memory cost increase as the length
of the time interval. On the other hand, the CPU time of the network behavior analysis
system is always less than the time interval T . In addition, the average memory cost
for 5-min, 10-min, and 15-min are 96MB, 151MB, and 218MB, respectively, which
are within the affordable range on commodity PCs. These results clearly suggest that



6.3 Performance Evaluation 83

Fig. 6.6 Breakdown of CPU time and correlations

Table 6.3 Total CPU and memory cost with various time granularities

Link Timescale CPU time (sec) Memory (MB)

min avg max min avg max

L1 1min 5 12 31 26 36 76

L1 2min 10 22 42 31 46 89

L1 5min 25 46 65 82 96 183

L1 10min 35 82 129 91 151 208

L1 15min 45 88 152 145 218 267
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our real-time network behavior analysis system satisfies the scalability requirement
raised in the previous section.

In summary, the averageCPUandmemory costs of the real-time network behavior
analysis system on 5-min flow records collected from an OC48 link with a 10% link
utilization are 60s and 100 MB, respectively. Moreover, the CPU time is largely
determinedby thenumber offlow records aswell as that of significant clusters, and the
memory cost is determined by the number of flow records. During these monitoring
periods, these links are not fully utilized, so we cannot extensively measure the
performance of the real-time network behavior analysis system for a highly loaded
link. Next, we will test the network behavior analysis system during sudden traffic
surges such as those caused by denial-of-service attacks, flash crowds, and worm
outbreaks that increases the link utilization as well as the number of flow records.

6.3.2 Stress Test

The performance benchmarking of CPU and memory costs demonstrates the oper-
ational feasibility of our network behavior analysis system during normal traffic
patterns. However, the network behavior analysis system should also be robust dur-
ing atypical traffic patterns, such as denial-of-service attacks, flash crowds, andworm
outbreaks [13–16]. In order to understand the system performance during these inci-
dents, we inject packet traces of three known denial-of-service attacks and simulated
worm outbreaks by superposing them with backbone traffic.

We use the packet traces of three DoS attacks with varying intensity and behavior
studied in [17]. All of these attacks are targeted on a single destination IP address. The
first case is a multiple-source DoS attack, in which hundreds of source IP addresses
send 4200 ICMP echo request packets with per second for about 5min. The second
case is a TCP SYN attack lasting 12min from random IP addresses that send 1100
TCP SYN packets per second. In the last attack, a single source sends over 24K ip-
proto 255 packets per second for 15min. In addition to DoS attacks, we simulate the
SQL slammer worm on January 25, 2003 [14] with an Internet Worm Propagation
Simulator used in [13]. In the simulation experiments, we adopt the same set of
parameters in [13] to obtain similar worm simulation results and collect worm traffic
monitored in a 220 IP space.

For each of these four anomalous traffic patterns, we replay packet traces along
with backbone traffic and aggregate synthetic packet traces into 5-tuple flows. For
simplicity, we still use 5min as the size of the time interval and run the network
behavior analysis system against the flow records collected in an interval. Table6.4
shows a summary on flow traces of the first 5-min interval for these four cases. The
flow, packet, and byte counts reflect the intensity of attacks or worm propagation,
while the link utilization indicates the impact of such anomaly behaviors on Inter-
net links. For all of these cases, the network behavior analysis system is able to
successfully generate event reports in less than 5min.
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Table 6.4 Synthetic packet traces with known denial-of-service attacks and worm simulations

Anomaly Flows Packets Bytes Link
utilization

CPU time Memory Details

DoS-1 2.08 M 18.9 M 11.8 G 314.5
Mbps

45s 245.5 MB DDoS
attacks
from
multiple
sources

DoS-2 1.80 M 20.7 M 12.5 G 333.5
Mbps

59s 266.1 MB DDoS
attacks
from
random
sources

DoS-3 16.5 M 39.8 M 16.1 G 430.1
Mbps

210s 1.75GB DoS
attacks
from
single
source

Worm 18.9 M 43.0 M 23.6 G 629.2
Mbps

231s 2.01GB slammer
worm
simula-
tions

Table 6.5 Reduction of CPU time and memory cost using the random sampling technique

Case μ Size of FTable CPU time memory

DoS attack 66% 10M 89s 867 MB

Worm 55% 10M 97s 912 MB

During the emulation process, the link utilization ranged from 314.5 Mbps to
629.2Mbps.We run the network behavior analysis system on flow traces after replay-
ing synthetic packets and collect CPU and memory cost of each time interval, which
is also shown in Table6.4. The system works well for low-intense DoS attacks in
the first two cases. However, due to intense attacks in the last DoS case (DoS-3)
and worm propagations, the CPU time of the system increases to 210 and 231s,
but still under the 5min interval. However, the memory cost jumps to 1.75GB and
2.01GB indicating a performance bottleneck. This clearly suggests that we need to
provide practical solutions to improve the robustness of the system under stress. In
the next section, we will discuss various approaches, including traditional sampling
techniques and new profiling-aware filtering techniques towards this problem and
evaluate the trade-off between performance benefits and profiling accuracy.
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6.4 Sampling and Filtering

However, resource requirements are much higher under anomalous traffic patterns
such as sudden traffic surges caused by denial-of-service attacks, when the flow
arrival rate can increase by several orders of magnitude. We study this phenomenon
by superposing “synthetic” packet traces containing amix of knowndenial-of-service
(DoS) attacks [17] on real backbone packet traces. To enhance the robustness of our
network behavior analysis system under these stress conditions, we propose and
develop sampling-based flow filtering algorithms and show that these algorithms
are able to curb steep increase in CPU and memory costs while maintaining high
profiling accuracy.

In this section, we first adopt traditional sampling techniques to address perfor-
mance bottleneck during sudden traffic surges as caused by severe DoS attacks or
worm outbreaks. After evaluating its strength and limitation, we propose a simple
yet effective profiling-aware filtering algorithm that not only reduces memory cost,
but also retains high profiling accuracy.

6.4.1 Random Sampling

Random sampling is a widely used simple sampling technique in which each object,
flow in our case, is randomly chosen based on the same probability (also known as
sampling ratio μ) [18–20]. Clearly, the number of selected flows is entirely decided
by the sampling ratio μ. During the stress test in the last section, the network behav-
ior analysis system requires about 2GB memory when the number of flow records
reaches 16.5M and 18.9 during DoS attacks and worm outbreaks. Such high mem-
ory requirement is not affordable in real time since the machine installed with the
system could have other tasks as well, e.g., packet and flow monitoring. As a result,
we attempt to set 1GB as the upper bound of the memory cost. Recall that in the
performance benchmarking, we find that memory cost is determined by the number
of flow records. Based on their linear relationship shown in Fig. 6.5 we estimate that
flow records with a size of 10M will require approximately 1GB memory. Thus,
10M is the desirable limit for the size of the flow records.

Using the limit of flow records, l, we could configure the sampling ratio during
sudden traffic increase as μ = l

|F | . As a result, we set the sampling ratios in the
last DoS attacks and worm outbreaks as 60% and 55%, respectively, and randomly
choose flows in loading flow tables in the cluster construction module. Table6.5
shows the reduction of CPU time and memory consumptions with the sampled flow
tables for both cases.

On the other hand, random sampling has substantial impact on behavior accuracy.
First, the set of significant clusters from four feature dimensions are smaller than
that without sampling, which is caused by the changes of the underlying cluster size
distribution after flow sampling. Table6.6 shows the number of significant clusters
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Table 6.6 Reduction of significant clusters and behavior accuracy

Dim. Sig. clusters Sig. clusters Clusters with same

without sampling with sampling behavior classes

srcPrt 23 4 3

dstPrt 6 5 4

srcIP 47 31 29

dstIP 233 140 125

Total 309 180 161

extracted along each dimension without and with sampling for the DoS case. In total,
among 309 significant clusters without sampling, 180 (58%) of the most significant
clusters are still extracted with random sampling. Secondly, the behavior of a number
of extracted clusters is altered, since flow sampling changes the feature distribution
of free dimensions as well as the behavior classes for these clusters. As shown in the
last column of Table6.6, 161 out of 180 significant clusters with random sampling
are classified with the same behavior as those without sampling. In other words,
the behavior of 19 (10.5%) extracted significant clusters has changed as a result of
random sampling. Figure6.7 shows the feature distributions of free dimensions for
140 dstIP clusters with and without random sampling. The deviations from the
diagonal line indicate the changes of feature distribution and the behavior due to
flow sampling. We also perform random sampling on the synthetic flow traces in the
case of worm outbreak, and the results of sampling impact on cluster extractions and
behavior accuracy are very similar.

In summary, random sampling could reduce the CPU time and memory cost dur-
ing sudden traffic surges caused by DoS attacks or worm outbreaks. However, ran-
dom sampling reduces the number of interesting events, and also alters the behavior
classes of some significant clusters. Such impact could have becomeworse if “lower”
sampling rates are selected. Thus, it becomes necessary to develop a profiling-aware
algorithm that not only reduces the size of flow tables, but also retains the (approxi-
mately) same set significant clusters and their behavior.

6.4.2 Profiling-Aware Filtering

A key lesson from random sampling is that the clusters associated with denial-of-
service attacks are usually very large in flow count, and hence consume a large
amount of memory and CPU time [21]. In addition, profiling such behavior does not
require a large number of flows, since the feature distributions very likely remain
the same even with a small percentage of traffic flows. Based on this insight, we
develop a profiling-aware filtering solution that limits the size of very large clusters,
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Fig. 6.7 Feature distribution of free dimensions for 140 dstIP clusters with and without random
sampling

and adaptively samples on the rest of clusters when the system is faced with sudden
explosive growth in the number of flows.

Algorithm 1 describes the details of the profiling-aware sampling algorithm. First,
we choose two watermarks (L and H ) for the network behavior analysis system.
L represents the moving average of flow tables over time, and H represents the
maximum size of flow tables that system will accept. In our experiments, we set
H = 10M , which is estimated to require 1GB memory cost. In addition, we set the
maximum and minimum sampling ratios, i.e., μmax and μmin . The actual sampling
μ will be adaptively decided based on the status of flow table size. Specifically, the
sampling ratio becomes thinner as the size of flow table increases. For simplicity, let
ftable denote the size of flow table. If ftable is below L , the network behavior
analysis system accepts every flow. In contrary, if ftable is equal to H , the system
will stop reading flows and exit with a warning signal.

Ifftable is equal to L or certainmarks, i.e., L + i ∗ D, whereD is the incremen-
tal factor and i = 1, 2..., (H − L)/D − 1, the system computes the relative uncer-
tainty of each dimension and evaluates whether there is one or a few dominant feature
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Fig. 6.8 Feature distribution of free dimensions for 210dstIP clusters with andwithout profiling-
aware sampling

values along each dimension. In our experiments, we set D = 1M as the incremental
factor. The existence of such values suggests that certain types of flows dominate cur-
rent flow tables and indicates anomalous traffic patterns. Thus, the system searches
these values and marks them as significant clusters for flow filtering. Subsequently,
any flow, which contains a feature value marked with significant, will be filtered,
since such flow will not affect the behavior of the associated clusters. On the other
hand, additional flows for other small clusters have substantial contributions to their
behavior. Thus, we should give preference to flows that belong to such small clusters.
On the other hand, the system could not accept all of these flows with preference
after f table exceeds L watermark. As a result, each of these flows is added with the
adaptive sampling ratio

μ = μmax − i ∗ μmax − μmin

(H − L)/D − 1
. (6.9)
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Algorithm 3 A Profiling-aware filtering algorithm
1: Parameters: L , H , D, μmax , μmin , β∗
2: Initilization: I = (H − L)/D

δμ = (μmax − μmin)/I
μ = μmax
i = 0
f table = 0

3: srcPrt = 0; dstPrt = 1
4: srcIP = 2; dstIP = 3
5: while next f low do
6: if ( f table < L) then
7: Insert f low into FTable (Flow Table)
8: f table + +
9: continue;
10: else
11: if ( f table > H ) then
12: Stop reading flows
13: exit
14: end if
15: end if
16: if ( f table == L + i ∗ D) then
17: ru0 = Relative_Uncertainty(FTable, srcPrt)
18: ru1 = Relative_Uncertainty(FTable, dstPrt)
19: ru2 = Relative_Uncertainty(FTable, srcIP)
20: ru3 = Relative_Uncertainty(FTable, dstIP)
21: for (dim = 0; dim ≤ 3; dim + +) do
22: ru = rudim
23: while (ru ≤ β∗) do
24: remove feature value with highest probability
25: mark feature value as signi f icant
26: ru = Relative_Uncertainty(FTable, dim)
27: end while
28: end for
29: μ = μmax − i ∗ δμ

30: i + +
31: end if
32: if (( f table ≥ L) && ( f table ≤ H )) then
33: if (any feature value in f low is marked signi f icant) then
34: Filter f low
35: else
36: Insert f low into FTable with probability μ

37: if ( f low is selected then
38: f table + +
39: end if
40: end if
41: end if
42: end while
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We run the network behavior analysis system on the flow tables in the cases of
DoS attack and worm outbreaks (cf. Table6.6) with the profile-aware filtering algo-
rithm. Like random sampling, our profiling-aware sampling solution also reduces
CPU time and memory cost by limiting the size of flow table. On the other hand,
the profiling-aware sampling has two advantages over the random sampling. First,
the set of clusters extracted using this algorithm is very close to the set without
sampling. For example, in the case of DoS attack, the system obtains 41 srcIP
clusters, 210 dstIP clusters, 21 srcPrt clusters, and 6 dstPrt clusters, respec-
tively. Compared with 58% of significant clusters extracted in random sampling, our
profiling-aware algorithm could extract over 90% of 309 original clusters that are
selected without any sampling. Second, the behavior accuracy of significant clusters
is also improved. Specifically, among 41 srcIP’s, 210 dstIP’s, 21 srcPrt’s, and
6 dstPrt’s significant clusters, only 3 dstIP’s and 1 srcPrt clusters change to
“akin” classes from their original behavior classes. These findings suggest that the
profiling-aware profiling algorithm approximately retains the feature distributions
of significant clusters and behaviors.

Figure6.8 shows the feature distribution of free dimensions of 210 dstIP clus-
ters, extracted both without sampling and with profiling-aware filtering algorithm.
In general, the feature distributions of all free dimensions for almost all clusters after
filtering are approximately the same as those without sampling. The outliers deviant
from the diagonal lines correspond to feature distributions of three clusters whose
behavior has changed. Upon close examinations, we find that flows in these clusters
contain a mixture of Web and ICMP traffic. The latter are the dominant flows in DoS
attacks, so they are filtered after the size of flow table reaches L in the profiling-aware
filtering algorithm. The filtered ICMP flows in these clusters explain the changes of
the feature distributions as well as the behavior classes.

In theworm case, the profiling-aware filtering algorithm also successfully reduces
CPU and memory cost of the network behavior analysis system, while maintaining
high profiling accuracy in terms of the number of extracted significant clusters and the
feature distributions of these clusters. Thus, the profiling-aware filtering algorithm
can achieve a significant reduction of CPU time and memory cost during anomalous
traffic patterns while obtaining accurate behavior profiles of most networked systems
and Internet applications.

6.5 Summary

This chapter explores the feasibility of designing, implementing, and utilizing a
real-time network behavior analysis system for high-speed Internet links. We first
discuss the design requirements and challenges of such a system and present an over-
all architecture that integrates the network behavior analysis system with always-on
monitoring systems and an event analysis engine. Subsequently, we demonstrate the
operational feasibility of building this system through extensive performance bench-
marking of CPU and memory costs using a variety of packet traces collected from
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OC48 backbone links. To improve the robustness of this system during anomalous
traffic patterns such as denial-of-service attacks or worm outbreaks, we propose a
simple yet effective filtering algorithm to reduce resource consumptionswhile retain-
ing high behavioral profiling accuracy.
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Chapter 7
Applications

Abstract Network behavior analysis provides critical insights and visibility onwhat
is happening tomillions of networked systems and thousands of Internet applications
in a variety of network environments. A number of studies have demonstrated the
benefits and feasibility of these behavioral insights and visibility in a wide spectrum
of applications such as traffic profiling, cybersecurity, and network forensics. This
chapter first presents the applications of network behavior analysis in profiling Inter-
net traffic and discovering server and service behavior profiles, heavy-hitter host
behavior profiles, scan and exploit profiles, and deviant or rare behavior profiles.
Subsequently, this chapter discusses how network behavior analysis enhances cyber-
security by discovering and stopping scanning and exploit traffic from the Internet.
Finally, this chapter sheds light on the applications of cluster-aware network behav-
ior analysis by exploring the benefits of end-host behavior clusters and application
behavior clusters, particularly in characterizing traffic patterns of network prefixes
and detecting emerging applications and threats, which share strong similarities with
existing and known applications and threats.

7.1 Profiling Internet Traffic

We apply behavior modeling and structural modeling to obtain general profiles of
the Internet backbone traffic based on the datasets listed in Table3.1. We find that a
large majority of the (significant) clusters fall into three “canonical” profiles: typical
server/service behavior (mostly providing well-known services), typical “heavy-
hitter” host behavior (predominantly associated with well-known services), and
typical scan/exploit behavior (frequently manifested by hosts infected with known
worms). The canonical behavior profiles are characterized along the following four
key aspects: (i) BCs they belong to and their properties, (ii) temporal characteristics
(frequency and stability) of individual clusters, (iii) dominant states, and (iv) addi-
tional attributes such as average flow size in terms of packet and byte counts and
their variabilities.

