
Security Compliance
in Model-driven
Development of
Software Systems in
Presence of Long-Term
Evolution and Variants

Sven Matthias Peldszus

Security Compliance in Model-driven
Development of Software Systems
in Presence of Long-Term Evolution
and Variants

Sven Matthias Peldszus

Security Compliance
in Model-driven
Development
of Software Systems
in Presence
of Long-Term Evolution
and Variants

Sven Matthias Peldszus
Koblenz, Germany

Approved Dissertation thesis for the partial fulfillment of the requirements for a Doctor
of Natural Sciences (Dr. rer. Nat.) at the Fachbereich 4: Informatik of the Universität
Koblenz-Landau in Koblenz.
Chair of PhD Board: Prof. Dr. Ralf Lämmel
Chair of PhD Commission: Prof. Dr. Patrick Delfmann
Examiner and Supervisor: Prof. Dr. Jan Jürjens
Further Examiners: Prof. Dr. Malte Lochau, Dr. Daniel Strüber
Co-Supervisor: Dr. Amir Shayan Ahmadian
Date of the doctoral viva: December 10, 2021

ISBN 978-3-658-37664-2 ISBN 978-3-658-37665-9 (eBook)
https://doi.org/10.1007/978-3-658-37665-9

© The Editor(s) (if applicable) and The Author(s), under exclusive license to Springer
Fachmedien Wiesbaden GmbH, part of Springer Nature 2022
This work is subject to copyright. All rights are solely and exclusively licensed by the Publisher,
whether the whole or part of the material is concerned, specifically the rights of translation, reprint-
ing, reuse of illustrations, recitation, broadcasting, reproduction on microfilms or in any other
physical way, and transmission or information storage and retrieval, electronic adaptation, computer
software, or by similar or dissimilar methodology now known or hereafter developed.
The use of general descriptive names, registered names, trademarks, service marks, etc. in this
publication does not imply, even in the absence of a specific statement, that such names are exempt
from the relevant protective laws and regulations and therefore free for general use.
The publisher, the authors and the editors are safe to assume that the advice and information in this
book are believed to be true and accurate at the date of publication. Neither the publisher nor the
authors or the editors give a warranty, expressed or implied, with respect to the material contained
herein or for any errors or omissions that may have been made. The publisher remains neutral with
regard to jurisdictional claims in published maps and institutional affiliations.

Planung/Lektorat: Stefanie Eggert
This Springer Vieweg imprint is published by the registered company Springer Fachmedien
Wiesbaden GmbH part of Springer Nature.
The registered company address is: Abraham-Lincoln-Str. 46, 65189 Wiesbaden, Germany

https://doi.org/10.1007/978-3-658-37665-9

“Science is fun. Science is curiosity. We
all have natural curiosity. Science is a
process of investigating. It’s posing
questions and coming up with a method.
It’s delving in.”

—Sally Ride

Acknowledgements

First of all, I want to thank my supervisor Jan Jürjens for his support and feed-
back. It was a pleasure to work with you and being part of your group. During
this time, you gave me the support for freely researching an interesting topic
and finding my own research direction. You have always been there when I had
questions or needed feedback.

I thank Malte Lochau and Daniel Strüber for immediately agreeing to function
as second and third referees when I asked them. Thank you for spending your
time reading this thesis. Also, many thanks got to the Ph.D. committee.

Thinking back to my time as Bachelor’s and Master’s student in Darmstadt,
I would like to thank Malte Lochau, Géza Kulcsár, and Andy Schürr from the
Real-Time Systems Lab at TU Darmstadt, and Sandro Schulze from the Univer-
sity of Magdeburg for introducing me to science. Without you, I would never
have started writing this thesis. The interesting topics we have been working on,
directly lead to this thesis. Also, our movie nights are unforgettable.

Many thanks go to Daniel Strüber for always giving me feedback and inspiring
me in our joint research to do better research, independently of our joint time in
Koblenz or your time in Gothenburg or Nijmegen. I am also grateful that you
warmly welcomed me at my research visits to Gothenburg and Nijmegen.

Furthermore, I thank Shayan Ahmadian for not only co-supervising me but
also being a friend. Most likely, you are the one who read this thesis the most
times. Also, I will never forget our running sessions and game nights. I enjoyed
working with you in the past five years.

The same applies to my current and former colleagues in Koblenz. Thank you
very much for the good times we had. Special thanks go to Katharina GroÃŸer,
Marco Konersmann, Matthias Lohr, Qusai Ramadan, and Volker Riediger for
proofreading this thesis.

vii

viii Acknowledgements

Furthermore, many thanks to my other co-authors and project partners whom
I have not yet mentioned by name. Also, to all students that directly or indirectly
contributed to the research presented in this thesis. I enjoyed working with all of
you. I want to thank the eMoflon team for supporting me whenever I faced issues
with the technology used in this thesis.

I would like to thank my family, my parents Elke and Rüdiger, and my brother
Tobias for always supporting me. Without your support, I would never have
accomplished it. Finally, I would like to thank Andrea for always being there,
supporting me, and reminding me of taking breaks from work when I forgot the
world around me.

Koblenz
July 2021

Abstract

Many software systems tend to be used on a long-term basis, are highly intercon-
nected, share many common parts, and often process security-critical data. Due
to these trends, it is vital to keep up with ever-changing security precautions,
attacks, and mitigations for preserving a software system’s security. Model-based
system development enables us to address security issues in the early phases of
the software design, e.g., using UMLsec in UML models or using SecDFDs.
Unfortunately, such design-time models are often inconsistent with the imple-
mentation or even among themselves. This inconsistency might cause security
violations. The main reason for this is continuous changes in the security assump-
tions and the design of software systems, for instance, due to structural decay. To
prevent such inconsistencies, all changes have to be reflected in both the design-
time models of the software system and the software system’s implementation.
The detection of where which changes have to be applied has currently to be
performed manually by developers. As this task requires considering many and
often indiscernible dependencies, manual changes often give rise to new incon-
sistencies that are likely to lead to security violations. An additional burden to
detecting security violations and preserving a software system’s maintainability
is potential reuse among different variants of an individual software system.

In this thesis, we present the GRaViTY approach for continuously supporting
developers with an automated propagation of changes on a single representation
of a software system to all other representations for avoiding inconsistencies. Our
synchronization is based on Triple Graph Grammars as supported by the eMoflon
transformation tool and currently supports bidirectional synchronization between
Java source code and UML class diagrams. Based on this synchronization, secu-
rity experts can specify security requirements on the most suitable software
system representation using the UMLsec or SecDFD approach. For example,

ix

x Abstract

domain models can be suitable for the classification of sensitive information
of the domain and implementation models for tailoring encryption according
to the planned deployment. We reuse these security requirements for the veri-
fication and enforcement of them on all representations of the software system
using automated security checks. This allows us to verify whether the imple-
mentation is compliant with the specified security requirements, as needed in
certifications. To preserve this compliance when restructuring the software sys-
tem, we provide support for semantics preserving refactorings that are enriched
with security preserving constraints. Here, we leverage the formalism of algebraic
graph transformation rules for the specification and implemented these using the
transformation tool Henshin. For both security checks and refactorings, we show
how these can be applied to variant-rich software systems, also known as software
product lines. For this purpose, we leverage an interpretation of OCL constraints
on product lines and extend the Henshin tool to support variability. To allow the
application of the approach to legacy systems, we show how variability-aware
UML models can be reverse-engineered from an existing software product line
using Antenna preprocessor statements and how existing early SecDFD design
models can be semi-automatically mapped to the implementation. In addition to
an evaluation of the single parts of the approach, the overall approach is demon-
strated in two real-world case studies, the iTrust electronics health records system
and the Eclipse Secure Storage.

Sven Matthias Peldszus
University of Koblenz-Landau

Koblenz, Germany

Zusammenfassung

Moderne Softwaresysteme werden über immer längere Zeiträume eingesetzt,
stärker vernetzt, haben eine steigende Wiederverwertung und verarbeiten
mehr sicherheitskritische Daten. Um die Sicherheit eines Softwaresysteme zu
gewährleisten, ist es wichtig, mit sich ständig ändernden Sicherheitsvorkehrun-
gen, Angriffen und Abwehrmaßnahmen Schritt zu halten. Die modellbasierte
Entwicklung ermöglicht es, Sicherheitsprobleme bereits in frühen Softwareen-
twurfsphasen, z. B. mittels UMLsec auf UML-Modellen oder mittels SecDFDs,
zu adressieren. Leider sind diese Entwurfsmodelle oft mit ihrer Implementierung
oder sogar untereinander inkonsistent. Der Hauptgrund ist die kontinuierliche
Veränderung von Sicherheitsannahmen und des Softwaresystemdesigns, z. B. auf-
grund von strukturellem Verfall. Um solche Inkonsistenzen zu vermeiden, müssen
alle Änderungen sowohl in den Entwurfsmodellen als auch in der Implemen-
tierung angewendet werden. Wo welche Änderungen angewendet werden müssen,
muss derzeit manuell von den Entwicklern bestimmt werden. Da bei dieser
Aufgabe viele und oft nicht erkennbare Abhängigkeiten berücksichtigt werden
müssen, führen manuelle Änderungen häufig zu neuen Inkonsistenzen, die zu
Sicherheitsproblemen führen können. Die hohe Wiederverwendung zwischen ver-
schiedenen Varianten eines einzelnen Systems ist eine zusätzliche Belastung beim
Erkennen von Sicherheitsproblemen und dem Wartbarhalten des Systems.

Zur Vermeidung von Inkonsistenzen stellt diese Dissertation einen Ansatz zur
Unterstützung von Entwicklern basierend auf einer kontinuierlichen, automa-
tisierten Änderungspropagation zwischen allen Systemrepräsentationen vor.
Diese Änderungspropagation basiert auf einer Tripel-Graph-Grammatik, wie
sie in eMoflon spezifiziert werden kann. Dabei unterstützen wir bidirektionale
Änderungspropagationen zwischen Java Programmen und UML Klassendiagram-
men. Durch diese Änderungspropagation wird Sicherheitsexperten ermöglicht,

xi

xii Zusammenfassung

Sicherheitseigenschaften mittels UMLsec oder SecDFD auf der am besten
geeigneten Systemrepräsentation zu spezifizieren, z. B. Domänenmodelle zur
Klassifizierung vertraulicher Informationen oder Implementierungsmodelle für
Verschlüsselungen. Diese Sicherheitsspezifikationen werden automatisiert auf
allen Systemrepräsentationen geprüft. Auf diese Weise kann nachgewiesen wer-
den, dass die Implementierung der geplanten Sicherheitsspezifikation entspricht.
Um diese Compliance bei einer Umstrukturierung zu erhalten, werden seman-
tikerhaltende Refactorings, angereichert um sicherheitserhaltende Bedingungen,
eingeführt. Diese Refactorings basieren auf algebraischen Graphtransformationen,
die mittels Henshin spezifiziert werden. Sowohl für die Sicherheitsüberprüfungen
als auch für die Refactorings zeigen wir deren Anwendung auf Softwarepro-
duktlinien. Dafür verwenden wir eine Interpretation von OCL Constraints und
haben das Transformationstool Henshin um eine Unterstützung von Variabilität
erweitert. Um die Anwendung des Ansatzes auf Bestandssysteme zu unter-
stützen, zeigen wir, wie UML-Modelle, inklusive der Spezifikation von Varianten
aus einer bestehenden Softwareproduktlinie, basierend auf Antenna Präprozes-
soranweisungen erstellt werden können und wie bestehende SecDFD Modelle
halbautomatisch auf die Implementierung abgebildet werden können. Neben einer
Evaluation der einzelnen Teile des Ansatzes wird der Gesamtansatz in zwei
Open Source Fallstudien, dem elektronischen Patientenaktensystem iTrust und
dem Eclipse Secure Storage, demonstriert.

Sven Matthias Peldszus
University of Koblenz-Landau

Koblenz, Germany

Contents

Part I Opening Chapters

1 Introduction . 3
1.1 Problem Identification . 6
1.2 Outline of the Approach . 8
1.3 Research Questions . 10
1.4 Research Methodology . 17
1.5 Outline . 21

2 Running Example: iTrust . 25
2.1 Development of a Medical Management System 26
2.2 The iTrust Electronics Health Records System 27
2.3 Suitability of iTrust Concerning the Research Questions 34

3 State of the Art in Secure Software Systems Development 37
3.1 Object-Oriented Programming . 37
3.2 Restructuring and Adaption . 39
3.3 Model-driven Software Development . 39

3.3.1 Domain Model . 41
3.3.2 Design Model . 41
3.3.3 Implementation Model . 42

3.4 Development Processes . 44
3.4.1 Sequential Software Development 44
3.4.2 Agile Software Development . 46

3.5 (Security-)Compliance & Certifications . 47
3.5.1 Architecture Compliance Checking 47
3.5.2 Software Reviews and Audits . 48
3.5.3 Standards and Certifications . 49

xiii

xiv Contents

3.6 Security Checks . 53
3.6.1 UMLsec Security Checks . 53
3.6.2 SecDFD Security Checks . 58
3.6.3 Implementation-Level Security Checks 61

3.7 Conclusion on the State of the Art . 63

4 A Walkthrough of the Proposed Development Approach 65
4.1 Key Ideas of the GRaViTY Approach . 66
4.2 The GRaViTY Development Approach . 68
4.3 Developer Perspective on Using GRaViTY 70

Part II Tracing

5 Program Model for Object-oriented Languages 75
5.1 Background on Program Representations 77
5.2 Program Model for Object-oriented Programs 78

5.2.1 Namespaces . 79
5.2.2 Types . 81
5.2.3 Inheritance . 82
5.2.4 Methods & Fields . 82
5.2.5 Member Access . 84
5.2.6 Overloading, Overwriting and Hiding 85
5.2.7 Modifiers & Visibilities . 86
5.2.8 Annotation Mechanism . 86

5.3 Tool Support . 87
5.4 Evaluation of the Program Model . 88
5.5 Threats to Validity . 89
5.6 Conclusion on the proposed Program Representation 90

6 Model-Synchronization and Tracing . 91
6.1 Background on Tracing . 93
6.2 Inter-Artifact Tracing and Model-Synchronization 95

6.2.1 Background on Bidirectional Graph
Transformations . 97

6.2.2 Model-Synchronization with Triple Graph
Grammars . 98

6.2.3 Tool Support for the Model Synchronization 103
6.2.4 Evaluation of the Model Synchronization 106

Contents xv

6.2.5 Threats to Validity . 113
6.2.6 Conclusion on the Inter Artifact

Model-Synchronization . 114
6.3 Tracing within UML Models of Different Abstraction 115

6.3.1 Background on Refinements in UML Models 115
6.3.2 Refinement Relationship Types 116
6.3.3 Polymorphism in UML . 117
6.3.4 UMLsec Secure Dependency in the Context

of Inheritance . 117
6.3.5 Refinements of UML Models . 119
6.3.6 Tool Support for Model Refinements 124
6.3.7 Conclusion on Tracing within UML Models 126

6.4 Tracing and Propagation of Security Requirements 126
6.4.1 Persistence of Security Requirements

in the Implementation . 127
6.4.2 Dynamic Tracing between UML Models

and the Implementation . 134
6.4.3 Conclusion on the Propagation of Security

Requirements . 137

7 Application to Legacy Projects using Reverse-Engineering 139
7.1 Reverse-Engineering UML Models Using TGGs 141
7.2 Mapping Early Design-Models to Code . 143

7.2.1 Background on Early Design Models 144
7.2.2 Semi-Automated Mapping Approach 145
7.2.3 Tool Support for Semi-Automated Mappings 154
7.2.4 Evaluation . 155
7.2.5 Threats to Validity . 160
7.2.6 Conclusion on the Semi-Automated Mappings 161

7.3 Conclusion on the Application to Legacy Projects 162

Part III Security

8 Static Security Compliance Checks . 165
8.1 Background on Static Security Analysis 168

8.1.1 Design Model-based Security Checks 168
8.1.2 Static Code Analysis . 169

8.2 Structural Compliance between Models and Code 170

xvi Contents

8.2.1 Automation of Structural Compliance Checks 171
8.2.2 Tool Support for Structural Compliance Checks 173
8.2.3 Conclusion on the Structural Compliance Checks . . . 173

8.3 Leveraging Correspondence Models for the Calculation
of Security Metrics . 174
8.3.1 Background on Security Metrics 175
8.3.2 Leveraging Traces for Security Metric

Calculation . 177
8.3.3 Tool Support for the Calculation of Security

Metrics . 182
8.3.4 Conclusion on Security Metrics 184

8.4 Security Compliance Checks between Models & Code 186
8.4.1 Verification of SecDFD Contracts 186
8.4.2 Tool Support for the Verification of Contract

Implementations . 191
8.4.3 Evaluation of the Contract Verification 193
8.4.4 Threats to Validity . 197
8.4.5 Conclusion on the SecDFD Contract Verification 198

8.5 Optimized Data Flow Analysis . 199
8.5.1 Optimizing Data Flow Analysis based

on Security Requirements . 199
8.5.2 Tool Support for Optimized Data Flow Analysis 201
8.5.3 Evaluation of the Optimized Data Flow Analysis 202
8.5.4 Threats to Validity . 206
8.5.5 Conclusion on the Optimized Data Flow

Analysis . 207
8.6 Specification of Incremental Security Checks 208

8.6.1 Background on Henshin Model Transformations 208
8.6.2 Incremental Security Violation Patterns 208
8.6.3 Tool Support for Security Violation Patterns 211
8.6.4 Evaluation of Incremental Security Violation

Patterns . 212
8.6.5 Threats to Validity . 218
8.6.6 Conclusion on Security Violation Patterns 219

9 Verification and Enforcement of Security at Run-time 221
9.1 Background on Security Compliance at Run-time 224
9.2 Example Security Violation . 225
9.3 Verification at Run-time and Model Adoption 228

Contents xvii

9.3.1 Security Monitoring at Run-time 229
9.3.2 Countermeasures . 232
9.3.3 Automated Software System Evolution 234

9.4 Tool Support for Monitoring and Adaption 241
9.4.1 Java Annotations and IDE Support 242
9.4.2 Validation at Run-time and Countermeasures 242
9.4.3 Automated Adaption of Design-Time Models 243

9.5 Evaluation of the Security Monitor . 243
9.5.1 O1–Effectiveness of the Run-time Monitoring 244
9.5.2 O2–Applicability of the Run-time Monitoring 248
9.5.3 O3–Usability . 250

9.6 Threats to Validity . 253
9.6.1 Internal Validity . 253
9.6.2 External Validity . 253

9.7 Conclusion on the Run-time Security Monitoring 254

Part IV Maintenance

10 Security-aware Refactoring of Software Systems 259
10.1 Background on Object-Oriented Refactorings 261
10.2 Formalization of Object-Oriented Refactorings 262

10.2.1 Refactoring of Java Programs . 263
10.2.2 Program Refactoring based on Graph

Transformation . 266
10.2.3 Co-Evolution due to Refactoring Application 287
10.2.4 Tool Support for the Application of Formalized

Refactorings . 290
10.2.5 Evaluation of the Refactoring Technique 291
10.2.6 Threats to Validity . 293
10.2.7 Conclusion on Formalizing Refactorings 294

10.3 Security-aware Refactorings . 294
10.3.1 Controlling the Attack Surface

of Object-Oriented Refactorings 295
10.3.2 Security Preserving Refactorings 296
10.3.3 Conclusion on the Security Preserving

Refactorings . 300
10.4 Conclusion on the Refactoring of Security-Critical

Software Systems . 300

xviii Contents

Part V Variants

11 Specification of Variability throughout Variant-rich Software
Systems . 305
11.1 Background on Variability Engineering . 307

11.1.1 Feature Identification and Specification 308
11.1.2 Implementation of Variability . 310
11.1.3 Product Deployment . 311

11.2 UML and PM Variability Extension . 313
11.2.1 Variability Notations in GRaViTY 313
11.2.2 Parsing of Antenna Annotations and Mapping

to Models . 318
11.3 Tool Support for the Synchronization of Variability

Annotations . 320
11.4 Evaluation of the Variability Extension . 321
11.5 Threats to Validity . 322

11.5.1 Construct Validity . 322
11.5.2 Internal Validity . 322
11.5.3 External Validity . 322

11.6 Conclusion on GRaViTY’s Variability Extension 323

12 Security in UML Product Lines . 325
12.1 Security and Variability Profile . 328

12.1.1 «ConditionalCritical» . 329
12.1.2 «ConditionalSecrecy»,

«ConditionalIntegrity», etc. 329
12.1.3 «ConditionalEncrypted»,

«ConditionalLAN», etc. 331
12.2 Deriving Products . 332
12.3 Family-based Security Analysis . 334

12.3.1 UMLsec Checks as OCL Constraints 335
12.3.2 Template Interpretation . 338
12.3.3 Discussion of Correctness and Performance 339
12.3.4 Extensibility of the Approach . 340

12.4 Tool Support for Family-based Security Checks of UML
Product Lines . 341

12.5 Evaluation of SecPL . 344
12.5.1 O1–Efficiency of the Security Checks 344
12.5.2 O3–Usefulness of the Tool Support and Security

Checks . 348

Contents xix

12.6 Threats to Validity . 351
12.6.1 External Validity . 351
12.6.2 Internal Validity . 351
12.6.3 Conclusion Validity . 352
12.6.4 Construct Validity . 352

12.7 Conclusion on Security in UML Product Lines 352

13 Security Compliance and Restructuring in Variant-rich
Software Systems . 355
13.1 Application Scenario . 359

13.1.1 iTrust example SPL . 359
13.1.2 Rule Variants . 360
13.1.3 Variability-based Model Transformation 362

13.2 Multi-Variant Model Transformation . 364
13.2.1 Solution Overview . 364
13.2.2 Multi-Variant Transformation Algorithm 367

13.3 Tool Support for Multi-Variant Model Transformation 371
13.4 Evaluation of the Multi-Variant Model Transformation 371

13.4.1 Detection of Edit Operations . 372
13.4.2 Move Method Refactorings . 374

13.5 Threats to Validity . 377
13.5.1 External Validity . 377
13.5.2 Construct Validity . 377

13.6 Conclusion on Multi-Variant Model Transformation 377

Part VI Tool Support and Application

14 The GRaViTY Framework . 383
14.1 Structuring into Eclipse Plugins . 383
14.2 GRaViTY as Software Product Line . 389
14.3 Conclusion on the Implementation of GRaViTY 391

15 Case Studies . 393
15.1 Case Study 1: iTrust . 394

15.1.1 Description of the Case Study Execution 394
15.1.2 Discussion of the Observations 401

15.2 Case Study 2: Eclipse Secure Storage . 402
15.2.1 Discussion of the Case Study Execution 402
15.2.2 Discussion of the Observations 411

15.3 Threats to Validity . 412
15.4 Conclusion on the Case Studies . 412

xx Contents

Part VII Closing Chapters

16 Related Work . 417
16.1 Tracing between Models and Code . 417
16.2 Security Compliance of Models and Code 419

16.2.1 Model-Based Security Analysis 420
16.2.2 Security Compliance . 421
16.2.3 Run-time Security Monitoring . 422

16.3 (Security-aware) Refactorings . 423
16.4 Software Product Lines . 425

16.4.1 Product Line Transformations . 425
16.4.2 Security of Software Product Lines 426

17 Conclusion . 429
17.1 Research Outcomes . 431
17.2 Assumptions and Limitations . 433

17.2.1 Required Artifacts . 434
17.2.2 Tracing and Synchronization . 434
17.2.3 Security Requirements and Checks 435
17.2.4 Security Preservation and Re-Certification 436
17.2.5 Software Product Lines . 436

17.3 Outlook . 437
17.3.1 Automated Trace Creation . 437
17.3.2 Continuous Integration . 438
17.3.3 Multi-Language Software Systems 438
17.3.4 Security Requirements and Checks 438
17.3.5 Customization . 439
17.3.6 Expressiveness of Languages . 439
17.3.7 Distributed System Analysis . 440
17.3.8 Code Generation . 440
17.3.9 Software Product Lines . 440

17.4 Summary . 441

Bibliography . 443

Abbreviations

AGT Algebraic Graph Transformation
API Application Programming Interface
ARTE Automated Refactoring Test Environment
AST Abstract Syntax Tree
BPMN Business Process Model and Notation
CC Common Criteria
CFG Control Flow Graph
CIA Confidentiality, Integrity, and Availability
CRA Class Responsibility Assignment
CSC Create SuperClass Refactoring
CVE Common Vulnerability Enumeration
CVSS Common Vulnerability Scoring System
CWE Common Weakness Enumeration
DFD Data Flow Diagram
DSL Domain Specific Language
EA Enterprise Architect
EU European Union
EMF Eclipse Modeling Framework
FF Fully Flattened
FN False Negative
FP False Positive
GC Garbage Collection
GDPR General Data Protection Regulation
GSM Global System for Mobile Communications
HCP Health Care Personnel
HCS Health Care System

xxi

xxii Abbreviations

HTML HyerText Markup Language
HTTP HyerText Transfer Protocol
ID IDentifier
IDE Integrated Development Environment
IEC International Electrotechnical Commission
ISO International Organization for Standardization
JDK Java Development Kit
JVM Java Virtual Machine
JSP Java Server Page
JSSE Java Secure Socket Extension
LAN Local Area Network
LHCP Licensed Health Care Professional
LHS Left Hand Side
LLOC Logical Lines of Code
LOC Lines of Code
MBSD Model-based Software Development
MDD Model-driven Software Development
MID Medical IDentification name
NAC Negative Application Condition
OCL Object Constraint Language
OMG Object Management Group
OO Object-Orientation
OOP Object-Oriented Programming
PF Partially Flattened
PM Program Model
PUM Pull-Up Method Refactoring
RHS Right Hand Side
RQ Research Question
SAR Security Assurance Requirement
SAT Boolean Satisfiability Problem
SFR Security Functional Requirement
SPL Software Product Line
SQL Structured Query Language
TGG Triple Graph Grammar
TN True Negative
TP True Positive
UML Unified Modeling Language

Abbreviations xxiii

UMLsec UML for Secure Systems Development
VB Variability-based
VisiOn Visual Privacy Management in User Centric Open Environments
XML Extensible Markup Language

List of Figures

Figure 1.1 Concept of the GRaViTY software development
and maintenance approach . 8

Figure 1.2 Location of the research questions in the GRaViTY
approach . 11

Figure 2.1 Excerpt from the use cases of iTrust 28
Figure 2.2 Use case description of the iTrust use case UC57

Change password taken from the iTrust wiki 30
Figure 2.3 Welcome view for doctors in the iTrust system 33
Figure 2.4 Patient view on her diagnoses in the iTrust system 33
Figure 3.1 Artifacts used in model-driven software development 40
Figure 3.2 Excerpt of a domain model for hospitals based

on the model presented in [78] . 40
Figure 3.3 Excerpt of a design model for iTrust based on [51] 42
Figure 3.4 Excerpt of an implementation Model for iTrust

based on the pilots of the VisiOn EU Project [79] 43
Figure 3.5 Concept of the V-model development process 45
Figure 3.6 Application of the UMLsec Secure Dependency

stereotypes to iTrust’s design model 55
Figure 3.7 Excerpt of the iTrust implementation model showing

the application of UMLsec Secure Links 57
Figure 3.8 A DFD for changing a password in iTrust 58
Figure 3.9 An excerpt of a SecDFD for iTrust 60
Figure 3.10 UML activity diagram corresponding to the DFD

in Figure 3.8 . 60
Figure 4.1 Development process of the GRaViTY development

approach . 68

xxv

xxvi List of Figures

Figure 4.2 A developer performing changes using GRaViTY 70
Figure 5.1 Location of the program model in the overall concept . . . 76
Figure 5.2 GRaViTY’s metamodel for language independent

object-oriented program models . 80
Figure 5.3 Excerpt from a program model of iTrust showing

namespaces and the class hierarchy 81
Figure 5.4 Excerpt from the iTrust program model 84
Figure 5.5 Modifiers and visibilities in the type graph 85
Figure 5.6 Annotation mechanism of GRaViTY’s type graph 86
Figure 5.7 Screenshot of the Eclipse IDE showing GRaViTY’s

graphical program model editor . 87
Figure 6.1 Location of the Tracing in the Overall Concept 92
Figure 6.2 Concept for tracing using triple graph grammars 96
Figure 6.3 TGG transformation rule for method names

from the MoDisco Java model � program model
transformation . 97

Figure 6.4 TGG transformation rule for method signatures
from the MoDisco Java model � program model
tramsformation . 98

Figure 6.5 Transformation rules for method definitions
of the program model (A) and UML (B) TGGs 99

Figure 6.6 Illustration of the problem in creating method trees
using TGGs . 103

Figure 6.7 Screenshot of the eMoflon TGG editor in the Eclipse
IDE showing the TGG rule for translating method
signatures . 105

Figure 6.8 Component diagram of GRaViTY’s artifact
synchronization . 105

Figure 6.9 Runes for the program model and UML TGGs 107
Figure 6.10 Relation between the time required for program

model creation and different project metrics 110
Figure 6.11 Time required for incremental model updates

for program edits . 113
Figure 6.12 Excerpt from the UML Superstructure showing

the specification of refinement relations 116
Figure 6.13 Model refinements between the UML domain model

(Figure 3.2) and design model (Figure 3.3) of iTrust 118
Figure 6.14 Realization of a class from the design model

by an implementation-level class detailing features 121

List of Figures xxvii

Figure 6.15 UML profile for security tracing . 122
Figure 6.16 Dialog pages of the UML model mapping wizard 125
Figure 6.17 View for creating mappings between UML models 125
Figure 6.18 Implementation-level model of classes involved

in the search for a patient as part of UC28 126
Figure 6.19 TGG Rule for translating @Critical-annotations

in an implementation-level model
to «critical»-stereotypes in a UML
model . 129

Figure 6.20 Program model excerpt with Java annotations 131
Figure 6.21 Extension of the type graph adding explicit types

for UMLsec security requirements 132
Figure 6.22 Program model excerpt with security annotations 133
Figure 6.23 Correspondence model between the UML model

and program model of the iTrust excerpt 134
Figure 6.24 Excerpt from the metamodel for the correspondences

between UML models and program models 135
Figure 7.1 Concept for the application of GRaViTY to legacy

projects . 139
Figure 7.2 Model sizes in relation to the code lines of software

systems . 142
Figure 7.3 Semi-automated mapping of implementations

to DFDs . 145
Figure 7.4 DFD for resetting a password in the iTrust system 147
Figure 7.5 Program model excerpt of the implementation

for resetting a password in the iTrust system 147
Figure 7.6 Rule describing the name matching for methods 148
Figure 7.7 Rule for extending name matches based on return

types . 148
Figure 7.8 Screenshot of the semi-automated mapping UI

in Eclipse . 153
Figure 8.1 Interaction of security checks in the overall concept 166
Figure 8.2 Component diagram of the structural compliance

checks . 173
Figure 8.3 Screenshot of the tool support for structural

compliance checks . 174
Figure 8.4 Correspondences between a UML class diagram

containing security requirements and the program
model . 178

xxviii List of Figures

Figure 8.5 Program model extended with security annotations 180
Figure 8.6 Correspondences between a SecDFD

and the program model . 181
Figure 8.7 Component diagram of the security metrics

implementation . 182
Figure 8.8 Henshin rule for calculating the critical design

proportion metric . 184
Figure 8.9 SecDFD for updating a user’s password 185
Figure 8.10 Component diagram showing the implementation

of the SecDFD contract verification 192
Figure 8.11 Screenshot of the static security compliance checks 192
Figure 8.12 Component diagram for the optimized data flow

analysis . 201
Figure 8.13 False alarms (FPs) raised by the analyzer after three

configurations of sources and sinks per SecDFD
(Eclipse Secure Storage on Top, iTrust on Bottom) 204

Figure 8.14 Rule-based specification of a security violation
pattern for detecting violated design-time security
requirements in the implementation 209

Figure 8.15 Component diagram of the security violation pattern
implementation . 212

Figure 8.16 Excerpt from the design model of iTrust
after adaptation to new regulations by adding new
security requirements . 214

Figure 8.17 Security violating match of a security violation
pattern . 216

Figure 9.1 Concept of the run-time monitoring in the overall
approach . 222

Figure 9.2 Events monitored at run-time and performed check
steps . 232

Figure 9.3 Format used by UMLsecRT for recording
call-sequences . 235

Figure 9.4 Deployment and manifestation of classes
with evolution . 237

Figure 9.5 Sequence diagram automatically generated
by UMLsecRT . 237

Figure 9.6 Structure of the UMLsecRT implementation 241
Figure 9.7 Distribution of execution time for run-time

monitoring (sorted by slowdown) . 251

List of Figures xxix

Figure 9.8 Usability of representations of a software system
for the investigation of a security violation 251

Figure 10.1 Location of refactorings in the overall concept 260
Figure 10.2 Class diagram showing an excerpt

of the PatientBean and PersonnelBean 265
Figure 10.3 Schematic representation of a Create Superclass

refactoring – Left-hand side and right-hand side 267
Figure 10.4 PatientBean and PersonnelBean

after the application of a Create Superclass
refactoring . 269

Figure 10.5 Model-transformation rules for Create Superclass
refactoring including preconditions 270

Figure 10.6 Move Method refactoring specified
as variability-based (VB) rule . 271

Figure 10.7 Transformation rule of a Pull-Up Method refactoring 278
Figure 10.8 Program model before and after a Pull-Up Method

refactoring . 278
Figure 10.9 Excerpt of the program model of the program

in Listing 10.4 . 279
Figure 10.10 Model-transformation rule for Pull-Up Method

refactoring including preconditions 279
Figure 10.11 Excerpt from the program model focusing

on the iTrust source code excerpts in Listings 10.6,
10.7, and 10.5 . 284

Figure 10.12 Model-transformation rule for a Move Method
refactoring . 284

Figure 10.13 Model-transformation rule for Move Method
refactoring including preconditions 285

Figure 10.14 Component diagram of the refactoring
implementation and integration into GRaViTY 289

Figure 10.15 Presentation of a refactoring in the GRaViTY
refactoring UI . 289

Figure 10.16 Specification of a Move Method refactoring enriched
with security constraints . 297

Figure 10.17 Security extension to the Move Method refactoring
regarding allowed targets for critical methods 300

Figure 11.1 Variant-rich software systems in the concept
of the GRaViTY approach . 306

xxx List of Figures

Figure 11.2 Feature model excerpt of a software product line
version of the iTrust system . 308

Figure 11.3 Metamodels of the GRaViTY variability extensions 314
Figure 11.4 Program model excerpt showing the application

GRaViTY’s variability extension . 315
Figure 11.5 Excerpt from the iTrust SPL’s design model showing

the usage of the SecPL profile . 316
Figure 11.6 Excerpt from the implementation model of the iTrust

SPL showing the usage of the SecPL profile 316
Figure 11.7 Concept of GRaViTY’s reverse engineering

mechanism for SPLs . 318
Figure 11.8 Component diagram showing the integration

of the variability processing into GRaViTY’s
synchronization mechanism . 319

Figure 12.1 The SecPL approach’s concept to security in UML
product lines . 327

Figure 12.2 SecPL profile excerpt showing variability
and security stereotype specification 328

Figure 12.3 Excerpt from the iTrust SPL’s design model showing
the usage of the SecPL profile including variability
and security stereotypes . 330

Figure 12.4 Excerpt from the implementation model of the iTrust
SPL showing the usage of the SecPL profile 331

Figure 12.5 Use case diagram showing the use cases supported
in a product of the iTrust product line 333

Figure 12.6 Design model product of the iTrust product line
with UMLsec security requirements 333

Figure 12.7 Papyrus UML editor with SecPL Features View
showing usages of features in UML product lines 342

Figure 12.8 Integration of SecPL into CARiSMA 343
Figure 12.9 Detection of a Security Violation using SecPL 343
Figure 12.10 Execution times of the family-based SecPL check

and the product-wise check with CARiSMA 346
Figure 12.11 Scalability results of SecPL regarding Number

of Classes and Number of Features 348
Figure 12.12 Aggregated answers from the user study regarding

the usability and understandability of SecPL 349
Figure 13.1 Concept including security-compliance checks

and restructurings in variant-rich systems 356

List of Figures xxxi

Figure 13.2 Overview of the multi-variant model transformation 358
Figure 13.3 State machine showing the states of a patient’s

treatment . 359
Figure 13.4 Two rules for refactoring state machines (adapted

from [332]) . 361
Figure 13.5 Feature model of the Move Method refactoring rule,

including all security constraints . 362
Figure 13.6 Variability-based rule encoding the two example rules . . . 363
Figure 13.7 Staged rule application of a VB rule to a product line . . . 365
Figure 13.8 Component diagram of the Multi-Variant Henshin

implementation and its integration into GRaViTY 370
Figure 14.1 Screenshot of GRaViTY’s update site 384
Figure 14.2 Component diagram of GRaViTY’s implementation 385
Figure 14.3 Feature model showing the relations

among GRaViTY’s plugins . 390
Figure 14.4 Extension to GRaViTY’s feature model including

the features provided at the update site 390
Figure 15.1 Use case diagram refining iTrust’s domain model 395
Figure 15.2 DFD for reading a secret from the Eclipse Secure

Storage . 405
Figure 15.3 Eclipse Secure Storage annotated with UMLsec

Secure Dependency stereotypes . 405
Figure 15.4 SecDFD for reading a aecret from the Eclipse

Secure Storage . 407
Figure 15.5 Deployment and manifestation of classes

with adaptions . 411
Figure 15.6 Sequence diagram automatically generated

by UMLsecRT . 411

List of Tables

Table 3.1 Required documentation artifacts for medical device
software following IEC 62304 (×: Required Artifact) 50

Table 3.2 UMLsec Secure Links attacker model 56
Table 6.1 Program statistics and execution times of the program

model and UML model creation . 108
Table 6.2 Mapping between UMLsec and GRaViTY’s Java

annotations . 127
Table 7.1 Projects considered in the evaluation

of the semi-automated mapping
approach . 155

Table 7.2 Results of the mapping after each iteration 158
Table 8.1 Excerpt of well-known cryptographic signatures 191
Table 8.2 Results of evaluating the cryptographic contracts

verification . 194
Table 8.3 Results of evaluating the processing contracts

verification . 195
Table 8.4 Average false alarm reduction for the different

configurations (aggregated per project) 205
Table 9.1 Considered CWEs and their mitigations by UMLsecRT . . . 245
Table 9.2 Effectiveness of UMLsecRT and the Java security

manager: � – mitigated, (�) – partly mitigated, × –
not mitigated, N/A – no test case . 247

Table 9.3 Benchmarks of the DaCapo benchmark used
for the evaluation of the run-time monitoring 249

Table 10.1 Evaluation results for the refactorings 291

xxxiii

xxxiv List of Tables

Table 12.1 Subjects of the efficiency evaluation
of the variability-aware security checks 345

Table 13.1 Approaches for dealing with multi-variability 363
Table 13.2 Subject refactoring rule set used in the evaluation

of the staged rule application . 372
Table 13.3 Subject product lines of the staged rule application’s

evaluation . 373
Table 13.4 Execution times (in Seconds) of the lifting

and the staged transformation approach 373
Table 13.5 Subject product lines for the application of Move

Method refactorings and execution times 375

Listings

Listing 2.1 Excerpt from the Java class
ChangePasswordAction, showing
the method for changing a user’s password 31

Listing 2.2 Excerpt from the Java class AuthDAO showing
the method for changing a password in iTrust’s SQL
database . 32

Listing 5.1 Excerpt from the Java source code of the iTrust
class EditPatientAction for updating
the information about a patient . 79

Listing 5.2 Excerpt from the Java source code of iTrust class
EditOfficeVisitAction . 83

Listing 6.1 Source code with security annotations of a class
for accessing patients . 128

Listing 8.1 Security annotation propagated into classes
with and without security-critical . 179

Listing 8.2 Configuration of FlowDroid used in this study 204
Listing 8.3 Security violating source code fragment from iTrust 217
Listing 9.1 Example for Java reflection . 224
Listing 9.2 Source code of a class for accessing patients

with security annotations . 226
Listing 9.3 Source code of the method for resetting a user’s

password in iTrust’s database . 227
Listing 9.4 Sourcecode of a Malicious Implementation

of a Library . 228
Listing 9.5 Code for monitoring security, injected

before and after methods . 230

xxxv

xxxvi Listings

Listing 9.6 Specification of a countermeasure . 234
Listing 10.1 Example program containing the possibility

for a Pull-Up Method refactoring . 274
Listing 10.2 Example Java program after evolution 275
Listing 10.3 Example Java program after the application

of a Pull-Up Method refactoring . 276
Listing 10.4 Example Class Containing an Access Prohibiting

a Pull-Up Method Refactoring . 277
Listing 10.5 Source code excerpt from the iTrust class

OfficeVisitValidator . 281
Listing 10.6 Source code excerpt from the iTrust class

POJOValidator . 282
Listing 10.7 Source code excerpt from the iTrust class

ValidationFormat . 283
Listing 10.8 Postcondition of a Move Method refactoring

concerning the suitability of member visibilities 284
Listing 11.1 Excerpt of the Java class EditPHRAction of the iTrust

SPL using Antenna preprocessor directives 312
Listing 11.2 Source code with Antenna and GRaViTY’s security

annotations . 320
Listing 12.1 Secure Dependency OCL constraint (secrecy case,

excerpt) . 336
Listing 12.2 Secure Links OCL constraint (integrity case) 337
Listing 15.1 Source code of the password store with security

annotations . 407
Listing 15.2 Source code of a malicious Eclipse plugin 409
Listing 15.3 Specification of a countermeasure . 410

Part I

Opening Chapters

1Introduction

Software has become a considerable part of today’s life and is present everywhere
around us. Nearly every device, including smartphones, TVs, fridges, and many
more, is connected as part of the internet of things, and we rely on them to be safe,
secure, and respect our privacy. The same trends are also entering more critical
domains such as health care. For example, modern medical imaging devices such
as computer tomography scanners or ultrasound machines come with a network
connection and a software application that allows storing and managing the images
centrally and specialists to access these from anywhere. Furthermore, modern soft-
ware systems tend to be used on a long-term basis in environments prone to changes,
and at the same time successors of a software system are developed rapidly. Here,
a successor is often a variant of the previous system as significant parts are reused.
Besides, multiple variants of a software system can exist at the same time, e.g.,
computer tomography scanners supporting a different number of acquired slices.
In all cases, all changes, e.g., due to maintenance or extension, have to be contin-
uously reflected in the whole software system, including all variants. These trends
result in significant challenges regarding the correctness changes and the security
of evolving software systems or their variants.