Clusters with behaviors that differ in one or more aspects of the three canonical
profiles automatically present themselves as more interesting, thus warrant closer
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Table 7.1 Three canonical behavior profiles

Profile Dimension BCs Examples

Servers srcIP BC6,7,8 web, DNS, email

or dstIP BC18,19,20

Services srcPrt BC23 aggregate service

dstPrt BC25 traffic

Heavy srcIP BC18,19 NAT boxes

Hitter Hosts dstIP BC6,7 web proxies, crawlers

Scans srcIP BC2,20 scanners, exploits

or dstIP BC2,8 scan targets

Exploits dstPrt BC2,5,20,23 aggregate exploit
traffic

examination. Generally speaking, there are two types of interesting or anomalous
behaviors we find using our behavior profiling methodology: (i) novel or unknown
behaviors that match the typical server/service profile, heavy-hitter host profile, or
scan/exploit profile, but exhibit unusual feature values, as revealed by analyses of
their dominant states; and (ii) deviant or abnormal behaviors that deviate significantly
from the canonical profiles in terms of BCs (e.g., clusters belonging to rare BCs),
temporal instability (e.g., unstable clusters that jump between different BCs), or
additional features.

7.1.1 Server/Service Behavior Profiles

As shown in Table7.1, a typical server providing a well-known service shows up
in either the popular, large and non-volatile srcIP BC6 [0,2,0], BC7 [0,2,1] and
BC8 [0,2,2], or dstIP BC18 [2,0,0], BC19 [2,0,1] and BC20 [2,0,2] (note the sym-
metry between the srcIP and dstIP BCs, with the first two labels (srcPrt and
dstPrt) swapped). These BCs represent the behavior patterns of a server commu-
nicating with a few, many or a large number of hosts. In terms of their temporal
characteristics, the individual clusters associated with servers/well-known services
tend to have a relatively high frequency, and almost all of themare stable, re-appearing
in the same or akin BCs. The average flow size (in both packet and byte counts) of
the clusters shows high variability, namely each cluster typically consists of flows of
different sizes.

Looking from the srcPrt and dstPrt perspectives, the clusters associated
with the well-known service ports almost always belong to the same BC’s, e.g.,
either srcPrt BC23 [2,1,2] or dstPrt BC25 [2,2,1], representing the aggregate
behavior of a (relatively smaller) number of servers communicating with a much
larger number of clients on a specific well-know service port. For example, Fig. 7.1a
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Fig. 7.1 Cluster sizes (in flow, packet, and byte counts) and RUmeasures of the dstPrt 80 cluster
(aggregate web traffic) on L1 over time

plots the cluster sizes (in flow, packet, and byte counts) of the dstPrt TCP 80
cluster (representing aggregate behavior of all web servers) over the 24-h period,
whereas in Fig. 7.1b, we plot the corresponding RUsrcPrt , RUsrcI P , and RUdst I P of
its three free dimensions over time. We see that the dstPrt TCP port 80 cluster is
highly persistent, observed in every time slot over the 24-h period, with the number
of srcIP’s (web servers) fairly stable over time. The cluster size over time shows a
diurnal pattern, but otherwise does not fluctuate dramatically. In addition, the packet
and byte counts of the cluster are considerably larger than the total number of flows,
indicating that on the average each flow contains at least several packets and a few
hundred bytes.

An overwhelming majority of the srcIP clusters in BC6,7,8 are corresponding to
Web,DNSor Email servers. They share very similar behavior characteristics, belong-
ing to the same BC’s, stable with relatively high frequency, and containing flowswith
diverse packet/byte counts. Among the remaining clusters, most are associated with
http-alternative services (e.g., 8080), https(443), real audio/video servers (7070),
IRC servers (6667), and peer-to-peer (P2P) servers (4662). Most interestingly, we
find three srcIP clusters with service ports 56192, 56193, and 60638. They share
similar characteristics with web servers, having a frequency of 12, 9, and 22, respec-
tively, and with diverse flow sizes both in packet and byte counts. These observations
suggest that they are likely servers running on unusual high ports. Hence, these cases
represent examples of “novel” service behaviors that our profiling methodology is
able to uncover.
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7.1.2 Heavy-Hitter Host Behavior Profiles

The second canonical behavior profile is what we call the heavy-hitter host profile
[1, 2], which represents hosts (typically clients) that send a large number of flows
to a single or a few other hosts (typically servers) in a short period of time (e.g.,
a 5-min period). They belong to either the popular and non-volatile srcIP BC18

[2,0,0] or BC19 [2,0,1], or the dstIP BC6 [0,2,0] and BC7 [0,2,1]. The frequency of
individual clusters is varied, with a majority of them having medium frequency, and
almost all of them are stable. These heavy-hitter clusters are typically associated with
well-known service ports (as revealed by the dominant state analysis), and contain
flows with highly diverse packet and byte counts. Many of the heavy-hitter hosts are
corresponding to NAT boxes (many clients behind a NAT box making requests to
a few popular web sites, making the NAT box a heavy-hitter), web proxies, cache
servers, or web crawlers.

For example, we find that 392 and 429 unique srcIP clusters from datasets L1

and L2 belong to BC18 and BC19. Nearly 80% of these heavy-hitters occur in at
least five time slots, exhibiting consistent behavior over time. The most frequent
ports used by these hosts are TCP port 80 (70%), UDP port 53 (15%), TCP port 443
(10%), and TCP port 1080(3%). However, there are heavy-hitters associated with
other rarer ports. In one case, we found one srcIP cluster from a large corporation
talking to one dstIP on TCP port 7070 (RealAudio) generating flows of varied
packet and byte counts. It also has a frequency of 11. Deeper inspection reveals this
is a legitimate proxy, talking to an audio server. In another case, we found onesrcIP
cluster talking to many dstIP hosts on TCP port 6346 (Gnutella P2P file sharing
port), with flows of diverse packet and byte counts. This host is thus likely a heavy
file downloader. These results suggest that the profiles for heavy-hitter hosts could
be used to identify these unusual heavy-hitters.

7.1.3 Scan/Exploit Profiles

Behaviors of hosts performing scans or attempting to spread worms or other exploits
constitute the third canonical profile. Two telling signs of typical scan/exploit behav-
ior [3] are (i) the clusters tend to be highly volatile, appearing and disappearing
quickly, and (ii) most flows in the clusters contain one or two packets with fixed size,
albeit occasionally theymay contain three ormore packets (e.g., when performingOS
fingerprinting or other reconnaissance activities). For example, we observe that most
of the flows using TCP protocol in these clusters are failed TCP connections on well-
known exploit ports. In addition, most flows using UDP protocol or ICMP protocol
have a fixed packet size that matches widely known signature of exploit activities,
e.g., UDP packets with 376 bytes to destination port 1434 (Slammer Worm), ICMP
packets with 92 bytes (ICMP ping probes). These findings provide additional evi-
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Fig. 7.2 Cluster sizes and RU measures of the dstPrt(3127) cluster (aggregate myDoom traffic)
on L2 over time. Note that in a the lines of flow count and packet count are indistinguishable, since
most flows in the clusters contain a singleton packet

dence to confirm that such clusters are likely associated with scanning or exploit
activities.

A disproportionately large majority of extracted clusters fall into this category,
many of which are among the top in terms of flow counts (but in general, not in byte
counts, cf. Fig. 4.2). Such prevalent behavior signifies the severity of worm/exploit
spread and themagnitudeof infectedhosts (cf. [4, 5]).On theplus side, however, these
hosts manifest distinct behavior that is clearly separable from the server/service or
heavy-hitter host profiles: thesrcIP clusters (a largemajority) belong to BC2 [0,0,2]
and BC20 [2,0,2], corresponding to hosts performing scan or spreading exploits to
random dstIP hosts on a fixed dstPrt using either fixed or random srcPrt’s;
the dstIP clusters (a smaller number) belong to BC2 [0,0,2] and BC8 [0,2,2],
reflecting hosts (victims of a large number of scanners or attacks) responding to
probes on a targeted srcPrt. Using specific dstPrt’s that are targets of known
exploits, e.g., 1434 (used by SQLSlammer), the aggregate traffic behavior of exploits
is also evidently different from that of normal service traffic behavior (e.g., web): the
dstPrt clusters typically belong to BC23 [2,1,2], but sometimes to BC2 [0,0,2],
BC5 [0,1,2], or BC20 [2,0,2], representing a relatively smaller number of srcIP
hosts probing a larger number of dstIP hosts on the target dstPrt using either
fixed or random srcPrt’s. This is in stark contrast with normal service traffic
aggregate such as web (i.e., dstPrt 80 cluster), where a much larger number of
clients (srcIP’s) talk to a relatively smaller number of servers (dstIP’s) using
randomly generated srcPrt’s, thus belonging to dstPrt BC25 [2,2,1].

To contrast the aggregate exploit behaviorwith the aggregate service profile shown
in Fig. 7.1,we examine cluster sizes of thedstPrt 3127 cluster (aggregatemyDoom
traffic), and the corresponding RU measures of the three free dimensions over time.
Unlike Web traffic, we see that the aggregate traffic fluctuates a lot over time and the
flow count and packet count are very similar, indicating flows with a few packets.
It is important to note that the dstPrt(3127) cluster is considered “significant”
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by Algorithm 1 in 132 time slots out of the total 288. For ease of comparison, we
also extracted the flows with dstPrt(3127) in the other time slots when it is not
significant. On the other hand, such traffic exhibits low RUsrcI P (mostly below 0.1)
and high RUdst I P (≈ 1.0) over time, indicating that a few sources (same or different)
are randomly probing a large number of targets on and off over time (Fig. 7.2).

In addition to thosedstPrt’s that are known to have exploits, we also find several
(srcIP) clusters that manifest typical scan/exploit behavior, but are associated with
dstPrt’s that we do not know to have known exploits. For example, we find that in
one time slot a srcIP cluster is probing a large number of destinations on UDP port
12827, with a single UDP packet. This host could simply engage in some harmless
scanning on UDP port 12827, but it could also be a new form of RATs (remote
access trojans) or even a precursor of something more malicious. Further inspection
is clearly needed. Nonetheless, it illustrates that our profiling technique is capable
of automatically picking out clusters that fit the scan/exploit behavior profile but
with unknown feature values. This will enable network operators/security analysts
to examine novel, hitherto unknown, or “zero-day” exploits.

We evaluate exploit behavior profiles using a set of heuristics that do not require
packet payload. These heuristics are derived from the domain knowledge in network
protocols such as TCP, UDP, and ICMP, and some of them have been used in other
studies [6, 7] as well.

We first study TCP flows from srcIP’s with exploit profiles. To establish a
successful TCP connection, a srcIP and a dstIP must go through the three-way
handshake process by exchanging SYN, SYN/ACK, and ACK packets. Thus, the
initiator or responder send at least three or two packets when considering the data
packets. In contrast, in failed TCP connections, the initiator sends less than three
packets. Given this insight, we examine all 12.9M TCP flows sent by srcIP’s with
exploit profiles in L1. The results show that 97% of them have exactly one packet and
1.8% of them have two packets. Thus, these flows are likely failed TCP connections
to exploit ports. The established TCP connections correspond to legitimate traffic
flows from these srcIPs or successful exploit activities.

For flows with UDP or ICMP packets, we examine the packet size of each flow
since many well-known exploits (e.g., SQL Slammer Worm) or probing activities
(e.g., ICMP ping) have a fixed packet size. We separate all UDP flows from srcIPs
with exploit profile based ondstPrt. To illustrate our finding, we study two popular
exploit ports, UDP 1434 and UDP 137 using L1. The results show that 100% of flows
from srcIP’s with exploit profiles on UDP 1434 have a fixed packet size of 404
bytes, while 99.8% of flows from them on UDP 137 have a fixed packet size of 78
bytes. The byte counts are part of widely known exploit signatures of SQL Slammer
worm and UDP 137 scan activity.

For flows with ICMP packets, we examine the flows with 92 bytes that are gener-
ated by ICMP ping. Using the packet traces of L1, we find that among 7.2M ICMP
flows sent by 897 srcIP’s with exploit profiles, 97.2% of flows are a single packet
of size 92 bytes. Thus, these srcIP’s were likely probing the destinations.

These evaluations demonstrate that our profiling methodology is effective to cap-
ture typical and anomalous communication patterns. In addition,we also analyze how
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many hosts with exploit behaviors are not profiled. Since our focus is on significant
communication patterns of end hosts or service, it is not surprising that many hosts
and service are not profiled in every 5-min time period. For example, by examining
the packet traces of L1 over 24h, we find that our methodology captures less than
25% of all srcIP’s that send packets on TCP port 135 in each period. However,
these significant srcIP’s extracted account for about 80% of all flows on TCP port
135 over time [3]. In other words, the methodology builds exploit behavior profiles
for a few srcIP’s, but with a substantial amount of exploit traffic.

7.1.4 Deviant or Rare Behaviors

We have demonstrated howwe are able to identify novel or anomalous behaviors that
fit the canonical profiles but contain unknown feature values (as revealed by the dom-
inant state analysis). We now illustrate how rare behaviors or deviant behaviors are
also indicators of anomalies, and thus worthy of deeper inspection. In the following,
we present a number of case studies, each of which is selected to highlight a certain
type of anomalous behavior. Our goal here is not to exhaustively enumerate all pos-
sible deviant behavioral patterns, but to demonstrate that building a comprehensive
traffic profile can lead to the identification of such patterns.
Clusters in rare behavior classes. The clusters in the rare behavior classes by
definition represent atypical behavioral patterns. For example, we find threedstPrt
clusters (TCP ports 6667, 113 and 8083) suddenly appear in the rare dstPrt BC15

[1,2,0] in several different time slots, and quickly vanish within one or two time
slots. Close examination reveals that more than 94% of the flows in the clusters are
destined to a single dstIP from random srcIP’s. The flows to the dstIP have the
same packet and byte counts. This evidence suggests that these dstIP’s are likely
experiencing a DDoS attack.
Behavioral changes for clusters. Clusters that exhibit unstable behaviors such as
suddenly jumping between BCs (especially when a frequent cluster jumps from its
usual BC to a different BC) often signify anomalies. In one case, we observe that one
srcIP cluster (a popular web server) on L1 makes a sudden transition from BC8 to
BC6, and then moves back to BC8. Before the transition, the server is talking to a
large number of clients with diverse flow sizes. After the behavior transition to BC6,
a single dstIP accounts for more than 87% of the flows, and these flows all have
the same packet and byte counts. The behavior of the particular client is suspicious.
In another case, we find that the dstPrt 25 cluster (aggregate email traffic) shifts
from its usual BC25 [2,2,1] to BC23 [2, 1, 2] for three consecutive time slots, a sign
of significant changes in the underlying distribution of srcIP’s and dstIP’s. Upon
deeper investigation, we find that this is the result of a single srcIP scanning 45,000
random dstIP’s on SMTP port using 48-byte packets. This example illustrates how
fundamental shifts in communication patterns can point a network security analyst
to genuinely suspicious activities.
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Unusual profiles for popular service ports. Clusters associated with common ser-
vice ports that exhibit behaviors that do not fit their canonical profiles are of particular
concern, since these ports are typically not blocked by firewalls. For example, we
have found quite a few srcIP clusters in BC2 and BC20 that perform scans on
dstPrt 25, 53, 80, etc. Similar to the clusters with known exploit ports, these
srcIP clusters have small packet and byte counts with very low variability. Note
that these common service ports are generally used by a very large number of clients,
therebymaking it impossible to examine the behavior of each client individually. Our
profiling technique, however, can automatically separate out a handful of potentially
suspicious clients that use these ports for malicious activities. Lastly, we want to
comment that many of these “anomalous” behaviors do not fall into the clusters
with, say 1% or 2% of the total number of either flow, packet or byte counts in the
traffic. Hence, focusing only on top N clusters in one or multiple dimensions may
miss some interesting, anomalous behaviors.

To summarize, we have demonstrated the applicability of the behavioral profiling
methodology to critical problem of detecting anomalies or the spread of unknown
security exploits, profiling unwanted traffic and tracking the growth of new appli-
cations. By applying the behavioral profiling methodology on traffic data collected
from a variety of links at the core of the Internet through off-line analysis, we find
that a large fraction of clusters fall into three typical behavior profiles: server/service
behavior profile, heavy hitter host behavior, and scan/exploit behavior profile. These
behavior profiles are built based on various aspects, including behavior classes, dom-
inant states, and additional attributes such as average packets and bytes per flow. The
behavioral methodology is able to find various interesting and anomalous events.
First, it automatically detects novel or unknown exploit behaviors that match typi-
cal exploit profiles, but exhibit unusual dominant states (e.g., dstPrt’s). Second,
any atypical behavior is worth close examination, since they represent as outliers or
anomaly among behavior profiles. Third, the methodology could point out deviant
behaviors of end hosts or applications that deviate from previous patterns.

7.2 Reducing Unwanted Traffic on the Internet

Recently, we have seen a tremendous increase in unwanted or exploit traffic—
malicious or unproductive traffic that attempts to compromise vulnerable hosts, prop-
agate malware, spread spam, or deny valuable services [4, 5, 8–11]. A significant
portion of this traffic is due to self-propagating worms, viruses, or other malware;
this leads to a vicious cycle as new hosts are infected, generating more unwanted
traffic, and infecting other vulnerable hosts. In addition to self-propagating malware,
new variants of old malware or new exploits emerge faster than ever, producing
yet more unwanted traffic. Strictly speaking, exploit traffic means network traffic
that is generated with the explicit intention to exploit certain vulnerabilities in target



7.2 Reducing Unwanted Traffic on the Internet 101

systems—a large subset of unwanted traffic. However, these two terms are often used
interchangeably in the literature.