Traditionally, manufacturers of devices ensure their products’ security by pro-
viding legal certifications. However, concerning today’s short product cycles and
the vast amount of product versions, certifying each product manually is impos-
sible. For achieving a certification, it is necessary to consider all security-relevant
aspects of the software system, which requires a substantial manual effort and is
error-prone. Due to these circumstances, a product is certified quite often after its
successor on the market has already replaced it. An example of this is smartphones
certified for use in critical positions. The SiMKo 3 high-security cell phone, which
was certified in September 2013 for usage by theGerman government [1], was based
on a Samsung Galaxy S3 that was released in May 2012 and replaced by the Galaxy

©TheAuthor(s), under exclusive license toSpringer FachmedienWiesbadenGmbH,
part of Springer Nature 2022
S. M. Peldszus, Security Compliance in Model-driven Development of Software
Systems in Presence of Long-Term Evolution and Variants,
https://doi.org/10.1007/978-3-658-37665-9_1

3

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-658-37665-9_1&domain=pdf
https://doi.org/10.1007/978-3-658-37665-9_1

4 1 Introduction

S4 in March 2013. Also, even minor bug fixes are often not allowed without losing
the certification of a product. One missing key to improve security is integrated
tool support covering all software development phases. Tool support can reduce the
manual effort required for certification and avoid mistakes during the certification.
Furthermore, tool support can already support avoiding security violations during
implementation. Nonetheless, the discussed trends continue to complicate keeping
up with the ever-changing security precautions, attacks, and mitigations that are
vital for preserving a software system’s security. Therefore, it seems reasonable
why a recent developer study pinpoints security as the number-one concern to be
addressed by future software analysis tools [2].

A widely accepted approach for the successful development of software systems
isModel-Driven Development (MDD) [3, 4]. MMD allows planning a software sys-
tem’s design upfront on an abstract level before implementing the software system.
This development approach allows developing a well-structured software system,
that can include systematic variation points for future extensions or variants of
the software system. Furthermore, it enables us to address security issues in the
early phases of the software design, such as in models specified at design time
using the Unified Modeling Language (UML) [5, 6]. In many domains, establish-
ing such appropriately documented design-time artifacts is mandatory due to legal
requirements. For example, in the medical domain, for medical device software, the
ISO/IEC 62304 standard requires various documentation artifacts based on the criti-
cality of themedical device [7]. These artifacts range from the development planning
documentation, the documentation of requirements through the planned software
design to the concrete software implementation of the medical device. All these
artifacts are created when following the model-driven development approach [8].
Unfortunately, the documentation artifacts created at model-driven development are
often inconsistentwith the software system’s current state [9]. Such an inconsistency
can lead to significant effort for harmonizing all artifacts before a certification.

One reason for this inconsistency lies in the way how software is developed.
In the past, powerful IDEs, e.g., supporting near real-time syntax checks and fast
compilation, were not available, requiring developers to thinkmore about the source
code upfront and write down large fragments in one go before executing and testing
the new fragment. Although this allowed the implementation of amazing software
systems, e.g., the Guidance Computer of the Apollo 11 mission [10], the man-
ageable complexity was limited. In contrast to this, considering how software is
developed nowadays, programming practices often incorporate consecutive steps
of edits, updates, refinements, and other enhancements at the source code level to
improve a program under development and meet ever-changing requirements incre-
mentally [11]. In otherwords, programs consecutively evolve throughout their entire

1 Introduction 5

life-cycle due to the nature of modern software engineering [12, 13].Moreover, con-
tinuous evolution also means that programs are prone to internal decay due to the
often ad-hoc nature of program edits which may cause software systems to arrive at
incomprehensible or even inconsistent states eventually. Such a decrease in design
quality is called software aging [13] and often leads to an increase in the effort
required for extending and maintaining a software system. Simultaneously, these
low-level implementation changes are often not reflected in the software system’s
design-time models. Such inconsistencies might result in certification issues as the
delivered design-time artifacts are not compliant with the implementation.

Usually, a software system is specified at the implementation level using a high-
level programming language. These languages provide an abstraction from low-level
languages close to CPU instructions, such as Assembler [14]. High-level languages
mainly differ in their syntax as well as the programming paradigms realized for
abstraction. Currently, one of the most used paradigms is the object-oriented (OO)
programming paradigm [15]. This programming paradigm is an essential milestone
towards improved program modularity and maintainability. Object-oriented pro-
gramming concepts allow for enforcing essential program and data structures, e.g.,
through applying design patterns [16].

In practice, due to the continuous evolution, software systems need frequent
restructuring to stay within the desired patterns. To support the efficient restruc-
turing of a software system, refactorings have been proposed and documented in
a human-readable form [17, 18]. As a consequence, tool-support for conducting
(semi-)automated program refactorings has become an integral part of modern Java
IDEs such as IntelliJ IDEA1 and Eclipse2. Despite intense studies and widespread
application, a verifiable specification of refactoring operations and the execution of
this specification is still an open problem. The same applies to the interaction of
refactorings with non-functional properties of the software system, such as security.

Furthermore, when a company develops a new product, the software is nearly
never written from scratch. Instead, there is a significant amount of reuse among the
company’s different products [19]. Often, a company’s products are developed as
variants of a variant-rich software system,which is also often referred to as a software
product line. Thereby, the software product line contains a base part contained in
every product and variable parts specific only for one or more products. However,
for a product’s certification, this specific product’s software will be reviewed and
certified. Usually, there is no reuse among single certifications [20]. The variability
introduced by this extensive reuse among products leads to a second challenge. For

1 https://www.jetbrains.com/idea
2 https://www.eclipse.org

https://www.jetbrains.com/idea
https://www.eclipse.org

6 1 Introduction

products with many variants and variations, it is infeasible to check every product
within a reasonable time, e.g., regardingOO design quality or security. For example,
considering OO design-quality checks, a single anti-pattern detection for a medium-
sized program with around 50k lines of code already takes around 20 minutes for a
single product [21]. If we want to check the entire product line product by product,
the test takes over 100 years if the product line contains 22 independent features.
Every feature can be selected or not selected, giving two possible states per feature
resulting in 222 = 4, 194, 304 possible feature configurations. As every check takes
20 minutes, checking all configurations takes 8.3886× 107 minutes or 159.6 years.

To summarize, the increasing amount of security-critical data and faster changing
environments are a burden to develop secure software systems. Nevertheless, there
are already some approaches to tackle the single sub-problems.

1.1 Problem Identification

Considering the outlined trends one can assume that these are tackled by existing
solutions sufficiently. Unfortunately, in summary, these different improvements in
technology for supporting software development processes are not enough to com-
pensate for all of these trends complicating the development of secure and long-
living software. Especially, the demand for security planning and compliance in
combination with continuous change throughout the whole life cycle, eventually, in
combinationwith variants of a software system, is challenging. Considering existing
solutions, we identify open problems regarding the development and maintenance
of secure software systems.

Non-integrated solutions: For supporting the successful development of secure
software systems, various approaches have been developed. First, there are high-
level programming languages that allow effective structuring and reuse within
a software system, e.g., following the OO paradigm. Refactorings support the
structuring of the software for constantly preserving a maintainable structure of
the software system throughout development. Also, approaches like MDD allow
the planning of the software system’s structure. However, such solutions mostly
neglect essential aspects like security, have not been evaluated on more practical
subjects, or do not cover the whole development life cycle of a software system.
ConsideringMDD, there are approaches that allow developers to include security
considerations from the very beginning [6]. In the best case, these security con-
siderations can be reused until certification of the final product. In practice, there

1.1 Problem Identification 7

are many non-integrated solutions that do not allow reuse or might be entirely
incompatible.

Inconsistency and missing traceability: Often, a software system’s initial secu-
rity requirements specification and the created documentation are inconsistent
with the implementation’s later versions [22, 23]. The continuous changes in
the security assumptions and the design of software systems, for instance, due
to structural decay [13], have to be reflected in both the design-time models,
e.g., UML models, and the software system’s implementation. Furthermore, the
implementation can include additional artifacts such as program models, e.g.,
used for static analysis or verification. Currently, the developers need to manu-
ally trace among the different available artifacts to identify and apply a necessary
change at proper locations in the software system concerning the corresponding
artifacts. The effort to create such correspondences after the fact is still high even
if this process is guided by tool support, e.g., for creating a correspondencemodel
between design-time models and source code [23]. Also, there is no approach
providing an assisted development methodology covering multiple phases and
supporting roundtrip engineering. Thus, we have to maintain correspondences
between different artifacts used in the different development phases from the very
beginning and automate the underlying mapping process as much as possible.

Security-aware restructuring: As software systems are continuously subject to
changes, we also have to continuously check their security compliance, e.g.,
with design-time security requirements or obligatory standards. In the best case,
we can evaluate the desired change before applying it to the software system.
A problem often mentioned by practitioners is that they cannot apply simple
refactorings to a software system without losing the certification of the system.
Although there are catalogs of well-defined refactorings [18] and approaches to
check their applicability [24], we still have to solve two problems. First, even
when the applicability of a refactoring has been checked, these are often applied
in an ad-hocmanner. Accordingly, there is no guarantee for the correctness of the
refactoring operation that is needed for preserving a certification. Second, current
refactoring approaches do not take non-functional properties, e.g., security, into
account. In summary, security-preserving restructurings of the software system
are required for supporting the restructuring of security-critical systems without
losing a certification or requiring a complete re-certification.

Variant-rich software systems: Last but not least, all of these discussed measures
must also be applied to variant-rich software systems. The application of every
single existing solution to each product of a software product line is possible,
but due to the vast amount of possible products, this is not feasible within a
reasonable time. Accordingly, we need means for applying security compliance
checks and security-preserving refactorings to software product lines.

8 1 Introduction

Figure 1.1 Concept of the GRaViTY software development and maintenance approach

1.2 Outline of the Approach

To overcome the discussed problems, we propose theGRaViTY approach to support
developers in developing secure variant-rich software systems. The key idea is that
developers should focus on their taskswhile everything else is automatically handled
in the background. In this thesis, we consider three kinds of tasks.

1. Weconsider the specification aswell as the subsequent refinement of the software
system’s architecture,

2. the implementation of the software system following the specified architecture,
and

3. the specification and enforcement of security throughout the whole development
process.

Considering the discussed problems, multiple artifacts are involved in the devel-
opment of a variant-rich software system. Figure 1.1 provides an overview of the

1.2 Outline of the Approach 9

artifacts considered in our approach, their relations, and activities executed on these.
According to the figure, for performing the three outlined tasks, we consider three
kinds of artifacts:

1. design-time models, e.g., specified in UML,
2. source code, e.g., written in Java, and
3. a programmodel (PM) of the source code for automatically performing analyses.

Changes on any of these artifacts are continuously synchronized for covering the dif-
ferent phases of software development, allowing developers to focus on their tasks.
In the figure, this synchronization is indicated by bidirectional arrows connecting
the artifacts.

For allowing our approach to consider security and variability, the different arti-
facts are extended with security as well as variability in terms of annotations. Here,
we make use of existing approaches as far as possible. For example, considering
design-time models, e.g., on UML models, we use the UMLsec profile proposed
by Jürjens [6] for security annotations. For variability annotations, e.g., on Java
source code, we benefit from preprocessor-like variability statements as defined in
Antenna [25].

Using these extensions, we will present a synchronization between the different
artifacts taking both security and variability into account. For this purpose, we utilize
triple graph grammars (TGG), a model transformation language and tooling that
allows incremental model synchronization, and the UML inheritance mechanism.
Such transformation languages can also be used to specify and perform design
analyses as already demonstrated for anti-pattern detection on a single product
in [21]. Following this example,we specify security compliance checks and security-
preserving refactorings for ensuring the software system’s security throughout the
whole development process.

For applying the developed checks and refactorings to SPLs, existing transforma-
tion technologies like Algebraic Graph Transformation (AGT) have to be extended
to support variability. Here, we consider AGT as realized in the tool Henshin [26] or
Triple Graph Grammars (TGG) of eMoflon [27]. Providing such an extension, we
demonstrate how security compliance checks and security-aware refactorings can
be executed on a software product line efficiently.

10 1 Introduction

1.3 Research Questions

Based on the problems identified previously and the outlined approach, we formu-
late five research questions, that we will answer in this thesis. Figure 1.2 shows the
location of the research questions in the proposed software development and main-
tenance approach. First, traces between security requirements on different system
representations have to be established andmaintained automatically. For this reason,
RQ1 focuses on the tracing and synchronization of the different considered artifacts.
In practice, many security-critical software systems have been developed in the past,
are still in use, and under maintenance. Accordingly, the second research question
(RQ2) aims to identify how we can support these legacy systems in the approach
developed in this thesis. The goal of the desired synchronization is twofold. On the
one side, we will use the generated trace links to propagate security requirements
specified on the UMLmodels into the implementation. These trace links allow us to
check security requirements on the UMLmodels and verify them on the implemen-
tation level using corresponding security checks considered in RQ3. On the other
side, all artifacts have to be kept synchronized after changes. Thereby, following
Figure 1.2, we consider manual changes on the UMLmodels and implementation as
well as refactorings performed on the program model. Utilizing the generated trace
links, we can study the effects of changes on traced security requirements in RQ4.
Finally, we study how we can apply the developed solutions to software product
lines in RQ5.

RQ1: How can security requirements be traced among different system represen-
tations throughout a software system’s development process?

RQ2: How can we apply model-based security engineering to legacy projects that
have no or disconnected design-time models?

RQ3: How can developers be supported in realizing, preserving, and enforcing
design-time security requirements in software systems?

RQ4: How do changes within a software system affect its security compliance, and
how can these effects be handled?

RQ5: How can we verify and preserve security compliance in variant-rich software
systems?

1.3 Research Questions 11

Figure 1.2 Location of the research questions in the GRaViTY approach

To be more precise, we introduce the research questions discussed in this thesis in
detail in what follows.

RQ1: How can security requirements be traced among different system repre-
sentations throughout a software system’s development process?
Various artifacts, such as models or source code, are created during the development
of a software system. Following approaches like security by design [28], already on
the initial design artifacts, security requirements are planned and validated. These
security requirements specified on model elements have to be fulfilled on later mod-
els givingmore details on the elements or their concrete realization in the implemen-
tation. To ensure a software system’s security, we have to trace the specified security
requirements throughout all created artifacts. Thereby, we have to consider contin-
uous changes on the software system, e.g., due to ongoing development activities or
maintenance. Also, in the context of such changes, we have to preserve the validity
of the created trace links. In principle, entirely reverse engineered UML models
can be easily synchronized when changes in one of the tracked elements occur as
one-to-one correspondences are possible. However, this is more challenging for
elements not present in all system representations. Early design-time models are
on a different level of abstraction than the software system’s final implementation,

12 1 Introduction

hindering the direct propagation of security requirements into the implementation.
For answering this research question, we split it into three sub-research questions:

RQ1.1: How can we continuously create and maintain traces between design-
time models and the implementation?
Security requirements specified in the design-time models of a software system
must be fulfilled in the software system’s implementation. Thus, we have to be
able to retrieve all relevant parts of the implementation for a security require-
ment in the design models and all related model elements for an implementation
artifact. As all artifacts are subject to continuous changes, we have to update the
created trace links continuously. In the best case, we even can include a synchro-
nization of the involved artifacts as part of the updates to avoid inconsistencies.
(Section 6.2)

RQ1.2: How can trace links between design-time models with different levels
of abstraction be represented and maintained?
Usually, during the development of an extensive software system, multiple
design-time models with different abstractions are defined. Designers start with
very abstract models and go into more detail afterward. Thus, the models that
developers model in early phases have a different abstraction than later models
or even models reversed engineered automatically. Nevertheless, not only the
models that are close to implementation, but the models that are created early
during design time have to be considered by our synchronization approach. As
we consider only models using the same language, we can also use the same
security extension. However, we have to study the tracing between models with
different abstraction levels. (Section 6.3)

RQ1.3: How can trace links be used to propagate design-time security require-
ments into the implementation?
After creating trace links between all kinds of design-timemodels and the imple-
mentation, we have to leverage these trace links for propagating the specified
security requirements. Different approaches might be suitable for propagating
security requirements, depending on where the security requirement is speci-
fied and to which destination we want to propagate the security requirement. For
example, during a static security check of the software system’s implementation,
we have access to all trace links and the design-time models, while this might
not be the case at run-time. For this reason, we have to investigate different ways
of propagating security requirements among the different artifacts. (Section 6.4)

1.3 Research Questions 13

RQ2: How can we apply model-based security engineering to legacy projects
that have no or disconnected design-time models?
Many software systems that were developed decades ago, are still in use and are
actively maintained. For such legacy systems, often no models are available or the
existingmodels have been created in the early phases of system development and are
disconnected from the implementation. As most legacy software systems have not
been developed using the approach presented in this thesis, the question is how these
legacy systems can switch to using the introducedmodel-based security engineering
approach for further development and maintenance. As tracing between the design-
time models and the implementation is essential, we have to reverse-engineer these
trace links for legacy projects. Thereby, we distinguish between two kinds of legacy
projects. Projects that do not have design-time models and projects for which early
models were initially created but no traces have been maintained.

RQ2.1: How can we support legacy projects for that no design-time models
exist in model-based security engineering?
In the first case, design-timemodels and the trace links have to be entirely reverse-
engineered for applying the proposed approach. As in practice, many modeling
tools come with the support of, e.g., reverse-engineering UML class diagrams,
this usually happens in an ad-hoc manner. The extracted class diagrams are an
independent snapshot of the current state of a software system’s implementa-
tion. However, the two essential requirements of tracing and synchronization for
applying our approach are not fulfilled. For this reason, we have to investigate
howwe can reverse-engineer models including a correspondencemodel between
the reverse-engineered models and the implementation that is compatible with
our approach. (Section 7.1)

RQ2.2: How can we migrate legacy projects that have models but that are dis-
connected from the implementation to model-based security engineering?
In the second case, we have to restore trace links to the existing design-timemod-
els. Although we could just reverse-engineer new models, it might be beneficial
to integrate existing models as these contain information about the intended
design and even can contain detailed information about the planned security.
When we restore trace links with these design-time models, we enable com-
pliance checks concerning the initially expected state of the software system.
Furthermore, by transferring information, e.g., security requirements, specified
in such design-time models, we can save redundant effort for specifying these
again, e.g., on reverse-engineered models. Accordingly, we have to reconstruct
trace links between early design-timemodels and the implementation in a format
usable for our model-based security engineering approach. (Section 7.2)

14 1 Introduction

RQ3: How can developers be supported in realizing, preserving, and enforcing
design-time security requirements in software systems?
Various approaches have been developed to plan and verify required securitymecha-
nisms from the early stages of software design. However, when it comes to verifying
the implementation of the security requirements in a software system, most checks
have to be performed in manual code reviews. One reason is the local scope of
the single security analyses and the lack of automated reuse. To effectively support
developers in the implementation andverification of design-time security, automated
reuse of the security specifications and suitable checks for checking the security
properties on other system representations are required. Depending on where we
want to apply such security checks and how we will specify these, we can divide
this research question into three sub-research questions.

RQ3.1: How can we automatically verify a software system’s compliance con-
cerning design-time security requirements?
First, we have to find automated means to show the compliance between a soft-
ware system’s security design and its implementation. Here, the most relevant
question is what do we have to check on the implementation to show that the
specified security requirements are fulfilled. Also, wewill studywhich other ben-
efits we can gain from propagating design-time security requirements besides an
immediate verification. (Sections 8.3, 8.4, and 8.5)

RQ3.2: How can formal approaches be used for the specification of security
violation patterns?
One of the most significant issues with the current design- and security-analy-
sis approaches is their informal specification. For example, in the OO design
domain, anti-patterns or design flaws have mainly been specified in a textual
manner [29] and later been captured using more formal approaches to overcome
the incomprehensibility of the textual specifications [21]. The same applies to
the domain of security. Security standards such as Common Criteria are a vague
and hardly checkable automatically on a software system. As in the OO design
domain, there are automatically checkable security rules, e.g., accompanying
the SEI CERT security standard. However, currently, these are very fine-grained
and locally checkable rules and still far away from common security standards.
Moreover, existing security checks are often only available as ad-hoc imple-
mentations [29–33]. These complicate the study of the side effects and make it
even harder to apply identical changes to all system representations. A promising
approach to overcome these issues is graph transformations that have success-
fully been applied to specify design flaws on a formal basis [21, 34]. (Section 8.6)

1.3 Research Questions 15

RQ3.3: How can design-time security requirements be enforced at run-time?
Until now, we have been focusing on the static verification of security require-
ments on the implementation level. However, when it comes to the security of
a software system, there are additional factors that interfere with the software
system’s security. Specifically, we have to ensure security compliance regarding
design-time and development-time security requirements at run-time. For exam-
ple, due to statically not checkable circumstances such as a change in a library
or a newly discovered attack type, security violations can occur in a software
system that passed all static security checks. (Chapter 9)

RQ4: How do changes within a software system affect its security compliance,
and how can these effects be handled?
The development of a software system consists not only of adding new elements, but
also of modifying existing elements. Both changes require the continuous update
of the traces studied in RQ1. However, as part of RQ1, we do not look at how such
changes might affect security requirements. Suppose we want to guide developers.
In that case, we have to inform them if some changes, which have automatically been
performed by our tool support or manually by them, affect security requirements.
For example, this is of particular interest in the certified software scenario [35, 36]
where it has to be ensured that a change violates no security requirement.

RQ4.1: How can behavior-preserving refactorings be specified on a formal
basis and this specification be used for executing the refactorings?
Restructuring a software system to keep the system maintainable and extensible
is a common practice in developing a software system [18]. Such restructuring
operations are often performed in an ad-hoc manner and are likely to alter the
software system’s behavior. Refactorings describe theoretically a systematic way
to perform restructurings without altering the behavior of the software system.
However, despite the existence of graph-based formal approaches to verify the
correctness of a refactoring operation [24, 37], refactorings are usually still imple-
mented in an ad-hoc manner. The open question is how to apply a refactoring
operation that has formally been proven to be correct to a software system.

RQ4.2: How do refactorings interact with security requirements, and how can
malicious interactions be prevented?
Furthermore, while correctly implemented OO-refactorings preserve behavior
by definition, they might affect security requirements, e.g., due to a necessary
increase in an attribute’s visibility. Thisway, incorrect refactoringsmight not only
change a software system’s behavior but could create vulnerabilities in a software
system. As refactorings will appear in this thesis only in the context of automated

16 1 Introduction

tool support, e.g., to eliminate detected anti-patterns as described above, we have
to guarantee that the suggested refactorings will always be compliant with the
specified security requirements on all system representations. For this reason,
we have to study how graph-based refactorings can be specified in a security-
preserving way. (Chapter 10)

RQ4.3: How can security requirements affected by arbitrary system changes
be identified end efficiently be rechecked for security compliance?
For ensuring a software system’s security, whenever a change is applied to a
software system, we have to check if this change violates any security require-
ments. The efficient verification of security requirements after arbitrary changes
is even more challenging than verifying refactorings. Since we cannot check
them in advance, we have to check every security requirement on every system
representation again. Especially for large software systems with many security
requirements, this can take much time. Using the trace links established before,
we can calculate which security requirements we have to check again and which
security requirements we do not have to check. Also, it regularly turns out that
previous security assumptions no longer apply. This leads to a situation in which
every published version has to be rechecked for security issues. If new security
requirements are specified on one system representation, trace links must be cre-
ated to all relevant elements in every system representation. For this reason, we
have to study how we can efficiently identify and recheck elements affected by
changes for security compliance. (Section 8.6)

RQ5: How can we verify and preserve security compliance in variantrich soft-
ware systems?
Often software systems come in many variants that share huge parts in common.
Thereby, the number of possible variants can quickly reach an astronomical scale
making the security analysis of every single product infeasible [38]. Nevertheless,
for every single variant or product, we have to ensure that it does not contain any
security violation. Furthermore, we have to preserve security compliance also in
case of changes, e.g, in case of applied restructuring operations. Here, the goal is
to apply the developed security engineering approach also to variant-rich software
systems.

RQ5.1: How can we specify variability throughout a software system, includ-
ing design-time models and security requirements?
To verify security compliance of variant-rich software systems, first, we need to
specify variability on all considered artifacts consistently.Many approaches only
consider a single kind of artifact, when considering variability within variant-

1.4 Research Methodology 17

rich software systems, e.g., source code. However, during the development of a
software system various artifacts are created, e.g., design-time models or source
code. To allow security compliance checks, we have to consider all of these arti-
facts in combination with the software system’s security requirements. For this,
it is necessary to express variability consistently across these artifacts but also
concerning security requirements. Furthermore, we have to integrate these vari-
ability specifications into our approach for continuous tracing among all artifacts.
(Chapter 11)

RQ5.2: How can security violations be detected on SPLs?
After the consistent specification of variability across all artifacts, we have to
investigate approaches to check the product line for security violations. For
scalability reasons, this check must be performed without iterating over every
product. Thereby, we have to support design-level and implementation-level
security checks to consider model-based security engineering to its full extend.
(Chapters 12 and 13)

RQ5.3: How can we apply security-aware refactorings to SPLs?
Like single-product software systems, also variant-rich software systems require
frequent restructuring to keep themmaintainable. Considering their security, also
in variant-rich software systems we have to ensure that the refactorings do not
lead to violations of security requirements. For this reason, we have to investigate
applying security-preserving refactorings to software product lines. Given a con-
crete refactoring operation, not only a single variant should be refactored but all
variants in which the refactoring is applicable in terms of behavior preservation
and security compliance. (Chapter 13)

1.4 ResearchMethodology

To answer the presented research questions and provide a solution to the outlined
problems, we followed the design science research methodology [39–41]. The goal
of this research approach is to develop artifacts that overcome current boundaries.
Thereby, new knowledge is achieved by building and investigating the application of
the developed artifact. Accordingly, this approach requires that, initially, a general
solution concept is developed, which is afterward implemented and evaluated. If
necessary, the developed solution concept is adapted based on the observations
during application and evaluation until the desired goals are met.

We divided the topics of this thesis into small sub-problems with individual
research questions that can be investigated separately for solving the identified
problems. Therefore, we are going to solve them separately and incorporate them

18 1 Introduction

into one approach afterward. For every single sub-problem, we followed the design
science research approach.

Henver et al. defined seven guidelines for applying the design science research
methodology [39]. We followed these guidelines for performing the research pre-
sented in this thesis. In what follows, we shortly introduce these guidelines and
discuss how we addressed these.

Design as an artifact: When following the design science research approach, the
primary goal is to develop an artifact. The purpose of this artifact is to address
and solve a relevant problem. By developing this artifact, new knowledge on
how to solve the problem is gained. It should also be described effectively for
allowing others to implement the artifact independently, follow the knowledge
gained, and transfer it to other domains.
In our case, the developed artifact is a tool prototype. As we divided our overall
problem into single sub-problems, we also developed artifacts for every single
sub-problem. In chapters 5 to 11, for each chapter, we introduce the developed
artifacts in Tool Support sections of the single chapters. Thereby, we present
our artifact’s conceptual design and its concrete realization for solving the sub-
problems discussed in the single chapters. Among the thesis, we frequently reuse
artifacts introduced in previous chapters for developing the next artifact. Finally,
in Chapter 14, we show integrating all the single artifacts into one coherent
artifact.

Problem relevance: For acquiring new knowledge, a relevant and yet unsolved
problem must be addressed. Research following the design science research
approach has to clearly outline the relevance of the addressed problem, what in
state of the art solves already, and which open problems have to be overcome.
Following this methodology, we motivated the identified problem’s general rele-
vance at the beginning of this chapter and showed open problems when deriving
research questions in Section 1.3. Chapter 3 discusses the state of the art in detail
and explicitly showcases missing contributions for the identified open problems
that have to be overcome. Also, at the beginning of every chapter, we summa-
rize the relevance of the single sub-problems as well as missing contributions in
detail.

Design evaluation: The feasibility of the developed artifact has to be demonstrated
in a structured evaluation. For this purpose, among others, the evaluation’s objec-
tives can be functionality, completeness, consistency, accuracy, performance,
reliability, or usability. The evaluation itself should be performed using standard
design evaluation methods, such as case studies, controlled experiments, testing,
or informed argumentations.

1.4 Research Methodology 19

In this thesis, for every problem we solve, we present in detail how our solution
works and solves the identified problem providing an informed argumentation
on the feasibility of the developed artifact. In addition, we evaluate every artifact
regarding quantifiable objectives in the Evaluation sections of every chapter. In
total, we evaluate our artifacts regarding 18 evaluation objectives. These objec-
tives comprise the scalability, efficiency, effectiveness, applicability, usability,
usefulness, and correctness of the developed artifacts. Finally, we showcase the
overall approach’s feasibility using the combined artifacts on two subject soft-
ware systems in Chapter 15.
One common problem in this thesis regarding the evaluation of the developed
artifacts is the need for a suitable subject to perform an evaluation. We can
easily get evaluation subjects for all sub-problems dealing with source code
using the available source code from open source projects. For this purpose,
first, we established an evaluation database containing more than 30 well-known
open-source projects. However, open-source projects usually do not come with
design-time models that play a central role in this thesis. To overcome this prob-
lem, we reverse-engineered the needed models. The models created from those
open source projects are afterward used to study the graph transformation-related
sub-problems from RQ1. The biggest issue to deal with if we want to apply the
constructive design approachwith a strong focus on evaluation is the lack of good
sources for real-world security properties as needed in RQ2 and RQ3. Existing
approaches for detecting critical sources and sinks in a program are promis-
ing solutions to this issue [42, 43]. We successfully applied those approaches
for partly extracting security specifications. In addition, we manually extracted
additional required information for the two case studies presented in this thesis.

Research contributions: Research following the design science research approach
has to provide its contributions clearly. For contributions achieved using the
design science research approach, possible categories are an artifact providing
knew knowledge or applying existing knowledge innovatively, an extension of
foundational knowledge, and the development of newmethodologies for solving
or evaluating a problem.
We mainly improve existing technologies to allow an application that was not
possible before or overcomes the current state of the art. For this purpose, we
usually innovatively apply existing technologies.Where necessary,we developed
entirely new concepts. This development of new concepts mainly applies to
applying transformation rules that contain variability themselves to product lines
in Chapter 13. Finally, in the Conclusion sections of the single chapters and the
overall conclusion in Chapter 17, we discuss and summarize the new knowledge
gained at developing and evaluating the artifacts.

20 1 Introduction

Research rigor: The design science research approach requires developing the
artifacts and their evaluation to be performed with rigor to ensure the obtained
results’ validity. An essential key part is the effective use of theoretical founda-
tions and researchmethodologies. Also, implications on the domain or a concrete
application of the artifacts are essential.
When developing the artifacts presented in this thesis, we strictly followed the
design science research approach. Where ever possible, we built upon existing
foundational works. We only came up with new foundational extensions if the
existing foundations were not sufficient for solving the problem in terms of
innovative reuse of foundational works. We critically discuss our solution, its
evaluation, and our implications in every chapter’s Threats to Validity sections.
We oriented all implications on our application scenario and tailored these to be
as realistic as possible.

Design as a search process: In design science, problems are usually solved in an
iterative process of developing a solution, evaluating it, and optimizing the solu-
tion based on the evaluation. Often, a problem is studied first in a simplified
version that iteratively gets more realistic.
Throughout the whole research process, we followed this iterative approach.
However, in this thesis, we only show the final results of the process. However,
this thesis is still structured along with our division of the overall problem into
sub-problems, their independent solution, and finally, the integration to an overall
solution. This solution is a satisfactory solution for the identified problem. How-
ever, in additional iterations, the generalization, performance, or covered scope
could be extended.We explicitly discuss possible future iterations in Chapter 17.

Communication of research: The presentation of the performed research plays
the final essential role in the design science research approach. Based on the
presentation of the research technology-oriented audiences should be able to
reproduce the results obtained and management-oriented audiences should be
able to apply the developed solutions to an organizational context.
This thesis builds themain presentation of the conducted research.However,most
parts of the research have already been communicated tomainly the scientific but
also business community in peer-reviewed conferences and journal publications.
[207] lists the preliminary publications supporting this thesis. Also, all developed
artifacts and evaluation data are publicly accessible on GitHub3 to replicate the
research.

3 gravity-tool.org

http://gravity-tool.org

1.5 Outline 21

1.5 Outline

This thesis is structured into parts that contain coherent topics of this thesis. In what
follows, we outline the structure of the thesis and the contributions presented in the
single chapters.

Prologue: This introduction is part of the prologue of this thesis. In the prologue
we introduce the relevant background for reading this thesis and outline the
presented approach.

• In Chapter 2, we introduce the iTrust electronics health care system used as
a running example throughout this thesis.

• In Chapter 3, we discuss the state-of-the-art for the development and mainte-
nance of secure software systems. Thereby, we also introduce the background
common to all other chapters of this thesis.

• In Chapter 4, we demonstrate how the GRaViTY approach proposed in this
thesis works from a developer’s perspective. Thereby, we also show how it
is supposed to integrate with common development practices introduced in
Chapter 3.

Tracing: For the development of secure software systems, tracing is an important
concept. In this part of the thesis, focuses on continuous tracing among a software
system’s artifacts.

• In Chapter 5, we introduce our program model for representing the imple-
mentation of a software system. This program model will be used by us to
specify and apply implementation-level security checks and refactorings.

• In Chapter 6, we discuss the automated synchronization of design-time mod-
els, the implementation, and our program model. By applying the introduced
synchronization, a correspondence model is built. Combined with the UML
inheritance mechanism, we show how this can be used for tracing security
throughout the whole development process of a software system.

• In Chapter 7, we discuss how our approach can be applied to legacy projects.
First, by reverse-engineering design-time models from the implementation,
and second, by restoring trace links between existing models and the imple-
mentation.

22 1 Introduction

Security: In this part,we focus on security checks and security compliance through-
out the software life cycle.

• In Chapter 8, we discuss how to statically verify a implementation’s com-
pliance with design-time security requirements. Moreover, we outline how
we can generate additional benefits from tracing design-time security require-
ments into the implementation. Finally, we discuss in this chapter howwe can
specify security checks using formal mechanisms and how to incrementally
check for security compliance after changes.

• In Chapter 9, we investigate how design-time security requirements can be
enforced at run-time and how the design-time models can be adapted based
on observations at run-time for investigating security violations.

Maintenance: For successful development of a software system on the long term,
maintenance is an essential part of the development. In this part of the thesis, we
focus on a software system’s maintenance.

• In Chapter 10, we discuss how object-oriented refactorings can be specified
on a formal basis and how our synchronization approach can be leveraged for
actually executing the refactorings specified in the aforementioned way. In
addition, we investigate the interaction of refactorings with security require-
ments and howwe can specify security-preserving conditions for refactorings.

Variants: In this part, we focus on model-based security engineering and mainte-
nance on variant-rich software systems.

• In Chapter 11, we introduce how variability can be specified throughout
variant-rich software systems, including variability on design-time UML
models, the implementation, and the program model.

• In Chapter 12 we discuss how we can efficiently verify the security of such
UML model product lines.

• In Chapter 13 we introduce an approach for applying the security checks
introduced in Chapter 8 and the refactorings from Chapter 10 to software
product lines.

1.5 Outline 23

Tool Support and Application: In this part, we introduce integrated tool support
for the model-based development and maintenance of secure software systems.

• In Chapter 14, we demonstrate how the single parts of our tool prototype,
introduced throughout this thesis, integrate with each other.

• In Chapter 15, we discuss the application of GRaViTY to the iTrust running
example as well as the Eclipse Secure Storage as a second subject system.

Epilogue: In this thesis’ epilogue,wediscuss relatedworks and conclude onmodel-
based security engineering covering a software system’s life cycle.

• In Chapter 16, we discuss works related to the contributions of this thesis.
• In Chapter 17, we conclude and discuss the limitations and assumptions of

our approach. Furthermore, we discuss future research directions.

2Running Example: iTrust

In many software systems, security issues can have dramatic consequences. For
example, in December 2019 a bug in a router led to 20,000 patient records being
publicly available from the Internet [44, 45]. One of the main security issues was
insufficient access control for the patient data in a management system for medical
images. There was no internal access control implemented, and everyone who was
in the network of the doctor’s office had access to all patient data. Besides, due to a
bug in the router, there were open ports in the firewall which allowed everyone on
the Internet to get into the doctor’s office network. As a consequence, everyone had
unrestricted access to all the patient data.

During the treatment of patients, lots of data is generated that has to be stored and
made available to various experts. This ranges from the notes of a doctor at an office
visit to large images, e.g., created by imaging devices such as ultrasonic sensors
or computer tomography scanners. For the management of such data, Health Care
Systems (HCS) are developed by various companies and are used everywhere from
small doctor’s offices to large hospitals. Besides the commercial systems, Aminpour
et al. reviewed the utilization of open-source implementations for the management
of Electronic Health Records (EHR) and identified 13 open-source Health Care
Systems [46], e.g., the iTrust system [47]. Throughout this thesis, we use the iTrust
system as the running example.

In what follows, we generally discuss the development process of such a Health
Care System and possible pitfalls. Afterward, we introduce the iTrust open-source
implementation of a management system for hospitals as a concrete running exam-
ple. Throughout this thesis, we use iTrust for motivating and demonstrating the
approaches we developed for answering this thesis’ research questions. For this rea-
son, in what follows, we not only introduce the development of software systems in
the medical domain and particularly the iTrust system but also discuss the relation
to the research questions.

©TheAuthor(s), under exclusive license toSpringer FachmedienWiesbadenGmbH,
part of Springer Nature 2022
S. M. Peldszus, Security Compliance in Model-driven Development of Software
Systems in Presence of Long-Term Evolution and Variants,
https://doi.org/10.1007/978-3-658-37665-9_2

25

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-658-37665-9_2&domain=pdf
https://doi.org/10.1007/978-3-658-37665-9_2

26 2 Running Example: iTrust

2.1 Development of a Medical Management System

In this section, we look at the development process of a medical management sys-
tem. For discussion purposes, we assume a fictive software company that is going
to implement a new management system for patient data. Thereby, we focus on
security-related decisions during the development process.

At first, the requirement engineers of the company collect requirements that
the software system has to meet. Besides considering classical functional and
non-functional requirements, domain-specific requirements from relevant standards
must be observed, such as IEC 62304 [7] and IEC 62366 [48] for medical device
software. Furthermore, all requirements on the software systemmust be checked for
additional security implications, e.g., by automatically recommending and includ-
ing relevant standards or measures. As the project is dealing with personal data,
implementing appropriate access control is an example of such a security-implied
requirement.

Afterward, in system design, software architects design the software system. The
software architecture created in this step has to address all captured requirements.
As a consequence, the required access control has to be reflected in the software
system’s architecture. In the above-mentioned vulnerable real-world system, access
control for preventingoutsider attackers hadbeen considered (including a routerwith
a firewall), but no access control for insider attackers had been planned. The fictive
company lost track of this security requirement at workingwith architectural models
having different abstractions. Such missing or neglected security mechanisms, as
well as flawed and insecure security mechanisms, should be automatically detected
at design time. This is a case of heuristic identification of conceptual or design
problems during development. It requires a representation that is formal enough
for automated analysis and allows software architects to connect different levels of
abstraction to allow tracing.

The next pitfall for the fictive company occurs during implementation. The com-
pany skips the implementation of a (previously required) security mechanism to
save time and effort. In addition, an inexperienced developer selects an inappro-
priate mechanism, e.g., a cryptographic hash function that is generally considered
secure but not strong enough for the hashing of medical information according to
a domain-specific standard. Automated tool support for developers, such as mon-
itoring of source code for security issues and compliance violations with security
requirements, could warn and help to prevent such security violations. If a security-
related design concept like access control has no trace to an adequate part of the
implementation, a warning can be provided to the developers. However, as such tool

2.2 The iTrust Electronics Health Records System 27

support was not available in the fictive company, the two security violations stayed
undetected and remained in the developed health care system.

Configuration of the software system is yet another important part. In addition
to internal access control, the company also implemented a limitation of accesses
per hour to harden the software system against brute force attacks. However, the
preconfigured number of accesses per hour might lead to a denial of service if the
software is usedwithout adaption to the context, e.g., a big hospital instead of a small
doctor’s office. At run-time, it has to be ensured that the security requirements are
still fulfilled, in this case concerning availability.

Also, changes in the security assumptions will occur. For example, it has been
recently shown that SHA1 has become an insecure hash algorithm due to new attack
knowledge. New requirements may also be stimulated by unexpected observations
at run-time, like several hundred access attempts from a single IP address which
leads to all accesses being blocked by the above-mentioned access limit. Requiring
dynamic IP address filters could be a decision by human experts. This representation
of technical problems and solution attempts should be retrieved in a future case with
a similar profile for informing problem analysis. While this example could be easy
to inspect using traditional log files, other security violations, e.g, due to an attack
might be harder to inspect.

Last but not least, the company started to develop custom-tailored variants for
their customers. After starting a new variant by cloning another variant a few times.
For avoidingduplicated effort, the companymerged all variants into a single software
product line from which the variants are generated. However, this exacerbated the
security problems of the company as they had to generate all variants for inspecting
them regarding security violations.

In summary, there are many pitfalls in developing a security-critical software
system, and in the scenario, we demonstrated some of them. Suitable development
approaches and tool support can help in preventing or mitigating the discussed
security issues. However, as discussed in Chapter 3, the current state-of-the-art
comeswith significant limitations. In the next section,we introduce the iTrust system
as a real-world example for a medical management system in detail.

2.2 The iTrust Electronics Health Records System

In this thesis, we present an approach for supporting developers in the model-driven
software development (MDD) of secure software systems. A suitable running exam-
ple has to provide a concrete implementation to which the approach can be applied
but also suitable documentation to create the models required by the approach. For

28 2 Running Example: iTrust

Figure 2.1 Excerpt from the use cases of iTrust

explaining our approach, we introduce the iTrust case study, realizing a software
system comparable to the one described above. The iTrust electronics health records
system is a web application for managing health data in hospitals. In the introduc-
tion of iTrust, we only focus on artifacts that have been created by its original
developers. As the iTrust system has been used as a case study in various scientific
publications [23, 49–51], additional artifacts, e.g., design-timemodels, are available.

The iTrust case study has been developed as a teaching project at the North
Carolina State University, has been continuously extended by students over 25
semesters, and is publicly available [47, 50]. The first version of iTrust has been
developed in thewinter term 2004/05 and the last version in thewinter term 2016/17.
Due to structural decay and outdated technologies, starting with the summer term of
2017 iTrust has been superseded by iTrust2. Besides the source code of the imple-
mentation, documentation of the software system’s design and requirements are
available. At the writing of this thesis, only the requirements of iTrust2 have been

2.2 The iTrust Electronics Health Records System 29

publicly accessible [52]. The requirements of the original iTrust system have been
provided to the author of this thesis by the responsible persons of iTrust1.

The requirements of the iTrust system have been specified as use case descrip-
tions. In the last version of iTrust (version 23) these requirements comprise 79 use
cases of which 36 have been implemented in iTrust version 23. Figure 2.1 shows an
excerpt from a use case diagram of the iTrust requirements. The shown use cases
are selected to give an overview of the iTrust system and focus on the parts of the
iTrust system used for explanations in this thesis.

The iTrust system comprises eleven roles of actors. In the shown use case dia-
gram, we focus on the two most important users of the system, patients and doctors.
While there is an actor role for patients in the system, doctors are represented with
different roles based on their expertise and association with patients. In the diagram,
we can see an actor representing arbitrary Health Care Personnel (HCP) such as
doctors and the role of a Licensed Health Care Professional (LHCP) that is an HCP
that has been allowed by a patient to access all of her health records. Other roles
comprise additional medical staff, administrative staff but also representatives of
official authorities.

Patients and doctors can exchange messages with each other (UC30) and can
arrange appointments (UC40) using the iTrust electronics health care system. Fur-
thermore, doctors but also patients can access the records created during the treat-
ment of a patient (UC9 and UC28). Here, the patient can only access her records
and an LHCP can access the records of the patients she has been licensed by. Reg-
ular HCPs cannot access any sensitive patient records. Any HCP can document the
examination of a patient in the system (UC11). Besides basic information, such as
the date and duration of the office visit, this can include the prescription of drugs
(UC37), the record of health records like the blood pressure (UC10), or the man-
agement of allergies (UC67). All of these actions can also be performed by an HCP
outside an office visit, e.g., during an emergency procedure. For managing allergies,
the functionality of editing health records is used.

To execute all use cases it is required that the user authenticates herself in the
system first (UC3). For the authentication, every user has a unique identifier, a
medical identification (MID) name, and a password. In the implementation of the
system, the authentication is realized as an initial login by the user. Also after
authentication, the user can change her password (UC57).

As an example for a requirement from the iTrust specification, Figure 2.2 shows
the requirement UC57 of a user changing her password. In iTrust, requirements

1 Thanks to Sarah S. Heckman from NCSU for her quick response and for sharing iTrust’s
requirements with me.

https://people.engr.ncsu.edu/sesmith5/
https://www.ncsu.edu/

30 2 Running Example: iTrust

Figure 2.2 Use case description of the iTrust use case UC57 Change password taken from
the iTrust wiki

are defined as quadruples of preconditions, main-flows, sub-flows, and alternative
flows. The preconditions state what is necessary for the use case defined in the
requirement to be executable. In UC57, there has to be an account for the user and
the user authenticated herself at the system.Most times, these preconditions contain
references to other use cases that have to be successfully executed. The main-flow
summarizes the main objective of the requirement and thereby makes use of sub-
flows and alternative flows for detailing the overall objective. In the given example,
the main flow consists out of two sub-flows. An alternative flow is used as part of the
sub-flow S2 for specifying the behavior if the new password does not meet defined
security requirements. While main flows and sub-flows can be always executed
when the preconditions are met, alternative flows are only executed under defined
conditions.

The iTrust system has been implemented as a web application in Java using Java
server pages (JSP) for the front end. The application is executed on an Apache Tom-
cat HTTP web server. Data, such as medical records or authentication information,
is stored using a MySQL database.

Listings 2.1 and 2.2 show an excerpt from the Java implementation of the use
case UC57 of a user changing her password. The main functionality of this use case
is implemented in the class ChangePasswordAction. The most relevant part
is the method changePassword, shown in Listing 2.1. This method is called by
the server pages as soon as a user submits a change password form. Thereby, the
MID of the user, the user’s old password, and twice the desired new password is
passed to the method. First, in line 13, the authentication service of iTrust is used
to authenticate the user using her MID and password. If the authentication was not

2.2 The iTrust Electronics Health Records System 31

1 package edu.ncsu . csc . i t rus t . action ;
2

3 public class ChangePasswordAction {
4

5 private AuthDAO authDAO;
6

7 public String changePassword(long mid, String oldPass , String newPass,
String confirmPass) {

8 String containsLetter = "[a−zA−Z0−9]∗[a−zA−Z]+[a−zA−Z0−9]∗" ;
9 String containsNumber = "[a−zA−Z0−9]∗[0−9]+[a−zA−Z0−9]∗" ;
10 String fiveAlphanumeric = "[a−zA−Z0−9]{5,20}" ;
11

12 / /Make sure old password is valid
13 i f (!authDAO. authenticatePassword(mid, oldPass)) {
14 return "Invalid password change submission . " ;
15 }
16

17 / /Make sure new passwords match
18 i f (!newPass. equals(confirmPass)) {
19 return "Invalid password change submission . " ;
20 }
21

22 / / Validate password. Must contain a letter , contain a number, and be
a string of 5−20 alphanumeric characters

23 i f (newPass.matches(containsLetter) && newPass.matches(containsNumber)
&& newPass.matches(fiveAlphanumeric)){

24 / /Change the password
25 authDAO. resetPassword(mid, newPass) ;
26 return "Password Changed. " ;
27 } else {
28 return "Invalid password change submission . " ;
29 }
30 }
31 }

Listing 2.1 Excerpt from the Java class ChangePasswordAction, showing the method
for changing a user’s password

successful, an error message is returned. Otherwise, it is checked if the user entered
two times the same password to prevent typing errors in the new password. Next, in
line 23 the method checks if the new password meets all security requirements, e.g.,
has a suitable length. If this is the case the password is changed using the method
resetPassword of the authentication service. The method resetPassword
creates a connection to the iTrust SQL database and changes the password there.

32 2 Running Example: iTrust

1 package edu.ncsu . csc . i t rus t .dao.mysql;
2

3 public class AuthDAO {
4 public void resetPassword(long mid, String pass) throws DBException {
5 Connection conn = null ;
6 PreparedStatement pstmt = null ;
7 try {
8 conn = factory .getConnection() ;
9 pstmt = conn. prepareStatement("UPDATE users SET password=?,

sal t=? WHEREMID=?") ;
10 String sal t = shakeSalt () ;
11 String newPassword = DigestUtils .sha256Hex(pass+sal t) ;
12 pstmt . setString (1 , newPassword) ;
13 pstmt . setString (2 , sal t) ;
14 pstmt . setLong(3 , mid) ;
15 pstmt . executeUpdate() ;
16 pstmt . close () ;
17 } catch (SQLException e) {
18 throw new DBException(e) ;
19 } finally {
20 DBUtil . closeConnection(conn, pstmt) ;
21 }
22 }
23 }

Listing 2.2 Excerpt from the Java class AuthDAO showing the method for changing a
password in iTrust’s SQL database

The detailed implementation is shown in Listing 2.2. First, in line 8, a connection to
the database is created. Next, in line 9, a statement for updating the user’s password
is prepared. The values of the SQL statement are set in lines 12 to 14. The password
is not stored in clear text but hashed with a salt. This takes place in lines 10 and 11.
In lines 15 and 16, the statement is executed and terminated and finally, in line 20,
the whole connection to the database is closed.

Figure 2.3 shows a screenshot of the welcome screen of a doctor after the authen-
tication of UC3. On the left-hand side, a navigation bar is shown, e.g., for accessing
patient information as described in UC28 or managing office visits as described
in UC11. On the right of the navigation bar, an overview of the upcoming tasks
is shown for the doctor is given. For example, this contains messages exchanged
with patients (UC30) or scheduled appointments (UC40). The top bar offers role-
independent functionalities such as the change of the user’s password (UC57).

Figure 2.4 shows a screenshot of a patient’s view on her diagnoses following the
use case UC9. For this patient, two diagnoses have been recorded. While the top bar

2.2 The iTrust Electronics Health Records System 33

Figure 2.3 Welcome view for doctors in the iTrust system

Figure 2.4 Patient view on her diagnoses in the iTrust system

34 2 Running Example: iTrust

is the same for every user of the system, the navigation bar offers entries according
to the role of the user.

2.3 Suitability of iTrust Concerning the Research
Questions

In what follows, we discuss the suitability of iTrust for serving as the running
example for this thesis. In this discussion, we focus on the suitability to motivate the
problems addressed by the thesis’ research questions and the suitability to demon-
strate the developed approaches on iTrust for answering the research questions.

RQ1: How can security requirements be traced among different system representa-
tions throughout a software system’s development process?
Because iTrust is located in the health care domain and due to the critical nature
of this domain, addressing security requirements is crucial. Following article 9 of
the General Data Protection Regulation (GDPR) [53], medical data falls into a cat-
egory for which additional security requirements apply regarding the purpose of
processing but also the secrecy of the data. These requirements make iTrust a typi-
cal software system in a security-sensitive domain. Furthermore, relevant standards,
e.g., the ISO standard IEC 62304 [7], require tracing requirements throughout the
software development. Also, the technologies used for implementing iTrust corre-
spond with the technologies this thesis’ approaches support. On the implementation
level, this technology is the Java programming language and for design-timemodels,
mainly theUML.While iTrust originally has been implemented using Java, previous
research created various design-timemodels [23, 49–51]. These design-timemodels
also include security requirements. Altogether, tracing of security requirements is
essential for iTrust, and various development artifacts are available allowing us to
demonstrate the developed approaches.

RQ2: How can we apply model-based security engineering to legacy projects that
have no or disconnected design-time models?
Formotivating the research question and demonstrating approaches for answering it,
a legacy system with two specific characteristics is required: It has been developed
without design time models, however, there are disconnected design-time mod-
els available. In this regard, iTrust fulfills both of these characteristics. As there
are no design-time models available from iTrust’s developers, we can investigate
their reverse-engineering as considered in RQ2.1 of this thesis. Furthermore, as
part of the case studies, various design-time models have been reverse-engineered

2.3 Suitability of iTrust Concerning the Research Questions 35

manually, allowing us to effectively study RQ2.2 regarding recreating correspon-
dences between these models and the implementation.

RQ3: How can developers be supported in realizing, preserving, and enforcing
design-time security requirements in software systems?
As iTrust is located in an inherent security-critical domain, security engineering
is essential for developing software systems such as iTrust. In this regard, multi-
ple previous works have investigated security engineering on single design-time
models of iTrust [49, 51, 54, 55]. However, these works were restricted to single
artifacts and mainly focus on the design-time planning of security requirements or
the adjustment of planned security requirements and measures to changes in the
security context knowledge. The enforcement of these planned or adapted security
requirements throughout the whole is currently not considered. Nevertheless, the
availability of design-time artifacts containing security requirements and changes
within these requirements allow us to effectively study and demonstrate the devel-
oped approaches for supporting developers in realizing, preserving, and enforcing
design-time security requirements in the iTrust system.

RQ4: How do changes within a software system affect its security compliance, and
how can these effects be handled?
The iTrust system has been developed over a long time and shows significant struc-
tural decay that has lead to discontinuing its development. The fact that iTrust has
been superseded by iTrust2 due to structural decay, makes it a perfect candidate
to study the maintenance and security compliance of a security-critical long-living
system as considered in this thesis. Particularly, this allows us to study the security-
preserving refactoring of iTrust, as considered in RQ4, effectively. Also, the history
of the iTrust implementation and changes in the health care domain, e.g., the release
of the GDPR, can serve as sources for security-relevant changes.

RQ5: How can we verify and preserve security compliance in variant-rich software
systems?
Considering iTrust’s deployment inmultiple hospitals, it seems reasonable that these
are likely to have different requirements on the features supported by iTrust. For
example, not every hospital is likely to provide patients with access to the iTrust
system. For this reason, it could be that the iTrust system has to be deployed with
this feature disabled. From a security perspective, it would be desirable that the
deployed system does not even contain this feature avoiding exploits utilizing parts
of the feature. Accordingly, there would be the need to create a version of iTrust that
does not contain the implementation of the use cases UC9 and UC19 and contains

36 2 Running Example: iTrust

the use cases UC30 and UC40 only for doctors. Also, customers will likely request
additional features tailored to their needs [56].

Altogether, if iTrust was developed in a commercial context, e.g., by the fictive
company used for motivation at the beginning of this chapter, it would be likely that
it evolves into a variant-rich software system. Considering iTrust as a variant-rich
software system, it has the potential to contain variants in two dimensions:

time: As iTrust has been developed over 25 semesters, multiple versions of iTrust
have been released. Each of these versions can be seen as a variant of iTrust.
Except for the first version of iTrust, none has been developed from scratch but
always based on the previous version. Accordingly, there is significant reuse
among the different versions.

space: By making specific features optional, e.g., because a feature has been tai-
lored for a specific customer, the possibility for multiple variants of iTrust
emerges. While these variants differ in detail, there is significant reuse among
them,e.g., all variants will likely contain the authentication of users as specified
in UC3 of Figure 2.1.

While variants in time are present in the iTrust system, variants in space have not
been realized. Nonetheless, as outlined there is a significant potential for variants in
space. We investigate the introduction of iTrust variants in detail when answering
RQ5 concerning model-based security engineering of variant-rich systems.

In this chapter, we outlined possible security issues in the development of
security-critical software systems such as medical management systems. As a con-
crete example for such a medical management system, we introduced the iTrust
electronics health records system. Throughout this thesis, we use iTrust to demon-
strate the presented approaches that help the fictive company to avoid stepping into
the outlined pitfalls.

3State of the Art in Secure Software Systems
Development

In the last decades, various concepts have been developed to support the develop-
ment and maintenance of secure software systems. On the level of programming
languages, concepts like Object-Orientation (OO) [57] have been introduced to
improve the structuring and reuse in programs. Those concepts have also been
reflected in modeling languages like the Unified Modeling Language (UML) [5].
On both, various kinds of security and design checks have been introduced to sup-
port developers in developing secure software systems. Also, different development
processes have been proposed to structure the development and make it projectable.
Besides, additional concepts for giving early and constant feedback to developers
have been developed to follow these processes successfully. At this point, the most
prominent one being continuous integration. While there is an overlap between all
of these concepts, these are only partly integrated. In what follows, we give a short
introduction to the enumerated concepts. Thereby, we focus on how the concepts
contribute to the development of a secure software system andwhat are yet unsolved
problems.

3.1 Object-Oriented Programming

Various programming paradigms have been developed to ease the implementation
of a software system and allow more complicated software systems. Currently, one
of the most widely used paradigms is Object-Oriented Programming (OOP). In the
monthlyTIOBE indexof themost popular programming languages, in January 2021,
8 of the top 10 languages are object-oriented programming languages [15]. Among
the considered languages, Java is the most popular object-oriented programming
language.

©TheAuthor(s), under exclusive license toSpringer FachmedienWiesbadenGmbH,
part of Springer Nature 2022
S. M. Peldszus, Security Compliance in Model-driven Development of Software
Systems in Presence of Long-Term Evolution and Variants,
https://doi.org/10.1007/978-3-658-37665-9_3

37

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-658-37665-9_3&domain=pdf
https://doi.org/10.1007/978-3-658-37665-9_3

38 3 State of the Art in Secure Software Systems Development

The key idea of OO is the encapsulation of data and functionality [58]. Objects
internally store data and communicate with each other through messages. Usually,
fields of objects represent data and methods the functionality realized by the object.
The invocations of methods realize the messaging between objects.

The object-oriented programming paradigm is an essential milestone towards
improved program modularity and maintainability. Object-oriented programming
concepts allow enforcing essential program/data structures, e.g., through design
patterns [16]. Objects should comprise coherent functionality and can therefore be
maintained independently and be reused in different contexts. However, in practice,
especially when no detailed architecture has been defined upfront, design patterns
are likely to be overused. Still aiming at designing a perfectly structured software
system, developers can tend to compensate by locally over-engineering the software
system leading to architectures hard to maintain. In contrast to this, OO-designs can
also quickly get inextensible if patterns are underused. Object orientation often leads
to complicated structures that might affect maintainability and security enforcement
due to the manifold structuring possibilities that come with object-orientation. In
general, it is likely to get more security issues the more complex a software system
gets [59].

While the encapsulation of data and functionality was initially not thought of
as a security concept [58], one could think about using an object’s methods to
add a security layer around the state or data of the object [60]. However, as in many
programming languages encapsulation is notmeant as a security feature, suchmech-
anisms can be easily bypassed at run-time. For example, in the Java programming
language one can use Java reflection to dynamically change the accessibility of
members [61].

In general, object-orientation added language constructs to many languages that
are not statically analyzable. One example is the polymorphism of objects, which
is the possibility to use a child type in its parents’ context. Together with constructs
like dynamic class loading, we cannot foresee all possible objects implementing an
invoked method [61]. If we have security assumptions on this invoked method, we
cannot guarantee them statically. Such constructs give rise to new kinds of attacks
such as object-hijacks where attackers generate new instances of objects, avoiding
their proper initialization [59].

To summarize, in principle, object orientation allows the efficient creation and
maintenance of large software systems. However, abuse or misuse of the object-
oriented paradigm quickly leads to even more complicated and vulnerable software
systems.

3.3 Model-driven Software Development 39

3.2 Restructuring and Adaption

Nowadays, practices in object-oriented programming incorporate consecutive
steps of edits, updates, refinements, and other enhancements at the source code
level for incrementally improving a program under development and to meet ever-
changing requirements. In other words, programs consecutively evolve through-
out their entire life-cycle. This evolution lies at the very core of modern software
engineering [12, 13].

However, continuous evolution also means that programs are prone to internal
decay due to the often ad-hoc nature of program edits which may cause software
systems to arrive at incomprehensible or even inconsistent states eventually. To
describe this effect, Parnas coined the term Software Aging [13]. In this regard,
refactoring has been proposed as a countermeasure for the negative consequences
of software evolution [17, 18]. Refactorings are behavior-preserving restructurings,
usually, specified in a human-readable form.

Program refactoring aims at high-level restructurings of OO programs at the
class–field–method level to fit previously defined structural patterns without alter-
ing the observable behavior. Most recent implementations usually rely on precondi-
tion-based program transformation rules directly applied to the program’s abstract
syntax tree (AST) [62]. Nevertheless, the complex nature of those rules, including
an interplay between syntactic pattern matching at AST level and semantic con-
straint checking of properties that crosscut the AST, still makes refactorings prone
to produce erroneous results potentially [63]. Although the problem of correctly
specifying and executing refactorings for OO languages like Java has been exten-
sively studied [62–71], a comprehensive and generally accepted OO refactoring
theory is still an open issue.

Also, the effect of refactorings on non-functional aspects such as security is
often neglected. While there are approaches for checking if a specific refactoring
would change the observable behavior [69], such guarantees are often not given for
security.

3.3 Model-driven Software Development

As OO programs require easy to extend and maintain structures, software archi-
tecture got an even more essential role than ever before. A common approach for
structured development and documentation of software systems is Model-driven
Software Development (MDD) [72], in which models are used in each development
step. Models specified using the Unified Modeling Language (UML), are common

40 3 State of the Art in Secure Software Systems Development

Figure 3.1 Artifacts used in model-driven software development

Figure 3.2 Excerpt of a domain model for hospitals based on the model presented in [78]

for the specification of software systems and can also be used in security analy-
ses. For instance, the UMLsec approach, introduced in detail later in this section,
defines a UML profile allowing developers to annotate UML models with security
requirements and check their conciseness statically [73, 74].

A paradigm in which the role of models is even more emphasized is Model-
based Software Development (MBSD). In MBSD, all details of the software system
are expressed in models. The final running software system is generated from the
models, or the models are executed at run-time [75].

In this work, we build upon the concept of model-driven software develop-
ment [76]. Usually, models are iteratively refined until these reach an abstraction
that allows an implementation of the architecture expressed by the models. In what
follows, to give an overview of MDD, we will present different views on the iTrust
case study following the classical MDD process. MDD allows developers to specify
the software system and its properties on a higher level of abstraction than the source
code level [8]. While MDD can cover many kinds of models, we focus on UML
models [5]. Often, UML models with three different levels of abstraction [77] are
used, as explained in what follows. Figure 3.1 shows the refinement hierarchy of
the model kinds currently considered by us from the most abstract model at the left
to the final implementation at the right.

3.3 Model-driven Software Development 41

3.3.1 DomainModel

The most abstract model is a domain model, specifying general properties of the
domain in that the software system to develop is located [77]. Domain models are
used in the earliest phases of software development to capture the general properties
of a software system’s domain. Often, domainmodels are specified usingUMLclass
diagrams to show common relations for all kinds of software systems placed in the
domain.

Figure 3.2 shows an excerpt of a domain model for hospitals. In hospitals, two
kinds of people play a central role, patients, and doctors who treat the patients. Both
have a name and homeAddress. Usually, a list of allergies is stored for
patients and a list of the doctor’s specialties. A doctor can examine a patient
in an Examination and create a Diagnose as part of such examinations.

When developers implement a software system for a hospital, e.g., like iTrust [47]
for online management of patient data, they have to support the concepts captured
in the domain model.

3.3.2 DesignModel

After the specification of the domain model, the domain elements realized in the
software are concretized in design models. Design models specify the design of the
software system and how the functionality is distributed among the software system,
e.g., by structuring the software system into components. Thereby, the foundation of
an easily maintainable software system is set by the appropriate use of well-known
design patterns [16]. The design model’s definition is the first point where we have
to start to continuously use design and security analyses to ensure the software
system’s maintainability and security as early as possible.

Figure 3.3 shows an excerpt of a design model for iTrust, based on a UML
model reverse-engineered by Bürger et al. [51]. In this model, different controls are
specified for using the iTrust platform, e.g., a login control, a control for documenting
an office visit or for entering a diagnosis, as well as a more detailed data structure
than in the domain model.

The different controls specify essential actions that can be performed, e.g., the
option to reset the password in the login window. For a login of a user, the system
needs the user information to identify and legitimate the user. For this purpose, the
LogInControl accesses the data available in the User-object given to it.

42 3 State of the Art in Secure Software Systems Development

Figure 3.3 Excerpt of a design model for iTrust based on [51]

This model details the data used by the system. For example, the classes User
and Patient can be seen as more concrete instances of the classes Person and
Patient from the domainmodel in Figure 3.2. For example, on thePerson class,
it is explicitly specified that the homeAddress attribute, already known from the
domain model, is derived from other attributes.

However, models with different abstractions are often created separately, leading
only to implicit inheritance relations. For example, assuming that we semantically
have a generalization, there should be an explicit inheritance relationship between
the User in the design model and the Person in the domain model. Without
explicitly capturing such relations, these are likely to be overseen and might result
in errors.

3.3.3 ImplementationModel

The precise functionalities of the planned software system are specified in an imple-
mentationmodel. The implementationmodel is usually the first platform-dependent
model and contains information about the deployment or languages used to imple-
ment the software system. The implementationmodel can directly be executed, used
for code generation, implemented manually, or a combination of all.

3.3 Model-driven Software Development 43

Figure 3.4 shows an excerpt of an implementation model showing how the
iTrust platform could be developed in a hospital. The shown model is based on
an implementation model created by the administrators of two hospitals as part of
the VisiOn EU project [79]. We adapted the original model to support the iTrust
system. The VisiOn EU project’s goal was to create a platform for visual privacy
management [80]. For the evaluation of the developed platform, the project included
public administrations and private companies.

Inside the hospital, two servers are operated, one running the iTrust application
and one running a database as well as an authentication service. Doctors access the
iTrust system from the hospital’s local network. Patients can get access to their data
from the outside but have to authenticate themselves at the hospital’s authentication
service.

In our approach,we assume the singlemodels shown inFigure 3.1 to be iteratively
refined by developers until they reach a concrete implementation of the system.
While it is a common approach to create UML models with different abstractions
iteratively, these are often not connected explicitly, hindering the reuse of security-
related information. The missing connection is likely to give rise to divergences
between the models but also their implementation. These divergences can occur
due to two reasons. First, they might already be introduced when a new model is
created. Second, divergences manifest due to missing or wrong co-evolution after
changes on one of the models.

Figure 3.4 Excerpt of an implementation Model for iTrust based on the pilots of the VisiOn
EU Project [79]

44 3 State of the Art in Secure Software Systems Development

3.4 Development Processes

For the successful development of larger software systems, different development
processes have been introduced. Currently, these development processes are mainly
discussed regarding the structure of the flow through the development. On the one
side, there are the classic sequential development processes with a strict order of
development tasks. On the other side, the newer agile development processes focus
on many fast iterations.

3.4.1 Sequential Software Development

Sequential development models comprise many well-known development pro-
cesses. Among the most prominent processes are the waterfall model [81, 82] and
the V-model [83]. The German government requires their version of the V-model for
all of their software projects [84]. Furthermore, this development process is widely
used to develop medical software [85]. Concerning these facts, the V-model is cur-
rently one of the most used development models. For this reason, in this section, we
focus on the V-model.

Common to all sequential development processes is that the single development
activities are performed in a sequential order defined by the process. For an enhanced
version of theV-model that contains error handling, we show this order in Figure 3.5.
Solid arrows depict the sequence of development steps considered in the process
and dotted arrows to which step one has to return if an error is spotted. In general,
the V-model is separated into two parts. First, on the left side of the V-model,
the development of the software system. Second, on the right side, testing steps
corresponding with the development steps from the left.

The execution of the development process starts on the top left of the V-model
with requirements engineering, goes over the system-architecture specification, the
system design, the software architecture, down to the concrete implementation of
the software system at software design. If any error is spotted during the execution
of a lower part of the development process, one has to go sequentially upwards to the
step in which the error was made, fix it there, and then propagate the fix sequentially
downward.

After the software system has been implemented, the software system’s realiza-
tion is sequentially tested by going upward on the right side of theV-model. Thereby,
we first have very fine-grained unit tests at the beginning and coarse-grained accep-
tance tests at the end. If the acceptance tests are passed, the software system is
deployed and goes into maintenance. If any test resolves an error, this error has to

3.4 Development Processes 45

Figure 3.5 Concept of the V-model development process

be fixed in the development step corresponding to the test step in which the error
was observed. For example, if we detect an error in an integration test, we have
to start from the system-design step for fixing this error and start the development
process from there again.

The design-time models considered at MDD perfectly fit the V-model steps and
are classically developed following this process. First, the domain model is usually
created in the requirements engineering step. Different versions of the systemmodel
are usually specified in the system architecture and system design steps. However,
partly developers also tend to create a very detailed system model in the software-
architecture step. The detailed implementation model is usually specified in the
software-architecture step and software-design step.

One fundamental assumption of sequential development processes is that going
to the next steps is only allowed after the current step has been completed. In the
original V-model, even the error handling contained in our version is not included.
Nevertheless, in practice, it is often infeasible to strictly follow this process. Among
others, reasons for this are changing requirements, e.g., new functions wished by
customers or changes in the security context knowledge that have to be addressed.
It is often very challenging to predict the requirements on the models to be created
in the current steps later steps might have. This challenging prediction tends to lead
to complex architectures to avoid getting stuck in later steps. Also, it is essential
to detect problems, e.g., possible security issues, early for the success of software
systems developed using sequential software development processes.

46 3 State of the Art in Secure Software Systems Development

3.4.2 Agile Software Development

To overcome the inflexibility of traditional sequential development processes, agile
development processes have been proposed. The key idea of such development pro-
cesses includes many and fast iterations instead of finishing a specific step before
going to the next step [86]. This iterativeway allows reacting to changes at the begin-
ningof each iterationquickly.Oneof themost prominent agile software development
processes is Scrum [87].

In Scrum, all requirements on the software system are collected in a Product
Backlog. Based on the product backlog, a development goal is defined that can be
reached with 2 to 4 weeks. The phase of reaching this goal is called a Sprint. During
a Sprint, developers synchronize daily following strict communication rules. At the
end of a Sprint, the developers assess together with the customers whether a Sprint’s
goal has been reached or not. Also, they assess what can be improved for future
Sprints. After a Sprint, the subsequent development goal is defined based on the
Product Backlog. Thereby, it is explicitly intended that the Product Backlog can
change, e.g., due to the customer’s new needs. Work continues this way until all
requirements in the Product Backlog are fulfilled.

For working with Scrum, specific roles are defined for developers, customers,
and management participating in the development of a software system [88]:

Product-Owner: A person only dedicated to communicating with the customers
and collecting their requirements in the Product Backlog.

Team: A group of not more than 10 developers with different expertise required
for successfully implementing a Sprint goal.

Scrum-Master: A person that organizes the developers and enforces the adoption
of the Scrum rules within a team.

While, e.g., for many certifications, no specific development process is required,
often artifacts that are usually created during MDD, are required for certification.
Accordingly, the question is if it is possible to work with Scrum or other agile
methods compliantly. Here, often the assumption is that Scrum only focuses on the
ProductBacklog and code.However, during aSprint, any artifact required by a stake-
holder can be created. These artifacts explicitly also include models, e.g., required
for documentation or certification purposes. In contrast to sequential development
approaches, all models will iteratively grow [89], and in this iterative process lies a
considerable risk of inconsistency.

Scrum has been shown to be more efficient in adapting customer’s needs than
sequential development approaches due to the many fast iterations in rather small

3.5 (Security-)Compliance & Certifications 47

software systems [90]. Here, an often asked question is whether this also works for
the development of large software systems. While a team of developers is small in
Scrum to ensure efficient communication, it is explicitly considered that multiple
teams can work in parallel. However, this even increases the challenge of integrating
the work and keeping all artifacts consistent.

All in all, the main challenge for applying Scrum or other agile development
approaches to software systems that require design-time models lies in the iterative
way these will be developed.

Development processes aim at structuring the development of software systems
for the successful development of software systems. Independent of the concrete
used development process, keeping all artifacts consistent is an inherent challenge.
However, this threat mainly impacts agile processes. While in sequential processes
changes always occur on a specific artifact at a time and simple propagation rules can
be used, in agile processes, all artifacts can be changed at any time. Also, detecting
problems early is essential for the successful development of a software system.
Here, agile processes can benefit from the many fast iterations but the detection of
problems is still challenging.

3.5 (Security-)Compliance & Certifications

For showing that a software system is secure, compliance is an important term. In
this thesis,we consider compliance in twodifferent contexts. First, there is the imple-
mented software system’s compliancewith its documentation and specification, e.g.,
the design-time models. This compliance is essential for successfully implement-
ing, extending, and maintaining a software system. Usually, this compliance is a
prerequisite for second context. This second context is compliance with legal obli-
gations, e.g., security obligations derived from the GDPR. For this purpose, various
standards and certifications have been developed. Such certification can show that a
software system is compliant with a specific standard and be required for a software
system to be released. For the development of secure software, various standards
and certifications have been developed for verifying the security compliance of a
software system.

3.5.1 Architecture Compliance Checking

Identifying the differences and equivalences between the planned and the imple-
mented software architecture is the goal of architecture compliance checking. The

48 3 State of the Art in Secure Software Systems Development

compliance checks can be based on a static set of rules [91], dynamic monitoring
of a running software system [92], or a hybrid of both [93]. Considering the model-
based development of a software system, one can statically check the compliance
of a software system’s implementation with its design-level models. Generally, run-
ning compliance checks reveals the relations between a set of components from two
models. In the end, such a compliance check is based on an analysis of observed cor-
respondences between the design-timemodels and their implementation. In general,
the outcome of an architectural compliance check includes three types of relations.

Convergence: A compliance check reveals an expected relationship among the
implemented components. Convergence indicates that the implementation or a
part of the implementation is compliant with the planned architecture.

Divergence: Divergence means that a compliance check reveals an unauthorized
relation between the implemented components. In other words, the implemen-
tation diverges, and therefore, is not compliant with the planned architecture.

Absence: The compliance checks reveal a relation among design-level components
that were not implemented. For this reason, a compliance violation is shown.

While it is easy to specify compliance in general, this gets more complicated when it
comes to compliance amongmodelswith different abstractions.Concerning this, it is
important to understand,what is the allowed degree of divergence due to the different
abstraction and what is forbidden divergence. Furthermore, the next challenge is
executing a compliance check and, in the best case, employing appropriate tool
support for this compliance check.

3.5.2 Software Reviews and Audits

A common practice for the development of security- or safety-critical software sys-
tem are reviews and audits. The IEEE Standard 1028-2008 for Software Reviews
and Audits defines five types of software reviews and audits as well as how to per-
form these [94]. While a review usually targets the continuous internal evaluation
of a software system, e.g., regarding security or quality criteria, and aims at improv-
ing the software system under development, an audit usually targets checking the
compliance with some standard by a third party.

Software reviews and audits are usually performed in a systematicmanual inspec-
tion of the implementation of the software system as well as its documentation.
Accordingly, it involves a huge manual effort, making reviews and audits expen-
sive. Furthermore, for effective reviews and audits specially trained experts are

3.5 (Security-)Compliance & Certifications 49

needed. Nevertheless, it has been shown that code reviews can lead to an improved
quality of a software system and fewer errors [95].

While the considered review techniques are very formal, there are approaches to
incorporate less formal reviews into every day’s development activities for getting
benefits of software reviews at a lower cost [96]. However, such reviews tend to
focus on small defects that could also be detected automatically at a lower cost.
Improved tool support could improve both traditional, structured software reviews
as well as modern lightweight reviews.

3.5.3 Standards and Certifications

Usually, whenwe develop a software system for security- or safety-critical domains,
we have to follow standards for being allowed to bring our product to market.
These standards usually describe requireddevelopment process steps, such as quality
control, which we have to follow, and artifacts we have to deliver. By doing so, a
standard should be achieved that prevents users of our software system from harm.
Considering the iTrust example, in what follows, we will look into two relevant
standards in detail. First, the ISO standard for developing medical device software,
and second, the Common Criteria for Information Technology Security Evaluation
(CC) as a widely used standard for security certifications.

ISO/IEC 62304:Medical Device Software – Software Life Cycle
Processes
Formedical device software, the ISO standard IEC 62304 specifies requirements for
the development and maintenance of medical device software and which artifacts
have to be delivered [7]. Thereby, a piece of software itself can also constitute a
medical device. While the iTrust system itself does not consist out of hardware, its
primary function is to plan and manage health data. The iTrust system has to be
considered as a medical device since one of its purposes is to collect and analyze
patient data collected from other medical devices and therefore has an immediate
impact on the treatment of patients. What exactly has to be considered as a med-
ical device and has to be developed following IEC 62304 is regulated in national
laws [97].

Generally, the implementation of quality management, risk management, and a
software safety classification is required by the standard when developing medical
device software. Thereby, risk management explicitly includes software security.
Furthermore, for the development of medical device software, the standard requires
five different development activities:

50 3 State of the Art in Secure Software Systems Development

Table 3.1 Required documentation artifacts for medical device software following IEC
62304 (×: Required Artifact)

Software Documentation
Artifact

Medical Device Classification

Class A Class B Class C

Development Planning × × ×
Requirements Analysis × × ×
Architectural Design × ×
Detailed Design ×
Unit Implementation × × ×
Unit Verification × ×
Integration & Integration Testing × ×
System Testing × × ×
Release × × ×

Software development: In the standard, the development is oriented on classical
development processes. Activities like requirements engineering, software archi-
tecture, implementation, testing, and deployment are required but do not have to
be executed following a specific development process.

Software maintenance: The maintenance of medical device software must be
planned explicitly and not be performed in an ad-hoc manner. Before any
changes, a problem and possible solutions have to be analyzed before realiz-
ing them.

Software risk management: The management of risks plays an essential role, as
medical device softwaremight cause serious harm to its users. Possible hazardous
situations have to be explicitly analyzed, measures to be chosen and verified. In
this thesis, we will only focus on security in this context. This analysis explicitly
includes the risks caused by software changes. In principle, the security and
reliability of medical device software should be achieved throughout software
quality aspects, e.g., as defined in the ISO 25000 [98].

Software configuration management: Possible configurations of the medical
device software have to be explicitly identified and controlled, e.g., different
versions of the software system or possible configuration file values. While con-
figuration might be considered partly in this thesis in terms of deployment in the
implementation models, we will not focus on this.

3.5 (Security-)Compliance & Certifications 51

Software problem resolution: At the development of any software system, usu-
ally, problems are faced that have to be documented, assigned to someone, solved,
and their solution has to be verified and documented. For the development of
medical device software, there is a specific process only focusing on this task.
However, there are already reasonable solutions available for providing tool sup-
port in practice, e.g., various issue trackers [99, 100].

When developing medical device software, specific development artifacts have to
be developed and delivered. Table 3.1 lists the development artifacts required by
the IEC 62304. Thereby, the standard differentiates between medical devices with
different classifications. In the medical domain, device software is classified into
three categories based on the potential to harm people:

Class A: No injury or damage to health is possible.
Class B: Non-serious injury is possible.
Class C: Death or serious injury is possible.

Please note that there is also a classification of themedical devices themselves (Class
I to III) that is independent of the software classification related to the medical
device [97].

When looking at the required artifacts inTable 3.1,wenotice thesewidely overlap
with the artifacts considered atMDD.The sameapplies to the development processes
that have to be performed for being compliant with IEC 62304 and the steps of the
V-model. While the standard is clearly oriented on a development process similar to
the V-model and using MDD, the standard does not require a specific development
process. As long as quality management, risk management, and safety classification
are performed, and the required artifacts are delivered, any development process
can be used to develop medical device software. However, agile processes have a
massive challenge in keeping all artifacts that have to be delivered consistent and
compliantwith each other. Also, riskmanagement is a considerable challenge for the
development of medical device software. For security risks, the Common Criteria
for Information Technology Security Evaluation consider this challenge in more
detail and are often applied to medical device software.

Common Criteria for Information Technology Security Evaluation
One of themost widely adopted security standards is the CommonCriteria for Infor-
mation Technology Security Evaluation, often referred to only as Common Criteria

52 3 State of the Art in Secure Software Systems Development

(CC) [101]. The CC has been released as the ISO/IEC 15408 standard. The CC is
meant to specify the security functional requirements (SFR) and security assurance
requirements (SAR) on a software system and to verify if a software system com-
plies with these requirements. For both, the CC provides recommendations that can
be adapted to the specific software system.

Security Functional Requirements (SFR): SFRs specify concrete security func-
tions the software system should implement. To guide the selection of necessary
security functional requirements, the CC provides Protection Profiles that define
security requirements for typical classes of devices. Thereby, a software system
can be certified against one or more protection profiles. The specific security
requirements that have to be implemented are captured as Security Targets.

Security Assurance Requirements (SAR): The CC provides a set of measures
that should be considered to develop a secure software system to assure compli-
ance with the security functional requirements. Thereby, SARs are assigned to
protection profiles and security targets. Which amount of and to which depth the
development has to be checked using SARs for showing the compliance with
protection profiles is specified in Evaluation Assurance Levels of the CC.

In practice, the CCmainly specifies which processes, e.g., a security threat analysis,
have to be performed and how these have to be documented. TheCCdoes not specify
specific security features that have to be implemented and verified for the software
system to be secure [102]. However, this does not mean that security check results
do not have to be delivered for certification but these are not inspected in detail as
part of the certification. TheCC focuses onwhether such approaches are used during
a software systems development and these reports indicate this. In conclusion, the
CC is focused on security planning and documentation but not on verifying the
implemented security mechanisms in a software system.

To generally summarize on state of the art for standards and certifications, many
artifacts required in standards or certifications are tailored to these sequential devel-
opment processes. However, none of these explicitly requires such a sequential
development process. Nevertheless, there is a considerable challenge in preserv-
ing the consistency of the required artifacts during development. Here, vast parts
of reviews or certifications are performed purely manually. One of the main chal-
lenges where tool support could help make these more efficient is the propagation
of security knowledge between the different artifacts and automated verification by
security checks.

3.6 Security Checks 53

3.6 Security Checks

Certifications, e.g., according to Common Criteria (CC) [101], play an essential role
in ensuring the security of software systems. Usually, design specifications and test
results have to be provided for the certification or a software audit. Which artifacts
have to be provided depends on the assurance level of CC or other domain-specific
standards, e.g., ISO/IEC 62304 for medical device software [7]. The certification
is usually performed manually, and incremental re-certification or revocation is
currently not supported in case of changed security context knowledge.

3.6.1 UMLsec Security Checks

Following the paradigm of security by design [28], security should be considered
from the very beginning of the development of a software system as a first-class
citizen. As a consequence, also, requirements engineering must address security
requirements, which arise from three interacting dimensions: threats, security goals,
and system design [103]. In this regard, UMLsec provides a UML profile for anno-
tating UMLmodels with security requirements and various checks for checking the
consistency of those security requirements. In what follows, we introduce two of
those checks that are particularly interesting for the design of a secure system, as
they cover the security requirements of data on both the logical and physical levels
of the software system: Secure Dependency and Secure Links.