Current measures in stopping or reducing unwanted or exploit traffic rely on
various firewalls or similar devices deployed on the end hosts or at stub networks (i.e.,
networks such as enterprise or campus networks that do not provide transit services)
to block such traffic. In this chapter, we explore the feasibility and effectiveness
of stopping or reducing unwanted traffic from the perspective of an IP backbone
network based on our behavior profiling framework.

Given the exploit traffic identified in our traffic profilingmethodology,we consider
blocking strategies an ISPmay pursue to reduce unwanted traffic, by installing access
control lists (ACLs) on routers at entry points of an ISP. Although most of exploit
traffic is associated with a relatively small set of (destination) ports, simply blocking
these ports from any source is, in general, infeasible for a backbone ISP. This is
because many ports that are vulnerable to attacks such as port 1434 (Microsoft SQL
server) [12] or port 139 (Common Internet File System for Windows) are also used
by legitimate applications run by an ISP’s customers. An alternate approach is to
block the specific offending sources (and the exploit destination ports) of exploit
traffic. However, these sources can number in tens or hundreds of thousands for a
large backbone network; hence, there is a significant scalability problem (primarily
due to overheads incurred in backbone routers for filtering traffic using ACLs) in
attempting to block each and every one of these sources. Hence, this approach is
likely to be most cost-effective when used to block the top offending sources that
send a majority of self-propagating exploit traffic, in particular, in the early stage of
a malware outbreak, to hinder their spread.

7.2.1 Unwanted Exploit Traffic on the Internet

Asdiscussed in previous chapters, normal server and client behavior profiles have dis-
tinct behavior from scan or exploit profiles. Figure7.3a illustrates the relative uncer-
tainty vectors of normal server and client behavior, while Fig. 7.3b illustrates those
of exploit profiles. The points on the left side of Fig. 7.3a belong to the server pro-
file, where they share a strong similarity in RUsrcPrt (low uncertainty) and RUdst Prt

(high uncertainty): a server typically talks to many clients using the same service
srcPrt and randomly selected dstPrt’s. The cluster on the right side of Fig. 7.3a
belong to the heavy-hitter profile, where they share a strong similarity in RUsrcPrt

(high uncertainty), RUdst Prt (low uncertainty), and have low-to-medium uncertainty
in RUdst I P : a heavy-hitter client host tends to talk to a limited number of servers
using randomly selected srcPrt’s but the same dstPrt. Closer inspection reveals
that thesrcPrt’s in the server profile almost exclusively are thewell-known service
ports (e.g., TCP port 80); whereas the majority of the dstPrt’s in the heavy-hitter
profile are the well-known service ports, but they also include some popular peer-to-
peer ports (e.g., TCP port 6346).
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Fig. 7.3 The RU vector distribution of the canonical behavior profiles for significant srcIP’s in
L1 during a 24-h period

In contrast, the points in the exploit traffic profile (Fig. 7.3b) all have high uncer-
tainty in RUdst I P and low uncertainty in RUdst Port , and fall into two categories in
terms of RUsrcPort . Closer inspection reveals that the dstPorts include various
known exploit ports (e.g., TCP ports 135, 137, 138, 445, UDP ports 1026-28) as
well as a few high ports with unknown vulnerabilities. They also include some well-
known service ports (e.g., TCP 80) as well as ICMP traffic (“port” 0). Figure7.4
plots the popularity of the exploit ports in L1 in the decreasing order, where the pop-
ularity of an exploit port is measured by the number of sources that have an exploit
profile associated with the port. Clearly, a large majority of these ports are associated
with known vulnerabilities and widely used by worms or viruses, e.g., TCP port 135
(W32/Blaster worm), TCP port 3127 (MyDoom worm). Several well-known service
ports (e.g., TCP port 80, UDP port 53, TCP port 25) are also scanned/exploited by
a few sources. Most sources target a single exploit, however, a small number of
sources generate exploit traffic on multiple ports concurrently. In most cases, these
ports are associated with the same vulnerability, for instance, the port combination
{TCP port 139, TCP port 445} associated with MS Window common Internet file
systems (CIFS), and {UDP ports 1026-1028} associated with MS Window messen-
ger pop-up spams.

It is worth noting that our focus is on significant end hosts or services, so the
sources we built behavior profiles are far less than the total number of sources seen
in backbone links. Thus, it is not surprising that our behavior profiling framework
identifies a subset of sources that send exploit traffic. However, these sources often
account for a large percentage of exploit traffic. For example, Fig. 7.5a shows the
total number of sources that send at least one flow on the most popular exploit port,
port 135, as well as the number of significant sources extracted by our clustering
technique that targeted port 135. As illustrated in Fig. 7.5b, the percentage of such
significant sources ranges from 0% to 26%. However, as shown in Fig. 7.5c, these
significant sources account for 80% traffic on TCP port 135 for most intervals. This
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Fig. 7.4 Port popularity of exploits traffic in L1 during a 24-h period

observation suggests that our profiling framework is effective to extract most exploit
traffic sent by a small number of aggressive sources.

7.2.2 Characteristics of Unwanted Exploit Traffic

We study the characteristics of the exploit traffic in terms of network origins, fre-
quency, intensity, and target footprints in the IP space. The in-depth analysis and
characterization of unwanted exploit traffic provides crucial insights into exploring
and developing effective strategies for reducing such traffic.

7.2.2.1 Origins of Exploit Traffic

Understanding the network origins and distributions of the exploit source addresses
is very important for developing techniques of reducing unwanted traffic [13]. We
first examine where the sources of exploit traffic are from, in terms of their origin
ASes (autonomous systems) and geographical locations. Among the 3728 srcIPs
in L1 during a 24-h period, 57 are from the private RFC1918 space [14]. These
source IP addresses are likely leaked from NAT boxes or spoofed. For the remaining
srcIP’s, we search its network prefix using the longest prefix match in a snapshot
of the BGP routing table of the same day from Route-Views [15], and obtain the
AS that originates the prefix. These 3671 srcIP’s are from 468 different ASes.
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Fig. 7.5 Aggregated traffic from significant sources of exploit on TCP port 135 over a 24-h period,
i.e., 288 five-minute periods

Figure7.6 shows the distribution of the exploit sources among these ASes. The top
10 ASes account for nearly 50% of the sources, and 9 out of them are from Asia or
Europe.

7.2.2.2 Severity of Exploit Traffic

We introduce several metrics to study the temporal and spatial characteristics of
exploit traffic. The frequency, T f , measures the number of 5-min time periods (over
the course of 24h) in which a source is profiled by our methodology as having an
exploit profile. The persistence, Tp, measures (in percentage) the number of con-
secutive 5-min periods over the total number of periods that a source sends sig-
nificant amount of exploit traffic. It is only defined for sources with T f ≥ 2. Hence
Tp = 100(%)means that the source continuously sends significant amount of exploit
traffic in all the time slots it is observed. We use the spread, Fs , of the target footprint
(i.e., destination IP address) to measure the number of /24 IP address blocks that a
source touches in a 5-min time period, and the density of the target footprint, Fd , to
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Fig. 7.6 Distribution of
srcIP counts across all ASes
for 3728 sources of exploit in
L1 during a 24-h period

10
0

10
1

10
2

10
3

10
0

10
1

10
2

10
3

ASes

sr
cI

P
 c

ou
nt

s

measure the (average) number of IP addresses within each /24 block that a source
touches in the period. Finally, we use the intensity, I , to relate both the temporal and
spatial aspects of exploit traffic: it measures the (average) number of distinct target
IP addresses per minute that a source touches in each 5-min period. Thus, it is an
indicator how fast or aggressive a source attempts to spread the exploit.

Figure7.7a–d show the distributions of the frequency vs. persistence, a scatter plot
of the spread versus density of target footprint, the distribution of intensity, and the
distributions of frequency versus intensity for the 3728 exploit sources, respectively.
From Fig. 7.7a, we observe that frequency follows a power-law like distribution: only
17.2% sources have a frequency of 5 or more, while 82.8% sources have a frequency
of less than 5. In particular, over 70% of them have frequency of 1 or 2. Furthermore,
those 17.2% frequent (T f ≥ 5) sources account for 64.7%, 61.1%, and 65.5% of the
total flows, packets, and bytes of exploit traffic. The persistence varies for sources
with similar frequency, but nearly 60% of the sources (T f ≥ 2) have a persistence of
100 (%): these sources continuously send exploit traffic over time and then disappear.

From Fig. 7.7b, we see the exploit sources have quite diverse target footprints.
In nearly 60% cases, exploit sources touch at least ten different /24 blocks with a
density of above 20. In other words, these sources probe an average of more than 20
addresses in each block. Exploit activitieswith such footprint could be easily detected
at the destination networks by intrusion detection systems, such as SNORT [16], and
Bro [17] or portscan detecting techniques [6]. However, in about 1.6% cases, the
sources have a density of less than 5, but a spread of more than 60. In a sense, these
sources are smart in selecting the targets as they have a low density in each block. As
the rate of exploit seen from each destination network is slow [18], they may evade
port scan detection mechanisms. Upon close examination, we find that these sources
employ two main strategies for target selections. One is to randomly generate targets
(or to use a hit-list). The other is to choose targets like a.b.x .d or a.x .c.d, instead of
a.b.c.x , where x ranges from 1 to 255, and a, b, c, d take constant values.
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Fig. 7.7 Temporal and spatial aspects of exploit traffic for the sources with exploit profiles in the
backbone link during a 24-h period. Note that a and d have the same index in x axis

The exploit intensity (Fig. 7.7c) also follows a power-law like distribution. The
maximum intensity is 21K targets per minute, while the minimum is 40 targets per
minute. There are only 12.9% sourceswith an intensity of over 500 targets perminute,
while nearly 81.1% sources have an intensity of less than 500 targets per minute.
Those 12.9% aggressive (I ≥ 500) sources account for 50.5%, 53.3%, and 45.2% of
the total flows, packets, and bytes of exploit traffic. However, as evident in Fig. 7.7d,
there is no clear correlation between frequency and intensity of exploit traffic: the
intensity of exploit activities varies across sources of similar frequency.

In summary, we see that there is a relatively small number of sources that fre-
quently, persistently, or aggressively generate exploit traffic. They are candidates for
blocking actions. Whereas a small percentage of sources are also quite smart in their
exploit activities: they tend to come and go quickly, performing less intensive probing
with wide-spread, low-density target footprint. These sources may be operated by
malicious attackers as opposed to innocent hosts infected with malware that attempt
to self-propagate. These sources need to be watched for more carefully.
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Fig. 7.8 a blocked flows using the benchmark rule on L1 over a 24-h period; b percentage of
blocked flows over the total flows from sources of exploit

7.2.3 Strategies of Reducing Unwanted Traffic

The insights from studying the characteristics of unwanted exploit traffic allow us to
design and develop several heuristic rules of blocking strategies based on character-
istics of exploit activities. In order to determine which sources to block traffic from,
we first use the behavior profiling technique. For every 5-minute interval, we profile
all sources and identify those that exhibit the exploit traffic profile. We then devise
simple rules to select some or all of these sources as candidates for blocking. Instead
of blocking all traffic from the selected sources, we consider blocking traffic on only
the ports that a source seeks to exploit. This is because exploit hosts may indeed
be sending a mixture of legitimate and exploit traffic. For example, if an infected
host behind a NAT box is sending exploit traffic, then we may observe a mixture of
legitimate and exploit traffic coming from the single IP address corresponding to the
NAT box.

For our evaluation, we start with the following benchmark rule. If a source is
profiled as an exploit source during any 5-minute interval, then all traffic from this
source on vulnerable ports is blocked from then on. Figure7.8a, b illustrates the total
blocked flows from sources of exploit every 5-min interval in L1, and the percentage
of such flows over all traffic from these sources, respectively. Overall, the benchmark
rule could block about 80% traffic from the sources of exploit. In other words, this
rule may still not block all traffic from the source due to two reasons. First, the
source might already have been sending traffic, perhaps legitimate, prior to the time
slot in which it exhibited the exploit profile. Second, as explained above, only ports
on which we see exploit traffic are considered to be blocked.

While this benchmark rule is very aggressive in selecting sources for blocking,
the candidate set of source/port pairs to be added to the ACLs of routers may grow
to be very large across all links in a network. Therefore, we consider other blocking
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rules that embody additional (and more restrictive) criteria that an exploit source
must satisfy in order to be selected for blocking.

• Rule 2: an ACL entry is created if and only if the source has been profiled with an
exploit behavior on a port for n consecutive intervals. This rule is to block traffic
from persistent sources;

• Rule 3: an ACL entry is created if and only if the source has an average intensity
of at least m flows per minute. This rule is to block aggressive sources;

• Rule 4: an ACL entry is created if and only if the source is exploit one of the top
k popular ports. This rule is to block exploit traffic of the popular ports;

• Rule 5: Rule 2 plus Rule 3.

We introduce threemetrics, cost, effectiveness, andwastage to evaluate the efficacy
of these rules. The cost refers to the overhead incurred in a router to store and
lookup the ACLs of blocked sources/ports. For simplicity, we use the total number
of sources/ports as an index of the overhead for a blocking rule. The effectiveness
measures the reduction of unwanted traffic in terms of flow, packet and byte counts
compared with the benchmark rule. The resource wastage refers to the number of
entries in ACLs that are never used after creations.

Table7.2 summarizes these rules of blocking strategies and their efficacy. The
benchmark rule achieves the optimal performance, but has the largest cost, i.e., 3756
blocking entries. It is important to note that the cost exceeds the total number of unique
sources of exploit since a few sources have exploit profiles on multiple destination
ports. Rule 2 with n = 2 obtains 60% reductions of the benchmark rule with 1585
ACL entries, while Rule 2 with n = 3 obtains less than 40% reductions with 671
entries. Rule 3, with m = 100 or m = 300 achieves more than 70% reductions with
2636 or 1789 entries. Rule 4 has a similar performance as the benchmark rule, but
its cost is also very high. The Rule 5, a combination of Rule 2 and Rule 3 has a small
cost, but obtains about 40% reductions compared with the benchmark rule.

We observe that the simple rules, Rule 3 with m = 100 or m = 300 and Rule 2
with n = 2, are most cost-effective when used to block the aggressive or frequent
sources that send a majority of self-propagating exploit traffic, in particular, in the
early stage of a malware outbreak, to hinder their spread.

7.2.4 Sequential Behavior Analysis

Nextwe analyze the success rate of exploit traffic and examine the follow-up activities
that successful exploits engage in. We also study the communication patterns of
exploit sources before they send exploit traffic to uncover potential triggers for exploit
activities. The objective is to gain insights as towhat kind of sourceswe need towatch
more carefully to stop future exploit traffic.
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Table 7.2 Simple blocking strategies and their efficacy

Rule Cost Effectiveness (Reduction (%)) Wastage

Flow Packet Byte

Benchmark 3756 – – – 1310

Rule 2 (n = 2) 1586 63.0% 61.2% 56.5% 505

(n = 3) 671 38.0% 36.0% 31.2% 176

Rule 3 (m =
100)

2636 97.1% 94.0% 89.4% 560

(m =
300)

1789 84.3% 80.4% 72.7% 302

(m =
500)

720 57.6% 57.0% 53.1% 68

Rule 4 (k = 5) 3471 87.4% 79.2% 77.5% 1216

(k = 10) 3624 92.9% 85.5% 81.5% 1260

Rule 5 (n = 2,
m = 300)

884 48.7% 44.0% 37.7% 163

7.2.4.1 Follow-Up Activity of Exploit Traffic

We first devise a simple heuristic to infer whether a source is successful in compro-
mising a host using TCP exploits, based solely on packet headers of one-way traffic.
Since to establish a normal TCP connection, a srcIP and a dstIPmust go through
the three-way handshake process by exchanging SYN, SYNACK and ACK packets,
with at least two packets (with SYN, and ACK bits set) from the srcIP, before
any data packets can be exchanged. Hence for a source to successfully compromise
a destination, the corresponding exploit flow must contain at least 3 packets (with
the appropriate TCP flags set). Whereas TCP exploit flows with only 1 or 2 packets
are clearly unsuccessful—they are either blocked, rejected or the target host does
not exist. Hence we use the number of TCP exploit flows with 3 or more packets
to estimate the success rate (an upper bound) of exploit traffic. In Fig. 7.9, we show
the probability distribution of packet counts for the most popular (TCP135) exploit
traffic. We see that more than 98% flows consist of a single packet, while over 99.5%
flows have fewer than 3 packets. Hence these flows represent failed exploit attempts.
This is not surprising since many networks filter incoming traffic on TCP port 135,
and most patched machines do not respond to such traffic. On the other hand, about
4.2% flows have exactly 3 packets, while 676 flows (0.008%) have more than 3
packets. Similar observations hold for other TCP exploits.

In general, most exploit traffic are unsuccessful as the flows have one or two
packets. On the other hand, a small fraction of flows do have a relatively large
number of packets. Thus, these srcIP’s and dstIP’s are worth investigation since
the dstIPs might be compromised with worms or trojans and subsequently propagate
the malware.
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Fig. 7.9 PDF of packet
counts for TCP135 exploit
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Intuitively, a source is very likely to take further actions if the exploit is successful.
To capture what actions they typically take, we analyze their communication patterns
after we observe the deviations in packet or byte counts in exploit traffic. These
follow-up activities can broadly classified as follows.