Based on a variety of provided stereotypes, UMLsec supports various secu-
rity checks, including the analysis of security policies, secure information flow,
and secure communication in protocols. Stereotypes are one of the three extension
mechanisms of UML and allow extension with domain-specific language elements.
Such an extension can then be used to annotate UMLmodel elements with those [5].
Similar to classifiers, stereotypes can have properties, which are called tagged val-
ues. UMLsec operates at the level of class diagrams, deployment diagrams, activity
diagrams, sequence diagrams, and component diagrams. In the past, UMLsec has
been practically applied for security analyses in diverse contexts such as protocol
engineering [104], distributed information systems [105], and mobile communica-
tions [106].

Secure Dependency
UMLsec’s Secure Dependency is a check concerning the static structure of the
software system. It ensures that call- and send-dependencies between objects respect

54 3 State of the Art in Secure Software Systems Development

the security requirements on the data that may be communicated along with them.
Secure Dependency can be thought of as a contract between calling and called
objects. In the end, applying Secure Dependency results in structuring the software
system into security levels, e.g., regarding secrecy or integrity.

The following definition adapted from [73] addresses secrecy; the integrity case is
entirely analogous.We assume that objects have a set of members, that is, operations
and properties, and a list of secrecy-stereotyped members, as can be specified using
tagged values of the «critical» stereotype. To be more precise, every Class or
Component in a UML diagram can be stereotyped with «critical» and the set
of secrecy-stereotyped members is given as a list of signatures in the tagged value
secrecy.

Definition 1 (Secure Dependency) A subsystem fulfills secure dependency iff for
all«call»or«send»dependencies d fromanobjectC to anobject S the following
conditions hold:

(i) for all s ∈ S.members: s ∈ C .secrecy ⇔ s ∈ S.secrecy,
(ii) for all s ∈ S.members: s ∈ C .secrecy ⇒ d is stereotyped «secrecy», where

s refers to the signature of a member.

For instance, for the class diagram in Figure 3.6, showing an excerpt of Figure 3.3,
secure dependency is not fulfilled: The class User specifies secrecy for the signa-
ture homeAddress:Address. However, since LoginControl does not spec-
ify secrecy for homeAddress:Address as well, and the «call»-dependency
relating the two classes does not contain the «secrecy» stereotype, properties (i)
and (ii) are violated.

Using CARiSMA1, the tool support of UMLsec, security experts can find such
violations against the application’s structuring into security levels. The concrete
violation of the example can be mitigated by removing the violating dependencies
or by adding the LoginControl to the security level of secrecy for the violated
security level of a member.

UMLsec secure dependency does not only allowus to detect such violations in the
planned design but also to recognize bad design decisions. For example, for the class
User considered above, we will likely get many dependencies like the one from
LoginControl. For each of these dependencies,we have to consider starting from
design-time until run-time the guaranties for classified properties and operations.
This will not only dramatically increase the annotations needed by UMLsec but

1 http://carisma.umlsec.de/

http://carisma.umlsec.de/

3.6 Security Checks 55

Figure 3.6 Application of the UMLsec Secure Dependency stereotypes to iTrust’s design
model

especially increase the effort needed for considering these in the upcoming phases
and verifying compliance with them. Accordingly, the probability of not being
compliant and creating a weakness will rise.

For this reason, requiring a tremendous amount of security annotations can also
indicate problems. In the considered class diagram, it is unlikely that the Login-
Control requires the property homeAddress:Address of the class Person
for its functionality, but theoretically, has access to this property. Accordingly, we
have to provide the security guarantees required to ensure the security of this poten-
tial access. If the same holds for other classes, it is a good idea to extract the
security-critical properties in a separate class that provides high protection and is
only accessed by entities that need access to the classified properties as part of their
planned functionality. By doing so, we can reduce the amount of security-critical
dependencies and already at design-time, start improving the software system’s
security.

Secure Links
Secure Links is a check concerning the physical deployment of a software system.
It analyses whether the network of nodes with their communication paths respects
the user-specified security requirements concerning a given attacker model.

The check is formulated relative to a given attacker type, such as default or insider
attackers, with distinct capabilities of compromising the software system [6]. In
Table 3.2, we show the attacker model considered in this thesis. For each pair of an
attacker and a kind of communication path, a set of threats is specified. This section
focuses on the threats posed by the default attacker, which represents an outsider
adversary with modest capability. This kind of attacker can read,modify, and delete

56 3 State of the Art in Secure Software Systems Development

messages sent over a plain Internet connection, whereas in the case of an encrypted
connection, this attacker can only delete messages, e.g., using a fake GSM base
station to interrupt the connection between iTrust and the mobile device. However,
a default attackerwould not be able to read the plain textmessages or insertmessages
encrypted with the correct key. Of course, this assumes that the encryption is set
up in a way such that the adversary does not get hold of the secret key. The default
attacker is assumed not to have direct access to the local area network (LAN) and,
therefore, not to be able to eavesdrop on those connections nor on wires connecting
security-critical devices, e.g. a smart-card reader allowing doctors to authenticate
using their health professional card.

We recapitulate a definition of Secure Links for the security requirement
«integrity» of UMLsec [73]. A corresponding definition for the security
requirement «secrecy» is obtained by replacing the considered threat with read.

Definition 2 (Secure Links) A subsystem fulfills Secure Links iff for all
«integrity» dependencies d between objects on different nodes n,m, ∃ com-
munication path p between n and m with a stereotype s s.t. wri te /∈ Threats(s),
where Threats(s) is a set of threats posed by an outside attacker to s-stereotyped
communication paths.

Table 3.2 UMLsec Secure Links attacker model

default attacker insider attacker
read write delete read write delete

«Internet» × × × × × ×
«encrypted» × ×
«LAN» × × ×
«wire»

For example, in the deployment diagram in Figure 3.7, Secure Links holds under the
condition that the communication path between Hospital and
MobileDevice is annotated with «encrypted». Due to the «integrity»-
stereotype dependency between Patient and AuthentificationService,
Secure Links does not hold when only an «Internet» communication path is
available because outsider attackers can performaman-in-the-middle-attack to com-
promise integrity or threat secrecy by reading, e.g., the login data, on the unencrypted
connection.

3.6 Security Checks 57

Figure 3.7 Excerpt of the iTrust implementation model showing the application of UMLsec
Secure Links

UMLsec has been proven in various applications to be effective in detecting
security violations in software systems. For example, among others, UMLsec has
been successfully applied at the German telecommunications company O2 [106]
or the car manufacturer BMW [105]. However, these applications are limited to
single independent models and do not consider the hierarchies created in model-
driven development. For this reason, on every more detailed model, all security
specifications made before have to be repeated. Using approaches like UMLsec,
developers should specify all properties, like security assumptions, only once on the
most suitable level of abstraction. This also includes other artifacts than the design-
time models, such as the implementation of the software system. Also, the reuse
between the different security checks can be improved. For example, Secure Links
considers communications between different artifact and security requirements for
these communications. In UML, internal details on artifacts can be described using
a class diagram whose classes can be manifested in an artifact. For example, for
a Java application, the artifact can be the executable jar-file of the application and
other artifacts can be libraries or databases. The classes bundled into the jar file
correspond to classes in UML class diagrams. The detailed class diagrams can
contain dependencies between each other that are instances of the dependencies in
the deployment diagram.

58 3 State of the Art in Secure Software Systems Development

3.6.2 SecDFD Security Checks

At design time, the processing of system data can be specified with a variety of
notations. Apart from UML activity diagrams [5], frequently used notations are and
business process models (BPMN [107]) and data flow diagrams (DFD) [108]. Our
rationale for focusing on DFDs and the SecDFD security extension is twofold: First,
they are widely applied in practice, specifically in the automotive industry [109] and
at Microsoft [110], as part of their STRIDE methodology. Second, they represent
an essential set of concepts necessary for data flow analysis (processes and data
flow between them), which can be mapped exhaustively to activity diagrams and
business processes, rendering our mapping generation technique also applicable to
these model kinds. We introduce our technique for DFDs, but it can be applied to a
broad range of modeling languages supporting data flow modeling.

In what follows, we introduce DFDs and an extended notation that allows to
include security-relevant information inDFDmodels,which is required for checking
the consistency between planned security and implemented security requirements.

Figure 3.8 A DFD for changing a password in iTrust

Data Flow Diagrams
A Data Flow Diagram (DFD) is a graphical representation of the software architec-
ture and the information it handles [110]. It represents how the information enters,
leaves, and traverses the software system. The DFD consists of processes (active
entities), external entities (e.g., third parties), data stores (where information rests),
data flows (carrying the exchanged information), and trust boundaries (signaling
trust levels). Figure 3.8 depicts a DFD for the iTrust electronics health records sys-

3.6 Security Checks 59

tem. A registered user attempts to change her by sending a request including her
identification number, the old, and the desired new password. The iTust system ver-
ifies the user by authenticating her ID and password against a database. Next, if the
old password is valid, the password is reset to the new password and updated in the
database.

Security Extension
To capture security requirements at the architectural level, we use the Security
Data Flow Diagram (SecDFD [111, 112]). SecDFD is a notation that enriches DFD
with security concepts to enable a formally grounded information flow analysis,
focusing on the confidentiality and integrity of information assets. First, comparable
to UMLsec, assets can be tagged with a high or low confidentiality label. Second,
process nodes can be tagged with security contracts that define how the security
requirements of assets change upon exiting the node.

The SecDFD notation defines four such contracts:

Encrypt or Hash contract: The contract for encrypting input asset(s) always
results in propagating a low (public) label on the output flow(s).

Decrypt contract: If the input asset is labeled with low, decrypting it will result
in propagating a low label. However, if the input asset is labeled with high,
decrypting will propagate a high label on the output flow.

Join contract: The contract for joining two or more assets propagates the label
equivalent to the most restrictive input asset. For example, if a confidential asset
is joinedwith a non-confidential asset, the asset on the outputwill be confidential.

Forward or Copy contract: This contract will copy the labels of the input asset(s)
to the output flow(s) carrying the corresponding forwarded asset(s).

Finally, the model elements can be grouped into attacker zones. An attacker zone
specifies the groups of elements that an attacker of a specific profile can observe.
The user of the SecDFD approach can define a hierarchy of attacker zones with
different attacker profiles.

Figure 3.9 shows an excerpt (for clarity) of the SecDFD for the iTrust example.
If a user resets her password, she enters secret information into the software system,
for which its confidentiality has to be guaranteed. It has to be ensured that there
is no unwanted data flow in the software system and the password is not stored in
cleartext. Also, it has to be ensured that the new password not only stays secret
but also cannot be maliciously modified. First, the designer must specify that the
password is confidential. Second, the designer needs to specify the process contract,
e.g., for the process authenticate. Since the password is confidential, it should

60 3 State of the Art in Secure Software Systems Development

Figure 3.9 An excerpt of a SecDFD for iTrust

Figure 3.10 UML activity diagram corresponding to the DFD in Figure 3.8

not be leaked to other applications running in the environment or processes outside
of the authentication service. These simple extensions allow us to identify such
behavior in the model. The extended notation [111] is shipped with a simple label
propagation (using a dept-first search) according to the specified process contracts.
Once the labels have been propagated, a static check is executed to determine if any
confidential information flows to an attacker zone. In Figure 3.9, the Plugin is not a
malicious entity, i.e., it is not part of an attacker zone. The developer can manipulate
the elements of attacker zones to change the design model and improve security.
For the concrete syntax and semantics of SecDFD, we refer the reader to [111].

3.6 Security Checks 61

In contrast to UMLsec, SecDFD does not provide automated security checks but
allows for propagating security labels through the diagram, which eases performing
manual security analyses, such as STRIDE. While SecDFDs can support security
analyses widely used in practice, the expressiveness of DFDs is very limited. For
example, we know the sequence in which data flows are executed, but this infor-
mation is not part of the DFD. Also, conditional flows are not supported. We do
not know which data flows happen if the user’s authentication fails in the DFD of
Figure 3.9 and which flows in the case of success. To solve this issue, the generality
of DFDs allows us to apply the SecDFD security contract also to UML activity
diagrams. Figure 3.10 shows the same procedure as in the DFD of Figure 3.8 but
contains additional control flow information. Every process is expressed by a cor-
responding activity and every data flow in the DFD by a data flow in the activity
diagram. In addition, activity diagrams contain control flow, e.g., specifying what
happens if the authentication fails.

An open issue for both approaches, UMLsec and SecDFD, is that a secure spec-
ification of a software system does not imply a secure software system implementa-
tion. All security requirements and measures have to be correctly implemented and
verified in the implementation.

3.6.3 Implementation-Level Security Checks

Implementation-level security checks are realized often using static code analysis.
Usually, such static security issues are used to detect actual security issues already
during software implementation before executing the software system. Thereby, the
analysis tools are often integrated within the development environments or build
processes.Often IDEs already comewith static code analysis or can be extendedwith
such. One example of such a widely used static code-analysis that can be considered
to contribute to the security requirement of availability is analyses for potential null-
pointer exceptions. However, there are also implementation-level security checks
that are only related to security. Besides such static security checks, three also
exist security tests [113, 114] and dynamic security monitoring approaches [115,
116] that check a running software system in a test environment or the production
environment. However, such security monitors got less attention in the security
engineering community than static security checks that allow preventing security
issues upfront. In practice, security tests are mainly executed as manual penetration
tests and run-time security monitoring barely plays a role [117]. For this reason,
we focus on static security checks. In what follows, we discuss three categories of
static security checks.

62 3 State of the Art in Secure Software Systems Development

Analysis of API Calls
Many approaches locally analyze calls to critical APIs and whether the chosen
parameters have been selected securely. This covers, for example, calls to crypto-
graphic APIs [118] or SQL queries [119]. While those approaches are essential for
the development of secure systems, in this work, we are focusing more on whether,
e.g., the use of a cryptographic API has been implemented at a specified location.

Secure Data-Flow Analysis
A common approach to detect leaks of secret data is a secure data flow analysis.
The goal is to detect flows of sensitive information within the implementation into
insecure sinks, e.g., a file in the file systemor a socket [33, 120, 121].While data-flow
analysis tools have become very good at analyzing or approximating OO constructs
such as dynamic class loading and Java reflection [122, 123], one of the main
problems for a precise data flow analysis is the classification of critical sources and
sinks. Many tools are based on shared libraries of well-known critical sources and
sinks, created manually or by machine learning [42]. However, including project-
specific information about sources of sensitive information and forbidden sinks is
a substantial manual effort.

Dependency Analysis
In practice,manyvulnerabilities of software systems arise from the use of deprecated
dependencies containing the vulnerabilities. Due to the criticality of this issue, it
was added to the OWASP Top 10 Security Issues in 2013. Several tools have been
developed to mitigate this threat of deprecated dependencies for inspecting the
dependencies of software systems for libraries with known vulnerabilities [124].
Among the most prominent tools are the OWASP Dependency-Check [125] and
the GitHub Dependabot [126]. However, such tools cannot assist in detecting a
malicious or accidental exchange of libraries at run-time.

While the single implementation-level security checks are very effective at their
specific task, the scope of these is very narrow. All in all, the open question is if
implementation-level security checks are suitable to check the high-level security
requirements of the final software system. The idea is that security is planned already
at design-time, using the introduced security checks and their tool support, and
afterward are verified at the implementation level by suitable use of implementation-
level security checks.

3.7 Conclusion on the State of the Art 63

3.7 Conclusion on the State of the Art

The development of a secure software system involves multiple aspects of planning,
realization, and verification. Considering all discussed aspects isolated, for every
one of these different aspects, satisfactory solutions have been developed. However,
there are many unconnected solutions for the individual local problems in total but
no integration to apply these throughout the whole development and maintenance
process. Currently, for most integration or transition steps, a massive manual effort
is required. These manual tasks increase cost and the risk for errors. All together,
keeping all artifacts consistent is an inherent problem formodel-driven development,
security certifications, and agile development processes. Another major challenge
lies in the propagation of security properties between different development steps
and artifacts.

4AWalkthrough of the Proposed
Development Approach

In the previous chapters, we discussed challenges in the development and mainte-
nance of secure software systems and existing approaches for tackling the different
challenges. The main issue lies in the tracing between different artifacts that are
developed. Here, a huge manual effort is required for keeping the artifacts consis-
tent. This distracts a developer’s attention from her main task and, therefore, lowers
the efficiency.Moreover, the requirement of considering toomany things at the same
time and the high effort required for preserving consistency might give rise to more
errors in the long term.

To overcome these challenges, in Section1.3, we identified five research ques-
tions, focusing on aspects required for improving the model-based development and
maintenance of secure variant-rich software systems. To allow continuous model-
based security engineering, we mainly focus on the automated tracing of security
requirements throughout the whole development process and their continuous veri-
fication. Generally, the idea of the GRaViTY development approach is to create and
maintain trace links between design and code artifacts automatically. The trace links
are used to propagate security-related information between models and the software
system’s implementation.Also, the trace links allow to automatically reflect changes
on any artifact to all other artifacts. Due to this continuous automated synchroniza-
tion, that allows changing all artifacts of a software system at any time, theGRaViTY
development approach supports both, sequential and agile development processes.

In this chapter, we discuss from a developer’s perspective how a secure software
system can be developed with GRaViTY to overcome the identified problems. As
developers are a critical factor in the successful development of software systems,we
consider our conclusion of this discussion when answering the research questions.
For this purpose, first, we discuss our assumptions on how to allow developers
to work efficiently at the development of secure software systems. By doing this,
we derive key ideas on which we will build our solution. Afterward, we show

©TheAuthor(s), under exclusive license toSpringer FachmedienWiesbadenGmbH,
part of Springer Nature 2022
S. M. Peldszus, Security Compliance in Model-driven Development of Software
Systems in Presence of Long-Term Evolution and Variants,
https://doi.org/10.1007/978-3-658-37665-9_4

65

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-658-37665-9_4&domain=pdf
https://doi.org/10.1007/978-3-658-37665-9_4

66 4 AWalkthrough of the Proposed Development Approach

the development process for developing secure software systems using GRaViTY.
Also, we show the provided tool support and how it is integrated into this process.
Finally, we demonstrate the development using our approach from the perspective
of a developer.

4.1 Key Ideas of the GRaViTY Approach

Developers play an essential role in the success of a software project. The more
developers can focus on their tasks, the more efficient they can be in solving these
tasks. The primary goal of GRaViTY is to enable the successful development and
maintenance of secure software systems. Thereby, the key ideas for allowing devel-
opers to efficiently work on the development of a secure software system are:

Suitable Views: Developers should work on the most suitable view for their task.
For every task, there is a view in which this task can be carried out most effec-
tively. For example, when a security expert is planning or updating general secu-
rity requirements of a software system, an abstract view of the software system
is more likely to be suitable than the source code containing all details. How-
ever, due to circumstances from the used development process or tooling, all
the required information might not be available in this view or the view can-
not easily be created. For example, while a software system has initially been
designed using UMLsec on abstract design-time models, due to missing trace
links, changes in the security requirements have to be specified on the imple-
mentation level. Such situations should be avoided by the design of our approach
and proper tool support. Software developers and experts, e.g., security experts
or software architects, should always have to possibility to work on the most
suitable view for their task.

Side effects: Developers should only focus on their tasks and should not have to
care about potential side effects.
Nearly every task a developer performs comes with side effects she has to think
about. In this thesis, we explicitly consider two kinds of side effects.

Local side effects: First, side effects within the artifact a developer is changing.
These are essential for preserving the correct behavior of a software system.
Automated tool support as part of a development approach can help in iden-
tifying such side effects. For example, UMLsec checks allow detecting side
effects ofmodel-level changes impacting design-time security requirements.

4.1 Key Ideas of the GRaViTY Approach 67

Global side effects: Second, in addition to local side effects, there might be
side effects on other artifacts. If these artifacts do not immediately relate to
the correct function of the software system, developers should not have to
care about side effects on these. For example, consider a developer optimiz-
ing a software system’s implementation-level design quality. Most changes
might not affect the architecture of the software system, since they are too
fine-grained and do not affect the borders of components. In this case, the
developer should not have to care about the effects on the architecture during
her task.
However, coming back to the suitability of views, an architect should also
not have to review the local restructurings at the implementation level of the
software system. Side effects that occurred and changed the architectural
level should be propagated to the architectural level.
Furthermore, refactorings might have side effects regarding a software sys-
tem’s security requirements, e.g., by making sensitive information accessi-
ble. Here, the developer should still be able to focus on the code quality and
tool support should take care of preventing changes with such side effects.

To this end, following the GRaViTY approach, a developer should not have to
think about such side effects. The changes of the developer should be automati-
cally propagated to all other artifacts and then be presented to the corresponding
expert for review. Also, tool support should lower the risk of changes that lead
to violations within other artifacts.

Synchronization: Developers can change artifacts in arbitrary order and their
changes are automatically propagated for keeping all artifacts synchronized.
Keeping all artifacts synchronized in case of changes usually requires a signifi-
cant manual effort and is likely to give rise to inconsistencies. Also, this step is
a prerequisite for allowing developers, architects, and security experts to work
on the most suitable view of the software system as depicted in the previous two
ideas. Accordingly, the synchronization of the artifacts should happen as far as
possible in the background with as few user interactions as possible.

Continuous Security: Developers are consciously assisted by automated security
compliance checks helping to preserve the software system’s security.
Continuous automated security checks are also an essential concept in other
approaches, e.g., SecDevOps [127]. We consider these in our approach but our
goal is to go even one step further.
Usually, when talking about continuous automated security checks, low-level
security checks with a limited scopes are meant. In our approach, we target the
security compliance of the implementation with the specification in design-time

68 4 AWalkthrough of the Proposed Development Approach

models. Nevertheless, security checks with limited scopes, such as UMLsec
that only targets the model-level, are essential to ensure the consistency of the
security specifications with which we check the compliance. However, these
automated security checks should not replace manual reviews but support these.
Also, continuous automated security checks allow to review changes quicker and
studying their effects. This eases incremental reviews.

To summarize, we need a development process that allows developers to focus on
their tasks and allows them to perform the tasks on the most suitable view on the
software system. In addition, such an approach might also assist in performing
the tasks themselves. The consideration of tool support can be a fundamental part
of such an approach. However, in the intended GRaViTY approach, tool support
is not meant to replace developers, security experts, or software architects but to
assist them. While the desired tool support might not be easy to implement from
a technical perspective, the main challenges lie in the design of a development
approach supporting the outlined key ideas and in the underlying challenges that
have to be solved for realizing the approach.

4.2 The GRaViTY Development Approach

Next, we show the general development process using the GRaViTY approach and
the automatically executed tasks within this sequence. Figure4.1 shows a concep-

Figure 4.1 Development process of the GRaViTY development approach

4.2 The GRaViTY Development Approach 69

tual overview of the development using the GRaViTY development approach. We
assume that three levels of design models are used in addition to the concrete imple-
mentation of the software system. The artifacts that will be created are shown on
the left side of Figure4.1. As soon as a model is created, it is denoted by a circle
representing an instance of the model or the software system’s source code.

Following the figure, we assume, that all models are created in the order of their
abstraction level and none is temporarily skipped. However, we do not assume that
any of these models is completed before the next one is created. Incrementally,
developing the models in iterations is explicitly possible and allows the usage of
GRaViTY in agile development processes.

In agile development, themain development process has three initialization steps
inwhich initial versions of allmodels are created. In the fourth step, the development
and maintenance phase is reached, in which we iterate until the software system has
been developed. If we want to consider the maintenance of the software system, we
stay in this step and iterate until the software system’s end of life.

The blue area above the main development process arrow contains all artifacts
available in the current step of the main development process. Whenever a change
is applied to any of the artifacts, this change is propagated to all other artifacts that
have been developed automatically. The corresponding development activities are
denoted in the figure by blue arrows.

A software system’s development is supported by security and quality reports
covering all artifacts that have been developed. Security and quality aspects are
centrally reported into the main development process, which is denoted by red,
dotted arrows.

Sequential Process Models: When using GRaViTY for the development of soft-
ware systems following traditional development processes such as the waterfall
model or V-model, the main development process only goes one step forward,
after the model to be developed has been finished. Also, the iterations in the
development & maintenance step of GRaViTY only take place at maintenance,
meaning that the first iteration takes place when the entire implementation is
done.

Agile Software Development: When using agile methods for software develop-
ment, nearly all time will be spent in the development & maintenance step of
GRaViTY. The initialization will take place in only a few Sprints, creating the
basic setup of the required models. Afterward, these are iteratively refined in the
following Sprints. Thereby, intense usage of the synchronization provided by
GRaViTY takes place.

70 4 AWalkthrough of the Proposed Development Approach

4.3 Developer Perspective on Using GRaViTY

In Figure4.2, we show the interaction of a developer with the software system
under development while using GRaViTY. The software system under development
is depicted in the center of the figure. Thereby, the software system consists out of
the discussed development artifacts, namely different design models and the source
code of the software system. These artifacts as well as their relations are shown in
the center of the figure.

The GRaViTY framework is indicated by a cylindrical shape on the figure’s
right side. This shape connects all development artifacts and operates invisibly for
a developer in the background. It takes care of synchronizing all artifacts in case of
changes, the propagation of security requirements, and security checks.

On the left of the figure, a developer is shown that can directly interact with the
development artifacts of the software system. In our case, interaction means that
the single artifacts of the software system can directly be edited by the developer,
using an IDE into which GRaViTY is integrated. This integration comprises user
interfaces allowing developers to make use of the GRaViTY tool support, e.g., by
using refactorings for restructuring the implementation. Currently, only the Eclipse
IDE in combination with the Papyrus model editor [128, 129] is supported. Within
this IDE, GRaViTY continuously provides reports to developers, e.g., on secu-
rity violations currently present in the software system or details on the effects of
planned refactoring operations. Based on the reports, developers and experts can

Figure 4.2 A developer performing changes using GRaViTY

4.3 Developer Perspective on Using GRaViTY 71

plan improvements to the software system. For the generation of reports, GRaViTY
considers all artifacts present in the software system.

Whenever a developer edits a development artifact, e.g., by deleting and adding
elements inmodels or source code.These changes are propagated to all other artifacts
by GRaViTY. For example, the developer’s addition to the design model leads to a
derived addition in the source code and adeletion of elements in the source code leads
to deletions in the implementation model and design model. After every change,
an updated report is created and presented to the developer. This report can then be
used for estimating the impact of the change but also be shared with experts, e.g.,
software architects or security experts.

While working with GRaViTY, there should be no difference between working
on a single product or a variant-rich software system. A developer can still change
the software product line in her preferred way. Also, security and quality reports are
continuously provided but now consider the whole software product line.

Part II

Tracing

5ProgramModel for Object-oriented
Languages

This chapter shares material with the PPPJ’2015 publication “Incremental Co-
Evolution of Java Programs based on Bidirectional Graph Transformation” [130]
and the TTC’2015 publications “Object-oriented Refactoring of Java Programs
using Graph Transformation” [131] and “A Solution to the Java Refactoring Case
Study using eMoflon” [130].

In this thesis, we study how to verify security compliance in the context of
model-driven development of software systems. To make the implementation of a
software system analyzable, we have to extract a suitable program representation
from the source code of the software system. Common representations, such as
UML models [5] or abstract syntax trees (AST) [132], are either too abstract for
meaningful design-level quality and security analyses of the implementation or are
too detailed and not providing direct access to relevant information. For example,
an AST does not contain resolved references, which hardens analyses of access
dependencies.

In this chapter, we introduce our program model for object-oriented languages.
This program model has a level of abstraction between design-time models, such as
UMLmodels, and models close to the implementation, like ASTs. In the upcoming
sections, we use this program model for tracing security requirements between
the architecture and the implementation, security checks, and the specification and
execution of security-preserving refactorings. In addition, this program model has
been used in additional research for design flaw detection [34, 21].

©TheAuthor(s), under exclusive license toSpringer FachmedienWiesbadenGmbH,
part of Springer Nature 2022
S. M. Peldszus, Security Compliance in Model-driven Development of Software
Systems in Presence of Long-Term Evolution and Variants,
https://doi.org/10.1007/978-3-658-37665-9_5

75

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-658-37665-9_5&domain=pdf
https://doi.org/10.1007/978-3-658-37665-9_5

76 5 ProgramModel for Object-oriented Languages

Figure 5.1 Location of the program model in the overall concept

One of the most significant issues when automatically checking and changing
programs is defining and creating an appropriate program representation. According
to Figure 5.1, the program representation has to be suitable for checking security and
design-related problems and the effects of countermeasures to eliminate the identi-
fied problems. As a foundation to find answers for all five major research questions
(RQ1–RQ5) of this thesis, we need a suitable representation of a software system’s
implementation on which we can work in the upcoming chapters. Also, in the best
case, we can use this representation not only for a specific programming language
but can achieve an abstraction allowing it to represent an object-oriented language.
Altogether, such a representation must provide a suitable level of abstraction that
allows easy structural queries without going to the statement level, and should be
capable to represent arbitrary object-oriented programs by a single program model
type?

In this chapter, we introduce a general notion for representing object-oriented
programs and the dependencies within these programs on a method–field–class
level. The notion is tailored to allow easy queries on a high-level abstraction of the
statement-level details of a program. Although we orient on the Java programming
language, we provide an abstraction to general OO concepts allow representing
arbitrary OO programs and discuss this application.

5.1 Background on Program Representations 77

5.1 Background on Program Representations

The creation of meaningful and easy to analyze program representations has been a
subject in multiple different areas. First, the most native area comprises compilers
that have to parse the source code to compile it. For this purpose, in the first step,
a compiler creates an internal program representation of the source code, performs
optimizations, and finally, transforms the (optimized) program representation into
binary executable code [133]. In the first step, the compiler parses the source code
and creates an Abstract Syntax Tree (AST) [132] from the source code. The AST is
a tree representation of the source code’s syntactic structure and is usually built per
method. These trees represent the semantic relevant information and do not contain
any interpretation of the information stored. For example, the execution sequence
of the AST nodes and variable accesses are not resolved. Usually, the AST is used
as an intermediate representation and is often converted into a Control Flow Graph
(CFG) [134]. In a CFG, information such as local variable accesses have been
resolved and is directly accessible. Still, information such as field accesses or calls
of methods is not resolved. For these, the CFG only contains the information that a
field or method with a given ID from a given namespace is accessed.

Next, program representations have been defined for special purposes, such
as checking the validity of OO refactorings. To tackle the inherent problems of
recent refactoring implementations operating at the AST level, graph-based pro-
gram transformation has been proposed as a promising alternative for concisely and
formally specifying and implementing OO refactoring rules comprehensively [24,
135, 136, 137, 24, 37, 138]. Here, the program under consideration is transformed
into an abstract and custom-tailored program model representation that essentially
(i) defines a restricted view on the AST containing only relevant high-level OO
program entities, and (ii) adds additional cross-AST dependencies making explicit
(static) semantic information being crucial to avoid behavior-scrambling refactor-
ings [139, 137, 140, 141].

Furthermore, there are language-specific general-purpose program representa-
tions such as MoDisco [142] or JaMoPP [143] for Java. These representations are
comparable to CFGs known from compilers. The significant difference lies in the
scope of the model. While compilers focus on single methods, program models are
on the scope of the whole program. For this reason, dependencies between methods
and fields are resolved and explicitly represented by edges in the model. Also, mod-
els such as the MoDisco model usually contain syntactically irrelevant information
such as comments. All in all, these models are specifically tailored to a version of
a programming language and are likely to get very large.

78 5 ProgramModel for Object-oriented Languages

To sum up, graph-based approaches to program transformation and analysis rely
on a well-formed program representation through a program model that is suitable
as an abstract view of programs. To this end, each possible program model instance
has to conform to a predefined format, referred to as the type graph. The type graph
can be seen as a metamodel of the corresponding programming language, where
nodes represent first-class program entities and edges denote different kinds of
relations between those entities. A concrete program model instance whose nodes
and edge labels conform to the given type graph is said to be (well-)typed over
the type graph. From a formal point of view, this requires a label-preserving graph
morphism between the program model’s nodes and edges onto the type graph,
where graphs are labeled over sets of types [144]. From a practical point of view,
the type graph serves as a template containing all node and edge types and their
possible connections that can occur in program model instances. Edges may be
further equipped with multiplicity constraints to restrict the number of edges of a
given type. For instance, themultiplicity0..1 of a returnType edge, expressing
an object of which type a method returns, denotes that each method definition has
either exactly one or no (void) declared return type.

5.2 ProgramModel for Object-oriented Programs

Our program model provides a high-level abstraction from the pure Java source
code [130]. This abstraction, in principle, also allows the application to other OO
languages. First, details from the statement level are reduced to access edges between
the single members. Second, easy to query structures are created, such as structuring
methods and fields into a tree with names, signatures, and definitions.

Figure5.2 shows our type graph for Java programs using a UML class dia-
gram notation for convenience. The type graph represents a high-level abstrac-
tion for structural entities of object-oriented programs such as Java programs.
The node TypeGraph serves as a common container for each program ele-
ment, thus building the root of the containment hierarchy. The type graph con-
tains an annotation mechanism that allows specifying annotations by extending
the type TAnnotation. These annotations can be applied to all types with the
attribute tAnnotation:TAnnotation for providing additional information.
In the remainder of this section, we introduce the type graph elements in detail.

5.2 ProgramModel for Object-oriented Programs 79

5.2.1 Namespaces

Object-oriented programs are usually structured into namespaces. Namespaces
allow programmers to structure programs hierarchically, allowing them to group
coherent functionality and reuse names in different contexts. Even on procedu-
ral languages that do not support namespaces, e.g., the C programming language,
namespaces are often simulated using naming patterns. In many languages, such as
Java or the UML, namespaces are realized using packages. Following these exam-
ples, we are also implementing namespaces using packages. The package structure
is represented by the node TPackage and a corresponding self-edge for relating
parent packages to their direct sub-packages. A package can contain an arbitrary
number of types in terms of interfaces and classes. This containment means that the
type is defined in the scope of the namespace represented by the package.

Listing5.1 contains an excerpt from the Java class definition of the iTrust class
EditPatientAction used for editing patient information such as the address
of a patient. This class extends the class PatientBaseAction and uses the
class PatientBean as a parameter in the updateInformation method. The
method receives a PatientBean that contains the information entered in theUI of
the iTrust system. For security reasons, the patient’s medical identification number
(MID) has to be set again to avoid the modification of the wrong patient in the
database. Afterward, the data is validated, edited in the database and a notification
e-mail sent.

1 package edu.ncsu . csc . i t rus t . action ;
2

3 public class EditPatientAction extends PatientBaseAction {
4 public void updateInformation(PatientBean p) throws ITrustException ,

FormValidationException {
5 p.setMID(pid) ; / / for security reasons
6 validator . validate (p) ;
7 patientDAO. editPatient (p, loggedInMID) ;
8 emailutil . sendEmail(makeEmail()) ;
9 }
10 }

Listing 5.1 Excerpt from the Java source code of the iTrust class EditPatientAction
for updating the information about a patient

80 5 ProgramModel for Object-oriented Languages

Figure 5.2 GRaViTY’s metamodel for language independent object-oriented programmod-
els

5.2 ProgramModel for Object-oriented Programs 81

Figure 5.3 Excerpt from a program model of iTrust showing namespaces and the class
hierarchy

For this class definition, Figure5.3 shows the package hierarchy in the program
model of these three classes and the interfacesSerializable and Comparable
from the Java standard library. In the center of the figure, we can see the default
namespace of the iTrust application: edu.ncsu.csc.itrust. The package
itrust has two sub-packages, action and beans. The package action
contains the class EditPatientAction from Listing5.1 and has another sub-
package base. We can see the packages representing the namespacesjava.lang
and java.io of the Java standard library on the figure’s top left. As packages are
only meant as representations of namespaces and could be used both in libraries
and user code, the information where a package is defined is not encoded into the
program model.

5.2.2 Types

As mentioned in the previous paragraphs, in our type graph, we define two kinds
of types. The node TAbstractType represents arbitrary types that can be con-
crete classes represented by TClass or interfaces represented by instances of
TInterface. It is a common practice to allow the separate specification of

82 5 ProgramModel for Object-oriented Languages

interfaces and concrete implementation of the interface. For example, in C-like
languages, interfaces are specified in header files. The implementation of these
interfaces is specified in *.c files for C or *.cpp files for C++. Also, Java-based
languages allow the specification of interfaces that can be implemented by classes.
For example, the program model excerpt in Figure5.3 shows the realization of the
interfaces Comparable and Serializable by the class PatientBean.

Many languages also describe some kind of enumeration for the definition of
a finite amount of constants. As there is a vast difference in how exactly these
enumerations are realized, we decided to represent enumerations by instances of
TClass and to represent every enumeration constantwith afield ownedby this class
instance. The selection of classes for representing enumerations instead of interfaces
follows the possibility to include functionality in enumerations, e.g., as in current
Java versions. To indicate that the specific class represents an enumeration,we define
an annotation TEnumeration applied to classes representing enumerations.

5.2.3 Inheritance

As inheritance is one of the object-oriented paradigm’s main features, this has to
be captured in the type graph. Here, we consider two kinds of inheritance. First,
inheritance between interfaces, and second, inheritance between classes. Both are
expressed in the type graph by a parent-child relation (parentInterfaces/
childInerfaces and parentClasses/ childClasses). While multiple
inheritance is only allowed for interfaces in many languages, we do not restrict the
type graph to single inheritance for classes to be as general as possible.

A concrete example of inheritance between classes is shown in the program
model excerpt of Figure5.3. Following Listing5.1, the class EditPatient
Action extends the classPatientBaseAction. Accordingly, there is a parent-
child reference between the corresponding two TClass nodes on the right of the
program model excerpt.

5.2.4 Methods & Fields

In object-oriented languages, functionality is specified in methods, and data is
stored in fields. The node TAbstractType contains an arbitrary number of
members (abstract node TMember) in terms of method and field definitions
(TMethodDefinition or TFieldDefinition, respectively). In addition, a TAb-
stractType refers to the abstract node TSignature, which is the common ancestor

5.2 ProgramModel for Object-oriented Programs 83

ofmethod and field signatures.We split the name, the signature, and the definition of
methods andfields into separate nodeswithin the programmodel.As object-oriented
refactorings, for example, are mainly concerned with the high-level program struc-
ture, this separation facilitates reasoning about the feasibility of structural modifi-
cations of the program. Consequently, we support compact and modular definitions
of refactoring rules concerning the class-method/field (de-)composition of Java pro-
grams concisely formulated over the corresponding program model. Methods and
fields are represented by a graph structure consisting of three elements:

• The name of the method (field) is contained in the attribute tName of TMethod
(TField), thus being globally visible in program model instances.

• The signatures of methods (fields) of a given name are represented by the type
TMethodSignature (TFieldSignature). The signature of a method
consists of its name and an ordered list of parameter types parameters, while
the signature of a field consists of its name and its type. Different signatures
with the same name, i.e., a common container TMethod or TField, facilitate
overloading. Signatures play a central role in the OO language semantics as all
method call dispatches and field accesses are resolved over signatures.

• TMethodDefinition (TFieldDefinition) is an abstraction encapsu-
lating the entire method bodies occurring in the given program. The method
body’s implementation details are covered by a single definition node in the
program model, while edges denote additional relevant (semantic) properties.

1 package edu.ncsu . csc . i t rus t . action ;
2

3 public class EditOfficeVisitAction {
4 public String updateInformation(EditOfficeVisitForm form, boolean

isERIncident) throws FormValidationException {
5 String confirm = "" ;
6 try {
7 updateOv(form, isERIncident) ;
8 confirm = "success" ;
9 return confirm;
10 } catch (ITrustException e) {
11 return e .getMessage() ;
12 }
13 }
14 }

Listing5.2 Excerpt from the Java source code of iTrust classEditOfficeVisitAction

84 5 ProgramModel for Object-oriented Languages

For example, Figure5.4 shows a program model excerpt of the program model
created from the iTrust implementation, focusing on the source code excerpts in
Listings 5.2 and 5.1. The excerpt contains two different method signatures for the
method name updateInformation. For the signature with the parameter types
EditOfficeVisitForm and Boolean, a definition from the class Edit-
OfficeVisit is shown, which calls another method definition. This allows the
easy specification of, e.g., compliance checks with models [23] (Chapters 8 and 9),
refactorings [145, 130] (Chapter10), or design flaw detection [21] and elimina-
tion [146].

Figure 5.4 Excerpt from the iTrust program model

5.2.5 Member Access

One of the essential parts of every high-level programming language is access to data
or calls of functions.These canbe in sequential order as inListing5.1, butmost times,
such accesses are woven into a conditional control flow as in Listing5.2. Generally,
the control flow’s precise structure is not important in many high-level applications,
such as a vast selection of security checks, but it is sufficient to knowwhichmembers
are accessed. For this reason, in our type graph, access edges between member
instances represent semantic dependencies between members. The node TAccess
stands for all kinds of semantic dependencies among class members, i.e., essentially
read, write accesses to fields, and call accesses to methods. For more sophisticated
security analyses, it might be necessary to differentiate between different access
kinds explicitly. Supporting such analyses, the type graph provides four specific
kinds of accesses.

5.2 ProgramModel for Object-oriented Programs 85

TCall: This access should be used for invocations of functionality such as method
calls in Java.

TRead: Accesses, where a field’s value is read but not modified, are represented
by an instance of the TRead node.

TWrite: If there is an assignment to a field, then the TWrite node should be
used.

TReadWrite: Often it is undecidable whether there is a read or write access
to a field. For example, if a field is passed to the parameter of a method in a
Java program, it is statically undecidable and depends on the method’s concrete
implementations. The TreadWrite node represents such cases.

For example, the TCall node in Figure5.4 represents the method invocation
of the method updateOv by the method updateInformation in line 7 of
Listing5.2.

5.2.6 Overloading,Overwriting and Hiding

To allow compact reasoning on a program model, e.g., as part of refactoring rule
definitions, overloading, overriding, and hiding dependencies to other members are
declared by corresponding edges between definition instances. However, the over-
loading/overriding/hiding structure is also derivable from the signatures, definitions,
and inheritance relations.

In the context of overloading, we consider the definitions of methods with the
same name but different parameters within the same type hierarchy. These defi-
nitions should reference each other using the overriding reference. Regarding
the method overriding and field hiding, due to our focus on the Java programming
language, we implement the specification of the Java programming language [61].
Methods have a hard override of methods with the same signature in parent classes,
while fields are only hiding fields with the same name in parent classes.