• more focused scans after probing: the most common follow-up activity is focused
scanning after probing. For example, a srcIP first pings a large number of end
hosts to discover live hosts. Then it performs specific port scanning (e.g., TCP80,
TCP135, and TCP139) on these live hosts for vulnerabilities.

• downloading malcode to create zombies or install backdoor: the most harmful
follow-up activity is the establishment of backdoors or installation of malcode
by attackers. This can be inferred by either the additional data packets after the
three packets following the initial scan or subsequent communications between
the attacker and the newly compromised hosts. In a number of cases, we find
srcIP’s sends traffic to TCP4444 to a subset of previous targets which are suc-
cessfully exploited on TCP135. The correlations between these ports indicate that
the srcIP successfully infected the vulnerable hosts and setup a backdoor pro-
gram to download malcode.

• nothing at all: For some successful exploits, we do not observe any follow-up
activities in the monitoring period. However, this might simply mean that the
attackers may perform further actions at a later time.

7.2.4.2 Cycles of Exploit Activities

Follow-up communication between an attacker and the compromised machines may
contain the potential trigger for new exploit activities. For example, an attacker may
login to a compromised machine via the backdoor, or control the zombies through
IRC channels to launch new exploits,
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Ourmethod of finding such triggers is tomonitor the communication patterns from
the hosts likely to have been compromised. However, Internet asymmetry routing
makes this very hard in the backbone network. Instead, we use packet traces collected
between all hosts in Sprint cellar data network (CDN) and the Internet. These traces
contain both incoming and outgoing traffic for all hosts in the CDN network in a
24-h period. We first identify the hosts with exploit profiles, and then study their
communication patterns before exploit activities. There are indeed evidences that
certain communications trigger new exploit activities. For example, an end host in
the CDN network talks to an IRC server located in a campus network at 07:03:44
GMT on Apr. 2, 2004, and then sends exploit traffic to over 1600 hosts on TCP80
from 07:05:02 GMT in the next 5-min period. During this 5-min period, we also find
the ongoing communications between this host and the IRC server. Not surprisingly,
there is a significant amount of exploit traffic from this source. This event lasts about
2h. After that, the IRC communication channel disappears, and the source no longer
sends exploit traffic. Similarly, another source talks to the same IRC server, and it
sends exploit traffic over 10min. These cases suggest that these hosts in wireless
networks are likely compromised, and controlled by an attacker using IRC channels.

In summary, we extract sources of exploit (thus unwanted) traffic from packet traces
collected on backbone links using the behavioral traffic profiling methodology, and
study the characteristics of exploit traffic from several aspects, such as network ori-
gins and severity. Based on the insights of characterizing exploit traffic, we investi-
gate possible countermeasure strategies that a backbone ISPmay pursue for reducing
unwanted traffic. In addition, we propose several heuristic rules for blocking most
offending sources of exploit traffic and evaluated their efficacy and performance
trade-offs in reducing unwanted traffic. Our experimental results demonstrate that
blocking the most offending sources is reasonably cost-effective, and can potentially
stop self-propagating malware in their early stage of outburst.

7.3 Cluster-Aware Applications of Network Behavior
Analysis

To demonstrate the practical benefits of end-host behavior clusters and application
behavior clusters discovered via cluster-aware network behavior analysis and graph-
ical modeling, we show how behavior clusters could be used to discover emerg-
ing applications and detect anomalous traffic behavior such as scanning activities,
worms, and denial of service (DoS) attacks through synthetic traffic traces that com-
bine IP backbone traffic and real scenarios of worm propagations and denial of
service attacks. Thus, our proposed technique could become a valuable tool for net-
work operators to gain a deep understanding of network traffic and to detect traffic
anomalies.
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Table 7.3 Traffic clusters of an example destination prefix

Cluster ID Size Flows Patterns

1 20 422 (sip [87], spt *, dip [20], dpt 9050)

2 8 15 (sip [15], spt *, dip [8], dpt 80)

3 8 79 (sip [38], spt 80, dip [8], dpt *)

4 33 33 (sip [1], spt *, dip [33], dpt 445)

7.3.1 End-Host Network Behavior Clusters

7.3.1.1 Discovering Traffic Patterns in Network Prefixes

Onemajormotivation of exploring behavior similarity is to gain a deep understanding
of Internet traffic in backbone networks or large enterprise networks. Therefore,
we first demonstrate the practical benefits of network-aware behavior clustering on
discovering traffic patterns. The end-host traffic clusters discovered in each prefix
reveal groups or clusters of traffic activities in the same prefixes, and understanding
these patterns could be used for fine-grained traffic engineering.

End-host behavior clusters provide an improved understanding of traffic patterns
in network prefixes compared with the aggregated traffic of network prefixes. For
example, Table7.3 lists four traffic clusters for one destination prefix with 69 active
end-hosts during one time window. The first cluster consists of 20 destination hosts
(dip [20]) to which 87 source hosts (sip [87]) talk on destination port 9050 (dpt
[9050]) with random source ports (spt *), while the second cluster consists of 8
hosts to which 15 source hosts talk on destination port 80. In the third cluster, 38
source hosts talk to 8 hosts using source port 80. Finally, the last cluster consists
of 33 hosts to which a single source host talks on the destination port 445 that
is associated with well-known vulnerabilities. In other words, the last cluster is
very likely corresponding to a scanning activity towards these hosts. If the traffic
of this prefix is mixed together for analysis, it becomes very difficult to interpret
and understand since there are multiple behavior patterns simultaneously occurring
within the same prefix. However, by separating the traffic into different clusters, the
behavior of each cluster becomes much easier for network operator to understand
and take necessary actions.

7.3.1.2 Detecting Scanning Activities with Behavior Clusters
of Destination Prefixes

One interesting finding on the behavior clusters of network prefixes is that many
prefixes with tens of end-hosts have only a single cluster, i.e., all hosts in each of
these prefixes talk with the same set of hosts. For example, Fig. 7.10a shows one
case of such activity towards one prefix with 23 end-hosts in one time window. Upon
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(b) Scanning Case 2

Fig. 7.10 Behavior clusters formed by scanning activities towards end-hosts in the same prefixes

close examination, we find that in this case one particular source IP scans all 23 IP
addresses, thus explaining the single traffic cluster of the network prefix.

Detecting such simple scanning scenarios is not surprising, since many other
existing approaches could reveal these patterns. However, the behavior clusters of
destination prefixes are also able to reveal more challenging scanning cases from
the massive traffic data. For instance, Fig. 7.10b shows four behavior clusters of an
IP prefix. The first cluster includes nine end-hosts, while the second includes six
hosts. Each of the last two clusters includes a single host since they do not share
any social-behavior similarity with other hosts. By studying network traffic in each
cluster, we find that the first two clusters are corresponding to two independent scan-
ning behaviors at the same time. The first cluster is due to one scanner targeting
nine different hosts, while the second cluster is caused by a different scanner tar-
geting six other hosts. It is very interesting to note that in terms of packet counts,
the last two small-sized clusters account for 99.76% of network traffic (6655 out of
6671 data packets), while the first two clusters, having only nine and seven packets
respectively, accounting for a very small percentage of the traffic. If traffic analysis
is simply focused on the entire prefix, such low-volume anomalous patterns could
simply be missed. Therefore, this suggests that behavior analysis on host communi-
cation patterns is complementary to existing volume-based techniques for detecting
scanning behavior patterns.

7.3.1.3 Detecting Worm Behavior in Its Early Phases

To demonstrate practical benefits of network-aware behavior clustering in detect-
ing worm behavior, we use real traces of Witty worm collected by CAIDA [19] and
combine it with the backbone network traffic into synthetic traffic. The behavior clus-
tering is able to detect a new cluster in one of the prefixes during the very beginning
of worm propagations. Figure7.11a, b show behavior clusters of this prefix before
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(b) Behavior clusters of the prefix during the first
few minute of Witty worm propagations

Fig. 7.11 Emerging behavior clusters formed by worm propagations

and after worm propagations, respectively. An emerging small cluster consisting of
three end-hostsmarked by the circle in Fig. 7.11b is actually triggered by data packets
containing the Witty worms. Such emerging behavior clusters of a network prefix
triggered by worm propagation events or other suspicious activities serve as strong
alarm signals to network operators for immediate response and in-depth analysis.

7.3.1.4 Detecting DDoS Attacks

Detecting andmitigatingDDoS attacks is one of the challenging tasks facing network
operators or security analysts at edge networks due to the nature of these attacks in
saturating network links. However, we argue that pushing the detection from edge
networks to backbone networks is beneficial, since backbone networks have sufficient
bandwidth and diverse routing paths compared with edge networks. By combining
backbone traffic from a large ISP and real cases of DDoS attacks identified in the
previous work [20], we demonstrate the usage of behavior similarity in detecting
DDoS attacks in Internet backbone networks.

Figure7.12a–d illustrate the behavior clusters of two source IP prefixes before
and during DDoS attacks based on the synthetic traffic traces. The spectral clustering
reveals emerging clusters or cluster changes during DDoS attacks for both source
prefixes (Fig. 7.12b, d). For the first prefix, 39 end-hosts form an emerging cluster in
Fig. 7.12b, while in Fig. 7.12d the existing cluster of 25 end-hosts of the second prefix
in Fig. 7.12c is expanded to a much larger cluster with 52 end-hosts. The reason for
the abnormal expansion of the cluster in the second prefix is that the existing 25 hosts
join other 27 hosts in the same prefix in launching the DDoS attacks while sending
normal data traffic as well. Compared with other methods of detecting DDoS attacks,
the advantage of behavior clusters is to leverage the small emerging clusters and the
dynamics of existing clusters for capturing interesting events, such that the attacks
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Fig. 7.12 Emerging behavior clusters of two independent source prefixes formed during DDoS
attacks

could be detected before the traffic arrives at edge networks and saturates network
links connecting edge networks to the Internet.

7.3.2 Network Application Behavior Clusters

Todemonstrate the usage of application behavior clusters,we use case studies to illus-
trate how these clusters could aid in identifying emerging applications and detecting
anomalous traffic patterns.

7.3.2.1 Detecting Emerging Applications

As the Internet continues to grow in end users, mobile devices, and applications,
classifying Internet applications becomes more complicated due to the rapid growth
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of new applications, mixed uses of application ports, traffic hiding using well-known
ports for avoiding firewall filtering. On the other hand, detecting emerging applica-
tions is very important for traffic engineering and security monitoring. In our exper-
iment results, we find that application clusters are a feasible approach of finding new
applications that share similar clustering coefficient or similar social behaviors of
end-hosts with existing known applications. For example, we find that an unknown
port consistently follows in the same clusters with service ports TCP port 25 (SMTP),
TCP port 80 (Web), TCP port 443 (HTTPS). We conjecture that this port very likely
corresponds to a service application since the source and destination hosts engaging
in this port exhibit similar social behaviors with existing known applications. Such
findings could provide very valuable information for network operators for in-depth
analysis.

7.3.2.2 Detecting Anomalous Traffic Patterns

The usage of application behavior clusters on Internet traffic also includes detecting
anomalous traffic patterns. For example, the clustering results of application traffic
shows a cluster of TCP destination ports 135, 1433, and 22. The first two are ports
associated with well-known vulnerabilities, thus it is not surprising to observe these
two ports in the same cluster. However, port 22 is mostly used for SSH traffic, and it
is expected to be grouped into clusters that include other major Internet service ports.
An in-depth analysis reveal that during that particular time window, six source IP
addresses in the same /26 network prefix send only TCP SYN packet to 28 unique
destination address on destination TCP port 22. These hosts likely scan SSH ports on
Internet hosts. The scanning traffic together account for 66% of total flows towards
destination TCP port 22 during the time window, which explains why TCP port 22
is clustered with ports associated with well-known vulnerabilities.

In summary, based on synthetic network traffic combining backbone network traffic
and real scenarios of worm propagations and denial of service attacks, our experi-
ments have demonstrated that behavior clusters of end hosts in the same networks
are able to aid in discovering traffic patterns for traffic engineering or access control
list constructions, and in detecting anomalous behavior such as scanning activities,
worms, and denial of service (DoS) attacks through synthetic traffic traces. Simi-
larly our experimental results also show that application behavior clusters are able
to group Internet ports into distinct clusters based on clustering coefficient and other
graph properties of source and destination behavior graphs. These behavior clusters
could aid network operators in understanding emerging applications and detecting
anomalous traffic towards Internet applications.
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7.4 Summary

A wide spectrum of applications have benefited from the capabilities of network
behavior analysis in understanding behavioral patterns of networked systems and
Internet applications. These applications leverage the end-to-end process of net-
work behavior analysis which includes the collection, storage, processing, explo-
ration, analysis, visualization, and interpretation of network traffic data. The insights
provided by data-driven network behavior analysis allows network operations and
security analysts to gain an in-depth understanding of normal data communications
between networked systems for various Internet applications or services, and to iden-
tify anomalous and intrusion activities towards these networked systems and Internet
applications.
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Chapter 8
Research Frontiers of Network Behavior
Analysis

Abstract As the Internet continues to bring innovative applications and services to
the broad society, making sense of behavioral objects on the Internet with network
behavior analysis will remain an important technique for understanding and char-
acterizing novel network environments, emerging network applications, and new
networked systems. This chapter presents the research frontiers of network behav-
ior analysis in cloud computing, smart home networks, and the Internet of Things
(IoT) paradigms. This chapter first discusses network behavior analysis as a service
(NBA-as-a-service) in cloud computing environments for monitoring and securing
large-scale Internet data centers. Subsequently, this chapter presents how network
behavior analysis provides new traffic and behavior insights into Internet-connected
devices in distributed smart home networks. Finally this chapter introduces amultidi-
mensional network behavior analysis framework to characterize behavioral patterns
of heterogeneous IoT devices in edge networks.

8.1 Network Behavior Analysis in the Cloud

Cloud computing integrates data, applications, users, and servers on a vast scale
and enables a global optimization of computing resources. However, due to security
threats from both outside and inside the cloud, security remains as a significant chal-
lenge and obstacle in the wide adoptions of cloud computing paradigms. To enhance
the security of networks, applications, and data in the cloud, the study [1] envisions
a profiling-as-a-service architecture to characterize, understand and profile network
traffic at multiple layers in the multi-tenant cloud computing environment: network
routers, hypervisors, virtual instances, and applications. The proposed architecture
will not only provide an in-depth understanding on traffic patterns of cloud tenants,
but also enhance the security of cloud computing by collaboratively detecting and
filtering unwanted traffic towards cloud instances.
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8.1.1 Background

Cloud computing integrates data, applications, users, and servers on a vast scale
and enables a global optimization of computing resources. However, due to secu-
rity threats from both outside and inside the cloud, security remains as a signifi-
cant challenge and obstacle in the wide adoptions of cloud computing paradigms
[2, 3]. For example, the in cloud experiments in [4] demonstrate the vulnerabilities
associated with shared virtual machines (VM) on the same physical host and the
possibility of mounting cross-VM side-channel attacks to collect information from
the target VMs.

In light of the potential attacks and threats towards cloud computing, security has
become one of the major concerns for the adoptions of cloud computing [5]. The
recent work [4] introduces the vulnerabilities with shared virtual machines (VM)
from cloud computing providers and demonstrates the feasibility of mounting cross-
VM side-channel attacks to gain information from the target VMs. In [6] Ertaul et
al. survey security challenges in cloud computing environment, while Chen et al.
identified two new facets to cloud computing security [7], namely, “the complexities
of multi-party trust considerations” and “the ensuring need for mutual auditability”.
Yildiz et al. [8] first identifies security concerns on multiple layers arising in cloud
computing, and subsequently outlines a policy-based security approach for cloud
computing through defining security polices at various layers including networking,
storage, systems management, and applications.

Given the magnitude and diversity of security threats towards cloud computing, it
is crucial to develop effective solutions to ensure the security and high-availability of
data, applications, and networks for cloud tenants. The central challenges of enhanc-
ing the security of cloud computing are (i) the vast amount of network traffic in the
cloud and the diversity of cloud tenants, (ii) the variety of security threats that include
traditional threats towards cloud tenants and emerging threats brought by the cloud
computing paradigm, (iii) the launching points of the attacks from inside and out-
side the cloud; and (iv) the “untrusted” nature of the multi-tenant cloud computing
environment [9].Many recent research have been conducted on newdata center archi-
tecture [10–12] and network traffic measurement in cloud computing [13]. However,
there has been little attempt to profile network traffic of cloud instances. Existing
techniques for cloud computing security such as access control lists or firewalls are
widely deployed on data center routers and virtualization servers, however they are
insufficient for securing cloud instances as cloud computing tenants face a variety of
security challenges such as intrusion attempts, port scanning, and denial-of-service
attacks from outside the cloud as well as from inside the cloud, e.g., cloud providers
or other cloud tenants.
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8.1.2 Profiling-as-a-Service in the Cloud

Traffic profiling has recently become an essential technique for securing and man-
aging backbone and edge networks, e.g., building normal and anomalous network
behavior profiles [14, 15], detecting traffic obfuscation and encryption [16], and
accurate identification of network applications [17, 18]. The proposed profiling-as-
a-service architecture [1] for network behavior analysis in the cloud analyzes and
characterizes network traffic of cloud instances at multiple layers in the multi-tenant
cloud computing environment: (1) border routers of cloud networks, (2) hypervisors
of virtualization servers, (3) virtual instances (VMs), and (4) applications.

The layered profiling-as-a-service approach builds hierarchical traffic profiles for
cloud instances and provides an in-depth understanding of network traffic towards
cloud instances. The architecture consists of four system components that build upon
each other to establish profiling-as-a-service in the cloud: (i) a layered approach of
profilingnetwork trafficof cloud instances, (ii) behaviormodels and structuralmodels
based on communication patterns of cloud instances, (iii) a collaborative solution for
detecting unwanted traffic in the cloud, and (iv) a profiling-aware sampling algorithm
for improving the robustness of the proposed architecture during sudden traffic surges
caused by anomalous events. The goal of the profiling service is to provide an in-
depth understanding of traffic patterns for cloud tenants and to enhance the security of
cloud computing by collaboratively detecting and filtering unwanted traffic towards
cloud instances.

Network traffic profiling has been extensively studied in the recent years for under-
standing network traffic in Internet backbone networks and edge networks [14, 15,
17]. For example, [15] builds behavior profiles of end hosts and network applications
using traffic communication patterns without any presumption on what is normal or
anomalous, while in [17] the authors study the host behaviors at three levels with
the objective to classify traffic flows using packet header information only. Jiang et
al. [14] creates a traffic profile for each network prefix through behavior analysis of
aggregated traffic. Different from these work, the profiling-as-a-service architecture
for the cloud attempts to build traffic profiles across all layers in the multi-tenant
cloud computing environments for improved security and management in the cloud.

8.1.3 Architecture of Profiling-as-a-Service for Network
Behavior Analysis

In light of the security and privacy challenges of cloud computing, it becomes increas-
ingly important for cloud customers to know what happens to their cloud instances
in the multi-tenant cloud computing environment managed by a third-party cloud
provider. Towards this end, we build the profiling-as-a-service architecture for estab-
lishing hierarchical traffic behavior profiles of cloud instances at multiple layers—
border routers of cloud networks (network profiling), hypervisors of virtualization
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Fig. 8.1 Architecture of layered profiling in cloud computing

servers (hypervisor profiling), virtual instances (instance profiling), and applica-
tions (application profiling). Figure8.1 illustrates a schematic diagram of the layered
profiling-as-a-service architecture, in which each layer analyzes cloud traffic from a
different perspective and thus provides a unique insight on traffic patterns of cloud
instances.

Figure8.2 shows the hierarchical relationships of these four levels in the cloud
hierarchy—network-level, hypervisor level, instance level, and application level.
The lower two layers, network and hypervisor profiling, analyze network flows and
unwanted traffic of all cloud instances at the routers and hypervisors with coarse
granularity, while the higher two layers focus on the fine-grained traffic analysis
for individual instances or their applications. Thus, in the proposed profiling-as-a-
service architecture, each layer provides a unique view to traffic profiles and behavior
patterns of cloud instances.

The major intuition of the layered profiling approach lies in that each layer of the
cloud computing environment provides a unique perspective on network traffic of
cloud instances. For example, in the experiments ofmounting cross-VMside-channel
attacks [4] the step of network probing for building cloud cartography utilizes wget
scan to determine the liveness of EC2 instances, and such activities would leave
distinct traffic footprints at each level of the cloud hierarchy and lead to different
traffic profiles at four levels. Hence, the combined insights from each layer lead to
an in-depth understanding on the traffic patterns of cloud instances. We could in
turn use the complementary profiles in these layers to build a comprehensive and
correlated traffic profile of cloud instances. The practical applications of the first
two layers include (i) understanding network-level traffic patterns of cloud instances
and (ii) correlating cloud-wide unwanted traffic towards cloud instances, while the
applications of the latter two layers include (i) revealing the overall traffic patterns and
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Fig. 8.2 Hierarchical
relationships of the profiling
layers

end-user access behaviors of cloud instances and (ii) generating application-specific
traffic patterns or detecting malicious packet payload to cloud applications.

8.1.4 Designing the Profiling-as-a-Service Infrastructure

In the rest of this section we will describe how to profile network traffic at each layer
and address the inherent challenges of the profiling-as-a-service architecture, such
as large volume of network traffic during denial-of-service attacks. Specifically, we
will address these following problems: (i) how to build the profiling-as-a-service
architecture in the cloud networks, (ii) what traffic features should be included in
traffic profiles, (iii) how to profile network traffic and behavior patterns in normal
conditions and anomalous events, and (iv) how to correlate profiles from distributed
hypervisors and instances in the cloud for collaborative security monitoring.

8.1.4.1 Profiling Traffic at Network-Level

The first step of the profiling-as-a-service infrastructure focuses on the incoming or
outgoing traffic observed at the border routers that connect cloud networks to the
Internet. Profiling traffic at the network-level provides a broad view of traffic patterns
of cloud instances. However, due to the sheer volume of network traffic to/from
thousands of cloud instances, it remains a daunting task to analyze vast network traffic
in the cloud networks. Therefore, the size of cloud traffic data calls for lightweight
and efficient algorithms to make sense of these traffic and to generate meaningful
traffic summaries of cloud instances at the cloud network level. Towards this end, we
plan to explore entropy concepts from information theory and histogram analysis to
analyze the distribution of traffic features for cloud instances at the network level.
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Network profiling analyzes the incoming and outgoing traffic of border routers at
the cloud networks, and builds high-level traffic summaries of all instances through
network flows. These profiles can be used to correlate common threats, such as
worms and network-wide scanning, and to detect and mitigate volume-based traffic
anomalies, such as denial-of-service attacks.

8.1.4.2 Profiling Traffic at Hypervisor Level

Hypervisor profiling collects, analyzes, and correlates “unwanted traffic” captured
by firewalls deployed on the hypervisor layer of virtualization servers that support
multiple instances. In addition, we establish a central collaborative center that com-
municates with distributed hypervisors in the cloud, correlates “unwanted traffic”
filtered by distributed hypervisor firewalls, and reports the aggregated trends of
security threats to all cloud instances. Hence, hypervisor profiling could become
a powerful technique for detecting low-volume attacks such as scanning activities
and penetration attempts towards cloud instances.

One of the key technologies that drive the cloud computing paradigm is the use
of virtualization, which allows multiple instances (also called virtual machines) to
run on the same physical machine. These multiple instances are isolated from each
other through the hypervisor layer (also called virtualization layer). The hypervisor
layer arbitrates andmanagesCPU, physicalmemory, and I/O devices amongmultiple
instances running on the same machine. All data packets from or to cloud instance
pass through the hypervisor layer, as this layer resides between the physical network
interface and the virtual network interface of cloud instances. Therefore, the host-
based firewall is often deployed at this layer to filter “unwanted traffic” towards the
cloud instances usingpre-definedfirewall policy rules configuredby cloud customers.
For example, Amazon EC2 allows cloud customers to configure security polices to
define certain firewall rules at the hypervisor layer for accurately identifying and
filtering the inbound “unwanted traffic” to the cloud instances [19].

In this study, we propose to harvest unwanted traffic from distributed hypervisors
in the cloud and to establish a central collaborative center that collects and analyzes
unwanted traffic from distributed hypervisors in the cloud computing environment.
The idea of this collaborative center is inspired by DShield, a cooperative network
security community portal site that collects firewall logs for analyzing the trends and
emerging threats of the exploit behaviors [20]. Specifically, we will develop a dis-
tributed measurement framework, where each hypervisor has a client program that
communicates with a server running on the collaborative center. Once a hypervisor
detects unwanted traffic towards one or more instances, the hypervisor will summa-
rize and generate the traffic signature, and then sent to the central collaborative center
through the reporting client. Prior studies have shown that the collaborative princi-
ples have a wide range of applications in network measurement [21] and security
monitoring [22].

Given the volume of unwanted traffic in the Internet background radiations due
to vulnerability scanning, worm propagations, system penetration attempts, DoS
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attacks, and other exploit activities [23], it is not surprising that cloud instances
receive a large amount of unwanted traffic. Thus a major challenge of designing
and implementing such a collaborative solution for distributed hypervisors in the
cloud computing environment lies in the size and diversity of the “unwanted traffic”
collected and processed by distributed hypervisors and the central collaborative cen-
ter. Thus an important research problem in hypervisor profiling is how to develop
efficient collaborative algorithms to share and leverage unwanted traffic collected
on distributed hypervisors for reducing unwanted traffic towards cloud instances. To
prevent distributed hypervisors and the collaborative center from being overwhelmed
by a large amount of unwanted traffic, we propose to use two-layer counting bloom
filter technique [24] at hypervisors and the collaborative center to reduce the size of
unwanted traffic reports by identifying the most aggressive attackers from all source
IP addresses of unwanted traffic.

8.1.4.3 Profiling Traffic at Instance Level and Application Level

Network and hypervisor profiling in the proposed profiling-as-a-service architecture
discover behaviors patterns of cloud instances and unwanted traffic towards the cloud
network, respectively. However, both steps lack the visibility of all network traffic
towards cloud instances and the applications running on them. To gain a complete
picture of network traffic towards cloud instances and their applications, it becomes
very necessary to profiling traffic at instance and application levels.

Instance profiling is interested in three important aspects of cloud instances: user,
traffic, and performance. The user profiling is focused on the access patterns of end
systems on the Internet that communicate with cloud instances, while traffic profiling
at the instance-level studies traffic characteristics of the cloud instance, such as traffic
distributions across ports or applications, and temporal traffic patterns. Similar to
the continuous profiling infrastructure deployed at Google data centers [25], the
performance profiling aims in quantifying system performance such as CPU and
memory utilization, and input/output throughput, and end-to-end performance such
as network latency and packet losses. As illustrated in Fig. 8.3, instance profiling
runs independently on multiple virtual instances that are hosted on the same physical
machine.

In addition to profiling traffic at instance level that studies the aggregated network
traffic of cloud instances, we will also perform profiling traffic at application level
and investigate the application-specific semantics and contents of network traffic.We
plan to use the graphic models to represent traffic activity of cloud instances and their
applications. The fine-grained traffic analysis on application level provides valuable
insights for application diagnosis and troubleshooting, network management and
capacity planning.

The challenges of instance profiling and application profiling are (i) feature selec-
tion for instance or application profiling; (2) payload and content analysis without
baseline signatures or prior knowledge of normal or abnormal traffic patterns. To
address these challenges, we will employ temporal analysis and feature selection
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Fig. 8.3 Hypervisor
profiling and instance
profiling on the physical
machine

algorithms for instance and application profiling, and explore algorithms in data
mining and machine learning for detecting unknown exploit traffic, e.g., emerging
worms or virus. The ultimate goal of profiling traffic at instance level and application
level is to complement traffic profiles of network profiling and hypervisor profiling
and to build a comprehensive traffic behavior profile for each cloud instance by
summarizing its traffic behavior and application activities with the full packet traces.

8.1.4.4 Profiling High-Volume Network Traffic

An operational challenge of the profiling-as-a-service architecture across all levels is
the sudden traffic surges during unusual events such as denial-of-service attacks [26],
flash crowds [27], or worm outbreaks [28]. The sheer volume of network traffic dur-
ing these events introduces significant system pressure for the profiling architecture
that runs on commodity PCs with limited CPU and memory capacity. At the same
time, it is vital for the profiling architecture to function during these events, since
traffic profiles generated during these periods will provide key insights and valuable
information for effective response and forensic analysis.

Sampling is a widely deployed technique to reduce system resource consump-
tions in network traffic monitoring. Traditional sampling approaches include ran-
dom packet sampling, random flow sampling, smart sampling and sample-and-hold
algorithms. However, previous studies [29] have shown that these existing sampling
algorithms, albeit significantly reducing resource usage, bring non-trivial accuracy
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losses on the traffic feature distributions as well as on other traffic statistics. Our
preliminary analysis also finds that these sampling algorithms could lead to inac-
curate traffic profiles of cloud instances at all levels during sudden traffic surges,
although they substantially bring down the CPU and memory usage. To enhance the
robustness and accuracy of the profiling-as-a-service architecture under these stress
conditions, it becomes very necessary to develop novel sampling algorithms that not
only reduce the system resource usage, but also retain the accuracy of traffic profiles
across all levels.

A key lesson from studying traditional sampling approaches in our preliminary
analysis is that the cloud instances involved with anomalous events such as denial-
of-service attacks usually receive vast amount of network traffic. Profiling traffic
behavior of these instances during these events does not require a very large number
of traffic flows, since their feature distributions likely remain the same even with a
small percentage of sampled traffic flows. On the other hand, the profiles of other
hosts with much less traffic are very sensitive to the number of sampled traffic. Based
on this insight, we plan to develop new profiling-aware sampling solutions that limit
the number of sampled traffic flows for instances or applications with a large amount
of traffic, but adaptively samples on the rest of instances or applications when the
profiling system is faced with sudden explosive growth in the number of traffic flows
or packets caused by anomalous events such as denial-of-service attacks or worm
outbreaks.

The success and challenges of cloud computing have recently draw broad attentions
from the networking and system research community. In a view of cloud comput-
ing [3], Armbrust et al. summarize top 10 obstacles and research opportunities for
cloud computing. As a first step of understanding network traffic in the cloud, the
profiling-as-a-service infrastructure in the multi-tenant cloud computing environ-
ment builds traffic profiles of cloud instances at multiple layers for providing critical
insights on network behavior analysis, security monitoring, and traffic engineering
for cloud instances. To demonstrate the operational feasibility and the practical appli-
cations of the profiling-as-a-service architecture, the next important research task is
to design, implement, and evaluate a prototype profiling system in real Internet data
centers and existing commercial cloud computing platforms such as Amazon EC2,
Microsoft Azune, or Google AppEngine.

8.2 Network Behavior Analysis in Smart Homes

The rapid spread of residential broadband connections and Internet-capable con-
sumer devices in home networks has changed the landscape of Internet traffic. To
gain a deep understanding of Internet traffic for home networks, this section presents
a traffic monitoring platform that collects and analyzes home network traffic via
programmable home routers and traffic profiling servers. Using traffic data captured
from real home networks, we present traffic characteristics in home networks, and
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then apply principal component analysis to uncover temporal correlations among
application ports. In light of prevalent unwanted traffic on the Internet, we char-
acterize the intensity, sources, and port diversity of unwanted traffic towards home
networks.

8.2.1 Background

In recent years, the rapid growth of Internet-capable devices in the home and res-
idential broadband access has driven the rising adoptions of home networks. The
availability of home networks not only creates new application opportunities such as
remote health care and Internet television, but also changes the distribution of Inter-
net traffic, e.g., a recent study shows that video streaming via Netflix accounts for
32.7% of peak downstream traffic in United States [30]. As home networks become
an important part of the Internet ecosystem, it is very crucial to understand network
traffic between the Internet and home networks aswell as the traffic exchangedwithin
home devices.

Most home users lack technical expertise to manage the increasingly complicated
home networks, and an extensive body of research have focused on how to simplify
network management tasks for home users [31–35]. Several recent studies have
been devoted to understanding traffic characteristics of home networks using aggre-
gated and sampled traffic collected from edge routers in Internet service providers
[36–38]. However, these measurement studies stand from the perspective of outside
home networks, thus lack the visibility of what is happening in home networks. The
in-depth understanding of home network traffic could aid home users in effectively
securing and managing home networks.

Unlike enterprise networks which have dedicated network professionals to man-
age and operate the networks, securing home networks have been a considerable
challenge, as most home users do not have sufficient technical expertise and knowl-
edge to manage and secure the networks [39]. As a result, connected devices in home
networks are targets and victims of virus, worms, and botnets, and become a major
source of spams and a part of botnets. In [40], Feamster proposes to outsource the
management and operations of home networks to a third party that has expertise
of network operations and security management. In [41], Yang et al. study network
management tools that are currently deployed in home networks via interviewing
25 home networks users, and report user experiences of these network management
tools. To aid in troubleshooting andmanaging home networks, [42] proposes to build
a home network data recorder system as a general-purpose logging platform to record
what is happening in home networks. Many researches have also focused human-
computer interactions in home networks [33–35], troubleshooting and diagnosis [31,
32], and broadband network sharing among different Internet service providers [43].

Home network performance has recently drawn significant attentions from the
research community. A recent work [44] performs controlled experiments in a lab
environment for evaluating the impact of home networks on end-to-end performance
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of end systems. In addition, several commercial or open-source tools have been devel-
oped for measuring and diagnosing Internet properties of end users. For example,
Netalyze [45], a network measurement and diagnosis service, tests a wide variety
of functionalities at network, transport and application layers for end users’ Internet
connectivity in edge networks such as home networks. Kermit, a network probing
tool, was developed in [46] to visualize the broadband speed and bandwidth usage
for home users. Hatonen et al. [47] measures and analyzes the behavior characteris-
tics of a variety of home gateways such as DSL and cable modems, including NAT
binding timeout, throughput, and protocol support, and their influence on network
performance and user experience. A recent work [48] measures network access link
performance directly from home gateway devices, and has inspired us to characterize
network traffic from inside home networks through programmable home routers.

As residential broadband users continue to grow, many studies have been devoted
tomeasure and characterize residential broadband networks [36–38]. However, all of
these studies stand from outside home networks, and lack the visibility of the home
networks, such as home network architecture, diversity of end hosts. For exam-
ple, [37] examines the growth of residential user-to-user traffic in Japan, a country
with a high penetration rate of residential broadband access, and studies the impact
of these traffic on usage patterns and traffic engineering of commercial backbone
networks. In addition, [38] studies several properties of broadband networks, includ-
ing link capacities, round-trip times, jitter, and packet loss rates using active TCP
and ICMP probes, while [36] passively collects packet-level traffic data of residen-
tial networks at aggregated routers of a large Internet service provider, and analyzes
dominant characteristics of residential traffic including network and transport-level
features, prominent applications, and network path dynamics. Different from these
prior work, the study of network behavior analysis in smart homes [49] leverages the
availability of traffic flows exported from programmable home routers, and presents
the first study of traffic characteristics of Internet-capable devices in home networks.