Figure 5.5 Modifiers and visibilities in the type graph

86 5 ProgramModel for Object-oriented Languages

Figure 5.6 Annotation mechanism of GRaViTY’s type graph

5.2.7 Modifiers &Visibilities

A low-level security concept in many programming languages is access restriction
to functionality or data realized in terms of visibilities. Methods, fields, or entire
types can be encapsulated from the outside. Access policies are specified using
the visibilities. Following Figure5.5, in the type graph, we encode such visibilities
as modifiers on types and members. We orient the specification in the type graph
on the UML [5]. By default, the visibility is set to the lowest possible visibility
(TPrivate). Besides, we support the modifier static to indicate elements that can
be accessed outside of the context of an object.

5.2.8 AnnotationMechanism

As introduced at the beginning of this section, the type graph provides an anno-
tation mechanism that supports defining custom extensions to the metamodel and
annotating elements in the program model. Figure5.6 shows this annotation mech-
anism in more detail. Annotatable elements are the ones that extend an abstract
type TAnnotatable. Furthermore, this annotation mechanism is used to express
comments on the source code elements in terms of a TTextAnnotation on the
program model’s corresponding elements.

Finally, annotations that are part of a programming language, such as Java anno-
tations, are supported. For these cases, annotations in the type graph can have a
type (TAnnotationType) representing the corresponding annotation type of the
programming language.

5.3 Tool Support 87

5.3 Tool Support

We specified the programmodel’s type graph as Ecore metamodel using the Eclipse
Modeling Framework (EMF) [147, 148]. Themetamodel and generated Java classes
representing the type graph have been packaged to an Eclipse plugin. Besides the
default functionality of the generated type graph classes for accessing a program
model from Java applications, these have been extended with often used queries.
Among others, these queries comprise getting a TClass for a fully qualified name
such asedu.ncsu.csc.itrust.action.EditOfficeVisitAction, or
searching for methods signatures based on their String representations, like
updateInformation(EditOfficeVisitForm,boolean):String.

While a direct interaction of developers with program models is not intended, it
can be useful to visualize excerpts of a program model, e.g., to visualize findings
of a security analysis or effects of a refactoring. Using the Sirius visualization
framework [149], we implemented a basic graphical editor for the program model.
Figure5.7 shows a screenshot of this editor in the Eclipse IDE. In the center of the
figure, the model excerpt is visualized. In this case, the overriding hierarchy of the
method filter(List):List is shown. This method is invoked when doctors

Figure 5.7 Screenshot of the Eclipse IDE showing GRaViTY’s graphical program model
editor

88 5 ProgramModel for Object-oriented Languages

want to filter medical reports or filter patients according to their demography. For
the implementation of medical report filtering, the outgoing calls of the method
definition are shown. At the bottom of the figure, in the properties view, details
on the selected element are shown, e.g., the currently selected method definition is
defined in the class MedicalReportFilter.

5.4 Evaluation of the ProgramModel

In this section, we evaluate the proposed programmodel and its type graph regarding
two objectives. First, we evaluate whether the type graph is suitable to specify
meaningful analyses. Second, we focus on the type graph’s expressiveness and if it
is applicable to represent real-world Java programs.

O1—Suitability of the Type Graph
The program model’s idea is to provide a representation of object-oriented pro-
grams that allows the specification of analyses without going down to the level of
statements. For this reason, the question is whether the specified program model is
suitable for the application in the quality and security analysis of object-oriented
programs.

Until now, the program model has been used for various purposes. In this thesis,
we are going to use the program model for five different purposes.

1. In Section7.2, we use the program model for establishing a correspondence
model between design-time models and code.

2. In Section8.4 and Section8.6,we use the programmodels for compliance checks
between the design-time models and the implementation.

3. In Section10.2, we check the applicability of refactorings on the programmodel.
4. In Chapter13, we extend the program model with variability annotations for

checking refactorings on software product lines in Chapter10.

Beyond this thesis, the program model has been used by Peldszus et al. for the
specification and detection of design anti-patterns [34, 21] . Mebus extended in his
master’s thesis the program model with high-level data flows and used it to detect
secure data flow violations [150].

Overall, the program model has proven to be flexible and applicable to represent
object-oriented programs in various analyzes. Also, our extension with variability
and the work of Mebus has shown that the program model can easily be extended
to cover additional aspects.

5.5 Threats to Validity 89

O2—Applicability of the Type Graph to Real Java Programs
Besides being suitable to express meaningful analyses, it has to be possible to create
programmodels for real-world object-oriented programs using the full range of OO
features. As we focus on Java programs in this thesis, regarding this objective, we
study whether real-world Java programs can be represented using the type graph.

As part of this thesis but also in other research, the proposed program model
has been used to represent real-world Java programs. For this thesis, we created
the program model for 22 Java programs from a broad selection of domains. In
addition, in two related bachelor’s theses,Wiebe and Ivanova studied the correlations
between OO-design metrics and security aspects. For this reason, they created the
program model for 50 Android applications [151] and 33 famous Java projects on
GitHub [152].

In summary, the proposed type graph has been successfully used to create pro-
grammodels for 105 different Java programs andAndroid applications. This finding
indicates good applicability to real-world Java programs. This assumption is backed
by the fact, that we have corresponding program model elements to represent all
constructs of the Java language in version 1.7.

5.5 Threats toValidity

The type graph has been designed to support arbitrary object-oriented languages but
has not been applied to any other programming language than Java. Nevertheless,
the generality of the program model and the extensibility, e.g., as demonstrated in
the work of Mebus, are promising indicators for the applicability to other object-
oriented languages. While the type graph itself should be expressive enough to
represent, e.g., programs written in C++, problems can occur at the creation of
program models at the resolution of constructs like pointers.

The reduction of the details from the statement level limits the applicability for
analyses that require details from the statement level. However, first, the type graph
has not been defined for such analyses and, second, there are plenty of alternatives.
For example, MoDisco [142] or the Java model of the Eclipse Java Development
Tools (JDT) [153] for Java programs provide program models containing resolved
inter-method dependencies and all details from the statement-level of the methods.
Second, if required, the type graph can be extended with additional information.

The type graph has been designed to represent the semantic structure of object-
oriented programs in the presented version, but there are no trace links to source
code files. For languages like Java, the location of a type usually can be calculated
from the fully qualified name, e.g., multiple source folders can require an expensive

90 5 ProgramModel for Object-oriented Languages

search. Even more problematic is this issue if multiple Java classes are defined in
the same compilation unit. However, without modification, the information about
the location of a type on the file system can be encoded using the type graph’s
annotation mechanism. Alternatively, the type graph can be extended by additional
elements for representing the desired information.

5.6 Conclusion on the proposed Program Representation

To conclude, the program model representation described in this section provides a
reasonable trade-off between an appropriate level of abstraction on the one hand and
the inclusion of further, initially implicit yet relevant, semantic program properties
on the other hand.

This kind of representation coincides with an abstraction level, specifically tai-
lored to reason about object-oriented refactorings and to perform high-level security
analyses. This abstraction level has three significant advantages compared to con-
ventional AST representations:

• It is restricted to those program entities being relevant for defining high-level
program transformation rules and reasoning about their application to program
graph instances.

• It is enrichedwith static semantic information between arbitrary programentities,
being crucial for reasoning about behavior preservation as part of preconditions
of graph-based program refactoring rules.

• The method signature is separated from the method definition to allow for a
compact formalization of core concepts of object-oriented programs (especially
those written in Java), namely inheritance, overloading, and overriding/hiding,
within refactoring rules or security patterns.

In addition, the general and generic nature of graph-based representations allow for
arbitrary application-specific adoptions and enhancements to be added to the type
graph. For instance, if the program model has to incorporate complex inheritance
structures or problematic visibility rules for class members [69], the type graph
definition can be easily extended, e.g., by introducing a further directed accessibility
edge between class members. For instance, additional information about semantic
dependencies among class members is useful to check if a program transformation
mayobstruct non-obvious and even transitive access dependencies. This information
can also be used for static security analyses when security requirements are given.

6Model-Synchronization andTracing

This chapter shares material with the PPPJ’2015 publication “Incremental Co-
Evolution of Java Programs based on Bidirectional Graph Transformation” [130],
the TTC’2015 publication “A Solution to the Java Refactoring Case Study using
eMoflon” [130], and the EMLS’2020 publication “Model-driven Development of
Evolving Secure Software Systems” [154].

One of the main challenges in developing and maintaining a secure software sys-
tem is to keep track of all artifacts created during the development and their relations
with each other. For example, consider a security certification of the iTrust system.
For this certification, on the one side, we need to know which model elements from
the design phase correspond with which implementation artifacts, e.g., to verify
that all planned functionalities have been implemented. On the other side, we have
to ensure that all security assumptions from any development phase are fulfilled
in all other phases. To perform this compliance check, we have to trace security
requirements between the design-time models and the source code. Also, in case
of changes on any artifacts, the corresponding other artifacts must be changed to
preserve compliance. Otherwise, a divergence between the design-time models and
source code or divergence among the design-time models would manifest them-
selves and could lead to missed security violations in analysis results. For example,
UMLsec security checks do not show any violations, but there are undetected viola-
tions in the implementation due to the divergence. These challenges are the subject
of RQ1 of this thesis and answered in this chapter:

RQ1: How can security requirements be traced among different system represen-
tations throughout a software system’s development process?

In Figure6.1, the relevant parts for answering the research question are highlighted.
First, there is the synchronization between the UML models, source code, and

©TheAuthor(s), under exclusive license toSpringer FachmedienWiesbadenGmbH,
part of Springer Nature 2022
S. M. Peldszus, Security Compliance in Model-driven Development of Software
Systems in Presence of Long-Term Evolution and Variants,
https://doi.org/10.1007/978-3-658-37665-9_6

91

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-658-37665-9_6&domain=pdf
https://doi.org/10.1007/978-3-658-37665-9_6

92 6 Model-Synchronization and Tracing

program model. For this synchronization, we need a mechanism that gives us guar-
antees on the correctness of performed synchronization operations. For this reason,
we look at formal methods that can give us such guarantees within a given spec-
ification. Second, we have to look at tracing between the different UML models
considered in GRaViTY. Here, we focus on UML models describing a software
system at different levels of abstraction. Finally, we have to look at how we can
continuously trace concrete security requirements. This is essential to enable secu-
rity compliance checks between the design-time models and their implementation.
Accordingly, we have to consider three different tracing kinds leading to three sub-
research questions:

RQ1.1: How can we continuously create and maintain traces between design-time
models and the implementation?

RQ1.2: How can trace links between design-time models with different levels of
abstraction be represented and maintained?

RQ1.3: Howcan trace links be used to propagate design-time security requirements
into the implementation?

We support developers in applying the model-driven development approach, as
described in Section3.3, to develop andmaintain secure software systems.As shown

Figure 6.1 Location of the Tracing in the Overall Concept

6.1 Background on Tracing 93

in Figure 6.1, design models, source code, and a program model for performing
sophisticated analyses, e.g., the security checks we will discuss in Chapter8, are
continuously synchronized to cover the different software development phases. As
source code, we consider in this thesis Java source code and UML for specifying
design-time models.

As introduced in Chapter5, the program model provides a high-level abstraction
from the pure Java source code [130], e.g., reducing details from the statement level
to access edges between the single members. In addition, easy to query structures
are created, such as structuringmethods and fields into a treewith names, signatures,
and definitions. Section6.2 shows on this program model and UML class diagrams
the realization of required synchronization.

While the synchronization introduced in Section 6.2 will allow us to trace
between detailed UML class diagrams and their implementation, tracing within
UML models of different abstraction is missing. Section6.3 discusses the UML
inheritance mechanisms regarding their suitability for tracing within GRaViTY and
shows how to trace UMLsec security requirements.

In GRaViTY, security-related specifications are introduced into the different
artifacts as annotations. On UML models, we use the UMLsec profile for security
annotations proposed by Jürjens [6]. For making this information available at run-
time, in Section6.4, we introduce equivalent Java annotations. Also, we discuss
dynamic tracing without enriching the source code with additional information,
e.g., UMLsec security requirements.

However, providing a specification for the required models and the checks is
only one challenge. The second challenge is to create the required models initially
and to keep them up to date. In this chapter, we address this second challenge. First,
we introduce our approach to create a program model or UML models from source
code and keep the models and the code synchronized. Thereby, we generate the
required traces for propagating security information. Afterward, we look at traces
between UML models with different levels of abstraction. Last but not least, we
discuss traces between security requirements on different artifacts.

6.1 Background onTracing

This chapter mainly deals with tracing among different artifacts of a software sys-
tem. For realizing the proposed GRaViTY approach, we have to come up with a
suitable tracing approach that also allows synchronization in case of changes. For
this reason, this section discusses the background on traceability, the general aim of

94 6 Model-Synchronization and Tracing

traceability, and how to realize traceability. There are several definitions for tracing
and traceability.

The ISO/IEC/IEEE standard 24765 [155], giving a vocabulary for systems and
software engineering, contains three traceability definitions. The one that fits our
needs best defines tracing as tracking relationships betweenmultiple products of the
development process [155]. For example, in the domain model of the iTrust system,
we defined that there are patients in this domain. Tracing means here to find all
elements related to this element, e.g., locations in the source code representing a
patient and making these relations explicit.

Similarly, Spanoudakis and Zisman define software traceability as the ability to
relate artifacts created during developing a software system with each other [156].
Thereby, the artifacts describe a software system from different perspectives and
levels of abstraction. However, following their definition of software traceability, not
only relating the different software artifacts is considered but also the stakeholders
that have contributed to the creation of the artifacts and the rationale that explains
the form of the artifacts.

In summary, possibilities to establish trace links range from simple references of
complete documents to individual, identifiable, typed, and possibly attributed con-
nections between particular elements within individual development artifacts [157,
158]. We aim at explicitly specified and typed trace links conforming to a trace-
ability model defining the possible traces and traceable objects. When looking at
how artifacts can be related among each other, five general types of traces can be
identified [156, 159]:

Dependency: This trace kind comprises arbitrary relations between entities
required for solving a problem. As all of such relations considered by us are
explicitly contained within the artifacts, we do not have to trace these explicitly.
However, our approach has to keep these relations consistent across all develop-
ment artifacts.

Satisfaction: This comprises elements that satisfy other elements, e.g., the ele-
ments that satisfy a requirement. As there are usually multiple elements across
all development artifacts that satisfy a requirement together, this trace type also
includes the realization of an abstract element by a more detailed element. Going
back to our motivation, this kind of trace is the most relevant for our approach.

Rationalization: As already motivated by Spanoudakis and Zisman [156], trace-
ability also comprises the rationale for an artifact’s existence. However, this kind
of tracing is out of scope for this thesis.

Verification & Validation: This category comprises relations between parts of the
software system, properties, and their verification, e.g., as part of test cases. In

6.2 Inter-Artifact Tracing and Model-Synchronization 95

our case, these would be security checks used for the verification of security
requirements.

Evolution: In this category, evolution steps are recorded for later inspection. In this
thesis, we do not consider this type of trace link. However, we could record the
changes propagated by the synchronization introduced in this chapter or applied
refactoring operations.

To conclude, for our purpose, we have to develop an approach that can make satis-
faction trace links explicit and maintain these in case of changes.

6.2 Inter-Artifact Tracing andModel-Synchronization

The proposed GRaViTY approach requires a continuous synchronization between
UML models, the source code of the implementation, and a program model for
performing analyses.Model changes, e.g., caused by a single restructuring operation
of the software system’s architecture, may substantially be very complex, involving
various, arbitrarily fine-grained source code changes and harden the study of effects,
e.g., as for security properties in RQ4: “How do changes within a software system
affect its security compliance, and how can these effects be handled?”. Besides, the
opposite direction may also hold: a developer’s edit on a source code file, although
only affecting a small part of the source code, may in some cases yield arbitrary
complex program model modifications, e.g., due to subtle semantic changes caused
by the edit.

A comprehensive technique is required for the postprocessing of changes to han-
dle both cases. This technique has to automatically restore the other side’s consis-
tency for any possible modification applied to either side, whereas unaffected parts
remain unchanged. Such an incremental consistency-preserving mechanism, which
operates on the modeling language’s level instead of the models itself, defines an
exogenous bidirectional transformation [37]. In this context, bidirectionality means
that, given two metamodels or grammars (referred to as the source and target lan-
guages), the underlying mechanism automatically synchronizes instances of the
source metamodel with instances of the target metamodel and vice versa. Thereby,
each transformation on the one side having an inverse transformation on the other
side.

For the tracing and synchronization between the source code and programmodel,
indicated by the lower right synchronize arrow in Figure 6.2, these two grammars
or modeling languages are

96 6 Model-Synchronization and Tracing

Figure 6.2 Concept for tracing using triple graph grammars

1. the Java grammar on the source code side, used to parse the source code and
extract an AST from the parsed source code files, and

2. the graph language defined by our type graph on the program model side.

Altogether, in GRaViTY, we consider three kinds of artifacts, representing the soft-
ware system under development or maintenance, that have different metamodels
specifying the language’s syntax. This metamodel is the UML Superstructure Spec-
ification released by theObjectManagement Group [5] for theUMLmodels. For the
program model, we use the type graph introduced in Chapter 5. As source code, we
consider Java source code that complies with the Java language specification [61].

For the so-called forward and backward transformations of such a bidirectional
transformation mechanism to be incremental, we require them to leave unmodified
program parts unaffected by the transformation. This property of the bidirectional
transformations ensures that, e.g., meta-information such as the formatting of source
code is preserved. In addition, incremental approaches enable high performance of
model synchronization even for larger software systems, as the execution time is
proportional to the extent of the modification rather than the size of the software
system’s representations to be synchronized.

We employ Triple Graph Grammars (TGG) [160] for a bidirectional synchro-
nization between the source code, the program model representation of Java pro-
grams, and UMLmodels to keep the different artifacts consistent. In Figure 6.2, the

6.2 Inter-Artifact Tracing and Model-Synchronization 97

TGGs are denoted by bold circles that connect the artifacts translated by the TGG.
In what follows, we first give a brief introduction to bidirectional graph transforma-
tions and introduce our approach for synchronization based on bidirectional graph
transformation afterward.

6.2.1 Background on Bidirectional GraphTransformations

In a graph-based program transformation setting, the bidirectionality and incre-
mentally properties required by us are guaranteed by a corresponding formalism
for specifying bidirectional graph transformation rules. In particular, Triple Graph
Grammars (TGG) [160] constitute an approach meeting those requirements. TGG
constitutes a rule-based, declarative language for specifying bidirectional transfor-
mation rules. To this end, the TGG formalism provides a concise way to specify
and maintain correspondences between instance elements of different metamod-
els. This is achieved by constructing a third graph (hence the name Triple Graph
Grammars), a so-called correspondence graph, which establishes links between
corresponding elements in the source and target models. Since these links express
relations between corresponding elements from different artifacts, we can use the
correspondence graph as a knowledge source containing all satisfaction trace links.
Thereby, the transformation rules specify the satisfaction relations.

By convention, transformation rule-applications for synchronizing a target graph
with a sourcegraph are called forward transformations,whereas the rule-applications
in the other direction are called backward transformations. Each pair of such comple-
menting exogenous transformation rules are automatically derived fromone declara-
tive rule specification connecting bothmetamodels. TGGdescribes correspondences
between source and target instances conforming to the given metamodels as usual.

Figure 6.3 TGG transformation rule for method names from the MoDisco Java model �
program model transformation

98 6 Model-Synchronization and Tracing

Thereupon, correspondences between elements from both metamodels are specified
through the mediating correspondence graph.

Thus, a TGG specification consists of a set of declarative triple graph rules that
simultaneously create the source, target, and correspondence graphs. These rules
are operationalized each to a forward and a backward translation rule. In particular,
a forward translation rule does not create the source graph but matches the elements
of a given source graph and extends them to a triple by creating the correspondence
and target element as specified in the rules.

6.2.2 Model-Synchronization with Triple Graph Grammars

In what follows, we introduce how we applied TGGs to synchronize the different
software development artifacts considered in the GRaViTY approach. We specified
TGG rules for two of the three synchronize arrows in Figure6.2. We emulate the
third synchronization by a subsequent execution of the other two. To bemore precise,
we defined TGG rules for translating between Java source code and UML models
and between Java source code and the program model.

For instance, the TGG rules in Figure6.3, 6.4, and 6.5a show an excerpt of
the TGG rules of specifying the transformation between Java source code and the
program model. These rules translate method name elements, method signatures,
and method definitions, respectively, by creating the corresponding target elements
and the correspondence graph elements to obtain a mapping between the source and
the target model (a backward translation is executed analogously). In what follows,
we describe the rules and their interaction in detail.

Figure 6.4 TGG transformation rule for method signatures from the MoDisco Java model
� program model tramsformation

6.2 Inter-Artifact Tracing and Model-Synchronization 99

Figure 6.5 Transformation rules for method definitions of the program model (A) and UML
(B) TGGs

ATGG specification allows for propagating changes between source code and its
program model representation or a UML model. In the following, we use the term
synchronization for an automated mechanism for incrementally ensuring consis-
tency between both views after arbitrary modifications on either side. As TGG rules
are not directly applicable to textual inputs, to obtain an automated synchronization
procedure, as well the Java source side has to be given in a graph-based format.
For constructing a corresponding graph-based, yet much more AST-like intermedi-
ate representation of Java programs, several existing frameworks are available, cf.,
e.g., [141, 143]. Here, we consider the MoDisco metamodel and the corresponding
transformation engine, for which parsing and serialization between Java source code
and the graph-based MoDisco model have been already implemented [141, 161].

The transformation rules of the two TGGs implemented in GRaViTY use the
same MoDisco metamodel for java source code and are structurally and syntacti-
cally very similar. Figure6.5 shows two rules for translating Java methods. First, in
Figure6.5a, for translating methods into method definitions in the program model,
and second, in Figure6.5b, for translating these into operations in the UMLmodels.
While the source pattern matched in the MoDisco model is the same for the two
rules, the target side pattern is very similar. This similarity also applies to most rules
of these two TGGs. For this reason, in what follows, we only focus on the TGG rules
of the Java source code to program model transformation. Thereby, we assume that
our TGG rule’s left-hand side refers to the MoDisco metamodel, and the right-hand
side is defined by our type graph as described in Chapter5.

100 6 Model-Synchronization and Tracing

Figure6.3 shows a sample TGG rule consisting of a triple of graph rules. By
convention, the source model part is depicted on the left, the target model part
on the right, and the correspondence graph, with nodes being denoted by circles,
in between. The circle-shaped correspondence graph reflects the mapping strategy
between the two domains and is of high importance for translation purposes as
it provides explicit traceability links between the models. The correspondences
facilitate the iterative mapping of elements in two hierarchies, i.e., a correspondence
created in a rule can be required as a context in another rule for further handling
of child elements in the hierarchy. Black rectangles represent graph elements in the
application context, i.e., elements that have to be present in the source graph tomake
the rule applicable, and green graph elements refer to those elements being created
by the rule application. The parallelogram at the bottom of Figure6.3 containing an
expression represents a constraint. This constraint ensures that the name attributes
of the referred elements on the left-hand side and the right-hand side have the same
value. Intuitively, this rule’s meaning is the following: for each yet unprocessed
method name in the Java source code, a new method name node is created in the
target program model.

Besides this basic rule in Figure6.3, a complete TGG specification for syn-
chronizing two graph-based model representations usually involves more complex
triples to handle any possible case appropriately. For instance, as each element is
translated only once during a TGG transformation, the given rule is not sufficient
for synchronizing both sides as a single method instance in the program is repre-
sented by multiple elements in the program model (name, signature, definition). To
illustrate that the expressive power of TGG specifications goes beyond simple one-
to-one correspondences, we provide an example of two (interrelated) TGG rules for
translating method definitions, shown in Figures6.4 and 6.5a.

Rule MethodSignatureRule (Figure6.4) defines the synchronization of
method signatures. In a certain sense, this rule constitutes a successor rule of
MethodNameRule (Figure6.3) as it refers to elements created byMethodName-
Rule as matching context. Please note that the translation of parameter lists from
Java Source/MoDisco into a method signature and a corresponding parameter list
representation in the program graph is specified in further rules. Nevertheless, this
example shows a case where one element on the source side corresponds to multiple
elements on the target side within a single TGG rule, thus ensuring correct corre-
spondences while synchronizing both sides. This rule can be interpreted as: for each
yet unprocessed method signature with an already processed name and type in the
Java source code, an additional method name signature node is created in the target
program model. This new element is connected with the respective signature node
and type corresponding with the already processed ones from the source side of the
rule.

6.2 Inter-Artifact Tracing and Model-Synchronization 101

The rule MethodDefinitionRule (Figure6.5a) again constitutes a succes-
sor rule of MethodSignatureRule (Figure6.4). Whenever Method
DefinitionRule is applied, a new method definition is added to the program
model for the corresponding method definition within the source, i.e., the respective
MoDisco representation. This newly created method definition node is connected
to the signature, previously created by MethodSignatureRule by inserting a
new link within the correspondence graph. In additional rules, the relations to the
classes defining the methods are created. All elements in the method definitions in
the MoDisco model not translated by any TGG rule result in abstraction from the
detailed model as there is no corresponding counterpart in the program model.

These three sample rules illustrate that in realistic application scenarios where
both sides differ concerning the level of detail and/or the way information is repre-
sented, complete TGG specifications usually comprise more complex connections
than just simple one-to-one correspondences. Consequently, on the one hand, it
is challenging to develop TGG specifications that guarantee bidirectional model
transformations, ensuring consistency preservation for any well-typed input models
on both sides. On the other hand, once implemented, TGG rules are an expressive
and powerful instrument for bidirectional model transformation scenarios, where
incremental synchronization comes for free with the rules.

The (forward) transformation from Java program into the program model is
applied if, for instance, a Java developer edits the source code, e.g., adding a new
class. After such a source code modification is completed, the program model has
to be updated, respectively, to incorporate a new node of type TClass representing
the new class. This update is achieved by applying a corresponding TGG rule for
translating class definitions (similar to the one shown for method definitions in
Figure6.5a) to insert a node for the newTClass into the programmodel.Additional
rule applications might be necessary to capture all changes made by the developer.

In contrast, whenever the programmodel is modified, e.g., by applying aPull-Up
Method refactoring on the programmodel, the changes within themodified program
model are incrementally propagated back into the Java source code. In a Pull-Up
Method refactoring, semantically equivalent method definitions within child classes
are pulled into their shared parent class, reducing duplicated code. Among others,
this refactoring is discussed in detail in Chapter10. For propagating the changes, the
(backward) transformation, resulting from the same TGG specification, is applied.
First, the differences between the original program model and the modified pro-
gram model are calculated. For the Pull-Up Method refactoring, these differences
comprise the deletion of all definitions realizing the method signature to be pulled

102 6 Model-Synchronization and Tracing

up to the parent except one and redirect the remaining one’s class edge. TGG syn-
chronization is based on the previous execution of the forward transformation, and
it consists of the following steps:

1. Withdrawing those rules that do not match anymore, i.e., rules that created ele-
ments that have been deleted through the modification. In our example, the
Pull-Up Method refactoring results in one or more deleted method definitions,
which have been created earlier by applying the MethodDefinitionRule
in Figure 6.5a. Each additional element created by this rule application, i.e., the
corresponding method on the MoDisco model side and the link to the method
signature in the programmodel, has to be deleted while reverting this rule appli-
cation. This procedure always yields a consistent state, as, after this synchro-
nization step, nomore necessary elements are removed, or unnecessary elements
are preserved on either side.

2. Matching and translating those elements which have been added by the modifi-
cation. In our example, another TGG rule (not depicted here) has to be defined
to take care of the newly created membership edge between the method sig-
nature and its parent class by creating the corresponding membership edge on
the MoDisco side. Thus, based on the intermediate MoDisco representation, we
always arrive in a state of the source code that is the modified program model.

The shown TGG rules are appropriate in handling different granularity by not trans-
lating elements, e.g., all details from the method bodies available in the MoDisco
model but not in the program model. Unfortunately, as illustrated in what follows,
our experience at defining theTGG rules has shown that they cannot create structures
that differ entirely on the two sides. Our solution for this issue comprises implement-
ing multiple preprocessing steps extending the different models with such structural
information.

One example of such an issue solved by preprocessing is the method representa-
tion as name, signature, and definition. Figure 6.6 illustrates this problem. In princi-
ple, it is possible to create this structure using TGG rules by creating thewhole struc-
ture when a method name is translated the first time and inserting afterward. How-
ever, this way of creating this structure produces issues in synchronizing changes on
the structure. Let us assume that the TMethodName node in Figure 6.6 has been
created when the method defined by the class EditOfficeVisitAction has
been translated using aTGGruleTGG rule 1. The other signature has been added
afterward byTGG rule 2, reusing the TMethodName node created by the appli-
cation of TGG rule 1. A refactoring, e.g., a Pull-Up Method refactoring [145],
deletes the TMethodDefinition defined by EditOfficeVisitAction

6.2 Inter-Artifact Tracing and Model-Synchronization 103

Figure 6.6 Illustration of the problem in creating method trees using TGGs

and synchronizes this change with the source code. For synchronizing this change,
the TGG algorithm has to undo all rule-applications that initially lead to the cre-
ation of nodes or edges deleted by the refactoring. In this case, this is the applica-
tion of the rule TGG rule 1. As the TMethodName node’s creation took place
in the same rule-application as the creation of the deleted TMethodDefintion
node, after undoing the rule-application, it seems that the TMethodName node has
never been created. Consequently, this undo also makes the creation of the other
TMethodSignature node by TGG rule 2 invalid as its context does not exist
anymore, leading to a situation in which no recovery without deleting and recreating
the TMethodDefiniton node translated by the TGG rule 2 is possible. This
pair of deletion and recreation is also reflected on the implementation side leading
to a loss of all information from the statement level. To deal with this issue, we
defined a preprocessing that already creates the required structure on the MoDisco
model’s side.

To conclude, TGGs provide an automated mechanism to preserve consistency
between the two different program representations for managing co-evolving Java
programs.As a result,we obtain a graph-based framework for arbitrarily interleaving
program evolution andmaintenance steps.We can also use this approach to translate
and synchronize model elements’ security requirements between different system
representations, e.g., design-time models and source code.

6.2.3 Tool Support for theModel Synchronization

Our implementation of the synchronization between source code and the program
model as well as UML models is based on the eMoflon graph transformation

104 6 Model-Synchronization and Tracing

engine [162]. Among others, eMoflon allows the specification and execution of
TGGs between models specified using the Eclipse Modeling Framework (EMF).
While the UML models and the program model are specified using EMF, we have
to parse the Java source code to create an EMF model. For this purpose, we are
currently using MoDisco [141].

TGG rules are specified in eMoflon using a textual editor. Besides, support by a
graphical visualization similar to the graphics of TGG rules is generated. Figure6.7
shows a screenshot of the eMoflon rule editor in the Eclipse IDE. On the left, the
classical package explorer is shown, giving an overview of the rule files. Right of
the package explorer, the rule editor is shown. In the screenshot, an abstract parent
of the rule from Figure6.4 for the translation of method signatures is shown. The
eMoflon tool supports inheritance between rules for minimizing the duplication of
elements in rules. Comparable to abstract classes in Java, shared rule parts that are
not executable on their own can be defined in abstract rules. In this case, signatures
of methods and constructors are translating similar rules that only differ in the type
of the node to create (MMethodSignature and MConstructorSignature
in the MoDisco model). On the right of the figure, the visualization of the TGG rule
is shown. Using this tooling, we developed the two TGGs discussed in this work.
For synchronizing the program model with Java source code, we defined 109 TGG
rules. Of these rules, 18 are abstract rules and 90 are concrete rules. The TGG for
synchronizing Java source code with UML models is based on a TGG of Leblebici
et al. [163] and has been extended with deployments of classes and various bug
fixes. This UML TGG comprises 105 TGG rules, of which 88 are concrete rules
and 17 are abstract rules.

The structure of the implementation is shown in the component diagram in Fig-
ure 6.8. Elements colored in white are elements that have been developed as part
of this thesis, while gray elements are external dependencies. The two sets of TGG
rules are located in the components PM TGG and UML TGG, respectively. The
components MoDisco, UML, and TypeGraph contain the corresponding meta-
models. These metamodels and related functionality, e.g., parsing and serializing of
MoDisco, are exported through interfaces. For the MoDisco metamodel, we speci-
fied a wrapper that extends the MoDisco metamodel with additional elements such
as the discussed nodes for method signatures and names and provides the exten-
sions through an interface. The TGG components use the interfaces to export the
extended MoDisco metamodel and the metamodel of their target language to real-
ize the transformation. For the discussed preprocessing, six different interfaces are
specified. We have two interfaces for every metamodel at which preprocessors that
are executed before a transformation and postprocessors that are executed after a
transformation can be registered. For example, the creation of themethod-signature-

6.2 Inter-Artifact Tracing and Model-Synchronization 105

Figure 6.7 Screenshot of the eMoflon TGG editor in the Eclipse IDE showing the TGG rule
for translating method signatures

Figure 6.8 Component diagram of GRaViTY’s artifact synchronization

name structure is registered at the interfaceIPreprocessMoDisco. Technically,
these interfaces for preprocessors and postprocessors are realized as Eclipse exten-
sion points1. We provide a Java API for both transformations and implemented UI

1 Eclipse FAQ: https://wiki.eclipse.org/FAQ_What_are_extensions_and_extension_points
%3F

https://wiki.eclipse.org/FAQ_What_are_extensions_and_extension_points%3F
https://wiki.eclipse.org/FAQ_What_are_extensions_and_extension_points%3F

106 6 Model-Synchronization and Tracing

entries in the Eclipse IDE to create and synchronize UML models and program
models for Java projects.

6.2.4 Evaluation of theModel Synchronization

In this section, we present the evaluation results of applying the implementation of
our model-synchronization technique on a corpus of 20 real-world Java programs
from various application domains (cf. the first column in Table6.1) to consider the
following objectives.

O1–Scalability: Is the proposed model-synchronization technique applicable to
real-size Java programs in a reasonable amount of time?

O2–Efficiency: To what extent does incremental model-synchronization improve
the efficiency of the model creation from source code in case of changes?

We present and discuss the results of our experiments concerning our objectives. All
experiments have been performed on a Ubuntu 20.10 LTS mobile computer with an
Intel i5-6200U dual-core processor, 8 GB DDR3 RAM and OpenJDK v1.14.0.

O1–Scalability of the ProgramModel Creation
First, we study whether the synchronization approach can be applied to real-world
Java projects of different sizes in a reasonable amount of time.

Setup. We now describe the details on the experimental setup and methodology
to obtain the results for answering O1.

Our selection of subject systems relies on former experiments performed for
related approaches [164, 165, 166], as well as on a standard catalog for analyzing
the evolution of Java systems [167], to address the objective. We selected open-
source Java programs from different application domains, including software sys-
tems for software developers as well as for end-users. We also aimed at including
a range of different program sizes. The particular program versions considered for
the experiments, together with the URL for accessing source code, are included on
our accompanying GitHub site2. We applied our proposed detection technique to
all subject systems, monitoring the execution and measuring execution times.

2 GRaViTY’s GitHub site: https://github.com/GRaViTY-Tool

https://github.com/GRaViTY-Tool

6.2 Inter-Artifact Tracing and Model-Synchronization 107

Figure 6.9 Runes for the program model and UML TGGs

108 6 Model-Synchronization and Tracing

Table 6.1 Program statistics and execution times of the program model and UML model
creation

Project Statistics Duration in s

Name Version LLOC types methods fields PM UML

JavaSolitaire 1.3 1,197 27 115 109 12.88 11.17

QuickUML [168, 169] 2001 2,667 22 175 156 4.80 3.38

JSciCalc [170] 2.1.0 5,437 131 563 200 9.03 7.47

JUnit [171] 3.8.2 5,780 188 841 161 8.12 6.05

JSSE – OpenJDK 8 20,896 236 1,875 861 31.30 23.22

Gantt [172] 1.10.2 21,228 397 3,925 1,323 22.99 16.95

Nutch [173] 0.9 21,473 331 1,750 1,083 21.33 16.79

Lucene [174] 1.4.3 25,472 333 2,096 1,166 17.88 12.98

log4j [175] 1.2.17 30,662 459 3,190 1,226 24.73 18.83

JHotDraw [176] 7.6 32,434 480 3,781 900 40.16 34.47

PMD [177] 3.9 43,063 620 4,064 1,582 30.72 32.17

jEdit [178] 4.0 49,829 606 3,429 1,976 45.28 25.29

JTransforms [179] 3.1 71,348 610 1,509 396 39.99 23.65

iTrust 21 77,501 964 6,166 3,074 85.73 38.68

JabRef 2.7 77,813 1,371 5,702 3,669 68.33 49.96

Xerces [180] 2.7.0 102,279 865 8,267 4,676 76.75 47.76

ArgoUML 0.19.8 135,542 1,596 12,401 3,458 151.40 78.45

jfreechart 1.0.19 144,338 1,093 11,861 3,258 128.43 70.74

Tomcat 6.0.45 177,013 1,732 16,661 7,991 185.70 87.52

Azureus [181] 2.3.0.6 201,541 3,432 17,564 7,106 237.91 100.47

Results. Table6.1 lists the Java programs used as subject systems alongwith statis-
tics regarding their size. These statistics contain the logical lines of code (LLOC)
of the program’s source code as well as the number of types, methods, and fields.
As types, we consider classes, interfaces, and enumerations. In the next column, the
execution times of the model creation are given in seconds for the program model
(PM) and UML TGG. Here, we show the median values out of 5 runs. Figure6.9
shows the detailed run times for the transformations. The overall height of each bar
is equal to the corresponding run time in Table6.1. For every project, the amount
spent for discovery using MoDisco, applying all preproccessings, transformation
using the TGG, and applying all postprocessings is shown.

For all considered projects, the most time is spent executing the TGGs. However,
also a significant amount of time is spent discovering the source code usingMoDisco
and for preprocessing. Here, we can observe a significant difference between the

6.2 Inter-Artifact Tracing and Model-Synchronization 109

impact of the preprocessing required for the program model and the UML transfor-
mation. The postprocessing has only a minor influence on the recorded execution
times. In summary, the TGG for UML models is faster than the program model
TGG.

To study the effect of different properties of OO programs, we related the mea-
sured run time for creating a program model and extracting a UML class diagram
to characteristics of the Java programs. Thereby, we considered the overall time as
shown in Table6.1. The first plot in Figure6.10 depicts the relation between time
for model creation and logical lines of code of the program, the second plot with the
number of types in the program, and the third plot concerning the number of mem-
bers as the sum of methods and fields from Table6.1. It seems like the time needed
for creating a program model correlates the strongest with the lines of code of the
projects. While there is still a correlation with structural aspects of the projects, the
data points in these diagrams are more varying. As this variation is more significant
for the creation of the program model than for the UML models, this could be an
indication of an impact of the details contained at the statement level of the pro-
grams. For the program model, we represent these details more fine-grained than
in the UML class diagrams. Also, the higher slope for the program model is an
indicator of this assumption.

To answer O1, the results show that the time required for initial model cre-
ation is reasonable also for larger-scale programs. As our implementation supports
incremental model-synchronization, initialization costs might be omitted later on
in the case of evolving programs. The run-time benefit of the incremental model-
synchronization is the subject of objective O2, discussed in what follows.

O2–Efficiency of the Program Model Synchronization
In this part of the evaluation, we study if we can achieve a speedup by synchronizing
changes instead of restoring the model from scratch.

Setup. To answer O2, we selected a set of fine-grained program edits which fre-
quently occur during continuous software evolution. In this regard, evolution steps
do not comprise complicated structural program changes in the large, but rather con-
sist in introducing or deleting particular methods and/or fields, as well as renaming
operations, as can be observed in the evolutionary history of the Qualitas Corpus,
a standard catalog for analyzing object-oriented system evolution [167]. For our
measurements, we initialize for every project a program model from an unchanged
program state. Afterward, we perform a program edit and measure the duration of

110 6 Model-Synchronization and Tracing

Figure 6.10 Relation between the time required for program model creation and different
project metrics

6.2 Inter-Artifact Tracing and Model-Synchronization 111

the program model update as well as the time for the creation of a new program
model.

The speedup sevolution is presumably obtained through incremental model-
synchronization and is calculated according to the formula sevolution = 1− (t�/t0),
where t0 represents the complete initialization time of the unchanged program state
and t� denotes the time needed to update the programmodel after program edits. As
edits are limited to very few program elements, we assume that re-creation without
incremental model-synchronization requires the same time as for the unchanged
program state, i.e., t0.

For experimental purposes, we simulate the following implementation-level pro-
gram edits:

• Delete Method: deletion of a random method and all invocations of this method,

• Create Class: inserting a fresh class into a new subpackage of the existing pack-
age hierarchy,

• Create Method: inserting a fresh method into a random class, that returns the
value obtained from a call of the toString method of this class,

• Rename Class: renaming a random class.

Regarding the propagation of the changes from the model level to the implementa-
tion, usually, manual effort is included for resolving conflicts. However, this manual
effort can be reduced by using our approach for propagating changes. For this reason,
we measured the time needed for an initial propagation of changes into the source
code but not the time needed for manual changes afterward. On UML models, we
specified small changes oriented on typical security maintenance tasks concern-
ing the UMLsec Secure Dependency security requirements. In this experiment, we
considered the following changes in the iTrust UML model:

• Deletion of a security-violating dependency.

• Adding a newproperty to a class for separating sensitive frompublic information.

• Extraction of security-critical operations into a new class.

• Moving an operation to a different class to group security-critical functionality.

112 6 Model-Synchronization and Tracing

Results. ConcerningO2, Figure6.11 shows themeasured time for synchronization
(t�) as a bar-chart for the four basic program edits per project. In the figure, we
show the median value out of five runs per change. In general, the time required for
synchronization increases with the size of the project and is in all cases much lower
than the time required for initial translation. As the deletion of a method impacts
more elements than the other changes, we observed higher execution times for this
change.