8.2.2 Traffic Monitoring Platform for Home Networks

In light of the rapid growth of home networks, we have presented a traffic monitoring
platform to collect and analyze network traffic for Internet-capable devices in home
networks. Relying on programmable home routers that connect home networks to the
Internet, the platform collects network flow streams to traffic profiling servers, and
analyzes traffic characteristics of home networks. Our findings on traffic character-
istics of application ports lead us to explore principal component analysis (PCA) to
uncover temporal correlations among these ports. The experiment results show that
there indeed exist several application port clusters in home networks with each clus-
ter exhibiting distinct traffic patterns. Given the new perspective of understanding
unwanted traffic on the Internet from network behavior analysis in home networks,
the next two important research tasks are to develop privacy-preserving data collec-
tion capacity into the traffic monitoring platform and to deploy the platform into a
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Fig. 8.4 Traffic monitoring platform for home networks

large number of home networks to demonstrate its benefits in managing and securing
home networks.

Towards this end, we first present a traffic monitoring platform that collects net-
work flow streams via traffic profiling servers and programmable home routers that
connect home networks and the Internet via home gateways such as DSL or cable
modems. Using traffic data collected from real home networks, we will analyze traf-
fic patterns of connected devices in home networks, and characterize the volume,
behavior, and temporal features of home network traffic.

Managing and securing the increasingly complicatedhomenetworks has remained
a significant challenge for many home users who often have little technical expertise
in network management [40, 50]. Many open-source tools or commercial products
are available today to detect Internet malwares such as virus and worms or to filter
known attacks through firewalls and intrusion detection systems for home networks.
Unfortunately, there exist few simple and intuitive tools that could offer insights on
traffic behaviors of home network devices.

To understandwhat is happening in home networks, we develop a real-time behav-
ior monitoring platform to collect and analyze network traffic for Internet-capable
devices in the home. As illustrated in Fig. 8.4, the monitoring platform captures net-
work traffic via programmable home routers, which connect home networks with
the Internet through home gateways such as cable or DSL modems. Using a Linux
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distribution for embedded devices, OpenWrt [51], we configure a programmable
home router and export network flows traversing through all the interfaces of the
router to a traffic profiling server running in the same home network. The continuous
network flows, aggregated from IP packets, contain a number of important features
for our traffic analysis including the start and end time stamps, source IP address
(srcIP), destination IP address (dstIP), source port number (srcPort), desti-
nation port number (dstPort), and protocol, packets, and bytes. Many host-based
monitoring systems are also able to collect these traffic flows on individual devices,
e.g., Windows and Linux machines, however such host-based approaches are very
difficult to deploy across all the possible devices due to the high heterogeneity of
Internet-capable devices in the home.

Compared with incoming and outgoing traffic of home networks, the overhead of
transferring flow data from programmable home routers to traffic profiling servers
is not significant. Figure8.5 shows the overhead of collecting traffic data from pro-
grammable home routers (top figure), the bandwidth usages of outgoing traffic (mid-
dle figure) and incoming traffic (bottom figure) of one home network that deploys
the platform. As shown in the top figure, the network flow data exported by home
routers consumes less than 4Kbps bandwidth, which is much smaller than outgoing
and incoming traffic illustrated in the middle and bottom graphs. In general, the net-
work bandwidth usage of incoming traffic towards home networks is larger than that
of outgoing traffic, as most of Internet activities in these home networks are Web
browsing, email communications, and video streaming.

The availability of the traffic monitoring platform makes it possible for us to ana-
lyze data traffic exchanged between home devices and Internet end hosts, as well as
data traffic exchanged among home network devices. Making sense of these traffic
could not only assist home users in understanding what is happening in home net-
works, but also help detect anomalous traffic towards home networks or originating
fromcompromised homedevices. In the next section,wewill use traffic data collected
from real home networks that deploy the traffic monitoring platform to characterize
network traffic of Internet-capable home devices from a variety of traffic informa-
tion including volume featuresmeasured by the numbers of flows, packets, and bytes,
social features through analyzing IP addresses and application ports, and temporal
dynamics of these traffic. Each of these traffic features captures the behavior of home
devices from a unique perspective. Combined together, they provide a broad picture
of home network traffic, and more importantly, reveal interesting traffic activities in
home networks.

8.2.3 Characterizing Home Network Traffic

In this section, we first describe datasets used in this study and present the general
characteristics of home network traffic. Subsequently, we explore principal compo-
nent analysis to analyze temporal correlations amongapplication ports for uncovering
clusters of application ports sharing significant temporal patterns in network traffic.
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Fig. 8.5 Bandwidth usage of data collection (top figure), outgoing traffic (middle figure) and
incoming traffic (bottom figure) of home networks

8.2.3.1 Datasets

The traffic data used in this study is collected from five home networks (A, B, C ,
D, E) that deploy our traffic monitoring platform during one-month time span from
09/12/2011 to 10/12/2011. The numbers of total devices in home networks
A and B are 6 and 3, respectively. Figure8.6 shows the number of online devices in
home network A over time. As illustrated in Fig. 8.6, the number of online devices
in home network A observed during 5-min time bins varies from 0 to 6, reflecting
Internet usage patterns of these devices during this one-month time period. Note that
the number of home devices remaining above 1 between 09/12 and 09/28 is due
to a probing program continuously running on one home device to measure end-
to-end performance to a number of distributed servers. These devices collectively
have communicated with over 4, 800 unique end hosts on the Internet from 529
different autonomous systems (ASes) during this period. Similarly, the devices in
home network B collectively communicate with over 4, 400 end hosts from 726
ASes.
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Fig. 8.6 The number of online devices in the home network A over time

8.2.3.2 Traffic Characteristics

We study the traffic characteristics of home networks by firstly examining IP
addresses and application ports over time, since they reflect whom do home devices
communicate with and what applications do home devices use. Figure8.7a–c illus-
trate the numbers of unique destination IP addresses, unique source ports and unique
destination ports for the outgoing traffic during 5-min time bins over time, respec-
tively.

Our first interesting observation lies in the large number of unique destina-
tion IP addresses during 5-min time bins, as shown in Fig. 8.7a. Closer exami-
nation revealed that a single visit to a major content-rich Web portal could trig-
ger tens of TCP connections to different Web servers, and the large number of
destination IP addresses actually correspond to legitimate Web servers visited by
home users. For example, our empirical experiment of visiting the front page of
www.cnn.com with a Firefox browser finds that loading the entire page requires
the browser to talk with 18 different IP addresses from a variety of Internet ser-
vice and content providers including Facebook (social network site), Google
(search engine), Limelight Networks (content deliver network), Rackspace
Hosting (cloud service provider), Valueclick (online advertising), and cnn
itself.

www.cnn.com
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Fig. 8.7 The number of unique IP addresses and ports in outgoing traffic for home network A over
time

The second observation fromFig. 8.7 is that the number of unique destination ports
for outgoing traffic in home networks is far less than that of unique source ports. The
small number of destination ports in outgoing traffic provides a simple and natural
classification on home network traffic, thus we follow a port-driven approach for
further traffic analysis. Specifically, we separate outgoing traffic flows into distinct
groups based on their destination ports in order to gain an in-depth understanding
on network traffic of each individual destination port. Similarly, we group incoming
traffic flows into distinct groups based on their source destination ports.

Figure8.8a, b illustrate the temporal frequency of all destination ports for five
home networks during one-month time period, respectively. It is interesting to find
three types of temporal patterns among these ports. The first type of destination ports
is consistently observed during all days. For example, port 80/TCP is observed in
all days during the one-month period in both networks. The second type of ports is
observed during several days, while the last type includes ports that are only observed
in one or two days suggesting these infrequent portsmight be associatedwith unusual
or anomalous traffic. Similar observations hold for the source ports in the incoming
traffic towards home networks. More interestingly, Fig. 8.8a, b also reveal temporal
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Fig. 8.8 Time series observations of destination ports in outgoing traffic for five home networks

correlations among groups of applications ports that consistently show up around
approximately the same times. This observation motivates us to explore correlation
analysis techniques to understand the reasons behind such temporal correlations.
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8.2.3.3 Temporal Correlation Analysis of Application Ports

To explore temporal correlation among application ports in home networks, we pro-
pose to use principal component analysis (PCA) to analyze traffic patterns of network
applications. PCA is a widely used technique in network traffic analysis [52–55] due
to its ability of analyzing multivariate data and locating interrelated variables [56].

Let p and t denote the total number of ports observed in the data and the total
number of time bins. Our initial step is to construct a p × t matrix X , where xi, j
denotes the total number of network flows for the destination port i (i = 1, 2, . . . , p)
in the outgoing traffic (or the source port i in the incoming traffic) during the j-
th ( j = 1, 2, . . . , t) time period. The vector xi T reflects a time series of observa-
tions for the application port i . Next we obtain the covariance matrix S, p non-
decreasing ordered eigenvalues, λ1, λ2, . . . , λp, and the corresponding eigenvectors
α1, α2, . . . , αp, where sab is the covariance of two application ports a and b, and
Sαi = λiαi , for 1 ≤ i ≤ p.

The p principal components of the matrix X can be derived by projecting the
matrix onto the p eigenvectors, i.e., PCi = αT

i X , i = 1, 2, . . . , p. As var(PCi ) =
var(αT

i X) = αT
i X · XTαi = αT

i Sαi = λαT
i αi = λi , the variance captured by the i-

th principal component is essentially the i-th eigenvalue λi .
PCA transforms the space of the p observed variables in the original matrix X

into a new space of p principal components {PCi }, i = 1, 2, . . . , p. Figure8.9 shows
the distribution of the eigenvalues using the matrix constructed with the one-month
traffic data from home network A. As shown in Fig. 8.9, a few largest eigenvalues
account for the majority of the variance in the original matrix, suggesting that the
corresponding top principal components capture most variances.

Thus, the final step of the PCA process is to project the original dataset onto
a subspace with a smaller dimensionality to get approximate representations while
retaining the majority of the variance in the original dataset. Specifically, we require
that the largest m eigenvalues that are larger than a fixed threshold such that each
selected principal component captures a non-trivial variance in the original datasets.
In the experiment, we use 5% of the total variances as the threshold for determining
the value of m.

The principal component PCi can also be represented as PCi = αT
i X = [αi1x1 +

· · · + αi px p]T = [∑p
j=1 αi j x j ]T , where αi j , j = 1, . . . , p, is the coefficient of x j for

PCi . The coefficient value αi j reflects the contribution or influence of the application
port j to the variance obtained by the i-th component. Such relationship between
principal components and observed variables leads to the discovery of a cluster
of application ports that contribute similar influence towards the same principal
components because of the inherent temporal correlations among these ports. As a
result, we group the application ports that contribute similar high influence towards
the variance of each of the top principal components into a distinct srcPort cluster
for incoming traffic (or adstPort cluster for outgoing traffic). In other words, PCA
discovers the clusters of application ports that exhibit significant correlations in the
temporal traffic patterns.
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Fig. 8.9 Eigenvalue distribution of the matrix constructed with the one-month traffic data for home
network A

Table8.1 lists the membership of the 6 dstPort clusters discovered via the
principal component analysis using one-month traffic data collected in home network
A.Cluster1 includes port 43/TCP and consecutive ports 33435-33440/UDP. The in-
depth analysis shows that the flows associated with 43/TCP are legitimate whois
traffic towards Team Cymru IP to AS mapping service, while all traffic associated
with ports 33435-33440/UDP were sent towards an unknown server and failed to
get a response from the server. The legitimate traffic on port 43/TCP and suspicious
traffic on 33435-33440/UDP were observed during the same time window, which
explain these seven ports to be grouped as a single dstPort cluster. Although
Cluster1 includes a service port 43/TCP, the majority of ports, 33435-33440/UDP,
does reflect anomalous traffic activity from one home network device. Cluster2
includes four canonical ports (i.e., DNS, HTTP, HTTPS, and NTP), which are used
by home network devices on a daily basis and thus naturally form adstPort cluster.

Cluster3 includes three consecutive ports 16384-16386/UDP, which was sent
by the FaceTime video calling application on an iPhone device. This cluster indi-
cates that many user-installed applications or vendor-installed applications could use
non-traditional ports for data communications with end hosts on the Internet. Such
practices make it more challenging to differentiate anomalous or legitimate traf-
fic on unusual ports. Cluster4 includes three ports, i.e., 843/TCP, 1200-1201/TCP.
Closer examinations reveal that a Windows laptop communicated with seven differ-
ent instances in Amazon EC2 Cloud on these three ports simultaneously during 9
different days over the first two weeks. As home users are not aware of any appli-
cation involving these ports and servers, these traffic is likely sent by a malware
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Table 8.1 dstPort clusters discovered via PCA on temporal correlation

dstPort Port Application User-aware

Cluster Number

1 43/TCP whois Yes

33435/UDP unknown No

33436/UDP unknown No

33437/UDP unknown No

33438/UDP unknown No

33439/UDP unknown No

33440/UDP unknown No

2 53/UDP DNS Yes

80/TCP Web/HTTP Yes

123/UDP NTP Yes

443/TCP Web/HTTPS Yes

3 16384/UDP FaceTime Yes

16384/UDP FaceTime Yes

16386/UDP FaceTime Yes

4 843/TCP unknown No

1200/TCP unknown No

1201/TCP unknown No

5 1863/TCP MSN Yes

7001/UDP MSN Yes

6 993/TCP IMAP over SSL Yes

5223/TCP AppPush Yes

Notification Service

on the compromised laptop. Cluster5 includes two ports 1863/TCP and 7001/UDP
used byWindows MSNmessenger, while Cluster6 includes two ports 993/TCP and
5223/TCP, which are used by GMail and Apple Push Notification service running
on the iPhone device that connects to the home network over Wi-Fi.

These experiment results with real home network traffic confirm that there indeed
exist a variety of dstPort clusters that group applications ports with strong tem-
poral correlations. Some of these clusters, e.g., Cluster1 and Cluster4 in Table8.1,
even lead to surprising findings on suspicious network traffic originating from home
network devices that might be compromised by Internet malwares. Therefore, char-
acterizing network traffic for Internet-capable devices in the home could not only
provide valuable insight on behavior patterns of these connected devices, but also
help improve the security and management of home networks.
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Fig. 8.10 The volume of unwanted traffic flows towards home networks over time

8.2.4 Unwanted Traffic Towards Home Networks

Unwanted or unproductive traffic is commonly observed on the Internet [23, 57].
Incoming network traffic collected from programmable home routers provides us
an opportunity to characterize the intensity, sources, and port diversity of unwanted
traffic towards home networks. In this study we consider an incoming traffic flow
originating from the Internet as unwanted if none of Internet-capable devices in home
devices responds to the flow.

Figure8.10 illustrates the incessant activities of unwanted traffic towards home
network A measured by the number of unwanted flows over time. Due to Internet
background radiations [23, 57] formed by flooding backscatters, port scanning, and
Internet worms, we consistently observe unwanted traffic from the Internet towards
home networks. To gain a better understanding on where these traffic originates
from, we analyze their source IP addresses and the corresponding ASes. Figure8.11a
shows the distribution of the source IP addresses of these unwanted traffic and their
corresponding ASes in a log-log scale. As shown in Fig. 8.11a, there exist a few
aggressive source IP addresses that send a fairly large number of unwanted traffic
flows towards the same home network, while the majority of source IP addresses
send only a few flows. The distribution for the source ASes exhibits similar heavy-
tail patterns.

In addition to studying the sources of these unwanted traffic, we also charac-
terize the diversity of source and destination ports in these traffic. Figure8.11b
shows the distribution of destination ports observed in unwanted traffic flows,
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Fig. 8.11 Distribution of traffic features in unwanted traffic

and reveals that a small number of destination ports are observed with hundreds,
or even thousands, of unwanted traffic flows. Most of these ports are associated
with well-known vulnerability, such as port 1080/TCP (Mydoom), port 8000/TCP
(a bot malware W32.Spybot.OGX) and port 9000/TCP (a mass-mailing worm
W32.Mytob.GK@mm). The dominant nature on destination ports suggests that sim-
ple ACL (access control list) rules deployed at access routers of Internet service
providers could become very effective for reducing a significant portion of unwanted
traffic towards homenetworks. For trafficflowswith unpopular destination ports, e.g.,
the number of flows less than 5, we aggregate these remaining flows on source ports
for exploring the possible concentrations on source ports. As shown in Fig. 8.11c,
many of these remaining flows actually are associatedwith a few popular source ports
caused by flooding backscatters, including port 20/TCP (SSH), port 80/TCP (HTTP),
port 443/TCP (HTTPS), port 3389/TCP (trojan Backdoor.Win32.Agent.cdm), port
6667/TCP (IRC) and port 12200/TCP (a recent malware targeting home routers).

The discovery of incoming unwanted traffic towards home networks reflects the
challenges of stopping continuous Internet background radiations due to backscat-
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ters, port scanning, Internet malwares and other anomalous activities. The firewalls
deployed in home routers are typically very efficient in filtering the majority of
such unwanted traffic. However, these malicious traffic towards home routers could
become successful if the routers were not properly configured or secured. In other
words, protecting home routers and connected devices in the home becomes increas-
ingly critical, as the compromised home devices and routers controlled by attackers
would in turn become stepping stones to attack other vulnerable devices on the
Internet. Uncovering root causes of how the home network devices exactly get com-
promised requires packet-level data, which is not collected by our traffic monitoring
platform due to storage overhead on the storage-constraint home routers. However,
our traffic monitoring platform has demonstrated the capability of detecting traffic
patterns of malicious traffic that compromises the vulnerable devices in home net-
works. Extracting effective firewall rules from these traffic patterns and deploying
these rules on home routers could filter such traffic, thus preventing home network
devices from future attacks.