Furthermore, while the measured times for changes only adding elements or not
changing the structure of the already translated elements were very similar within a
project, we observed huge differences for the deletion ofmethods. Here, the required
time does not only depend on the size of the project but also the coupling of the
deleted method has a significant impact. This coupling cannot only change between
different projects but also within a single project.

Of the considered changes, the deletion of methods leads to a lower, but still
remarkable speedup, than we observe for the other three kinds of changes. This
difference is because the ratio of the edited program part to the whole is higher in
this case. The achieved median speedup sevolution for the considered changes is as
follows.

• Delete Method: 88.28%,

• Create Class: 98.1%,

• Create Method: 98.19%,

• Rename Class: 97.98%.

When looking into the single applied changes within a project, we noticed, that there
is only a relatively small difference between the times needed for synchronizing the
changes except for the deletion ofmethods. This can be explained by the fact that the
number of the affected elements can vary for this change. As the deleted methods
can have different amounts of dependencies with other members the amount of
affected elements varies. For the other changes, the number of affected elements is
always the same.

Next, we look at the differences between different projects. As the coupling of
methods is different from project to project, we observed the highest variance in
speedup across the different projects for deleting methods (0.014). The variance of
the speedup for all other changes has been between 5.15E-5 and 9.61E-5. Anyways,
for all considered changes there is a low variance across the different projects.

6.2 Inter-Artifact Tracing and Model-Synchronization 113

Figure 6.11 Time required for incremental model updates for program edits

In general, the achieved speedup factor for synchronizing source code changes
into the program model is highly encouraging.

The propagation of a change from the UML models into the implementation
took 50 seconds on average and 51.7 seconds in the worst case giving a speedup
of 39.7% in the worst case. Currently, we use a non-incremental code-generator
that takes most of the time (98.5%). For the pure propagation of the changes from
the UML models into an implementation model, from which code is generated,
only 0.75 seconds are needed. Thereby, we did not notice any significant difference
between the changes applied to the UML models.

6.2.5 Threats toValidity

A general threat to internal validity may arise from the selection of subject systems
not being representative; to address this issue, we thoroughly investigated related
literature for our selection to cover a broad spectrum regarding both size and applica-

114 6 Model-Synchronization and Tracing

tion domains. In addition, most of the programs have been considered for evaluation
purposes by comparable approaches.

Another general issue for our approach is the NP-completeness of graph iso-
morphism used by pattern matching. However, in our case, we achieve polynomial
complexity by restricting pattern matching using fixed entry points.

ConcerningO2, we focus on a small set of self-defined program edits. Although
our investigations show that typical evolution steps, not aiming at bug elimina-
tion but on structural improvement or program extensions, mainly comprise those
kinds of edits, they are naturally limited in scope and are specific to the particular
program. However, those edits constitute the most general building blocks of fre-
quent evolution steps and, therefore, our experiments can be assumed to properly
simulate evolution-related phenomena occurring in real-life evolving software sys-
tems. Nevertheless, as part of future work, we plan to further investigate continuous
design-flaw detection scenarios by emulating entire version histories available in
repositories of open source projects, e.g., at GitHub.

6.2.6 Conclusion on the Inter Artifact Model-Synchronization

While TGGs provide andmature mechanism for the translation betweenmodels and
the synchronization of changes, they do not come without challenges. First, there is
the discussed limitation regarding different granularity and structures between the
source and target models. While this could be easily solved using preprocessings,
it is desirable to enhance the TGG algorithm in a way we do not have to care about
such issues. Nevertheless, we consider the proposed TGG approach as a power-
ful solution for the synchronization between the UML model, program model, and
source code. Besides the pure synchronization of the different considered models,
TGGs also allow generating source code structures from UML models and can be
used for reverse-engineering UML models from legacy software systems. How-
ever, the supported UML class diagrams are on the same level of abstraction as
the implementation and do not represent UMLmodels as software architects would
define. Nevertheless, when suitable views are created, these models allow to effec-
tively use them, e.g., for annotating classes with UMLsec security requirements.
Also, combined with tracing as introduced in the next section, these UML models
allow propagating security requirements from more abstract UML models into the
implementation and to detect inconsistencies after changes.

6.3 Tracing within UML Models of Different Abstraction 115

6.3 Tracing within UMLModels of Different Abstraction

In model-driven development (MDD), as introduced in Section3.3, a software sys-
tem is developed by iteratively refining models until models close enough to contain
all details necessary to implement the software system in executable source code
are reached. In this thesis, we use UML models with the three different levels of
abstraction that are common for software system development [77], as introduced
in Section3.3. To be more precise, we consider domain, system, and implementa-
tion models. Nevertheless, the user of our approach is not limited to use exactly this
amount of levels but should have the freedom to choose to work with more or fewer
levels. Also, we assume these models to be specified using the Unified Modeling
Language (UML) [5].

These models are handed over to developers, that implement the concrete soft-
ware system. To ease this task, from these models initial source code stubs might
be generated that are manually extended with the specifications from the models
that could not be generated automatically. Considering all models that have been
created at MDD, there is a significant difference in detail between the very early
UMLmodels and those that are handed over to developers, are used for code gener-
ation, or are synchronized with the implementation using the mechanism presented
in the previous section.While we presented a solution for tracing between the source
code and fine-grained UML class diagrams, to allow the tracing among the different
UML models, we need trace links comparable to the correspondence model of the
TGGs for the inter-artifact tracing, introduced in Section6.2. In what follows, we
show how we can realize such traces by only making use of UML elements already
specified in the UML Superstructure.

6.3.1 Background on Refinements in UMLModels

The proposed workflow of iteratively refining models allows the systematic reuse of
elements but also requires continuous tracing between the individual models. In this
section, we first discuss the relationship types defined in theUMLSuperstructure [5]
that could be used for defining the refinements considered by us. Afterward, as
refinements can be used to establish some kind of inheritance hierarchy, we discuss
polymorphism in the context of the UML as well as an implication for UMLsec.

116 6 Model-Synchronization and Tracing

Figure 6.12 Excerpt from the UML Superstructure showing the specification of refinement
relations

6.3.2 Refinement Relationship Types

The UML specifies various relationship types to define refinements [5]. Figure6.12
shows an excerpt of the UML metamodel focusing on the refinement relations. On
the left of the figure, the type hierarchy of the relationship types is shown and on
the right the elements these can relate. In what follows, we discuss the semantic
meaning of the non-abstract relationship types.

Dependency: This relationship kind represents one of the most abstract relations
between elements. One or more elements require other elements for their real-
ization. There are more specific instances of this relationship that concretize the
kind of this requires relation.

Abstraction: Using this relationship, multiple elements that represent the same
concept on different levels of abstraction or from different viewpoints can be
connected.

Realization: This is a specific abstraction dependency that specified that concrete
elements implement a more abstract element. Following the UML Superstruc-
ture, this relation should be used for the specification of refinement relations only
considered for tracing.

6.3 Tracing within UML Models of Different Abstraction 117

InterfaceRealization: This is an even more specific kind of realization specifying
that a classifier implements a concrete interface and offers its functionality over
the contract specified by the interface.

Generalization: Using this relationship, we specify that one or more concrete
classifiers are an instance of one or more general classifiers. This implies that the
concrete classifiers can be used in the context of the generals. Also, the concrete
classifiers inherit all features from the generals.

6.3.3 Polymorphism in UML

Comparable to object-oriented languages, inheritance within UML models leads to
polymorphism. In UML, the inheritance between objects is expressed using gener-
alizations as introduced in the previous section about refinement relations. While
many programming languages, e.g., the Java programming language, allowmultiple
inheritance only for interfaces, the UML allows multiple inheritance in all cases.

Following OO languages, the UML specifies rules for overriding members
between classes [5, 182]. In comparison to most OO-programming languages, there
is a huge difference in the overriding mechanism. The UML specifies covariant
overriding of features. This means, that a method or property can be overridden by
a member with a narrower signature. In Java, for example, it is possible to specify
a more concrete return type of a method in a subclass [61]. In the UML, this is not
only possible for return parameters of operations but all parameters.

6.3.4 UMLsec Secure Dependency in the Context of Inheritance

The interface of a class considered in UMLsec comprises all features of the class
itself as well as all features of generalized classes that have not been overridden.
For example, the interface of the class Patient in the domain model of Fig-
ure 6.12 comprises the property allergies defined in this class as well as the
two properties defined in its general Person, more precisely the properties name
and homeAddress.

Following the UML Superstructure [5], stereotypes apply to a specific element
and, therefore, clients do not inherit stereotypes from their generals. However, if we
look at the domain model in Figure6.13, from a security perspective, all security
levels specified for features of Person should also apply to Patient as these
features are accessible through the Patient’s interface. As the features are defined
in the scope of the annotated class, assigning the security annotations to the features

118 6 Model-Synchronization and Tracing

Fi
g
u
re

6
.1
3
M
od
el
re
fin

em
en
ts
be
tw
ee
n
th
e
U
M
L
do
m
ai
n
m
od
el
(F
ig
ur
e
3.
2)

an
d
de
si
gn

m
od
el
(F
ig
ur
e
3.
3)

of
iT
ru
st

6.3 Tracing within UML Models of Different Abstraction 119

is valid. Accordingly, even as inheritance is not explicitly considered inUMLsec and
stereotype applications are not inherited, we assume UMLsec secure dependency
to work as follows. The features are inherited together with their security level but
security levels of features not defined within the class are not inherited.

Overriding is a second part in the area of inheritance not explicitly considered
in UMLsec. A question to answer is whether it is allowed to override a classified
feature, e.g., an operation or property, and if it is allowed which security level this
overriding feature must be annotated. Also, it is unclear if we can override a non-
classified feature with a classified feature. As the classified feature is usable in the
context of the parent where no security information is available, this might rise
issues. To avoid inconsistencies, we assume that UMLsec security requirements
are consistent across inheritance hierarchies. Extending the definition of UMLsec
secure dependency to consider such cases is out of scope in this thesis and could be
done in future works.

Finally, considering the covariant overriding of UML, a challenge lies in relating
signatures defined in a «critical» to the features contained in a class signature.
While in this case the expected behavior is clearly given by theUMLSuperstructure,
the technical realization is complicated and has not been realized in CARiSMA. For
this reason, in this thesis, we do not make use of covariant overriding.

6.3.5 Refinements of UMLModels

While we use TGGs to synchronize artifacts with different metamodels on a com-
parable level of abstraction, the single UML models created at MDD have the same
metamodel but entirely different levels of abstraction. Accordingly, we need a dif-
ferent mechanism for realizing tracing. To keep things simple for developers, we
do not want to introduce new language constructs or elements to the UML. For this
reason, the single UML models are directly connected by explicit trace links based
on standard UML language features. An example of these refinements is shown in
Figure6.13. On the left of the figure, the design model from Figure3.3 is shown
and on the right the domain model from Figure3.2. The two models are visually
separated by a dashed line. The User in the design model realizes the Person
from the domain model. The described refinement relations are crossing the dashed
line separating the two models.

In what follows we discuss the suitability of the different refinement relations
for tracing between UML models with different abstraction. Thereby, we have to
consider three constraints:

120 6 Model-Synchronization and Tracing

1. The usage of relations has to be within the semantic meaning of the relations as
specified in the UML Superstructure [5].

2. There should be no conflicts with the synchronization between UML class dia-
grams and the implementation introduced in Section6.2.

3. The tracing has to be integrated with UMLsec.

While the definition ofDependency in principle fits our needs, it is too abstract. Only
based on this relationship type, we cannot easily distinguish between dependencies
within a model and trace links across the different models. Here, the more specific
versions of a dependency (Abstraction and Realization) fit our needs better. Consid-
ering models with different abstractions, the more concrete elements realize more
abstract ones. For this reason, the more detailed Realization is even more suitable
for our purpose of tracing than the more general Abstraction. The drawback of these
two relationships is that none of the two has been integrated with UMLsec. Such
an integration partly exists for the more classic inheritance relations Generalization
and InterfaceRealization. However, as shown in Section6.3.4 also this integration is
not complete. In addition, there are two significant drawbacks of these two relation-
ships. First, not every considered refinement relation is realized in the way that the
more detailed element is an instance of the more abstract element. Considering the
refinements between the domain model and design model in Figure6.13, for the two
classes Patient sub-typing might make sense, however, the User is not really an
instance of a Person but only an element for representing Persons in the soft-
ware system. Second, the two relationship types are part of UML class diagrams
translated by the TGG presented in the previous section. If we use Generalization
and InterfaceRealization for tracing, the challenge is to distinguish between uses of
these relationships that should be translated by the TGG and those that are used for
tracing.

In summary, there are cases in which the establishment of an inheritance rela-
tion makes sense and is beneficial but there are also cases in which this makes no
sense. As inheritance is specified on a class level but overriding takes place on a
feature-level, e.g., operations or properties, the security-related mapping between
signatures gets complicated. In contrast to this, as visible in Figure6.12, Realiza-
tions are specified between NamedElements its subtypes, including the types
Operation and Property. For example, in Figure6.13, the property name of
the class Person is duplicated in the design model but also two more fine-grained
properties firstName and lastName are specified for realizing the property
from the domain model. Using Realization relationships, we can make this
knowledge explicit. Afterward, these trace links can be used for propagating secu-
rity information.

6.3 Tracing within UML Models of Different Abstraction 121

In what follows, we look at realizations in detail. Thereby, we consider real-
izations with a different level of detail, the interaction of realizations with inheri-
tance, and security requirements specified using UMLsec. As an example, we use
a realization of the design model by an implementation-level UML model that is
synchronized with the source code using TGGs. Figure6.14 shows the realization
of a Patient in the implementation of the iTrust system.

As shown in Figure6.14a, patients are represented in the implementation by
beans that can be stored and loaded from a database. For this reason, the Patient
Bean has to contain all data available in this database object. Among others, this
includes the homeAddress of the patient, that Patient inherits from the class
User. Please note that in UML an inherited feature is marked with a caret (ˆ)when
it is visualized. How exactly the PatientBean realizes the Patient is shown
in Figure6.14b. The property homeAddress of the class User is decomposed
into more detailed properties in the implementation (icAddress1 and icCity)
for realizing this property. This realization is explicitly specified by two realization
edges. Also, realizations can be used to show the internal structure of a class in
more detail. For example in Figure6.14b, it is explicitly shown that the getter and
setter methods getIcStreet1 and setIcStreet1 realize the external inter-
face for the property icStreet1. For ensuring architectural compliance, we can

Figure 6.14 Realization of a class from the design model by an implementation-level class
detailing features

122 6 Model-Synchronization and Tracing

Figure 6.15 UML profile for security tracing

check whether the realized features are contained in the scope of the realized class.
Furthermore, as shown in this example, we can use realizations to explicitly specify
refinements also considering inheritance.

Next, we will look into the realization and impact of the security requirements
specified on the class User using UMLsec. The specified security requirements
have to be reflected on the realizing class. The most simple and naive solution is that
every feature that realizes a classified feature has to be classified at the same security
levels. However, in practice, this might not be suitable. For example, a decomposi-
tion into multiple features could separate sensitive information from non-sensitive
information that was aggregated in a single property in the more abstract model.
Considering the home address of a patient, it could be that the concrete address of
the patient (icAddress1) is sensitive information but the city the patient lives in
(icCity) not. AsicCity is a more concrete refinement of icAddress, it inher-
its the security level and has to be explicitly specified as non-sensitive information.
We call such an explicit specification of the non-criticality of a feature that refines
a critical feature as declassification. To allow the specification of such a declas-
sification, we introduce the stereotype «declassify». If a Realization is
annotated with such a stereotype, this means that the realizing element only realizes
a non-sensitive part of the realized element. Figure6.15 shows the profile definition
of this stereotype. For specifying which security levels of UMLsec are declassi-
fied, the stereotype contains a tagged value for every security level specified in
UMLsec «critical». The figure shows the tagged values for secrecy and
integrity. If there is a declassification regarding a security level, the value of
the corresponding tagged value has to be set totrue. The default value of the tagged
values is false. In Figure6.14b, we specified that there is no declassification for
the property icAddress1 and the property icCity there is a declassification

6.3 Tracing within UML Models of Different Abstraction 123

regarding secrecy but not integrity. Based on this information, we can derive the
required security requirements for the refining class and can check their consistency
with the security requirements of the refined class. For this purpose, we define the
security requirement of Secure Realization.

Definition 3 (Secure Realization) A system fulfills Secure Realization if for every
feature fa of a classifier A, that appears in the {secrecy} resp. {integri t y} tagged
value of a «critical» on A, the following conditions hold:

(i) For each feature fc of a classifier C that has a realization dependency to fa

which is not stereotyped «declassify» with the tagged value {secrecy}
resp. {integri t y} set to true, the feature fc has to appear in the secrecy
resp. integri t y tagged value of a «critical» on C.

(ii) There is either no feature fc of a classifier C that has a realization dependency
to fa or at least one feature fc of C that has a realization dependency to fa

that is not stereotyped «declassify» with the tagged value {secrecy} resp.
{integri t y} set to true.

The first condition expresses that every feature that realizes a classified part has to
be classified, too. The second condition expresses that a feature should either not
be realized or there has to be at least one realizing feature that realizes the classified
part of the realized feature.

Considering the example in Figure6.14, Secure Realization is fulfilled for
homeAddress. For the verification of the security requirement, we have to check
the realization of the property homeAddress regarding the two security levels
secrecy and integrity. First, we check the first condition of Secure Realization
for every Realization dependency. We start with the realization by the prop-
erty idAddress1. As this realization is not annotated with «declassify»,
the «critical» of PatientBean has to contain icAddress1 on both
security levels (secrecy and integrity). These expected classifications are
given in the example. The realization by the property icCity is stereotyped with
«declassify» whereas secrecy is set to true. For this reason, icCity
only has to appear on the security level integrity of the «critical» on
PatientBean. As also this is given in the example, Secure Realization’s first
condition is fulfilled. The second condition is also fulfilled as there are realizations
of both security levels.

Please note, that the considered classifiers A and C are non-injective. Accord-
ingly, we can use Secure Realization also for propagating security requirements
within a class when the internal realization is specified as in the example in

124 6 Model-Synchronization and Tracing

Figure6.14. In this example, the getter realizes the secrecy part of the property
icStreet1 and the setter the integrity part. Accordingly, the getter is added to the
security-level secrecy and the setter to integrity of the «critical» stereotype on
the class PatientBean.

In summary, the use of Realization relations for expressing refinements allows
easy detection of changes that lead to inconsistencies, as the relations can be used
as trace links. For tracing security requirements among UML models with different
levels of abstraction, we introduced a new stereotype that allows the definition of
detailed realization and decomposition rules and is supported by a security check
that allows for checking the security compliance of the realizations. Unfortunately,
unlike the correspondences using TGGs, we currently do not provide automation in
updating the different UML models in case of changes.

6.3.6 Tool Support for Model Refinements

While for editing the UML models any UML modeling tool can be used, we are
using Papyrus as it supports the CARiSMA plugin for checks of UMLsec. In addi-
tion, we provide support to the user in mapping elements between UML models
and creating refinement relations. Our tool support is based on name mappings
between Classes, Interfaces, Nodes, Actors, and Artifacts. This name mapping can
be supported by providing a dictionary containing synonyms. Also, we discussed
the tracing of UMLsec security requirements between UML models with differ-
ent abstractions. For supporting the security tracing and realization, we specified a
security realization profile that allows the detailed specification of security realiza-
tion. This profile comes with a check that checks for the security compliance of the
propagated security requirements at their realization.

We implemented a wizard that allows the selection of the models between which
refinement relations should be established. Figure6.16 shows two pages from this
wizard. When the wizard is launched, it searches for all UML models within the
current workspace selection. On the first page of the wizard, the developer has to
select the model that should be refined, and on the second page the refining model.
Figure6.16a shows the page for selecting the abstract model that should be refined.
The page for selecting the refining model looks the same but the already selected
model is excluded from the list of models. On the third and last page of the wizard,
developers can select a comma-separated file containing synonyms. Figure6.16b
shows the corresponding wizard page. When a file has been selected, a preview of
the file is shown. In the example, user and person are defined as synonyms as
well as doctor and hcp.

6.3 Tracing within UML Models of Different Abstraction 125

After all input data has been selected in the wizard, possible mappings are calcu-
lated based on the names of the model elements. Found mappings are presented to
the developer in the view shown in Figure6.17. For all elements, for those possible
abstract elements they could refine have been found, an entry is shown. If this entry
is opened, e.g., the class User in the second row of the view, possible refined ele-
ments are shown. For the class User, this is the class Person. Results that should
be persisted in the models, can be selected with a tick. Afterward, realizations are
created for the selected elements.

Figure 6.16 Dialog pages of the UML model mapping wizard

Figure 6.17 View for creating mappings between UML models

126 6 Model-Synchronization and Tracing

Figure 6.18 Implementation-level model of classes involved in the search for a patient as
part of UC28

6.3.7 Conclusion onTracing within UMLModels

As the maintenance of trace links is a prerequisite in various domains, by making
use of well-defined UML mechanisms we get tracing but also consistency checks
betweenUMLmodels with different abstraction inmany projects for free. However,
as we only provide a low level of automatization, a significant effort is required for
maintaining trace links between the UML models. This effort might be infeasible
for larger real-world software systems. Nevertheless, we demonstrated how tracing
within UMLmodels can be realized and exploited for propagating UMLsec security
requirements. Also, there is the possibility for improved tool support in futureworks.

6.4 Tracing and Propagation of Security Requirements

In the previous two sections, we discussed how we can create and maintain trace
links between the different UML models and the implementation. However, in the
two sections, we mainly focused on the model-level or structural traces between
the models and the implementation. Until now, we neglected the security tracing
betweenmodels and the implementation.Here, practical observations show that trac-
ing and maintaining security properties across system representations is manually
laboriously and error-prone [183]. For this reason, using the GRaViTY development
approach, security experts should specify security requirements only once on the
most suitable system representation. Afterward, GRaViTY allows the reuse of secu-
rity requirements across the different artifacts in the context of security analyses. For

6.4 Tracing and Propagation of Security Requirements 127

example, in Section8.1, we will use the UMLsec security annotations to determine
the sources and sinks of an implementation-level secure data flow analysis.

In this section, we utilize the introduced trace links for answering RQ1.3 of how
to propagate design-time security requirements into the implementation. For this
purpose, we show two possibilities of exploiting the generated trace links. First,
we specify Java annotations equivalent to the UMLsec stereotypes on the source
code level. Instances of these Java annotations are also available at run-time. In
Chapter9, we use these security annotations for a run-time security monitor. To
create and maintain these security annotations, we show an extension of the TGG
introduced in Section6.2. Second, we show how the correspondence model can be
used for dynamically propagating security requirements.

6.4.1 Persistence of Security Requirements in the
Implementation

In GRaViTY, we mainly work on UML models and Java source code as well as its
byte code and programmodel representation. In what follows, we introduce security
annotations to support both kinds of artifacts.

To annotate UMLmodels we make use of the existing UMLsec stereotypes [73],
focusing on the Secure Dependency property, as exemplified in Section3.6.1. More
specifically, this contains the stereotypes «secure dependency»,
«critical», and «call». In Figure6.18, we show the UMLsec security anno-
tations on an implementation-level model used as an example for synchronization.
UC28 of iTrust specifies that licensed health care professionals (LHCP) shall have
the possibility to search for their patients in the iTrust system. This search is real-
ized in the SearchUserAction class that utilizes a PatientDAO class for this
purpose. Following Figure6.14, some of the information about patients stored in

Table 6.2 Mapping between UMLsec and GRaViTY’s Java annotations

UMLsec stereotypes GRaViTY annotations

stereotype tagged values annotated annotation parameters

«critical» secrecy, integrity Class @Critical secrecy, integrity

«critical» secrecy Member @Secrecy

«critical» integrity Member @Integrity

128 6 Model-Synchronization and Tracing

1 @Critical(secrecy={"search(String , String) : List"})
2 public class SearchUsersAction {
3

4 private PatientDAO patientDAO;
5

6 @Secrecy
7 public List<PatientBean> searchForPatientWithName(String firstName ,

String lastName) {
8 try {
9 i f ("" . equals(firstName)) firstName = "%" ;
10 i f ("" . equals(lastName)) lastName = "%" ;
11 return patientDAO. search(firstName , lastName) ;
12 }
13 catch (DBException e) {
14 return null ;
15 }
16 }
17 . . .
18 }

Listing 6.1 Source code with GRaViTY’s security annotations of a class for accessing
patients in iTrust

PatientBeans is classified. For this reason, the methods providing access to the
patient beans are also classified regarding secrecy.

Mapping UMLsec Stereotypes to Code-Level Security Annotations
Java annotations provide a similar mechanism as UML profiles to annotate Java
source code, that can be retained at run-time. We thus defined a set of Java annota-
tions to support typical security requirements aligned with the set of annotations as
introduced in UMLsec, so that source code (especially fields and methods) can be
annotated.

Table6.2 gives an overview of the Java annotations we define and their rela-
tion to respective UMLsec stereotypes. The Java annotations @Critical, @Secrecy,
and @Integrity are used semantically identically to their UMLsec counterparts.
UMLsec’s «critical» provides all information regarding security levels within
the tagged values secrecy and integrity. Similar to this we defined the parameters
secrecy and integrity which provide, as well as «critical», arrays of member
signatures. Usually, methods and fields are annotated by stating them as part of the
respective values of «critical». To avoid errors by mistyping and keep clarity
in larger classes, we also support that methods and fields can directly be annotated

6.4 Tracing and Propagation of Security Requirements 129

with @Secrecy and @Integrity respectively. As shown in Section5.2.8, the program
model used by us can also contain information about Java annotations, making these
implementation-level security annotations also available in the program model.

In Listing 6.1, we applied the GRaViTY annotations to the Java source code of
the class SearchUsersAction implementing the corresponding class from the
UMLmodel in Figure 6.18. This class allows legitimate users of iTrust to search for
patients and access their data.Thevaluesecrecy={searchForPatientWith
Name(String, String):String} of «critical» is represented by a
@Secrecy annotation on the searchForPatientWithName method in line
6 of the example. Additionally, the security requirement secrecy is specified for a
member with the signature search(String, String):List in the @Critical annota-
tion in line 1 which is called in line 11, reflecting the corresponding entry in the
tagged value secrecy of the «critical» in Figure 6.18.

Using the presented mechanisms, developers can specify the same security
requirements on both UML models as well as Java source code. In the next section,
we show how these two security specifications can be synchronized.

Propagation of Security Requirements
To synchronize the UMLsec annotations with GRaViTY security annotations in
source code, besides the mapping between the different annotations from Table6.2
a mapping between UML elements and Java source code is needed. Considering
the problem of tracing UML elements to Java source code, mappings have already
been defined in various reverse-engineering approaches [184, 163]. Unfortunately,
existing mappings only consider a one-shot mapping. Thus, the challenge is to
keep up with the continuous evolution of both, UML models and source code.

Figure 6.19 TGG Rule for translating @Critical-annotations in an implementation-level
model to «critical»-stereotypes in a UML model

130 6 Model-Synchronization and Tracing

Furthermore, GRaViTY should not only be able tomap ordinary UML elements and
source code but should also cover UMLsec stereotypes and GRaViTY annotations.

Existing approaches use graph transformations providingmodel synchronization
to deal with the issues arising from evolution [130, 163]. Similarly, we employ a
Triple Graph Grammar (TGG) [160], a rule-based transformation supporting the
synchronization of changes made on both the source and target model, as described
before. When applying a TGG transformation between two models, a correspon-
dence model is built between the two models, capturing which elements have been
translated to each other. This correspondence model is used afterward to synchro-
nize changes applied to any of the twomodels with the othermodel.We extended the
TGG introduced in Section6.2.2 to support security annotations and successfully
applied this TGG to the example of the thesis generating the annotations shown
in Listing 6.1. As an example of a TGG rule, we show in Figure6.19 a rule from our
extension and explain it in what follows. This rule is used to translate the @Crit-
ical annotation to a «critical» stereotype. The values of this annotation are
translated using separate rules.

On the left side of Figure6.19, are the elements from an implementation-level
model shown, and on the right side the elements from the UML model. In between
these two, the correspondence model is shown. Elements that will be newly trans-
lated by this rule are annotated with a ++ and are highlighted in green. In black
and without annotations, we show the required context for the application of the
rule. This context has to be translated using other TGG rules before this rule can
be applied. In the shown rule, we assume as the context that an AbstractTypeDec-
laration has been translated to Classifier and that an AnnotationTypeDeclaration
with the name Critical has been translated. If we can find this context and there is
an untranslated Annotation of the type Critical we translate it to a «critical»
stereotype on the corresponding Classifier, meaning to add this stereotype to the
model. The rule can also be applied in the opposite direction.

If after the initial transformation new elements are added, these can be translated
as shown above. If elements are deleted, the rule applications for translating them
are undone. This results in a deletion also on the other model.

Let us assume a change in the security knowledge and look at how the developed
hospital systemcan be adapted to this change using theGRaViTY framework.Due to
the introduction of the European General Data Protection Regulation (GDPR) [53],
we got a stronger restriction in the ways how we have to deal with personal data.
Before the GDPR became valid, it was legal to identify patients based on their
names. This information has to be treated with more sensitivity now. This change in
the security knowledge can, for example, be reflected in annotating the Patient
in the domain model in Figure6.13 with the UMLsec stereotype «critical»
{secrecy={name:FullName}} expressing that the access to this information

6.4 Tracing and Propagation of Security Requirements 131

Figure 6.20 Program model excerpt with Java annotations

is only allowed for legitimate cases. As this security annotation is inherited by the
more concrete subtypes, the secure dependency check will fail after this change,
since there are no corresponding changes on the other elements. Accordingly, this
gives a list of accesses to the developers, which have to be checked for this purpose.
To do so, the developers have to look into the documentation and can follow the
trace links generated by GRaViTY. Furthermore, they can use the TGGs to transfer
the new security annotations into the code and re-execute the security analyses to
get more detailed feedback about the compliance of the implementation.

Tool Support for Synchronizing Security Requirements
The presented TGG rules allow synchronizing security annotations between the
UML models and the implementation. Propagation of the security annotations into
the programmodel, e.g., for security checks, is already given by the TGG presented
in Section6.2. As the introduced security annotations on the implementation level
are specified as Java annotations, these are handled by the transformation rules for
Java annotations. Figure6.20 shows an excerpt of the program model created from
the example in Listing6.1. The excerpt contains the class SearchUsersAction,
the method searchForPatientsWithName, and the two security annotations
(@Critical and @Secrecy). Both annotations are represented by instances of
the type TAnnotation that have a reference to a TAnnotationType spec-
ifying the type of the annotation. The tagged values of «critical» respec-
tively the parameters of @Critical are represented by instances of the node

132 6 Model-Synchronization and Tracing

TAnnotationValue where tKey identifies the parameter by its name and
tValue holds the value.

This native representation of security annotations allows the propagation of
these into the program model but is not easy to use. When we want to specify
a security check, we always have to handle pairs of annotations and types. Also,
the signatures contained in a «critical» are only present in textual form. To
make the handling of security requirements on the program model level easier, we
defined the security extension shown in Figure6.21. For every security requirement
contained in the Java annotations from Table6.2, we define a corresponding sub-
type of the general TAnnotation in the type graph. This allows us to use the
security-specific annotations as we would use arbitrary Java annotations but allows
us to identify these by their type and to add additional explicit information. For
the TCritical annotation, this explicit information is the resolved signatures
(TSignature) put to a security level. Furthermore, to ease the usage in cases
where it only has to be checked if an element is critical, we define a common parent
type (TAbstractCriticalElement).

Figure6.22 shows again a program model excerpt for the source code shown
in Listing6.1 but this time using the explicit security types. The TAnnotation
nodes have been replaced by their typed equivalents and the secrecy classification

Figure 6.21 Extension of the type graph adding explicit types for UMLsec security require-
ments

6.4 Tracing and Propagation of Security Requirements 133

Figure 6.22 Program model excerpt with security annotations

of the method search has been made explicit by a secrecy reference from the
TCritical node to the corresponding TMethodDefinition node.

Technically, we implemented the addition of these explicit types in terms of a
postprocessor registered at the IPostprocessingPM extension point of the pro-
gram model TGG. After the program model has been created, this postprocessor
takes every TAnnotationType representing a security annotation and replaces
all TAnnotation nodes instantiating this type with an instance of the correspond-
ing type from the extension shown in Figure6.21.While doing this, the preprocessor
disables the change tracking of EMF to avoid triggering reactions, e.g., a change
propagation by the TGGs. If a security annotation has been added to the program
model, a preprocessor registered at theIPreprocessingPM extension point adds
a reference to the correspondingTAnnotationType for allowing the propagation
into the implementation.

Conclusion of the Security Persistence Mechanism
In conclusion, TGGs allow the propagation of security requirements between
design-time models and the implementation. Using postprocessing, easily under-
standable security annotations can be propagated into the program model. Also, the
security requirements are editable on any system representation and are available at
run-time. As a drawback, the information contained in the single representations is
significantly increased.

134 6 Model-Synchronization and Tracing

Figure 6.23 Correspondence model between the UML model and program model of the
iTrust excerpt

6.4.2 Dynamic Tracing between UMLModels and the
Implementation

One drawback of persisting security requirements as Java annotations in the imple-
mentation is that it makes the source codemore complicated and less readable. Often
information about security requirements is not always needed but could be looked
up dynamically when needed. Here, the correspondence model created between the
implementation and the UML models by the TGGs cannot only be used for propa-
gating changes between the artifacts but also for tracing security requirements.

Utilizing CorrespondenceModels for Dynamic Security Tracing
As the correspondence model holds the information about all structural correspon-
dences, we can use this information to look up the corresponding implementation
element for an element annotatedwithUMLsec security requirements. Accordingly,

6.4 Tracing and Propagation of Security Requirements 135

wecan also look up the correspondingmodel element for given source code elements
and if the corresponding model elements have UMLsec security requirements.

Figure6.23 shows the correspondence model between the UML model excerpt
shown in Figure6.18 and the program model excerpt shown in Figure6.22. The
underlying graph structure of the UMLmodel is shown on the left of the figure. The
elements from the UMLmodel are represented by typed nodes connected according
to their relations in the visual UML model. On the right of the figure, the program
model is shown. Correspondences are indicated by circles in the center of the figure
that connect corresponding elements with arrows.

In the following, we assume that we develop themethod searchForPatient
WithName and want to know which security requirements apply for this method.
In the program model, this method is represented by a triple of TMethod,
TMethodSignature, andTMethodDefinitionwhereas theTMethodnode
contains the name of the method. The TMethodDefinition represents the
implementation of the method and is the start point for tracing. Over the cor-
respondence model, this operation is connected with the operation represent-
ing the method in the UML model. From this operation, we can navigate to
the class defining the operation by following the owner reference. There we
can check whether this class is annotated with security requirements. The class
SearchUserAction defines the operation searchForPatientWithName
and is annotated with a «critical» putting two signatures to a security level.
Accordingly, the same security requirements have to apply to the implementation

Figure 6.24 Excerpt from the metamodel for the correspondences between UML models
and program models

136 6 Model-Synchronization and Tracing

represented by the program model. To check whether one of these applies to the
method searchForPatientWithName, we have to calculate the signature of
the operationwe traced it to and have to check if this signature is contained in the list.
For this operation, this is the case and we know that we develop a method that is on
the security level of secrecy. In the sameway, we have to check if any of the methods
called by theTMethodDefiniton realizingsearchForPatientWithName
are put to a security level. Finally, we can trace every access relation in the program
model to their corresponding dependencies in the UML model. In the figure, one
TCall relation is shown that correspondswith a dependency in theUMLmodel. For
dependencies, we can immediately checkwhether these are annotated with UMLsec
security requirements. In this case, the dependency is annotated with secrecy.

Tool Support for Dynamic Tracing
The implementation of the dynamic tracing is entirely based on the features of the
eMoflon tool and the EMF implementation.When specifying a TGG, one step of the
specification is specifying possible correspondences between the model elements.
From this specification, an Ecore metamodel is generated by eMoflon.

One challenge at dynamic tracing using an eMoflon correspondence model is
the reverse-navigation along the source and target edges of a correspondence. The
correspondences, that are shown in Figure6.23, build a separate model that connects
elements from different models. Every circle indicates a correspondence node that
has two outgoing references. Figure6.24 shows the excerpt of the correspondence
metamodel used in Figure6.23. The correspondence metamodel itself only contains
the types labeled with Correspondences all other types are referenced types from
other metamodels. First, there are the metamodels of the models that should be
related by correspondences. In the figure, these are the UML metamodel and the
type graph of our program model. Second, there is the eMoflon metamodel speci-
fying the type AbstractCorrespondence. All correspondences subtype this
type to be usable in eMoflon.Also, an informal specification from the eMoflonmeta-
model is that every correspondence has to define two references called source and
target. These two references indicate which element types the concrete corre-
spondence relates. As eMoflon cannot add additional references to the metamodels
between which a correspondence model is defined, the source and target references
are only navigable starting from a correspondence. Here, EMF offers the possibility
of reverse navigating edges which is based on a cache of all incoming references to
an object. However, from a performance side, this is not efficient and might be an
issue for applications of dynamic tracing.

One application in which we use a correspondence model for dynamic tracing is
the creation of a correspondence model between the UML model and the program

6.4 Tracing and Propagation of Security Requirements 137

model. For synchronizing these two models we did not specify a TGG but emulate
this synchronization by a subsequent execution of the other two TGGs. However,
we also want to provide the possibility for direct dynamic tracing between these
two models. For this purpose, we defined a correspondence model between UML
models and the program model. An instance of this program model is created by
dynamically tracing every MoDisco element to the corresponding elements from
the UML model and the program model. For every pair, for that a correspondence
type has been defined in the UML to PM correspondence model, we create the
corresponding instances.

At creating the correspondencemodel between aUMLmodel and programmodel
we mitigated this risk of inefficiency due to reverse-navigation correspondence
edges by adjusting the usage of dynamic tracing. First, we do not directly iterate over
allMoDisco elements but overall correspondences of one of the two correspondence
models. Starting from these correspondences, efficient navigation to two of the three
models is possible. For the other correspondence model, we initially iterate over all
correspondences and building our own cache structured according to our needs,
namely a one-to-many map taking MoDisco elements as key.

Conclusion on the Dynamic Security Tracing
Dynamic tracing using the correspondence model created by eMoflon allows to
trace between models and to propagate security requirements without enriching the
source code with this information. However, there is the risk of inefficiency due
to the need for reverse navigation along the edges of the correspondence model.
This risk can be mitigated by constructing usages of dynamic tracing in a way
that reduces reverse navigation to a minimum. Also, caching has been shown as an
effective measure to deal with this issue.

6.4.3 Conclusion on the Propagation of Security Requirements

We have shown that we can propagate arbitrary security requirements within UML
models of different abstraction but also between UML models and the implemen-
tation and program model. For this purpose, we investigated two different mecha-
nisms for tracing security requirements. First, we extended the TGG transformation
to create corresponding security requirements in the implementation as Java annota-
tions. Second, we looked at how a dynamic tracing using the correspondence model
works. Both mechanisms come with benefits and drawbacks and should be used
complementary as discussed in what follows.

138 6 Model-Synchronization and Tracing

The dynamic tracing avoids enriching the implementation with additional anno-
tations but it can have the disadvantage of being inefficient due to reverse navigation.
If only a few traces are required across the correspondence model or an efficient
cache has been created, dynamic tracing should be used to avoid distracting devel-
opers. This distraction by creating too many annotations in the implementation is
the main disadvantage of propagating all security requirements into the implemen-
tation. However, if many annotations are required for analysis, the propagation is
more likely to be efficient. Also, the created annotations are available at run-time.
Altogether, small local look-ups should be realized using dynamic tracing, while for
full compliance checks or at deployment the UMLsec security requirements should
be propagated into the implementation using additional TGG rules. Unfortunately,
current implementations of TGGs do not allow to dynamically enable and disable
TGG rules but could be extended in this direction.

To conclude, ourTGGsprovide an automatedmechanism to preserve consistency
between the three different program representations formanaging evolving Java pro-
grams. As a result, we obtain a model-based framework for arbitrarily interleaving
program evolution and maintenance steps. Furthermore, we can use this approach
to also translate and synchronize security requirements of model elements between
different system representations to execute sophisticated security checks on them
as discussed in Section8.1.

7Application to Legacy Projects using
Reverse-Engineering

This chapter shares material with the MODELS’2019 publication “Secure Data-
Flow Compliance Checks between Models and Code based on Automated Map-
pings” [23].

Figure 7.1 Concept for the application of GRaViTY to legacy projects

©TheAuthor(s), under exclusive license toSpringer FachmedienWiesbadenGmbH,
part of Springer Nature 2022
S. M. Peldszus, Security Compliance in Model-driven Development of Software
Systems in Presence of Long-Term Evolution and Variants,
https://doi.org/10.1007/978-3-658-37665-9_7

139

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-658-37665-9_7&domain=pdf
https://doi.org/10.1007/978-3-658-37665-9_7

140 7 Application to Legacy Projects using Reverse-Engineering

While the approach presented in this thesis allows developers to develop and
maintain secure software product lines, it is limited to projects that have initially
developed using GRaViTY. In practice, software systems are often developed not
using models as essential development artifacts at all [9]. Nevertheless, informal
modeling approaches are widely spread in the industry [185]. If models are created
at design time, these are often not maintained in the implementation phase and do
not reflect the current state of the software system. However, even in such software
projects, migration to developing the software system using GRaViTY should be
possible. For this reason, in this chapter, we investigate the reverse engineering of
models and trace links required by GRaViTY. By doing this, we answer the second
research question of this thesis:

RQ2: How canwe applymodel-based security engineering to legacy projects that
have no or disconnected design-time models?