In summary, our experiment results confirm the wide spread of Internet malwares
towards connected devices in home networks, and our analysis on unwanted traffic in
home networks provides valuable input for botnets detection and spam filtering. As
many Internet-capable devices in the home are likely compromised due towidespread
Internet malwares, it is very important to develop effective and user-friendly tools
to assist home users in properly configuring firewalls on home routers and end hosts
to filter unwanted traffic from the Internet. Moreover, the prevalence of unwanted
traffic in home networks calls for real-time traffic monitoring systems from inside
home networks to enhance the overall Internet security.

8.3 Network Behavior Analysis for Internet of Things

The last decade has witnessed research advances and wide deployment of Internet
of things (IoT) in smart homes and connected industry. However, the recent spate
of cyber attacks exploiting the vulnerabilities and insufficient security management
of IoT devices have created serious challenges for securing IoT devices and appli-
cations [58–60]. However, the recent spate of cyber attacks towards IoT devices in
smart homes or small offices have created substantial challenges for Internet users
without network and security expertise to manage and secure heterogeneous and
poorly protected IoT devices [61–65]. As a first step towards understanding and
mitigating diverse security threats of IoT devices, we present a measurement frame-
work to automatically collect network traffic of IoT devices in edge networks, and
build multidimensional behavioral profiles of these devices which characterize who,
when, what, andwhy on the behavioral patterns of IoT devices based on continuously
collected traffic data. In other words, the framework sheds light on the IP-spatial,
temporal, and cloud service patterns of IoT devices in edge networks, and gen-
erates these multidimensional behavioral fingerprints for IoT device classification,
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anomaly traffic detection, and network securitymonitoring formillions of vulnerable
and resource-constrained IoT devices on the Internet.

8.3.1 Background

The recent rapid development and deployment of IoT devices in smart homes, cities,
and industry 4.0 have attracted significant interests from the research community
in understanding the applications, security, threats, vulnerability, and the ecosys-
tems [66–72]. IoT behavioral profiling and fingerprinting have recently attracted
wide attention from the system, networking, and security research communities.
The fingerprinting techniques cover nearly all protocol layers of TCP/IP stacks such
as applying wavelet transform on the sequence of packet inter-arrival time (IAT) of
wireless access points for device profiling [73–75] or characterizing packet headers
and IP payload for device fingerprinting [76, 77]. Most of the existing studies on
IoT behavioral fingerprinting are centered on the protocols of the physical and link
layers for the applications of device classifications [73–75, 78]. For example, [74]
introduces a real-time system that passively scans and analyze the data communi-
cation over Wi-Fi, Bluetooth, and Zigbee for classifying IoT devices and detecting
privacy threats, while [75] proposes to extract the unique features from the link
and service layers of Bluetooth low energy (BLE) protocol stack for generating the
IoT fingerprint for authenticating devices and defending against spoofing attacks. In
addition, [78] proposes a wireless device identification platform for distinguishing
legitimate and adversarial IoT devices based on radio frequency (RF) fingerprinting
over different ranges of signal-to-noise ratio (SNR) levels.

A few recent studies have shifted traffic data collection and analysis to the net-
work, transport, and application layers for device behavioral modeling and char-
acterizations [76, 77]. For example [77] establishes IoT device fingerprints with
20 binary features of protocol fields extracted from packets headers collected from
link, network, transport, and application layers to reflect the protocol engagement of
IoT devices headers such as ARP, IP, ICMP, TCP, UDP, NTP, DNS, DHCP, HTTP,
and HTPPS, and 3 numerical features including packet size, destination IP counter,
source, and destination port numbers, while [76] characterizes the behavioral fin-
gerprints of IoT devices with a subset of binary features identified in [77], and 3
payload-based features including the entropy of payload, TCP payload size, and
TCP window size. Compliment to these studies, the research on network behavior
analysis for IoT devices in [79, 80] focuses on the behavioral fingerprinting of IoT
devices in edge networks based network flow records, rather than the raw IP data
packets which raise on privacy concerns of IoT users and computational resources
on edge routers, for detecting new devices and traffic anomalies.

As the rapid and wide adoption of IoT devices continue to accelerate in smart
homes, cities, and industries, it becomes increasingly urgent to design and imple-
ment Internet traffic measurement platforms to effectively monitor, characterize, and
profile communications patterns of IoT devices with remote end hosts on the Internet
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and local systems on the same edge networks. Towards this end, we present a system-
atic measurement framework for establishing multidimensional behavioral profiles
of connected IoT devices based on awide spectrum of traffic features from IP-spatial,
temporal, and cloud dimensions. Based on real network traffic data collected from
a variety of edge networks over a long time span, we have discovered a number
of important findings on behavioral fingerprints of IoT devices. First, IoT devices
typically communicate with cloud servers from a very small number of prefixes and
ASNs, which belong to IoT manufactories, the cloud service providers, NTP service
providers, public DNS service providers. Second, IoT devices often exhibit repeated
and predictable traffic activities over time due to heart-beat signals between IoT
devices and cloud servers. Lastly, unlike laptops, desktops, and smartphones, IoT
devices often engage with a limited and common number of applications such as
DNS, HTTPS, HTTP, and NTP. These behavioral fingerprints not only summarize
communication patterns of IoT devices with end systems on the Internet, but also
benefit a range of security applications for IoT devices such as anomaly traffic detec-
tion, IoT detection and classification, and network security monitoring. As the link
layer fingerprint could compliment the existing behavioral fingerprinting framework
based on traffic features collected from network, transport, and application layers,
an important research task of extending this framework is to explore the traffic fin-
gerprints at the link layer, i.e., studying wireless communications between IoT hubs
and IoT sensors via Bluetooth, ZigBee, Z-Wave, and Wi-Fi.

8.3.2 IoT Traffic Measurement and Monitoring

The burgeoning and insecure IoT devices in millions of edge networks call for effec-
tive techniques to detect, recognize, characterize, and address security threats towards
these devices and applications. As a first step of securing IoT devices in edge net-
works, this chapter presents a measurement framework to automatically collect, pro-
cess, characterize, and profile communication patterns of IoT devices with a variety
of traffic features from IP-spatial, temporal, and service dimensions. Specifically,
we leverage intelligent and programmable edge routers with commodity hardware
to continuously collect incoming and outgoing network flow traffic in real-time for
connected IoT devices in distributed edge networks.

The availability of network traffic data makes it possible to develop multidi-
mensional traffic profiles of IoT devices for gaining an in-depth understanding of
communication patterns and traffic behaviors of IoT devices, and more importantly,
detecting and mitigating suspicious activities and cyber attacks towards vulnerable
IoT devices. The additional benefit of measuring and monitoring network traffic of
IoT devices is to have the full visibility of data communications and network con-
figurations of IoT devices, e.g., Chromecast, a streaming media player developed by
Google, configuring Google DNS servers as default rather than using the local ISP’s
DNS servers [81]. Such bogus behaviors are very hard to discover if the measure-



144 8 Research Frontiers of Network Behavior Analysis

ment functions are not available on home routers for capturing and profiling traffic
activities of IoT devices in edge networks.

In this study we build the behavioral profile of IoT devices from a wide spec-
trum of their traffic features based on three dimensions: IP-spatial, temporal, and
cloud. The IP-spatial dimension is centered on the analysis of remote IP addresses
of Internet end hosts such as domain name system (DNS) servers or network time
protocol (NTP) servers which IoT devices have communicated with. In addition,
aggregating these remote IP addresses into Border Gateway Protocol (BGP) net-
work prefixes [82] and ASNs allows us to analyze IP-spatial correlations of Internet
end hosts communicating with IoT devices. Our experimental results on IP-spatial
behaviors of deployed IoT devices in the wild have discovered that most IoT devices
engage with cloud servers from a small set of network prefixes and ASNs due to
their single-purpose applications and specific functions. For example, our experi-
ment study discovers Philips Hue smart light bulbs mostly communicate with cloud
servers, which are owned by Philips and deployed on Google cloud platforms, via
Philips Hue smart hub for sending on or off commands.

Our proposed measurement framework characterizes behavioral profiles of IoT
devices from the temporal dimension through identifying three distinct temporal
traffic patterns from connected objects in edge networks, and classify IoT devices
into always-on and on-demand devices. For the analysis on the cloud dimension,
our study shows that IoT devices typically only engage with a small and fixed set of
common applications such as Hypertext Transfer Protocol (HTTP), DNS, and NTP
due to their specific functionalities.

In light of the prevalent cybersecurity threats against IoT devices in edge net-
works, we explore the benefits of multidimensional behavioral profiles for a wide
spectrum of applications including anomaly traffic detection, IoT device detection,
and classification, and network security monitoring. Specifically, we introduce a
simple yet effective pattern-based anomaly detection approach for encoding com-
mon network traffic patterns with short encoded length, and encoding infrequent and
unusual patterns with longer encoded length. The experimental evaluation shows
that the approach is able to uncover suspicious traffic activities with high precisions.
Moreover, we leverage multidimensional profiles of IoT devices for recognizing
and detecting new and unknown IoT devices based on the profiles of existing and
known IoT devices. Finally we outline how the behavioral profiles could facilitate
network security monitoring via effectively capturing behavioral dynamics or devi-
ations caused by cyber attacks such as port scanning activities and repeated failed
login attempts.
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Fig. 8.12 An IoT traffic measurement framework via programmable routers at edge networks

8.3.3 An IoT Traffic Measurement Framework via
Programmable Edge Routers

Recent advances on embedded systems, sensors, robotics, and machine learning
have enabled the wide deployment of IoT devices in edge networks. The first step of
protecting and securing millions of IoT devices is to measure, monitor, and under-
stand their normal communication patterns and behavioral profiles. For example,
what remote hosts on the Internet are talking with the smart speakers or thermostats
at home networks, at what time, for what reasons? A recent security evaluation
study [83] on IoT deployment has also pointed out that measurement is a crucial step
for protecting the security of IoT devices and the privacy of end users.

Answering these questions is very critical to understand if and when connected
IoT devices in edge networks are compromised by cyber attacks such as Mirai bot-
net [84]. The Mirai botnet has successfully infected over 60,000 IoT devices includ-
ing IP cameras and consumer-grade routers in the first 20h after being released to
the Internet, and launched more than 15,000 cyber attacks towards game servers,
telecoms, anti-DDoS providers, and other high-profile Web sites.

Towards profiling communication patterns of IoT devices, we leverage the com-
putational resources on intelligent and programmable edge routers to develop a pro-
totype measurement framework, which is able to capture network traffic flows of
IoT devices for real-time traffic monitoring and behavioral profiling. As shown in
Fig. 8.12, the programmable edge router continuously captures, stores, and analyzes
the incoming, outgoing, and internal network traffic flow records of all IoT devices
in the edge network. For each flow record, our measurement framework collects the
well-known 5-tuples of a network conversation or session, i.e., source IP address
(srcIP), source port number (srcPort), destination IP address (dstIP), des-
tination port number (dstPort), and protocol, as well as the start and end time
stamps, byte count, and packet count.

Our measurement framework does not collect raw IP packets from IoT devices
since most data packets originating from or destined to IoT devices are encrypted,
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and the storage of raw data packets of IoT devices such as smart TVs or IP cameras
could bring undesired system challenges for resource-constrained edge routers. On
the other hand, network flow records arewidely used for Internet traffic classification,
network measurement and analysis [85, 86] thanks to their diverse and informative
traffic features and marginal computational and storage resource overheads.

In this study, we have collected network flow records of IoT devices from 22 home
networks and small offices in the United States, Hong Kong, and China. The number
of end systems including IoT devices and non-IoT devices connecting to each edge
network ranges from 1 to 25. In total, these edge networks collectively connect over
50 IoT devices includingAmazonEcho,GoogleHome, PhilipsHue smart light bulbs,
Samsung smart plug and motion sensor, YI home camera, August smart lock, LG
smart TV, and a number of other IoT devices. To demonstrate the practical feasibility
of the IoT traffic measurement framework, we deploy and evaluate the system with
different brands of programmable routers including Linksys, Netgear, Buffalo, and
CanaKit Raspberry Pi.

8.3.4 Multidimensional Behavioral Profiling of IoT Devices

In this section we present a multidimensional behavioral profiling approach for fin-
gerprinting the behaviors of IoT devices from a wide spectrum of traffic features
based on network flow records collected from edge networks. First, we study the
IP-spatial behavior of IoT devices via characterizing remote IP addresses engaging
with IoT devices and aggregating these IP addresses into BGP networks prefixes
and ASNs for correlation analysis. Subsequently, we study the temporal traffic pat-
terns of IoT devices over our longitudinal measurement study, and profile the cloud
behaviors of IoT devices via analyzing how they interact with cloud servers.

8.3.4.1 IP-Spatial Behavior of IoT Devices

We characterize the IP-spatial behaviors of IoT devices by analyzing the remote IP
addresses which communicate with these devices. More importantly, we aggregate
and correlate these remote addresses intoBGPnetwork prefixes andASNs for gaining
an in-depth understanding of “clustered” IP-spatial behaviors for IoT devices. For
example, the IP address of the DNS server for Google home smart voice assistant,
8.8.8.8, is from the BGP prefix 8.0.0.0/9 and ASN 15169 owned by Google
based on the latest snapshot of the BGP routing table [87] and the official registry
records from Internet assigned numbers authority (IANA).

Aggregating and correlating remote individual IP addresses to network prefixes
and ASNs reveal an interesting observation. IoT devices typically engage with a very
small subset of BGP network prefixes and ASNs, even though they communicate
with a large number of remote severs, which are likely from the same server pool
by the same service providers for efficient load balancing and content distributions.
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Table 8.2 The clustered patterns of IP-spatial behavior of IoT devices in the same edge network
during a 5-min time window

Device IoT dstIPs prefixes ASNs

Amazon Echo Yes 3 3 1

Echo Dot Yes 5 4 1

IP Camera Yes 2 2 1

Philips Hue Yes 1 1 1

Samsung smart plug Yes 3 2 1

Smart TV Yes 4 3 2

Smart Phone No 37 24 13

Laptop No 172 102 39

Table8.2 summarizes the clustered patterns of IP-spatial behavior of 6 IoT devices
and 2 non-IoT devices in one edge network during a 5-min timewindow. As shown in
Table8.2, each IoT device only engages with servers from one or two unique ASNs
during the observation period, while the smartphone and laptop communicate with
remote end hosts from 13 and 39 unique ASNs, respectively.

Figure8.13 shows the convergence of unique remote IP addresses, their network
prefixes, andASNs for a variety of IoT and non-IoT devices in the same edge network
over a 4-month time span.As shown in the longitudinalmeasurement study for the IP-
spatial behavior, it is very interesting to observe that all IoTdevices have engagedwith
a much smaller set of destination IP addresses, prefixes, and ASNs than smartphones
and laptops.

8.3.4.2 Temporal Behavior of IoT Devices

For the temporal behavior of IoT devices, we firstmeasure the number of distinct time
slots in which IoT devices exhibit traffic activities during the longitudinal measure-
ment study. In this study, we select 5min as the time unit for analysis to balance the
computation overhead and monitoring real-time traffic activities, thus the maximum
of time slots an IoT device is observed is 288 in one day. Figure8.14 shows the flow,
packet, and byte counts of three different connected devices in edge networks over
one-week time span. As shown in Fig. 8.14, the smart voice assistant, smart TV, and
smartphone exhibit distinct traffic characteristics over time, and have very unique
and diverse temporal patterns on flow, packet, and byte counts over time, which leads
us to measure and quantify the variability on the number of time windows for IoT
devices over the entire data collection period.

For each IoT device d in the edge network, let td,i represent the number of time
windows the device d is observed with network traffic on the i-th day. Considering
connected devices are randomly added into the edge network, we use the average
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Fig. 8.13 The convergence of IP addresses, prefixes, and ASNs for IoT and non-IoT devices over
the longitudinal measurement period

time window for each device μd rather than the total number of time windows
during the entire measurement period. The average of time windows μd is derived

as μd =
∑N

i=1 td,i

N , where N is the number of the days since the device d is observed
in the edge network and 1 ≤ i ≤ N . Finally, the actual temporal variability on time
windows, measured by coefficient of variance, is calculated as CoVd = μd

σd
, where

σd , the standard deviation, is calculated as σd =
√

1
N

∑N
i=1 td,i − μd .

Figure8.15 illustrates a scatter graph on the mean μ and coefficient of variance
CoV of time slots observed with traffic activities for different IoT and non-IoT
devices deployed in the same edge network. As shown in Fig. 8.15, four out of the
six IoT devices exhibit traffic activities during the majority of time windows in each
and every day, and their variability on the number of time windows is much smaller
than that of non-IoT devices. One IoT device, i.e., an IP camera, is only active
for a small number of time slots per day, but exhibits lows variability on the time
window as well. The only IoT device showing a high variability on the number of
time windows across different days is a smart TV, which is turned on and off in an
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Fig. 8.14 Traffic characteristics of IoT devices and non-IoT devices over 1-week time span

unpredictable fashion. Based on these observations on the temporal patterns of IoT
and non-IoT devices, we can classify connected devices in edge networks in three
categories: always-on IoT devices, on-demand devices, and non-IoT devices.