As indicated and shown on top of Figure 7.1, legacy projects can be in various
conditions. Usually, all legacy projects have source code, that can be used without
changes. Some legacy projects might have some early design models. However,
usually, their relation to the source code is unclear and has to be restored. If these
early designmodels are too abstract or not present, it is necessary to reverse-engineer
UMLclass diagramswith an abstraction suitable toGRaViTY’sTripleGraphGram-
mars (TGG)s used for synchronization and tracing, as introduced in Section 6.2. In
summary, there are two sub-research questions to consider if we want to cover the
two described states of legacy projects:

RQ2.1: How can we support legacy projects for that no design-time models exist
in model-based security engineering?

RQ2.2: How can we migrate legacy projects that have models but that are dis-
connected from the implementation to model-based security engineering?

In this chapter, we introduce reverse-engineering techniques allowing us to over-
come this limitation for legacy projects. Following the sub-research questions, first,
we discuss the application of the TGGs introduced in Section 6.2 to legacy projects
for which no models exist and an entire reverse-engineering is necessary. Sec-
ond, we consider projects for which models but no correspondence model with
the implementation exists.

7.1 Reverse-Engineering UML Models Using TGGs 141

7.1 Reverse-Engineering UMLModels Using TGGs

TGGs allow a bidirectional transformation between a source and a target model,
meaning that TGGs can be executed in two directions. First, for propagating changes
from the sourcemodel to the targetmodel, and second, for propagating changes from
the target model to the source model. If one of the two models does not exist, prop-
agating the changes means the creation of the non-existent model as specified in the
TGG rules. In Section 6.2, we introduced a TGG using the implementation-level
MoDisco model representing Java source code as source model and a UML class
diagram as target model. For reverse-engineering UMLmodels from the implemen-
tation, we can execute the UML TGG in the Java to UML direction after parsing the
Java source code. In Section 6.2.4, we successfully used the UML TGG to reverse-
engineer UML class diagrams from 20 Java projects. This transformation not only
extracts a UML class diagram but by nature also automatically creates the required
correspondence model for the subsequent tracing of changes.

However, the created UML models are on the granularity of the implementation
and additionalmore abstractmodels have to be extractedmanually. The only abstrac-
tion from the implementation is the reduction of details from the statement level of
methods and fields to dependencies between classes. Nevertheless, this abstraction
provides a significant reduction in complexity in terms of used dependency types
but also the number of considered dependencies. Size is one important aspect when
it comes to the manual handling of models. For this reason, Figure 7.2 shows the
size of the UMLmodels created in Section 6.2.4 from software systems with differ-
ent sizes. For relating these values to other models representing the same software
systems, also the sizes of the corresponding MoDisco models and program models
(pm) are shown. All models seem to grow more or less linearly with the number
of code lines. But while the program model has on average 28 % of the number of
nodes the MoDisco model has, this relation is only at 11 % for the extracted UML
models.

Furthermore, using suitable views on the extracted models, these can effectively
be annotatedwithUMLsec security requirements. TheUML supports the concept of
views that allow visualizing selected elements of a UML model [5]. A single UML
element can be part of multiple views on the UML model. This allows developers
to create views of a manually manageable size focusing on specific aspects of the
software system, e.g., a security-critical dependency or classified class member.

Such views can be extracted automatically, e.g., using model slicing [186, 187]
or clustering [188, 189]. Atmodel slicing, starting from a given element all elements
related to this element according to slicing rules are selected as part of this slice. At
clustering, elements are grouped according to their coupling with each other. Given

142 7 Application to Legacy Projects using Reverse-Engineering

suitable slicing rules or coupling criteria, both approaches can be used to get all
additional elements relevant to a developer when inspecting a specific UML model
element. Based on these elements a suitable view can be created. However, there
lies a significant challenge in defining suitable rules and criteria. Often, too many
elements are selected. Here, the UMLsec stereotype can function as a source for
additional coupling information improving the quality of the extracted views.

Figure 7.2 Model sizes in relation to the code lines of software systems

In summary, UML class diagrams that have been reverse engineered using our
UML TGG are not as beneficial as manually created UML models but provide a
foundation toward proper reverse-engineered models. Models with a higher degree
of abstraction can be manually extracted from the reverse-engineered ones. Using
the realization dependencies these extractedmodels can be connected to the reverse-
engineered models as discussed in Section 6.3. However, often early design models
exist but no trace links to the implementation exist and these might be deprecated.
In the next section, we show how trace links between these early design models
and the implementation can be restored in a semi-automated way. Of course, this
approach could also be used to establish trace links between the reverse-engineered
UML models and the early design models.

7.2 Mapping Early Design-Models to Code 143

7.2 Mapping Early Design-Models to Code

In this section, we aim to support the reconstruction of a correspondence model
between early design-time models and the implementation. We aim at the creation
of a state allowing the application of GRaViTY. Furthermore, during the recon-
struction, we can also discover secure data-flow compliance violations between the
designed and the implemented security requirements in a software system. These
violations can emerge if the models and code have not been kept synchronized
using our approach introduced in Section 6.2.2 and divergences between the planned
and implemented design manifested themselves. We present a technique that semi-
automatically establishes a correspondence model between a Security Data Flow
Diagram (SecDFD), a design-level model enriched with security-relevant informa-
tion, and the implementation-level Program Model introduced in Chapter 5.

Our correspondence model and the proposed semi-automated reconstruction of
the correspondence model support software architects in the early discovery of
implementation absence, convergence, and divergence concerning the planned soft-
ware design, including its security requirements. Furthermore, the correspondence
model can be used to discover compliance violations of secure data-flow properties
(typically, data confidentiality and data integrity properties) as follows:The designed
data flow is captured in the SecDFD model. The actual data flow is obtained from
implementation-level data-flow analysis tools. These tools typically require sophis-
ticated meta-data, e.g., an explicit tagging of security-critical data and functions,
as input, which can be obtained from our correspondence model. We discuss the
leveraging of such correspondences in detail in Chapter 8. In this section, we focus
on the creation of a correspondence model and make the following contributions:

1. We present an automated technique for establishing a correspondence model
between design-time models in the SecDFD notation and program models.
Thereby, we support the discovery of secure data-flow compliance violations
as discussed in Section 8.2. The key idea of our technique is twofold. First,
we define a mapping between SecDFD and program-model element types, con-
straining how elements of a concrete software system can be mapped to each
other. Second, we combine similarity-based matching of element names with
structural heuristics (based on data-flow properties) to automatically derive sug-
gested correspondences between the SecDFD and the program model based on
the previously defined mapping.

2. We present an incremental methodology, in which the user of the methodology,
e.g., a developer that wants to reconstruct a correspondence model, is involved

144 7 Application to Legacy Projects using Reverse-Engineering

to successively discover new correspondences and eventually derive an adequate
correspondence model.

3. We present our implementation of the approach as a publicly available Eclipse
plugin and the evaluation of its accuracy on five open-source Java projects
(including the running example iTrust).

7.2.1 Background on Early DesignModels

Weaimat developing a semi-automated approach for reconstructing correspondence
models between early design models and the implementation. For developing this
approach, we have to select which design models we want to support. Here, we
consider two criteria. First, we aim at models that are used in practice, and second,
at keeping the approach as transferable as possible. For this reason, in this section,
we discuss the background of early design models.

Security threats to software systems are a growing concern inmanyorganizations,
particularly due to the recent changes in legislation (GDPR) and upcoming security
standards (ISO 21434). Therefore, one needs to consider security early in the design
phase,when little is knownabout the software system.At the start of the development
process, requirements are collected and use cases are defined. According to the
principle of security by design [6, 190], the software system’s assets and threats
already have to be defined in this phase. The system architecture is then iteratively
refined and finally implemented. Before any new functionality is released, it must
be checked that every security assumption made in any of the phases is met. The
state-of-the-art for these checks in practice is manual code reviews by security
experts. Since such reviews are expensive and error-prone, they are only performed
on selected code parts, leaving a large leeway for security threats [95, 96].

In the context of software architecture design, threat analysis techniques, like
Microsoft’s STRIDE [110], attack trees [191], CORAS [192], and threat pat-
terns [193] aim to identify security threats to software systems. Threat analysis
is very helpful to detect security threats early and plan countermeasures to mitigate
them. Yet, empirical evidence shows that existing threat analysis techniques can
be manually labor-intensive [194] and lack automation [195]. Furthermore, design-
level models are seldom kept in sync with the implementation, potentially resulting
in architectural erosion and technical debt [93].

Threat analysis is often performed on a graphical representation of the soft-
ware architecture called Data Flow Diagram (DFD) [196, 197]). DFD-like mod-
els are extensively used in practice, e.g., in the automotive industry [109] and at
Microsoft [110] as part of their STRIDE methodology. UML activity diagrams can

7.2 Mapping Early Design-Models to Code 145

be used for the same purpose. Still, the DFD notation is informal and lacks the
ability to specify security requirements, which is needed to reason about security
threats at the design level. To support the detection of problematic information flows
at the design level, previous work extends the DFD notation with security-relevant
information [198] and security semantics [111]. However, the outcomes of such
detection are of limited value if the implementation does not comply with the secu-
rity requirements described in theDFD. In contrast toDFDs,UMLactivity diagrams
provide clearly defined semantics. However, if we only consider the activities and
the data flow between them, they can be seen as a DFD.

7.2.2 Semi-AutomatedMapping Approach

Assuming a correct DFD, the way it is implemented can vary depending on concrete
design, e.g., depending on the selected architectural patterns, and implementation-
specific decisions, e.g., the chosen programming language. Therefore, a full auto-
matic generation of a correct and complete correspondence model between DFDs
and code is not feasible. Yet, a manual specification of the same correspondence
model is inefficient and error-prone. To this end, we propose an iterative methodol-
ogy for interactively guiding the user in finding an adequate correspondence model
by combining automated mappings with user decisions as shown in Figure 7.3.

Figure 7.3 Semi-automated mapping of implementations to DFDs

146 7 Application to Legacy Projects using Reverse-Engineering

Thereby, we assume that the domain model is specified using data flow diagrams
or activity diagrams describing high-level processes in the domain as introduced
in Section 3.6.2. As discussed in the background section, activity diagrams can be
seen as DFDs with additional control flow and all approaches applicable to DFDs
can be applied to activity diagrams. For this reason, in what follows, we only focus
on DFDs. In step 1, correspondences between DFD elements and implementation
elements are calculated using a heuristic technique. In step 2, these correspondences
are presented to the user and manually checked by her. In step 3, the user can manu-
ally map additional elements. Afterward, the automated mapping is executed again,
benefiting from the user input. The process terminates when the user cannot find
any additional correspondence or finds a violation.

In this section, first, we define a mapping of DFD to element types that may
correspond to each other as a basis for a correspondence model in concrete software
systems. Second, we describe the steps of ourmethodology, including the automated
technique, in detail. We show how our automated technique in step 1 establishes a
concrete correspondence model between DFDs and their implementations by using
naming- and structure-based heuristics and explain the interactive steps 2 and 3
of our techniques. As an example, we use the DFD showing the reset of a user’s
password in the iTrust system by the user. This DFD has been introduced in detail
in Section 3.6.2. Figure 7.4 shows the same DFD as the one in Figure 3.8 used for
the introduction of DFDs.

The implementation of this DFD has been shown in Listing 2.1 as part of the
running example chapter of this thesis (Chapter 2). The most relevant excerpt
from the method calls involved in the implementation of this DFD is shown
in Figure 7.5. The update of a password starts with the call of the method
changePassword(long, String,String,String). As shown in the
DFD, the implementation of this method has the user’s MID, the new pass-
word, and the old password as parameters. In the implementation, the new pass-
word has to be entered two times to avoid typos, adding a fourth parameter.
When this method is called, first the password of the user is checked using the
authentificatePassword(long,String):boolean method. Next, it
is checked if the new passwords are equal using the equals method. After-
ward, the resetPassword(long:String) method is called. This method
prepares an SQL statement and executes it to update the password in the database
of the iTrust system. Among others, this is mainly realized by calling the methods
prepareStatement and executeUpdate.

7.2 Mapping Early Design-Models to Code 147

Figure 7.4 DFD for resetting a password in the iTrust system

Figure 7.5 Program model excerpt of the implementation for resetting a password in the
iTrust system

148 7 Application to Legacy Projects using Reverse-Engineering

Figure 7.6 Rule describing the name matching for methods

Figure 7.7 Rule for extending name matches based on return types

Identification of Corresponding Meta-Model Elements
As a prerequisite for mapping DFD elements to source code elements to find corre-
spondences, first we have to define which DFD element can correspond with which
source code elements. Here, the source code is represented by the program model
introduced in Chapter 5.

Assets → types: The assets in a DFD are the elements holding critical data. On
the level of implementation, data is usually stored in fields, processed using
variables, and transmitted using parameters and return values. A single asset can
be stored in many locations at the same time which makes it infeasible to map an
asset to every single location. The only property of an asset which only changes
rarely in programs, written in an object-oriented language, is the type of the asset.

Data stores → types & methods: Considering data stores like iTrust’s database
in the example DFD, it is quite obvious that this data store is reflected in the
implementation by operations realizing queries. Also, the data store could be a
field in a class, e.g., a map used as a cache. But it could also be implemented
by an operation that, e.g., requests the cached values from an external server by
creating HTTP requests. The common thing between these variants is the type
used to represent the data at storing. The field has a type that provides getters and
setters for using the data store, and the method used to get data from a remote
server is implemented in a type. Therefore, we map data stores to types as well
as to the methods used for accessing the stored data.

Processes → method(-names): Processes in DFDs describe functionalities that
process data, like methods in implementations do. These two elements corre-
spond with each other. While a concrete method definition in an implementation
contains all details describing the functionality of thismethod, the processes only

7.2 Mapping Early Design-Models to Code 149

have a name describing the functionality. We assume that a developer imple-
menting a process will choose a similar name for the methods implementing this
process. This leads us to a correspondence between the names of processes and
the names of methods.

Processes + Assets → method parameters: Between processes in a DFD, data
can be exchanged using flows, where the exchanged data are represented by
assets on the flows. In the methods implementing these processes, the same data
have to be exchanged. Data between methods in implementations are usually
exchanged using parameters and return values. Therefore, we can combine the
name mappings between processes and methods with the assets flowing into
and out of a process to method parameters giving us the corresponding method
signatures.

Steps of the Semi-Automated Mapping Approach
Our semi-automated mapping approach is based on an iteration of three subsequent
steps. First, an automated step, followed by two manual steps. In the first step,
possible correspondences between the models and code are automatically detected.
These correspondences are reviewed by the user of the approach in the second step
and are partly extended in the third step. Afterward, the first step is executed again
until the user has nothing to add in the third step. In what follows we discuss the
three steps of our semi-automatic generation of correspondences in detail.

Step 1: Automated Mapping of Elements. The automated generation of corre-
spondences is based on namematchings and structural heuristics, which are sequen-
tially executed and complement each other in building mappings from which cor-
respondences are derived. For illustration, we formalize two of our mappings using
graph rules. For the specification of these graph rules, we use a notation inspired
by algebraic graph transformation [199]. The other mappings can be formalized
analogous.

Name matching: First, the names of elements from a DFD are mapped to the cor-
responding names in the implementation. Asset and data store names aremapped
to the names of types and process names are mapped to the names of methods.
Figure 7.6 shows a rule for mapping processes from a DFD to method names
from a program model. A correspondence (visualized as a circle connecting
the corresponding elements) between a process and a method name is created
(denoted by ++) if the constraint at the top of the rule holds. In this case, the
names of the two elements on the left and right of the rule have to be equivalent.
The precise definition of this equivalence is described in what follows.

150 7 Application to Legacy Projects using Reverse-Engineering

Names, both in a DFD and in a Java implementation, are usually built by con-
catenatingmultiplewords. For example, a Javamethod nameresetPassword
consists of the word reset and password. These words can vary slightly in the
names of the corresponding DFD processes, e.g., in plural form, passwords
instead of password. In addition, the style of word concatenation can differ. In
Java usually, the camel case (resetPassword) is used, whereas in DFDs this is
not a prescribed style, so underscores may also be used (Reset_Passwords).
To deal with these issues, first, we split the strings at frequently used delimiters
and upper-case characters. This gives us for our example the sets of words [reset,
Password] and [Reset, Passwords]. Then we compare the lower-case versions of
the words with each other using a fuzzy comparison based on the Levenshtein
distance [200]. The Levenshtein distance is a measure of the minimal amount of
characters which have to be removed, added, or flipped to change one word into
the other one. For the given example this distance is zero and one as the first word
is already identical and only the character s has to be added to change password
into passwords. We accept different distances between words for considering
them as identical according to the length of the words to be compared.
Finally, a DFD process is usually implemented in multiple methods, typically
having slightly more concrete names. For example besides the method reset-
Password, there might also be an additional method internalReset
Passwod involved in the implementation of the process Reset_Passwords.
But the name of a DFD process might also contain additional information,
e.g., the process Reset_Password of the DFD in Figure 7.4 could be called
Reset_Passwords_in_DB. To address this challenge,we compare allwords
from the two names with each other and count the similar words. If this number
reaches a threshold of more than half the number of the average words of the
compared names, we consider the names sufficiently equal.
For the example DFD in Figure 7.4 and the program model excerpt in Fig-
ure 7.5 we get a name match between the reset password process and the
two method names authentificatePassword, changePassword, and
resetPassword aswell as amatch between the processchange password and
the same threemethodnames.While twoof thesematches are expected, thematch
between rest password and changePassword as well as authentificate
Password are unexpected and should be dropped in the following steps.

Extending Name Matches to Method Signatures: For every method name, mul-
tiple signatures may exist. Even if our name matches were always perfectly
correct, this would not imply that all signatures with this name are the ones
corresponding to the matched process. For example, besides the relevant

7.2 Mapping Early Design-Models to Code 151

signature resetPassword(long, String):void, there is a second signature reset-
Password(long,String, String,String,String,String):String defined in iTrust but
belongs to the implementation of a different use case. Also, there could be addi-
tional signatures in libraries, e.g., the Java standard library, which might even
are never used in the implementation of iTrust. To identify the actually relevant
signatures, we use data-flow information about assets flowing into and out of a
process. Information flowing into a process has to be passed to the implemen-
tation of the process, for example, as a parameter value. Likewise, information
leaving a process can leave it over return values and parameters. Accordingly, we
can use the mapped assets to identify relevant signatures. For every signature, we
count how many mapped assets are compatible with the parameters and return
types of the existing signatures. If we have at least one match we consider this
signature for further mappings.
A rule for extending a process mapping based on an asset flowing out of a pro-
cess is shown in Figure 7.7. On top of the rule, we can see an existing mapping
between a process and a method name, e.g., created by the rule shown in Fig-
ure 7.6. A mapping to one of the signatures having this name is created if there
is a mapping between an asset flowing out of the process and a type which is the
return type of the signature.
If we look at the parameter types of the signature resetPassword(long,
String) and assume that the newPassword asset from Figure 7.4 has been
mapped to the implementation class java.lang.String and ID to long,
we accept this signature as corresponding with the process reset password.
The other method namemapped to this process was changePassword. While
the parameter types match the expected assets, there are more parameters than
data in the DFD. Also, the return type of this method signature is Status that
has not been mapped to any asset. Accordingly, we do not create a mapping
suggesting a correspondence between the two elements.

Finding Implementations of Signatures: The last step is to find concrete imple-
mentations of a signature corresponding with the process. For every signature,
there might be several concrete implementations, all of which do not necessarily
correspond to the process. We make use of the flows between different processes
to find the concrete method definitions.
If there is a flow from one process to another, this does not only mean that there
has to be a signature that has the capability to return or receive the corresponding
asset. Also, there has to be a definition of this signature which is called from a
definition mapped to the other process. Therefore, we search for two kinds of
data flows between the concrete definitions of the signatures found before.

152 7 Application to Legacy Projects using Reverse-Engineering

1. Parameters passed by a call from the source of a flow to the target of the flow.
2. Return values returned at a call from the target of a flow to the source of the

flow.

The flow between two such definitions is not necessarily a single direct call
between the two definitions. There can also be multiple definitions in between
forwarding data. Matching such intermediate methods to one of the two involved
processes is non-trivial. However, if we found such a flow, we can definitely
assume that we found two definitions implementing at least parts of the two
processes. The intermediate definitions can be partly mapped to one of the two
processes by considering the internal coupling in a process. For every pair of
signatures mapped to the same process, we look for pairs of definitions calling
each other.

Cleanup: After mapping assets and processes, we have to decide which mappings
are most likely to be correct and, therefore, should be presented to the user as
proposed correspondences. For that reason, we introduce a certainty score for our
mappings to be proposed as correspondences. This score is calculated concerning
the quality of the underlying name matching as well as the coupling of mapped
elements with other mapped elements. For every DFD element, we only present
mappings whose score is higher or equal to the median score of all mappings for
this element.
The mappings sorted out in this step are not presented to the user but may be
discovered later again in the interactive process, based on future matches, which
might have a coupling to the elements that are now discarded.

Step 2: User Verification of Mappings. The mappings created in the previous
step are now presented as proposed correspondences to the user and verified by her.
For every asset type, data store type, and process-definition mapping the user can
perform three actions:

Accept: The user can accept the mapping as a correspondence. From then, the
mapping cannot be discarded by the optimization step of the automated mapping
approach anymore, and all mappings coupled to this mapping obtain a higher
certainty score.

Reject: The user can reject themapping. From then, thismapping is never presented
to the user again and it is not considered anymore for extending it to other
mappings. All other mappings to which the rejected mapping has been extended

7.2 Mapping Early Design-Models to Code 153

Figure 7.8 Screenshot of the semi-automated mapping UI in Eclipse

will be removed, too. However, these extended mappings might be presented to
the user again.

Tolerate: The user can choose to ignore some suggested mappings. Mappings that
are not explicitly accepted or rejected are suggested again and can be re-assessed
in future iterations.

Mappings accepted or rejected by the user allow the heuristic to automatically
discard related mappings that have only been found by following up the rejected
mapping. This is how the search space is reduced in the next automated iteration.
Conversely, manually accepting mappings can increase the score of related map-
pings and, for this reason, allows proposing new mappings which have not been
considered as correct before. One limitation of our heuristic is that it cannot detect
mappings that are outside the search space created by the initial namemappings.We
overcome this limitation in our approach by including user feedback as described
in what follows.

Step 3:ManualMapping of Elements. To increase the search space, an additional
user step is conducted after the user manually verified the automatically created
mappings that have been proposed as correspondences (or at least a part of them). In

154 7 Application to Legacy Projects using Reverse-Engineering

this step, the user has to add at least one new correspondence to give additional input
to the automatedmapping algorithm.The selection of thismanuallymapped element
can have a large impact on the efficiency of the following automated mapping steps
when starting over from step 1. Only, when all name matches are included in the
search space, the automated mappings can detect all correspondences.

7.2.3 Tool Support for Semi-AutomatedMappings

The presented semi-automated mapping approach is implemented and packaged
as a publicly available Eclipse plugin1. The implementation leverages an existing
implementation for modeling SecDFDs with an Xtext DSL with editor support
[111]. We use the TGG presented in Chapter 6 for generating the program model
from Java source code.

Figure 7.8 shows a screenshot of the user interface in Eclipse. On the left-hand
side of the figure, users can see Eclipse’s standard Package Explorer. The bottom
windows are used for displaying and defining the mappings. The top two windows
are used for displaying the source code (left) and the SecDFD (right). The target
audience of the tool is software developers (or code reviewers) with training in the
principles of software architecture. After the installation of the required packages,
the program is started as a running Eclipse instance.

The developers first manually create one or several SecDFDs for representing
the high-level architecture of a Java project, cf., top right window in Figure 7.8.
Next, using context menu entries, the developers trigger the automated generation
of a program model from the source code and start the first iteration of the semi-
automated process for mapping the SecDFD elements to source code elements, see
Section 7.2.2.

At the start of each iteration, the developers are shown a list of mappings sug-
gested as correspondences, cf., bottom window in Figure 7.8. Since one SecDFD
element is usually mapped to several program elements, the results are grouped by
the SecDFD elements. For each SecDFD element, the list of mapped programmodel
elements is shown, each with its path in the source code. The developers can interact
with the tool by accepting, rejecting, and manually defining correspondences. All
proposed correspondences that are not explicitly accepted or rejected are consid-
ered as tolerated. A mapping suggested as correspondence is accepted or rejected
with a right-click on the entry and selecting accept or reject, respectively. Once

1 Repository containing the implementation of the semi-automatedmapping approach: https://
github.com/SvenPeldszus/GRaViTY-SecDFD-Mapping/

https://github.com/SvenPeldszus/GRaViTY-SecDFD-Mapping/
https://github.com/SvenPeldszus/GRaViTY-SecDFD-Mapping/

7.2 Mapping Early Design-Models to Code 155

Table 7.1 Projects considered in the evaluation of the semi-automated mapping approach

source code DFD

project lloc classes methods elements

jpetstore 1,221 17 277 47

ATM simulation 2,290 57 225 85

Eclipse Secure
Storage

2,900 39 330 41

CoCoME 4,786 120 512 44

iTrust 28,133 423 3,691 31

a mapping is accepted, corresponding in-line markers are created on the SecDFD
and in the source code. Double-clicking a mapping or correspondence will open the
correct source file and navigate to the correct line in the file. Mappings accepted as
correspondences can always be rejected. If all the suggested mappings are correct,
the developers can select accept all. Rejected mappings will never be suggested
again. The manual definition works by right-clicking and selecting Map Selection
to SecDFD on source code elements. At the end of the iteration, developers can
either stop or select continue to trigger a new search refining the present mapping.

7.2.4 Evaluation

In an experiment, we applied our approach to five open-source projects to evaluate
the performance of our implementation. In what follows, we briefly describe the
design of the experiment, the projects, and the results.

In our evaluation, we investigated the correctness of the automatically generated
mappings proposed as correspondences. To this end, we set up an experiment to
compare a ground truth of manually created correspondences with the generated
mappings for each of the five considered projects. The iterative approach involves the
user guiding the generation of mappings in the desired direction. As per this design
choice, we intentionally investigate the correctness of the automated mappings and
the impact of the user separately. Consequently, the evaluation aims to answer the
following objectives.

O1–Correctness: What is the correctness of the automated mappings generated
by the plugin?

156 7 Application to Legacy Projects using Reverse-Engineering

O2–User Impact: What is the impact of the user on the correctness of mappings?

Table 7.1 depicts the characteristics of five open-source Java projects used in the
evaluation. In what follows, we briefly introduce the considered software projects.

Jpetstore [201]: This is a web application built on top of MyBatis 3, Spring, and
the Stripes framework. This is an example with very few classes, implementing
the basic functionalities of a web store. In principle, the users can create their
accounts, browse, and order goods online. Jpetstore has been designed as a min-
imal demonstration application for MyBatis, which should have a good design
and documentation. The developers tried to strictly follow the MVC pattern.

ATM simulation [202]: This is an implementation of a simulation for an auto-
mated teller machine (ATM) developed for academic purposes. The ATM simu-
lation implements the main procedure of a control system. Upon start-up, a new
session is initiated, and the users can insert their bank card and PIN. The session
continues upon a correct PIN entry and provides the users with the option of
a withdrawal, deposit, balance inquiry, and money transfer. After the comple-
tion of desired transactions, the ATM returns the bank card and optionally prints
the receipt.

Eclipse Secure Storage [203]: Eclipse Secure Storage is used for ensuring secure
storage andmanagement of sensitive datawithin adeveloper’sEclipseworkspace.
The secure storage allows for plugins to authenticate and have controlled access
to workspace resources.

CoCoME [204]: CoCoMe is a platform for collaborative empirical research on
information system evolution [205]. This platform helps engineers manage dif-
ferent aspects of software evolution, such as the software system life-cycle, ver-
sioning artifacts, and comprehensive evolution scenarios. The implemented soft-
ware system is a cash register.

iTrust [47]: As described in Section 2, the iTrust example is a web application for
a hospital that allows the hospital’s staff to manage medical records of patients,
based on 55 use cases. The example originally stems from a course project,
has been maintained by a research group at North Carolina State University,
and was used as an evaluation example in research papers before [51]. Detailed
requirements describing different activities are available online [47]. However,
the available requirements and use cases mostly describe very simple tasks and
only a few of them are realized in the implementation.

The experiment was executed by the author of this thesis and the second author
of [23]. The authors worked on the projects individually and compared their results

7.2 Mapping Early Design-Models to Code 157

at each step. First, the authors modeled the SecDFDs for all five projects manually.
To this aim, the authors inspected all available documentation (including the source
code) and reverse-engineered a high-level architecture. Second, the ground truth
was created for each SecDFD by following the execution of the modeled scenarios,
and manually mapping the executed methods and transferred data to the processes
and assets of the according step. The ground truth is a JSON file with a list of
expected correspondences the elements of the SecDFD and a uniquely identifiable
location of the source code element. Third, the implemented plugin was used to
find the automated mappings in several iterations. Each iteration included accept-
ing, rejecting the automated mappings, and defining correspondences manually by
highlighting elements in the source code and specifying the corresponding SecDFD
elements. After each iteration, the precision and recall of the automated mappings
were logged.

This study shows promising results for guiding the user in the discovery of com-
pliance violations. In particular, Table 7.2 shows measurements of high precision
and recall only after a few iterations for realistic Java projects. Each iteration con-
sists of an automated, and a manual (user input) phase. We present the precision and
recall for the automatically suggested correspondences in each iteration. We also
depict the amount of manually accepted, user-defined, the sum of all accepted and
user-defined, rejected correspondences, and the impact of the user-defined corre-
spondences on recall (in that order). The later iterations make use of the manually
defined correspondences for finding additional mappings that can be proposed as
correspondences.

O1–Correctness
In what follows, we discuss the recorded data of our experiment regarding the first
objective. First, we introduce our methodology for measuring the correctness of the
mappings proposed as correspondences, and afterward, we discuss the results.

Setup.Wemeasured correctness in terms of precision and recall (dependent vari-
ables). Conventionally, precision (T P/(T P + FP)) is measured as a ratio between
the true positives (i.e., mappings correctly proposed as correspondences) and all
generated mappings proposed as correspondences (including the false mappings).
A true positive T P is a correct correspondence between the source code and the
SecDFD element which is listed in the ground truth. A false positive FP is a map-
ping between the source code and SecDFD element that is not listed in the ground
truth. Recall (T P/(T P + FN)) is measured as a ratio between the true positives
and all correct correspondences, including the overlooked correspondences. A false
negative FN is a mapping between the source code and the SecDFD element which
is present in the ground truth but has not been identified.

158 7 Application to Legacy Projects using Reverse-Engineering

Table 7.2 Results of the mapping after each iteration

automated manual

project it. precision[%] recall[%] accept+u (
∑

) reject recall[%](�)

jpetstore 1 56.1 51.1 23 + 3 (26) 18 57.8
(+6.7)

2 96.4 60.0 1 + 3 (30) 1 66.7
(+6.7)

3 96.8 66.7 0 + 5 (35) 1 77.8
(+11.1)

4 97.4 82.2 2 + 3 (40) 1 88.9
(+6.7)

5 100 93.3 2 + 3 (45) 0 100 (+6.7)

ATM
simulation

1 72.0 40.0 18 + 3 (21) 7 46.7
(+6.7)

2 67.6 51.1 2 + 5 (28) 11 62.2
(+11.1)

3 70.5 68.9 3 + 5 (36) 11 80.0
(+11.1)

4 76.6 80 0 + 4 (40) 13 88.9
(+8.9)

5 95.5 93.3 2 + 3 (45) 2 100 (+6.7)

Eclipse

sec. storage

1 73.0 90.5 40 + 1 (41) 14 92.9
(+2.4)

2 67.7 100 1 + 0 (42) 12 —

CoCoME 1 27.9 77.3 17 + 1 (18) 44 81.8
(+4.5)

2 86.4 90.5 1 + 1 (20) 2 90.9
(+0.4)

3 90.9 83.3 0 + 2 (22) 4 100 (+16.7)

iTrust 1 23.5 80.0 8 + 1 (9) 26 90.0
(+10.0)

2 81.8 90.0 0 + 1 (10) 2 100 (+10.0)

Results.We start by reporting the correctness of the automated mappings in the
first iteration. The average precision of the first iteration is 50.5%. On average, the
recall of the first iteration is 69.8%. Yet, both the precision and the recall increase
after the first iteration. On average, the final precision and recall of the automated
phase are very good (87.2% and 92%, respectively).

7.2 Mapping Early Design-Models to Code 159

The average difference between the recall of the second iteration and the user-
impacted recall of the first iteration (last column in Table 7.2) is 4.5%. This means
that on average, the automated searchwas able to increase the recall between the first
and second iteration by 4.5%. On the other hand, the average difference between
the user-impacted recall of the second iteration and the recall of the third iteration
is minimal. This means that the automated search was not able to increase the recall
significantly between the second and third iteration.

O2–User Impact
For evaluating the user impact on the created mappings, we discuss the recorded
data as described in what follows. First, we introduce how we calculated the user
impact based on the recorded data and discuss the results afterward.

Setup. Our approach’s implementation automatically derives trivial mappings
from the user-defined correspondences, raising the recall before a new iteration
starts. Therefore, the impact of the user-defined correspondences is measured as the
difference in recall before, and after the added correspondences.

Results. On average, the user accepted less (7) mappings as correspondences
than they rejected (9.6) and defined only 2.6 correspondences manually. However,
in three cases (jpetstore, ATM simulation, Eclipse Secure Storage) the user accepted
more mappings than rejected. This means that the user could quickly scan the sug-
gested mappings and eliminate the ones that are obviously wrong. Overall, adding a
fewcorrespondencesmanually resulted in amore fruitful next iteration. For instance,
adding three correspondences manually in the first iteration of evaluating the ATM
simulation resulted in two new correct mappings proposed as correspondences (see
accepted mappings of the second iteration).

On average, the user impact on the recall was an increase of the recall by 7.9%.
This means that the users were indeed able to guide the discovery of compliance
violations. Further, the users had a larger impact on increasing the recall in later
iterations compared to the automated search (7.9%vs 4.5%). Notice, that on average
75% of all correct correspondences (T P) are suggested to the user and do not have
to be manually defined.

Additional Observations
While we were executing the evaluation we made different observations that are not
directly covered by our research questions but give further proof for the effectiveness
of our approach.

1. All DFDs were created based on the available documentation. At executing
the evaluation on the ATM simulation we recognized an absence between the

160 7 Application to Legacy Projects using Reverse-Engineering

created DFD and the implementation. Further investigations revealed that there
is really an absence between the documentation of the ATM simulation and its
implementation.

2. At studying the different examples from our evaluation we noticed big differ-
ences between the different implementations. Themore realistic or real examples
(Eclipse Secure Storage, CoCoME, and iTrust) have a source code structured
much better than the other two more artificial examples. While in the realistic
examples functionalities are implemented in multiple methods, in the artificial
examples single methods realize multiple functionalities. These differences are
one of the reasons why our technique performed better on the realistic, larger
examples. A hypothesis to be studied in the future is that writing the code with
the DFD in mind can help structure it better and get better mappings.

3. In the experiments, we had to manually accept and reject mappings proposed
as correspondences repeatedly. Thereby we learned that users can reduce the
number of necessary clicks by first rejecting asset mappings, then accepting
processmappings, and in the end accepting asset mappings and rejecting process
mappings. This order ensures that a maximal amount of rejects and accepts is
performed automatically.

7.2.5 Threats toValidity

We identified threats to the validity of our experiments regarding three categories.
In this section, we discuss these threats.

External Validity
The main threat to external validity is our selection of samples, based on a limited
number of open source projects, partially originating from a teaching context. The
rationale for our selection was the manual effort for creating the ground truth of
our technique, a full correspondence model between high-level DFD elements and
low-level program elements. However, as a result, the generalizability of the results
to larger projects in other domains is limited. To mitigate this threat, the considered
projects were chosen to be representative of realistic projects by providing good
documentation, including architectural information, such as wikis, use cases, sce-
narios, requirements, state charts, and the like. The available documentation enabled
building good design models, close to the intended architecture. We plan to extend
the evaluation in the future to include a more comprehensive set of projects.

7.2 Mapping Early Design-Models to Code 161

Internal Validity
Regarding internal validity, the main threat of our evaluation is researcher bias.
In absence of pre-existing ground truths and design models, the ground truth and
design models for our evaluation were created manually by the authors, possibly
introducing a risk of creating a biased result. To mitigate this threat, the ground
truths and the design-level models were carefully discussed between all authors.
The created models and ground truths are of similar size and complexity and are
available online2.

Construct Validity
Concerning construct validity, we consider the threat of misinterpreting divergence,
absence, and convergence compliance violations in the context of design-level mod-
els and implementation-level models. However, to the best of our knowledge, our
interpretations are in line with the existing literature [93]. As such, the implementa-
tion of the approach does not perform low-level static or dynamic checks to verify
the intended security requirements of SecDFD assets. This threatens the intention
of the approach to holistically analyze security requirements. We discuss the pos-
sibilities to extend the plugin to include static and dynamic checks as future work.
The implemented plugin only notifies the user about the accepted, defined, and
missing correspondences with in-line information markers. Thus, the user decides
what compliance issues the correspondences identify. Yet, the implementation can
be easily extended to support active proposals of compliance violation types.

7.2.6 Conclusion on the Semi-AutomatedMappings

We presented an interactive, semi-automated approach for mapping concrete imple-
mentations to SecDFDs with the aim to reconstruct a correspondence model and
to perform conformance checks of the implementations with the SecDFDs as well
as security checks on the implementations. In the proposed approach mappings are
iteratively calculated by heuristics and are presented as proposed correspondences
to a user for verification. Furthermore, the user guides the automated mapping by
actively adding additional correspondences.

The approach has been evaluated on five open-source projects (including Eclipse
Secure Storage [203]) and shows good precision and recall for the initial, automat-
ically created mapping. Our evaluation shows that new mappings can be found by

2 Semi-automated mappings implementation and evaluation data: https://github.com/
SvenPeldszus/GRaViTY-SecDFD-Mapping/

https://github.com/SvenPeldszus/GRaViTY-SecDFD-Mapping/
https://github.com/SvenPeldszus/GRaViTY-SecDFD-Mapping/

162 7 Application to Legacy Projects using Reverse-Engineering

considering the user input in later iterations. Consequently, both the user and the
proposed heuristics contribute to the discovery of new mappings. All in all, the
user is not only guided through the implementation by our tool, but also assisted in
creating the correspondence model between SecDFDs and their implementations.

Using this semi-automated approach, users can interactively discover conver-
gence, absence and divergences between the SecDFDs and their implementations.
Also, the security information available in the SecDFDs can be used for executing
security analyses on the source code level. We discuss these applications in detail
in Chapter 8.

7.3 Conclusion on the Application to Legacy Projects

In this chapter, we discussed the application of GRaViTY to legacy projects con-
sidering two different scenarios. First, we considered software projects in which no
design-time models describing the software system exist. Here, we discussed how
the required models and correspondence models between the design-time models
and the implementation can be reverse engineered using GRaViTY’s synchroniza-
tion mechanism introduced in Section 6.2. Second, we considered legacy projects in
which early design models are available but are disconnected from the implementa-
tion. To restore this connection in terms of a correspondence model, we introduced
a semi-automated mapping approach.

The two approaches can be used complementary with each other in projects
containing early design models. First, developers can reverse engineer UML class
diagrams using the TGGs, and afterward, reconstruct the correspondence model
between the DFDs and the implementation. These correspondence models can then
be used to create trace links between the DFDs and reverse engineered UML class
diagrams. This allows to transfer security requirements from SecDFDs into the class
diagrams and avoids specifying these again. However, currently, this is not included
in the presented reverse engineering approach.

To conclude on the application of GRaViTY on legacy projects, the proposed
reverse engineering approaches allow reconstructing models and correspondence
models that allow the application of GRaViTY. The reverse-engineered UML class
diagrams can continuously be synchronized with the implementation using GRaV-
iTY’s synchronization mechanism without any adaptions. The correspondence
model created between early design models and the implementation is a snapshot
of the current state and cannot be automatically synchronized. However, as out-
lined, they build a basis for propagating security requirements and reconstructing
the model hierarchy used by GRaViTY.

Part III

Security

8Static Security Compliance Checks

This chapter shares material with the FSE’2017 publication “Model-based Pri-
vacy and Security Analysis with CARiSMA” [74], the‘ MODELS’2019 publications
“Secure Data-Flow Compliance Checks between Models and Code based on Auto-
mated Mappings” [23], the DKE’2021 publication “Ontology-Driven Evolution
of Software Security” [206], the EMLS’2020 publication “Model-driven Develop-
ment of Evolving Secure Software Systems” [154], and the SoSyM’2022 publication
“Checking Security Compliance between Models and Code” [207].

The continuous checking of a software system for security violations is one
important task for ensuring the security compliance of a software system under
development. Traditionally, security compliance is checked in manual security
audits, e.g., as specified in the IEEE 1028-2009 standard for software reviews and
audits [94]. As the effort for such audits is very high, audits are only performed from
time to time. For this reason, approaches like SecDevOps encourage system devel-
opers tomake use of frequent and automated security checks [127]. In the GRaViTY
approach of this thesis, we follow the same principle of frequent automated security
checks but in combination with automated reuse of security specifications among
these security checks. Furthermore, while approaches like SecDevOpsmainly focus
on local fine-grained security checks as discussed in the state of the art (Section 3.6),
GRaViTY aims at security checks covering the design-time models and implemen-
tation.