The self-similarity traffic patterns of IoT devices visualized on Fig. 8.14 also
inspire us to analyze the autocorrelation on network traffic for all connected devices
in edge networks. The autocorrelation metric quantifies the correlation of the same
variable across different and lagged periods of times, thus the metric is also referred
as to serial correlation and lagged correlation. The autocorrelation metric, ρd,k , for
the IoT device d, between network traffic activity time series Xd,t and a k-lagged
copy of itself Xd,t+k is captured by the autocorrelation function (ACF) as follows:

ρd,k =
∑n−k

t=k+1(Xt − μ)(Xt+k − μ)

σ 2
, (8.1)

where μ and σ are the mean and standard deviation of network traffic activity time
series Xd , respectively. An autocorrelation value of 0 suggests independent and
random observations on the traffic time series of connected devices in edge networks,



150 8 Research Frontiers of Network Behavior Analysis

0 50 100 150 200 250

Average time slots per day

0.2

0.3

0.4

0.5

0.6

0.7

0.8

C
oe

ffi
ci

en
t o

f v
ar

ia
nc

e

Non-IoT device
IoT device

Fig. 8.15 The mean and coefficient of variance of time slots observed with traffic activities for IoT
and non-IoT devices

while a significant autocorrelation reveals substantial correlations among adjacent
observations or determines predictable seasonality in the time series [88, 89].

Figure8.16 illustrates the autocorrelation plots, also referred to as correlograms,
of network traffic time series for three selected IoT and non-IoT devices. As shown
in Fig. 8.16, the network traffic time series of IoT devices in edge networks indeed
exhibit various extents of self similarity patterns.

8.3.4.3 Cloud Behavior of IoT Devices

The objective of characterizing cloud behavior of IoT devices is to understand
why IoT devices communicate with remote servers in the cloud. In particular, we
profile cloud behaviors of IoT devices based on the dominant applications or ser-
vices observed from dstPort and protocol of their outgoing network traffic flows.
Table8.3 illustrates all the observed 5 applications for the 6 IoT devices deployed in
one edge network during a 24-h time window. These 5 applications are HTTP, Hyper
Text Transfer Protocol Secure (HTTPS), DNS, NTP, and Spotify music streaming.
As a comparison, one smartphone and one laptop in the same edge network engage
with 11 and 15 distinct applications, respectively, during the same time period.

The limited and consistent set of common applications used by IoT devices con-
firms that IoT devices are typically designed for very specific functions and dedicated
utilities. Figure8.17 illustrates the convergence of cloud applications for IoT and
non-IoT devices. As shown in Fig. 8.17, the number of applications for IoT devices
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(a) IoT device A (b) IoT device B

(c) Non-IoT device

Fig. 8.16 The autocorrelation plots of network traffic time series for selected IoT and non-IoT
devices

Table 8.3 The dominant applications used by IoT devices in edge networks

Application Service Echo Camera Echo Dot Philips
Hue

Smart
TV

IoT Hub

443/TCP HTTPS Y Y Y Y Y Y

80/TCP HTTP Y Y Y Y Y

53/UDP DNS Y Y Y Y

123/UDP NTP Y Y Y Y

4070/TCP Spotify Y

converges in a very rapid fashion. It is very interesting to note that all IoT devices use
HTTPS for secure and encrypted Web services, which shows the security awareness
and investment of IoT manufactories and application developers. On the other hand,
the non-encrypted HTTP service is still observed for five IoT devices.

For each application, we continue to characterize the remote servers and their
aggregated network prefixes or ASNs via analyzing the fanouts, i.e., unique num-
bers of destination IP address, BGP prefixes, and ASNs. In addition, we measure the
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Fig. 8.17 The convergence of applications for IoT and non-IoT devices

distribution of network traffic across these remote servers, prefixes andASNs via cal-
culating the entropy and standardized entropyof these fanouts. For a given application
a for an IoT device d, let N andm denote the number of network traffic flows and the
unique number of the remote servers represented as s1, s2, . . . , sm . The probability
of each remote server psi is calculated as psi = fsi

N , where fsi denotes the number of
flows between d and si . Clearly

∑
fsi = N . The entropy on the remote servers for

the application a for the device d is then derived as Ed,a = −∑m
i=1 psi log psi , while

the normalized entropy is derived as NEd,a = Ed,a

logm .
The normalized entropy is in the range of [0, 1], revealing the degree of uncertainty,

randomness, or variations on the remote serverswhich communicatewith IoTdevices
in edge networks. Clearly, a NEd,a value of 0 or near 0 indicates the uniformity on
the remote servers, while aNEd,a value of 1 or near 1 means the high randomness on
the remote servers. The former scenario indicates the IoT device only communicates
with one or a few servers on the application a, while the latter case reveals the device
talking with a large number of random servers. Based on a similar process, we could
calculate the entropies andnormalized entropies for their aggregated network prefixes
or ASNs of remote servers. Table8.4 illustrates the entropy values of destination IP
addresses, prefixes and ASNs IoT devices have sent HTTPS requests within a 24-
h time window. As shown in Table8.4, all IoT devices exhibit how uncertainty on
network prefixes andASNs for their HTTPS traffic,while the laptop and smartphones
exhibit much higher variations on the remote prefixes and ASNs for HTTPS traffic.
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Table 8.4 The entropy of destination IP addresses, prefixes, and ASNs IoT devices have sent
HTTPS requests within a 24-h time window

Device Flows Fanout Normalized Entropy

IP Prefix ASN IP Prefix ASN

Echo 148 20 6 1 0.5529 0.3158 0.0000

Camera 32 12 9 2 0.6023 0.5422 0.1792

Echo Dot 228 40 10 2 0.6197 0.3365 0.0051

Philips Hue 96 4 2 1 0.2163 0.0221 0.0000

Smart TV 429 109 39 7 0.6574 0.2968 0.1733

IoT Hub 258 3 2 1 0.1969 0.1115 0.0000

Laptop 3831 832 340 90 0.6782 0.5191 0.3064

Smartphone 1497 353 131 21 0.6274 0.4964 0.3077

These observations could potentially provide critical insights for detecting traffic
anomalies of IoT devices or classifying newly added IoT devices to the edge network.
In summary, our multidimensional behavioral profiling of IoT devices have led to
a number of discoveries. First, aggregating and correlating the remote IP addresses
into BGP networks prefixes and ASNs reveal IoT devices typically engage with
servers from a small number of networks and domains due to their specific and
single-purchase functionalities. Second, the temporal traffic patterns could classify
IoT devices into always-on devices such as smart voice assistants and on-demand
devices such as smart TVs. Lastly, most IoT devices communicate with Internet
servers for limited, fixed, and common applications such as HTTP, DNS, and NTP
services. Profiling traffic behaviors of IoT devices not only uncover what, when
and how IoT devices communicate with legitimate end hosts on the Internet, but
also provide critical insights for detecting suspicious activities of IoT devices due to
security threats and cyber attacks. Thus, the next section leverages IoT behavioral
fingerprints for a wide variety of applications such as IoT device detection and
classification, anomaly traffic detection, and cybersecurity monitoring.

8.3.5 Exploring the Applications of Multidimensional
Behavioral Profiling

In this section, we demonstrate the benefits of multidimensional behavioral profiles
of IoT devices for a variety of applications including anomaly traffic detection, IoT
device detection and classification, and network security monitoring.
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8.3.5.1 Anomaly Traffic Detection for IoT Devices

Security and privacy are two key challenges faced by today’s wide deployment of
IoT devices in edge networks due to inadequate built-in security features, flawed
authorization and authentication processes, weak password management, and other
vulnerabilities. As cyber attacks exploring millions of weakly protected IoT devices
often leave substantial traffic footprints in edge networks, we explore multidimen-
sional behavioral profiles for detecting anomaly traffic and security threats.

In this study, we adopt an anomaly detection method based on minimum descrip-
tion length (MDL) principle due to its data-driven approach and parameter-free fea-
ture [90–92]. The intuition and novelty of the MDL principle lie in its pattern-based
compression and encoding technique which exploit coding tables to capture the
underlying data distributions. In other words, the technique encodes a frequent and
common patternwith a short encoded length, and encodes a less frequent and unusual
pattern with a long encoded length reflecting anomalies and irregularities in the orig-
inal data [90].

The MDL principle essentially is a model selection framework for performing
lossless compressions and encoding on data with categorical features and attributes.
The main process is to search and identify the best model m which minimizes the
overall encoding size for the entire data, i.e.,

argmin
m∈M

L(m) + L(d | m), (8.2)

where M, L(m), L(d | m) are the model set, the bit length describing the specific
model m, and the bit length of describing the data d with the model m, respectively.

In the context of network flow traffic of IoT devices in edge networks, we consider
all network flow data collected during a given time period as the dataset D consisting
of n flow records, each of which has w categorical features, i.e., F = { f1, . . . , fw}.
To encode the data with a code table,CT , we first extract all the patternsP in the data,
and represent each pattern with a code c in the encoding set C. For a given pattern
p ∈ P encoded as c(p), we define its frequency, i.e., f req(p) as the number of flow
records in D containing p in their encoding. Thus based on the entropy theory, the
optimal coding for the pattern p becomes

L(c(p) | CT ) = − log(
f req(p)

∑

q∈CT
f req(q)

).

In addition, the overall number of bits required to encode the entire dataset D is
derived as

L(D | CT ) =
∑

r∈D
L(r | CT )

=
∑

r∈D

∑

p∈ f req(r)

L(c(p) | CT ).
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Fig. 8.18 The distribution of anomaly scores for all observed network traffic flows during a 24-h
time window for a smart voice assistant

As shown in Eq.8.2, the bit length of encoding the overall data is then calculated as

L(CT ) =
∑

p∈CT

L(c(p) | CT ) +
∑

v∈V
−ov log(pv),

whereV is the set of all unique categorical attributes appearing in the patterns of the
code table, ov is the occurrence count of the category value v ∈ V. pi is calculated
as oi

L where L is the total length of all the patterns in the code table. Combining the
entire feature set together, we can build multiple code tables for further reducing the
overall encoding cost.

The simple yet effective pattern-based anomaly detection approach allows us to
identify unusual or anomalous traffic flows from network traffic originating from
or destined to IoT devices in edge networks. Our encoding process leverages the
following multidimensional traffic features extracted from network flow records:
flow duration, srcIP, srcPort, dstIP, dstPort, protocol, packet count, byte
count, dstIP’s network prefix, and dstIP’s ASN. The MDL principle intends to
encode unusual patterns with longer encoded lengths, thus we simply consider the
encoding length L(r | CT ) for a network flow record r as the anomaly score.

Figure8.18 illustrates the distribution of anomaly scores for all the observed net-
work traffic flows originating from a Google Home smart voice assistant during a
24-h time window. Based on the widely used elbow principle, we determine the
anomaly score of 9 as the threshold for traffic anomalies for IoT devices in edge
networks. To evaluate the quality of the anomaly detection, we manually validate all
526 network flows with an anomaly score of 9 or above.
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Table 8.5 An in-depth analysis of network traffic flows high anomaly scores

Protocols Root cause analysis Flows

HTTPS long secure web sessions with cloud servers 489

ICMP ping traffic 13

mDNS multicast DNS query 3

DHCP DHCP requests 9

DNS Unusual number of Packets 2

8009/TCP Optimized HTTP service running on the device. 2

5228/TCP long TCP connections with Google Play services 8

Table8.5 summarizes our in-depth analysis of all 526 network flows with high
anomaly scores. As shown in Table8.5, most of these network flows are long HTTPS
connections between the smart voice assistant with Google cloud servers. In addi-
tion, a small number of network flows are related to ICMP,mDNS, andDHCP traffic.
Thus the manual validation confirms the effectiveness of our proposed pattern-based
anomaly detection for discovering unusual traffic activities from the multidimen-
sional behavioral profiles of IoT devices.

8.3.5.2 IoT Device Detection and Classification

The multidimensional behavioral profiles of existing IoT devices in edge networks
also provide unique and valuable features for detecting and classifying newly added
devices to the network. Let i and j denote two IoT devices in the dataset. For each and
every traffic feature in behavioral profiles over a given time window, we can quantify
and measure the similarity and correlations of the feature between two devices i and
j during the same time period. Assuming the feature b is the remote destination IP
addresses (dstIPs) that communicate with IoT devices. LetSi,b andS j,b represent
the unique sets of dstIPs observed for IoT devices i and j during the time window,
respectively. The similarity on the dstIP feature, i.e., si, j,b, is calculated as

si, j,b = |Si,b ∩ S j,b|
|Si,b ∪ Si,b| . (8.3)

Thus repeating the same process on the available features extracted from network
flow data could lead to a similarity vector for any two IoT devices in the same
or different edge networks. The similarity matrix on traffic features among all IoT
devices enables us to identify and cluster deviceswith similar behavioral fingerprints,
and more importantly detect new suspicious IoT devices in the same edge network.

Figure8.19 illustrates the distributions of similarity scores on three IP-spatial fea-
tures including dstIP, destination prefixes and ASNs between IoT devices in two
different edge networks. Each point represents one pair of IoT devices from two
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Fig. 8.19 The scatter plot of similarity score on IP-spatial features

networks. As shown in Fig. 8.19, most pairs of IoT devices exhibit low similarities,
suggesting IoT devices communicating with diverse servers on the Internet. How-
ever, the high similarities between two pairs of IoT devices from two different edge
networks are apparently worth in-depth investigations. Our further analysis discov-
ers that two pairs of IoT devices are exactly the same IoT products, i.e., Amazon
EchoDot and Samsung SmartThings Hub, which happen to be deployed in both edge
networks. In addition to the similarity scores on IP-spatial features, we also compare
the scores on temporal and service dimensions. After ranking the average similarity
score over all features, we find that the top pairs of IoT devices with the highest simi-
larity scores, i.e., 0.65 and 0.47, are exactly the same two pairs of devices.We believe
that the discovery of high similarity scores on behavioral features among similar IoT
devices could help identify newly added or unknown IoT devices by monitoring and
learning their behavioral fingerprints during the early phase after they join the edge
networks.

Several recent studies have explored machine learning techniques for IoT device
detection and classification [75, 77]. For examples, [77] presents a Random For-
est classifier to automatically identify device types of the new IoT devices that are
connected to a network for the enforcement of security polices and traffic rules,
and [75] leverages the widely used supervised classification algorithm, i.e., Random
Forest, for classifying authorized and unauthorized IoT devices based on the features
extracted from the link and service layers of BLE protocol stacks. The multidimen-
sional behavioral profiles of IoT devices we have developed in this study will provide
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additional features and unique insights for improving the quality and performance
of these machine learning-based IoT device detection and classification.

8.3.5.3 Network Security Monitoring

In light of prevalent cyber attacks and exploits towards vulnerable IoT devices, it
is crucial to develop effectively techniques for monitoring traffic activities of IoT
devices for network securitymonitoring. Similar to a network telescope, our proposed
measurement framework on programmable edge networks can build the fine-grained
andmultidimensional behavioral profiles of IoT devices, and provide critical insights
for discovering the potential exploits and attacks towards IoT devices in real time.

To demonstrate the feasibility of our proposed IoT measurement framework for
network securitymonitoring,we simulate all the critical steps ofMirai botnet [84, 93]
for infiltrating, infecting, and operating weakly protected IP cameras in a controlled
edge network environment. For each of the infiltration, infection, and operation steps,
we demonstrate that the behavioral fingerprints left by Mirai botnet traffic reveals
many unusual traffic patterns or substantial behavioral deviations that could raise
anomalous alerts and security alarms.

During the infiltration step, Mirai first employs a port scan strategy for identifying
open ports such as 22, 23, and 2323, and if successful, subsequently attempts to
launch a dictionary attack to attempt the logins with 62 default credentials. Clearly
the scanning activity and brute-force login process trigger substantial behavioral
footprint deviations on the IP-spatial and application dimensions, since the IP address
of the remote attacker is from a different network prefix and ASN, and the remote
ports used in the scanning are very different from the limited set of applications
used by IP cameras. The infection stage also leaves unique behavioral fingerprints
on IP-spatial, data volumes, and applications, as the loader, which could be different
from the initial scanner, has to transfer the malware image to the compromised IP
camera.

During the operation stage, the compromised IP camera, as part of Mirai botnet
now, exhibits very unusual attacking behaviors since the device starts to (i) perform
port scanning activities, (2) communicate with control and command (C2) servers
of Mirai botnet, and eventually (3) launch coordinated distributed denial service
attacks (DDoS) towards C2-specified targets such as Dyn DNS infrastructure [84].
All of these malicious traffic activities by the IP camera, a new Mirai bot, leaves
significant deviations on the behavioral fingerprint on IP camera, thus our proposed
multidimensional behavioral profiling framework for IoT devices could effectively
detect, mitigate, and stop such malicious activities.
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8.4 Summary

In the last few decades, network behavior analysis has provided critical insights in
characterizing and modeling traffic behaviors of end systems and Internet applica-
tions in traditional networks such as backbone networks and enterprise networks and
emerging networks such as data center networks, home networks, and IoT networks.
As all the future next-generation networks such as 5G cellular networks and beyond,
vehicle networks, and space networks exchange traffic for data communications,
network behavior analysis will continue to play an important role in analyzing and
modeling massive data traffic for understanding behavioral patterns of networked
systems and Internet applications and for detecting and mitigating anomalous and
intrusion activities in these future networks.
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