©TheAuthor(s), under exclusive license toSpringer FachmedienWiesbadenGmbH,
part of Springer Nature 2022
S. M. Peldszus, Security Compliance in Model-driven Development of Software
Systems in Presence of Long-Term Evolution and Variants,
https://doi.org/10.1007/978-3-658-37665-9_8

165

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-658-37665-9_8&domain=pdf
https://doi.org/10.1007/978-3-658-37665-9_8

166 8 Static Security Compliance Checks

Figure 8.1 Interaction of security checks in the overall concept

To enforce the appropriate implementation of security requirements, there are
various kinds of security checks available in existing works that can be integrated
into GRaViTY. According to Figure 8.1, in GRaViTY, we perform security checks
on all three artifacts considered in the overall concept. The key idea is to follow the
principle of security by design and to specify and verify security requirements from
the very beginning [28]. InGRaViTY,we not only support the verification of security
requirements within an artifact but also continuously check security compliance
within all specified security requirements in later software design phases. Thereby,
no security check stands on its own, but they interact with each other and should be
used complementary. Currently, the process of transferring security requirements
among different phases of system development is being performed manually. To
reduce the required effort and the probability of mistakes but also to allow further
reuse of security requirements, developers should be assisted by automated tool
support. In this chapter, we focus on how such automated assistance be realized for
static security analysis. Asmost established security checks have been implemented
using high-level programming languages, the verification of their correctness is
challenging. While this verification can be suitable for standard checks that are
widely used, this can limit the application of project-specific security checks. For
this reason, we aim at putting specifications of security checks on a formal basis and
investigate the suitability of algebraic graph transformations for specifying security
checks. In this section, we address the third and fourth research questions of this
thesis:

8 Static Security Compliance Checks 167

RQ3: How can developers be supported in realizing, preserving, and enforcing
design-time security requirements in software systems?

RQ4: How do changes within a software system affect its security compliance,
and how can these effects be handled?

In this thesis, we consider the third research question from two perspectives. First, in
this chapter, from the perspective of static security analysis, and second, in the next
chapter from the perspective of dynamic security analysis at run-time. For answering
this research question for static security analysis, we address the following two
subquestions:

RQ3.1: How can we automatically verify a software system’s compliance con-
cerning design-time security requirements?

RQ3.2: How can formal approaches be used for the specification of security
violation patterns?

Considering the development of a software system, it is continuously subject to
change. For all changes applied to a software system, it is essential to check the
security compliance after the application of changes to ensure the software system’s
security. As complete security compliance checks tend to be expensive, we have to
find means for effectively only rechecking the changed parts of a software system
after changes. As developers are capable of arbitrary changes, besides the two sub-
questions of RQ3, we consider the third sub-question of RQ4 in this chapter as
well:

RQ4.3: How can security requirements affected by arbitrary system changes be
identified end efficiently be rechecked for security compliance?

In what follows, we recapitulate different kinds of security checks introduced in
Section 3.6 and in which stages of model-driven software development they can
be applied. Afterward, we discuss our understanding of security compliance within
the GRaViTY approach and discuss the supported security compliance checks in
detail. In Sections 8.2 to 8.5, we focus on different compliance checks for answering
RQ3.1. Afterward, we answer RQ3.2 and RQ4.3 in Section 8.6 by applying the
formal approach of graph transformations to specify security checks and execute
these incrementally.

168 8 Static Security Compliance Checks

8.1 Background on Static Security Analysis

To verify a software system’s security and enforce the appropriate implementation
of security mechanisms, we can use various security checks. This section gives
an overview of the existing security checks reused in GRaViTY, structured by the
artifacts on which these are used.

8.1.1 DesignModel-based Security Checks

To address security effectively, the paradigm of security by design emphasizes that
security cannot be addressed merely retroactively, by identifying and fixing security
loopholes [28]. Accordingly, developers should address a software system’s security
already from the earliest phases of software design. Design-time models are one of
the earliest artifacts created during the development of a software system. In the
following, we review approaches that aim at checking security requirements in the
targeted software system early during its development.

UMLsec
The UMLsec [6] approach, integrated into GRaViTY, allows the specification and
verification of essential security requirements already at design time. In UMLsec,
UML models are annotated with security requirements like security levels of class
members (attributes and operations). These security annotations are then checked
for compliance with different security policies provided by UMLsec. For example,
UMLsec allows, as part of the Secure Dependency security policy, to check if a
UML model contains insecure uses of attributes or operations, that are annotated
with security requirements. In the implementation model, we also annotated the
calls and communication paths with UMLsec stereotypes. For example, in the iTrust
electronics health records system, all data transferred from and to doctors is sent
over an internal LAN connection and all data sent from and to patients is sent over
an encrypted Internet connection.

On the design-models level, we can utilize refinement relations between the
different model kinds for detecting security violations at no additional cost for con-
sidering multiple models as discussed in Section 6.3. Also, if a security requirement
is changed in one representation we can immediately see the impact on the other
UML representations. However, automated verification of the security requirements
at the implementation level is an open issue.

Detailed information about the UMLsec is provided in Section 3.6.1. Besides
UMLsec, there are approaches like Security Data Flow Diagrams (SecDFD), mak-

8.1 Background on Static Security Analysis 169

ing use of similar concepts for the early verification of data flows in a data flow
diagrams [111].

Security Data Flow Diagrams
Comparable to UMLsec, Security Data Flow Diagrams (SecDFD) allow the spec-
ification of security requirements at design time. In contrast to UMLsec, in the
SecDFD approach, data flow diagrams are annotated with security requirements
instead of UML models. Thereby, SecDFD is based on security labels for data
and processing contracts specifying the intended data processing. As discussed in
Section 3.6.2, UMLsec and SecDFD can be used complementary or the SecDFD
annotations could be applied to UML activity diagrams.

In this chapter, we use the security labels of SecDFD and the data process-
ing contracts for compliance checks of the implementation. The specified security
requirements can also be propagated from the SecDFD to the implementation using
the correspondencemodel created byGRaViTY as introduced in Chapter6. Further-
more, we use the contracts as an input to a code-level analysis tool. Thus, we enable
compliance checks between planned and implemented security requirements, see
Section 8.4.1.

8.1.2 Static Code Analysis

While design-time security can make security planning controllable, they do not
allow security violations to be actively detected and prevented. In contrast to this,
static code analysis is usually used to detect actual security issues during software
implementation. Thereby, the analysis tools are often integrated within the devel-
opment environments or build processes.

Analysis of API Calls
Many approaches locally analyze calls to critical APIs and whether the chosen
parameters have been selected securely. This covers, for example, calls to crypto
APIs [118] or SQL queries [119]. While those approaches are important for the
development of secure software systems, in this work we focus on whether, e.g., the
use of a crypto API, has been implemented in a specific location specified as in the
design-time models.

Secure Data Flow Analysis
A common approach to detect leaks of secret data is a secure data flow analysis.
One of the main problems for a precise data flow analysis is the classification of

170 8 Static Security Compliance Checks

critical sources and sinks. Many tools are based on shared libraries of well-known
critical sources and sinks, created manually or by machine learning [42]. However,
more precise information, especially about critical sources, is available in design-
time models, e.g., annotated with UMLsec. For example, in Figure 3.6 we declared
the property homeAddress to contain secret values, which has to be considered
during a secure data flow analysis.

To conclude, multiple suitable approaches for the specification and verification
of security requirements have been developed. On the architectural level, we can
use UMLsec and SecDFDs to design a secure architecture. These approaches allow
specifying, propagate, and verify security requirements. After a software system’s
architecture has been implemented, it can be checked in detail on the source code
level.Amongothers, inGRaViTY,we can analyze the correct usage of cryptographic
methods and analyze data flows within the implementation using existing security
tooling. However, what exactly is analyzed is up to the developers. The success-
ful verification of the implementation’s compliance with the security requirements
specified at design time depends on the experience of the developers executing such
an analysis.

8.2 Structural Compliance betweenModels and Code

After a secure design of a software system has been created using approaches like
UMLsec or SecDFD, the software system has to be implemented. Thereby, a corre-
spondence model between the implementation and the design-time models should
be created and maintained. For this purpose, the tool support introduced in Chap-
ter6 can be used. For successfully certifying a software system, the implementation
must be compliant with the architecture specified in design-time models. Usually,
this compliance is reviewed manually during the certification process. Since this is
tedious and time-consuming, such reviews are expensive and are only performed if
necessary [96]. GRaViTY’s correspondencemodel between the design-timemodels
and source code can be used to perform structural compliance checks automatically.
At first, it can be checked if the implementation corresponds with the specification
in a DFD or UML activity diagram. Afterward, the correspondence model can be
used to perform more sophisticated security analyses on the code using security
requirements from design-time models.

Identifying the differences and equivalences between the planned and the imple-
mented software architecture is the goal of software architecture compliance check-
ing. The compliance checks can be based on a static set of rules [91], dynamic
monitoring of a running software system [92], or a hybrid of both [93]. In our work,

8.2 Structural Compliance between Models and Code 171

we statically check the compliance of design-level models with their corresponding
implementation. Running compliance checks reveals the relations between a set of
components of the design-level model and a set of components of a program model
extracted from the software system’s implementation.

In what follows, we describe the check we developed to determine if the imple-
mentation corresponds with the specification in the models.

8.2.1 Automation of Structural Compliance Checks

For performing structural compliance checks, we use the trace links contained in
the correspondence model between the design-time models and the program model
representing the implementation. These trace links allow us to get the correspond-
ing implementation elements for every model element and to check if they are as
expected. Using the structural compliance checks, we check for the presence of
the three relation types introduced in Section 3.5 (convergence, absence, and diver-
gence). Furthermore, in combination with the semi-automated reverse engineering
technique introduced in Section 7.2, developers can interactively check the compli-
ance of the implementation with design-time models.

Convergence
The easiest case are convergences between the models and implementation. In the
context of a correspondencemodel between design-timemodel elements and imple-
mentation elements, convergence means that the user has accepted a suggested cor-
respondence or has manually defined a correspondence. In the context of security
requirements, convergence means that a planned security contract is implemented
at the correct location and no leaks have been detected, e.g., by a data flow ana-
lyzer. All model elements which have been mapped to implementation elements in
the correspondence model and have not been rejected by a user are allowed corre-
spondences. Following the definition of convergence, the convergences between the
design-time models and the implementation are described by the set of all allowed
correspondences.More precisely, we consider all correspondences in the correspon-
dence model and refinement relations between the UML models as convergence.

Absence
If our approach is neither able to map a model element to the code automatically
and the user is not able to map the same element manually when asked to do
so, we discover an absence of specified functionality in the code. Assuming the
correctness of models, we only have to consider the model to code direction of

172 8 Static Security Compliance Checks

absence (concerning the opposite direction, see divergence). However, there can be
cases of absence that do not result in a violation but are intended abstractions. For
example, the domain models created before developing the software system might
capture concepts that are common for the domain but are not realized in the software
system.

Divergence
Absence indicates that the source code is not compliant with the planned architec-
ture due to a missing implementation. In the context of the security requirements,
absence means that security mechanisms specified on the model level have not been
implemented or security requirements are not fulfilled. Elements present in the
source code of the implementation, but not specified in the design model represent a
divergence between the model and code. Here, one can look for model elements that
relate to existing correspondences to find the relative parts of the implementation.
In the context of security requirements, we identify divergence when

(i) there exists an implemented data flow that does not comply with the specified
security contracts at a process node in a DFD or an activity in a UML activity
diagram, or

(ii) the analysiswith a state-of-the-art dataflowanalyzer reports a leakof potentially
confidential information.

To help the user in discovering divergences between design models and the imple-
mentation, it is possible to show all data flows from members mapped to a design-
time element to other members not mapped to this element. If the target of such
a flow has not been mapped to any process, there seems to be a divergence. But,
a divergence also arises if there is a flow between two processes or activities in
the code that has not been specified in the design-time model. If a critical asset is
communicated along with such a flow, this is not only divergent from the intended
design but a security violation.

Using these checks, a developer or code reviewer can detect a compliance issue
betweenmodels and the implementation at hand. However, regarding security, these
checks are not precise enough: They might not reveal flows of confidential assets
that are not supposed to take place. For example, if a developer uses a full repre-
sentation of an object, instead of a stripped one, all information stored in this object
flows into the location of the usage regardless of if this information is needed there.
If this unused information is sensitive it might not be allowed to flow to this spe-
cific location. To this end, we can perform more sophisticated security checks, as
described in the next sections.

8.2 Structural Compliance between Models and Code 173

8.2.2 Tool Support for Structural Compliance Checks

We implemented a structured view of recorded correspondences for data flow dia-
grams allowing developers to inspect the correspondences for divergences. Thereby,
the developer is supported in automatically navigating to the source code locations
of selected correspondence. Also, in the data flow diagrams correspondences are
shown in information markers and elements for that no correspondence exist are
highlighted with a warning marker for this absence.

A component diagram of our implementation and its integration with the
other components of GRaViTY as well as external components is shown in Fig-
ure 8.2. The structural compliance checks are implemented in the Structural
Compliance component. This component analyzes the correspondence model
created by the Semi-Automated Mappings component, discussed in detail in
Section 7.2.3, regarding, convergence, divergence, and absence.

Figure 8.3 shows a screenshot of the tool support for structural compliance
checks.Whenever a correspondencemodel between a SecDFD and the implementa-
tion is loaded, this correspondence model is automatically checked for convergence
and absence. Convergences and absences are shown in terms of information and
warning markers in the DFD. In the example shown in Figure 8.3, our tooling
identified an absence for the change password process.

8.2.3 Conclusion on the Structural Compliance Checks

In this section, we discussed how the correspondence model maintained by the
GRaViTY approach can be leveraged for verifying the structural compliance of the
implementation with the architecture specified in design-time DFDs. This verifica-
tion is the most effective when it is executed dynamically using the semi-automated
mapping approach presented in Section 7.2. Developers are assisted with structured

Figure 8.2 Component diagram of the structural compliance checks

174 8 Static Security Compliance Checks

Figure 8.3 Screenshot of the tool support for structural compliance checks

views on the existing correspondences and can dynamically navigate between the
models and source code. Currently, only the combination with the reverse engi-
neering of a correspondence model provides an automatization in the verification
of structural compliance. However, as long as developers continuously apply the
GRaViTY approach, structural inconsistencies should not be possible, as all changes
are automatically propagated. Nevertheless, a frequent analysis for structural com-
pliance is beneficial. In future works, one can provide an extended automatization
of this task.

8.3 Leveraging CorrespondenceModels for the
Calculation of Security Metrics

The planned structure of a software system’s design has a significant impact on the
software system’s security [28, 208]. One approach to achieve a secure software
system is to structure it into different security levels where only some parts have
to be maintained by security experts, e.g., this kind of structure can be used to
isolate subjects for manual security code reviews. Unfortunately, the quality of such
a security design is hard to judge. Furthermore, a software system’s structure into
security level also might erode and increase the effort required for maintaining

8.3 Leveraging Correspondence Models for the Calculation of Security Metrics 175

security [13]. To deal with such challenges in general software design, OO design-
quality metrics have been developed [209], e.g., the well-known metrics Coupling
Between Objects (CBO) or Lack of Cohesion in Methods (LCOM). Comparably, to
continuously measure and quantify security aspects for detection of such erosion,
security metrics have been defined [210–212].

In what follows, first, we introduce security metrics that have been proposed
in the literature and discuss their limitations in Section 8.3.1. In Section 8.3.2, we
discuss how the correspondence model created by the GRaViTY approach can be
leveraged for calculating the discussed securitymetrics. Afterward, in Section 8.3.3,
we introduce a prototypical implementation of the security metrics as part of GRaV-
iTY. Finally, we conclude in Section 8.3.4.

8.3.1 Background on Security Metrics

When talking about security metrics, we often think about security metrics such as
the ones from the Common Vulnerability Scoring System (CVSS) [213], measuring
the potential impact of a reported vulnerability (CVE) on the security of a software
system using the software. Such metrics can be useful to decide whether a specific
version of a library should be used or comeswith a security risk too high for using the
library. However, these metrics do not directly consider the security of the software
system under development.

In this section, we introduce two categories of security metrics that allow us to
estimate specific security properties of a software system itself. First, we introduce
metrics that consider the attack surface of a software system. Second, we introduce
a metric that quantifies the distribution of security-critical implementation parts
among a software system.

Attack Surface of Object-Oriented Programs
The first category of security metrics considered by us is related to a software sys-
tems exposure to the outside. Thereby, the key assumption is that the greater this
exposure is, the higher is the risk for security issues. In this context, the attack sur-
face of a program comprises all conventional ways of entering a software system
from the outside [214]. A larger attack surface increases the danger of exploiting
vulnerabilities, either unintentionally by some user or intentionally by an attacker.
Concerning Java-like programs, in particular, explicit restrictions of accessibility of
class members provide an essential mechanism to control the attack surface. How-
ever, the attack surface covers many other aspects such as used sockets, libraries, or
files [214]. In these cases, the attack surface is significantly impacted by a software

176 8 Static Security Compliance Checks

system’s deployment, e.g., how a firewall is configured and where other systems the
software system communicates with are located. Based on the assumption that visi-
bilities can indicate a software system’s attack surface, metrics have been developed
to quantify the attack surface in terms of visibilities.

Total visibility: One idea is to assign numerical values to the visibilities and to sum
them up or average them before and after a change [146]. If the value increases,
the visible Java API increased, too. Accordingly, the total visibility of the Java
API can function as a proxy for the attack surface.

Inappropiate generosity: More sophisticated metrics compare the assigned vis-
ibilities of types and methods with the theoretically possible values [215]. In
this approach, the metrics Inappropriate Generosity with Accessibility of Types
(IGAT) and Inappropriate Generosity with Accessibility of Methods (IGAM)
quantify the degree of divergence per type or method. On the scope of a package
or project, the average values can be used. However, there are two reasons for
visibilities higher than possible:

1. The visibility is too wide by mistake, e.g., due to developers not paying
attention to the visibility of the element.

2. The element belongs to the software’s intended API and has to be wider than
on the scope of only the software.

While the first case is clearly an issue, it cannot be solved easily due to the
second reason. By calculating these metrics, one cannot distinguish between the
two kinds of reasons when only relying on the source code. Another limitation
of the two metrics is that these do not reveal unnecessarily high visibilities
due to a bad structuring of the implementation. A high coupling within the
implementation technically requires higher visibilities which makes these valid
for the two Inappropriate Generosity with Accessibility metrics.

Considering this discussion, visibilities can provide indicate the attack surface of
a software system but might only have a minor influence on initially entering the
software system. Nevertheless, strict visibilities might play an essential role in pre-
venting harm after malicious code has been injected into the software system. Their
application can help developers in reducing theAPI that can immediately be invoked
from this injected code. However, these metrics do not consider the security design
of a software system.

8.3 Leveraging Correspondence Models for the Calculation of Security Metrics 177

Distribution of Classified Properties
Metrics explicitly considering the security design of a software system usually
quantify the distribution of security-related elements among the software system or
entities belonging to the software system. Depending on the degree of distribution,
the security design of a software system can be rated.

As an example for this category of security metrics, we consider the Critical
Design Proportion (CDP) metric. This metric measures the ratio between security-
critical and not-security-critical classes [212, 216]. Here, the idea is that this met-
ric is an indicator of the security of the software system. One can assume that a
software system that concentrates security-related data and functionality in a few
security-critical classes is easier to implement and maintain. It is less likely that
changes in a non-security-critical part of the software system have side effects in
security-critical parts of the software system. However, classes that have a higher
ratio between security-critical elements and non-critical elements should be tested
more intensively [217]

TheCritical Design Proportion (CDP)metric is defined at the scope of a software
system’s class-level design D as follows [216]:

C D P(D) = SC

C
(8.1)

Whereas C is the number of classes in the software system and SC is the number of
security-critical classes within all classes such that SC ∈ C. Accordingly, the metric
can be applied to both, the high-level class design such as specified in UMLmodels
but also to the detailed low-level class design of an OO program.

All discussed security metrics are beneficial from an administrative perspective,
as these allow to utilize security experts more efficiently as they can focus on small
security-critical parts of the software system. However, measuring such metrics is
usually not easily possible as it is not known which classes are security-critical and
which not. This kind of information is required for all presented security metrics.

8.3.2 LeveragingTraces for Security Metric Calculation

The introduced security metrics (as many other security checks) need information
about what are security-critical parts of the software system, therefore, their applica-
tion is often not possible. Most projects do not explicitly provide a detailed security
classification on the level of single classes within the application. Usually, this
classification is part of a software system’s documentation and rather high-level.

178 8 Static Security Compliance Checks

Figure 8.4 Correspondences between a UML class diagram containing security require-
ments and the program model

When approaches like UMLsec or SecDFD are used, detailed security require-
ments are available in design-time models. In what follows, we demonstrate how
we can transfer security-related information from the design-time security models
to the implementation. For this purpose, we use the correspondence model between
design-time models and the implementation created by our approach. Chapters 6
and 7 discuss these correspondence models and their creation in detail.

As an example for leveraging security-related information, we use the Critical
Design Proportion metric, specifying the ratio between security-critical and non-
security-critical classes [212]. To calculate this metric on the low-level class design,
we have to classify all classes within the implementation as security-critical or not
security-critical. For this purpose, we leverage the correspondence model between
the implementation of the software system and design-time models containing the
software system’s security requirements.

In this thesis,we consider twomodel-level security specifications that can be used
to obtain the information required for calculation the CDP metric at the implemen-
tation level. First, UML models annotated with UMLsec stereotypes, and second,
the SecDFD security specifications, introduced in Sections 3.6.1 and 3.6.2.

UMLsec: As the UMLsec secure dependency stereotypes are applied at the class
diagram level, these are of special interest for propagation security requirements
suitable for calculating the intended security metric. Considering UMLsec’s
«critical» stereotype, this procedure is straightforward. In Section 6.4.1,
we discussed this propagation of security requirements in detail. Figure 8.4,
shows correspondences between a UML class diagram and a program model
for a security-critical class (PatientBean) at the top of the figure and a

8.3 Leveraging Correspondence Models for the Calculation of Security Metrics 179

non-security-critical class (HospitalBean) at the bottom of the figure. The
class PatientBean is considered as security-critical as it is stereotyped with
«critical», putting the operation getIcAddress1 on the security level
of secrecy. This class and the operations specified within the class correspond
with the upper instances of TClass and TMethodDefinition on the upper
right of the figure. In the same way, the HospitalBean corresponds with a
TClass at the implementation level. Accordingly, we consider every TClass
that corresponds with a Class stereotyped with a «critical» that contains
a signature of a feature (Operation or Property) of this class as security-
critical class.

1 class PatientBean {
2 @Secrecy
3 String getIcAddress1(){
4 . . .
5 }
6

7 long getMID(){
8 . . .
9 }
10 }

(a) Security-critical class.

1 class HospitalBean {
2 String getHospitalName(){
3 . . .
4 }
5

6 String getHospitalAddress (){
7 . . .
8 }
9 }

(b) Non security-critical class.

Listing 8.1 Security annotation propagated into classes with and without security-critical
members.

Although the security metrics’ calculation is possible using this dynamic trac-
ing, for simplicity, we assume that the security requirements have been propa-
gated to the implementation using the Java security annotations introduced in
Section 6.4.1. This allows to immediately calculate the security metric on the
program model without explicitly considering the UML models. An example
for a security-critical and non-security-critical class is shown in Listing 8.1.
In both classes, the security requirements from the design-time models, such
as shown in Figure 8.4, have been propagated into the implementation as Java
annotations. While Listing 8.1a shows with PatientBean a critical class,
as it contains the method getIcAddress1 on the security level of secrecy,
Listing 8.1b shows the non-critical class HospitalBean that does not con-
tain classified members. Considering the explicit propagation of the security

180 8 Static Security Compliance Checks

Figure 8.5 Program model extended with security annotations

requirements, the program model shown in Figure 8.4 is extended as shown in
Figure 8.5 for the security-critical class PatientBean. The «critical»
stereotype is represented by an TCritical node. In addition, the speci-
fied signature is resolved and this information is explicitly added. First, by
adding an explicit reference from the TCritical to the resolved signatures
(TMethodSignature). Accordingly, In the example, a secrecy reference is
added from the TCritical note to the TMethodSignature node. Second,
by annotating TMethodDefinitions, whose signature is put to the secu-
rity level of secrecy by the class that defines these method definitions, with
TSecrecy.

SecDFD: While the correspondence model between class diagrams and source
code and the secure dependency security requirements are between compa-
rable entities, there are significant differences for SecDFDs. Even though the
SecDFD assets are mapped to types, they do not necessarily represent security-
critical classes. For example, the class String is used in the implementation
of iTrust to represent both secret assets, e.g, the address of a patient as shown in
Listing 8.1a, but also other public data, e.g., the name of the hospital in
Listing 8.1b.

8.3 Leveraging Correspondence Models for the Calculation of Security Metrics 181

Figure 8.6 Correspondences between a SecDFD and the program model

Figure 8.6 shows the correspondence model between a SecDFD excerpt describ-
ing the creation of an invoice and a corresponding excerpt of the program model
representing the implementation. For example, this figure contains the correspon-
dence between the asset Address and the type String. As part of creating
an invoice, the address of the patient has to be retrieved from the hospital’s
database. Here, the method getIcAddress1 of the class PatientBean
provides access to this information in the database. Accordingly, there is a cor-
respondence between this method and the data store in Figure 8.6.
We can automatically derive the security-critical classes from the correspon-
dence model by first identifying the security-critical methods and afterward the
classes defining these methods. If we are going to consider the assets as specified
in a SecDFD, the critical methods are exactly all methods mapped to a process,
data store, or external entity in the SecDFD that is processing an asset tagged
as confidential. In the example, the method getIcAddress1 has the return
type String that is mapped to the secret asses Address. Also, the method is
mapped to the database that is the source of a data flow propagating the asset
Address. As a consequence, this indicates that the returned String really
represents this asset. Accordingly, we identified a security-critical method in the
implementation. Consequently, we can annotate this method with @Secrecy
and the classes with @Critical as we do for the UMLsec secure dependency
stereotypes. Finally, for the considered example, this results in the same annota-
tions on the program model as the ones derived from the UMLsec stereotypes.

182 8 Static Security Compliance Checks

Figure 8.5 also shows the security annotations derived by leveraging the SecDFD
to program model correspondences shown in Figure 8.6.

Regardless of using a SecDFD or UMLsec, in the program model, the security
requirements are represented in the same way, using both the @Critical and
@Secrecy annotations. Accordingly, for counting the number of security-critical
classes, we can count two patterns:

1. the number of classes that define a member annotated with @Secrecy
2. or the number of classes annotated with @Critical that has a secrecy

reference to a member defined in the class.

As both patterns represent the same information, we can use any of these two
patterns for calculating the desired metric. After counting the number of security-
critical classes, the Critical Design Proportion metric for a program can simply be
calculated by dividing this number by the number of classes.

8.3.3 Tool Support for the Calculation of Security Metrics

We implemented the discussed metrics as an extension to the design-flaw detec-
tion tool Hulk [21, 34]. Hulk is an incremental rule-based design-flaw detection
tool based on the type graph presented in Chapter 5 of this thesis. The annotation
mechanism of the type graph is used to define annotations representing metrics,
code-smells, and anti-patterns. Thereby, more detailed design flaws are calculated
based on locally restricted flaws, e.g, anti-patterns are derived from the presence of
multiple code-smells, and code-smells are usually derived from metrics.

Figure 8.7 Component diagram of the security metrics implementation

8.3 Leveraging Correspondence Models for the Calculation of Security Metrics 183

Figure 8.7 shows a component diagram of our implementation of the security
metrics. Our implementation resides in the SecurityMetrics component. This
component implements two interfaces defined by Hulk. First, the IDetect inter-
face specifies the methods that have to be implemented by our extension to allow
Hulk to execute a design-flaw detection or metric calculation. Second, the IFlaw
interface is implemented to provide information about the annotations defined by
us for representing instances of the calculated metrics, e.g., the Critical Design
Proportion metric. While the calculation of the total visibility, IGAM, and IGAT
has been implemented by us in handwritten Java source code, for calculating
the metric, we defined the metric in a Henshin rule. For executing this rule, the
SecurityMetrics component uses the Henshin component.

Figure 8.8 shows the rule for calculating the Critical Design Proportion met-
ric. The program model, represented by a node of the type TypeGraph, is anno-
tatedwith a new instance of thismetric (CriticalDesignProportion)whose
value is calculated by a constraint.

For the calculation of the metric’s value, we make use of the concept of amalga-
mation offered by Henshin [218]. Amalgamation allows matching a graph pattern
as often as possible within a rule. Such a pattern is denoted by a * in a rule ele-
ment’s action type, e.g., «preserve*». In the rule shown in Figure 8.8, we use
amalgamation two times. First, to match all types defined in a program model, and
second, to match all elements denoting security-critical types.

In the variable all, we match every TAbstractType in the program model
(TypeGraph) that is not from a library. In the constraint for calculating the metric
value, we count all instances of TAbstractTypematched this way giving us the
total number of types in the program. For this purpose, we use the function COUNT
provided by Henshin. This function counts the number of instances assigned to a
variable.

For counting the number of security-critical types, we make use of an amalga-
mation nested into the almagation already described. This nesting is denoted by
giving a path after the specification of the amalgamation action. The previously
described level of amalgamation is on the first level (/types). On the second
level (/types/security), we count the number of security-critical types. If a
type is security-critical, it is annotated with an instance of TCritical, that has a
secrecy reference to a signature implemented by the type. Also, every type can
only be annotated with one instance of TCritical. However, this TCritical
can point to multiple signatures. Accordingly, for counting the number of critical
types, we can count the number of TCritical instances matching the described
pattern. Using second-level amalgamation leads to the following semantics: For
each TAbstractType matched to all, every TCritical with a reference

184 8 Static Security Compliance Checks

Figure 8.8 Henshin rule for calculating the critical design proportion metric

to a TSignature that is implemented by the type are matched to the variable
critical. When we count the number of different TCritical assigned to
critical, again using the function COUNT, we get the number of critical types
in the program model.

Finally, to get the proportion of security-critical types we can divide the num-
ber of security-critical types (COUNT(critical)) by the number of types
(COUNT(types)). The outcome of this calculation is assigned to the value
property of the CriticalDesignProportion node created by the rule in Fig-
ure 8.8.

8.3.4 Conclusion on Security Metrics

In this section, we have shown how to leverage the traces created and maintained
by GRaViTY to calculate security metrics on the implementation level. While these
security metrics can be of practical importance, due to the lack of explicit security
knowledge they have been challenging to calculate before. Also, this might be the
reason for only a few implementation-level security metrics being specified in the
literature that considers the security design. In contrast to this, OO design properties
have been intensively studied regarding maintainability and extensibility resulting

8.3 Leveraging Correspondence Models for the Calculation of Security Metrics 185

in widely accepted catalogs for OO design metrics [209]. Furthermore, the security
metrics we found, are practically important but still limited.

The Critical Design Proportion metric discussed by us in detail allows us to
quantify a structural security property. Until now, its application was mainly lim-
ited to UML class diagrams explicitly containing security requirements. Using our
approach, we can also calculate it at the implementation level. However, this also
reveals some of its limitations. Following the metric’s specification, a software sys-
tem’s design is better the smaller the portion of classes is that hold security-critical
elements.While thismight hold at the design level, atmore detailed levels,we should
avoid combining unrelated security elements, e.g., secret information. Whenever a
part of the implementations accesses a piece of secret information, it also gets
access to the other unrelated information although this access is not required. As
a consequence, this could cause serious security issues. For example, consider the
administration of a hospital implicitly getting access to detailed medical records at
the creation of invoices.

However, considering the detailed information about accesses available at the
implementation level,we could detect suchunrelated secrets towhich implicit access
is given. To allow the continuous improvement of a software system’s security
design, in future works, it would be beneficial to study approaches to leverage
structural implementation-level information for calculating security metrics on the
design-model level. For example, a useful metric would be the average amount of
classified assets communicated along with a dependency in a UML class diagram. If
there is a significant difference between the communicated classified assets and the

Figure 8.9 SecDFD for updating a user’s password

186 8 Static Security Compliance Checks

number of classified assets specified in the accessed class, this might be an indicator
of a security issue in the security design.

8.4 Security Compliance Checks betweenModels & Code

Using approaches like UMLsec or SecDFD, security experts specify security
requirements such as data processing contracts on the design-time models of the
software system. These contracts are then checked for consistency using the tool
support of the approaches. If these checks reveal inconsistencies or vulnerabilities,
the design-time models have to be adapted until a secure state is reached. However,
for the final software system to be secure, it has to be compliant regarding the struc-
ture as discussed before but also with these contracts specified on the design-time
models. To be more precise, the contracts have to be implemented as planned. Usu-
ally, such compliance checks are performed manually. In this section, we show how
the SecDFD contracts can be verified in the implementation showing compliance.

8.4.1 Verification of SecDFD Contracts

In the used model-based security approaches, security contracts are specified on
the design-time models and are verified at design time. This procedure allows soft-
ware architects and security experts to build a secure design of the software system.
However, for the final software system, it is not enough to consider design-time
security requirements at design-time but it has to be verified that the implemented
software system is compliant with these design-time security requirements. In what
follows, we show how the security compliance of the software system’s implemen-
tation can be automatically checked regarding the data processing contracts and the
cryptographic contracts of the SecDFD approach.

SecDFD Data Processing Contracts
The forward and join contracts at the SecDFD level describe local data flows within
a process that have to be present in the implementation. To check if the specified
contracts have been implemented,we propose a two-step procedure. First, we extract
the relevant asset-communicating flows from the process’s implementation. In what
follows, we refer to the flows in the implementation as i-flows. Second, we compare
the implemented flows (i-flow) with the expected flows specified in the SecDFD.
To flows in the DFDs, we refer to as d-flows.

8.4 Security Compliance Checks between Models & Code 187

Algorithm 1: Algorithm for extracting i-flows i for a given process p.
Input : Process p, Correspondence Model m
Output: i-Flows i

1 methods ← m.methods(p)
2 in ← inFlows(methods)
3 foreach flow ∈ in do
4 type ← communicatedType(flow)
5 if m.correspondence(type) = ∅ then
6 remove flow from in
7 end
8 end
9 out ← outFlows(methods)

10 foreach flow ∈ out do
11 type ← communicatedType(flow)
12 if m.correspondence(type) = ∅ then
13 remove flow from out
14 end
15 end
16 i ← {}
17 foreach target ∈ out do
18 sources ← reachableBwd(target, in)
19 if sources �= ∅ then
20 add (sources, target) to i
21 end
22 end
23 return i

The main challenge in checking forward and join contracts is that one process
can be realized by multiple methods but also many methods do not belong to any
process but interact with multiple processes. Furthermore, an asset in the SecDFD
can be realized by different types in the implementation. For example, the hashed
old password (oldPasswordHashed) in Figure 8.9 is realized by instances of the
Java classes String and byte[]. In addition, a single type in the implementation
can be used to create instances of different assets. This is especially a problem for
frequently used types like strings that can be used to represent nearly every asset as
shown in the previous chapters of this thesis.

In Algorithm 1, we show the pseudo-code for extracting implemented flows
(i-flows) for a given DFD process. We define an i-flow as a pair of the flow’s
target and a set of the sources of a flow in the implementation. The inputs to this
algorithm are the DFD process for which we want to extract the implemented flows

188 8 Static Security Compliance Checks

and a correspondence model between the design-time model and the source code.
Following Chapter 6, such a correspondence model is automatically created if the
software system is developed using the GRaViTY approach. However, it is also
possible to work on a manually created correspondence model between the design-
time model and source code as introduced in Chapter 7.

First, in line 1, we retrieve the methods implementing the DFD process p from
the correspondence model m. For each method, we search in line 2 for the relevant
incoming and outgoing data flows in the implementation. To this aim, we implement
operations inFlows and outFlows which collect all flows into the parameters of the
methods and all incoming or outgoing return flows.Next,wefilter the collectedflows
in lines 3–8 and 10–14. For the forward and join check only the flows that can be
used to communicate assets from the SecDFD are relevant. This means that the type
communicated along a data flow has to be mapped to an asset in the correspondence
model. Accordingly, we filter out the flows which communicate unmapped types.
At this point, it is not important which assets can be communicated along with the
single data flow.

After filtering, in line 18, for every outgoingflow (traget),we performabackward
search and check if we found reachable incoming flows (sources) in line 19. The
pair of the found sources and the target represents one i-flow that is added to the
result set i. If exactly one incoming data flow is propagated to the outgoing data flow,
we found an implemented forward contract, and if multiple incoming data flows are
propagated to an outgoing data flow, we found an implemented join contract. We
only consider patterns with one outgoing flow. If there are SecDFD contracts with
multiple outgoing flows, these have to be split into multiple contracts. Finally, in
line 23, we return all found i-flows.

After we extracted the i-flows, we compare them to the expectations from the
SecDFDusingAlgorithm2. The input to this algorithm is the process, the correspon-
dence model, and the extracted i-flows. The output is a set of identified violations
(absence and divergence).

Algorithm 2 is again based on two steps. First, we collect all possible matches
between the i-flows and the expected flows from the SecDFD contracts (d-flows).
We consider the implementation of a contract to be convergent with the SecDFD
if and only if there exists a bidirectional one-to-one mapping between the d-flow
of the contract and an i-flow. We call this property a biunique mapping. But, the
matches are usually not biunique because of the overlapping asset type mappings,
therefore we have to reduce the initial set of matches to a set of biunique mappings
in a second step.

8.4 Security Compliance Checks between Models & Code 189

Algorithm 2: Algorithm for checking the implemented flows i for a given
process p against the specified contracts.
Input : i-Flows i, Process p, Correspondence Model m
Output: Violations v

1 v ← {}
2 matches ← {}
3 foreach contract ∈ fwdJoinContracts(p) do
4 inAssets ← contract.inAssets()
5 foreach outAsset ∈ contract.outAssets() do
6 flows ← {}
7 foreach iflow ∈ i do
8 type ← communicatedType(iflow.trg())
9 if outAsset ∈ m.correspondence(type) and ∀ s ∈ iflow.src() :

(m.correspondence(communicatedType(s)) ∩ inAssets) �= ∅ then
10 add iflow to flows
11 end
12 end
13 if flows = ∅ then
14 add "Absence: Not implemented" to v
15 end
16 add (contract, outAsset)→flows to matches
17 end
18 end
19 solution ← findSolution(matches)
20 if solution = ∅ then
21 add "Divergence: No biuniqe assignment" to v
22 else
23 foreach flow ∈ (matches \ solution.flows()) do
24 add "Divergence: Not in DFD" to v
25 end
26 end
27 return v

To collect thematcheswe iterate over every SecDFD contract and every outgoing
asset of the contract in lines 2 and 5. For each of these pairs we select i-flows if their
possible outgoing assets contain the expected asset and if for every incoming flow at
least one possible asset is contained in the set of expected incoming assets, see line
9 in Algorithm 2. If such an i-flow does not exist, the contract is not implemented
for this outgoing asset, and we detect a divergence (lines 13 and 14 in Algorithm 2).

190 8 Static Security Compliance Checks

After collecting all possible matches, we have to find a biunique solution within
the created mappings between the d-flows and the i-flows. This is implemented in
the function findSolution. The easiest implementation is to iteratively assign i-flows
to d-flows and to check if a solution is still possible. If so, we can assign the next
i-flow to a d-flow, else, we have to backtrack. If we cannot find such a solution, we
report a violation as there is at least one unimplemented contract and we detected
an absence (lines 20 and 21). If we found a solution, all specified contracts have
been implemented and we found a convergence. However, all i-flows that are not
part of the solution are still reported as violations, as they are unspecified forwards
or joins of assets and represent a divergence.

Cryptographic Contracts
The cryptographic contracts in the SecDFD describe at which location in the imple-
mentation the use of encryption, decryption, or hash-function is expected. In what
follows, we introduce how we can check if the implementation meets this expecta-
tion defined at design time. When our proposed check is executed, all encrypt and
decrypt process contracts will be checked against the implementation.

For each process with such a cryptographic contract, we collect all the mapped
method implementations that call at least one method signature performing an
encrypt or decrypt operation. If at least one such method implementation exists,
we consider that the process contract has been implemented, and mark it as con-
vergence. If no such method implementation has been mapped to this process, we
consider that the process’s SecDFD contract has not been implemented, and mark
this occurrence as an absence.

We provide a list of common methods that are called during cryptographic oper-
ations. Table 8.1 aggregates an excerpt of these lists relevant to the iTrust example.
We compiled this list by inspecting the Java standard security library and packaged
it together with the plugin. In addition, the user can add project-specific methods
to this list (at run-time) via the user interface. We remark that state-of-the-art static
analysis tools, e.g., SonarQube1, maintain similar rules for checking implemented
encryption logic. However, these tools are restricted to locally accessible informa-
tion in their analysis. In contrast to this, using our approach users can automatically
verify their expectations regarding the planned security by leveraging the correspon-
dence model for transferring expectations into an analysis on the implementation
level.

1 https://www.sonarqube.org

https://www.sonarqube.org

8.4 Security Compliance Checks between Models & Code 191

Table 8.1 Excerpt of well-known cryptographic signatures

Library Signature Kind

OpenJDK – JSSE javax.crypto.Cipher.doFinal(byte[]):byte[] Encrypt,
Decrypt

javax.crypto.Cipher.init(int, Key,
AlgorithmParameterSpec):Object

Encrypt,
Decrypt

javax.crypto.SealedObject.SealedObject
(Serializable, Cipher)

Encrypt

javax.crypto.SealedObject.getObject(Cipher) Decrypt

Apache Commons2 org.apache.commons.codec.digest.DigestUtils
.sha256Hex(String):String

Hash

8.4.2 Tool Support for theVerification of Contract
Implementations

The tool support for the verification of implemented SecDFD contracts is imple-
mented as an Eclipse plugin. Figure 8.10 shows the architecture of the SecDFD
contract check implementation.

The general management and execution of checks are implemented in a Con-
tractVerification component. The component specifies an interface
ICheck at which SecDFD compliance checks can be registered. This interface
allows the integration of additional SecDFD compliance checks. For executing com-
pliance checks, this component accesses the SecDFD and the Program Model and
provides access to these for all registered checks.

This main component (ContractVerification) providing the compliance
checks is separated into two sub-components. One for the verification of the forward
and join contracts (ProcessingContracts) and one for the verification of the
encrypt and decrypt contracts (CryptoContracts). In both sub-components,
we implemented the checks as introduced in Section 8.4. For this purpose, both
check components implement the external ICheck interface of the Contract-
Verification component.

Figure 8.11 shows the integration of the contract verification in the Eclipse
IDE as an extension of the semi-automated mapping implementation presented
in Section 7.2.3. The contract verification can be executed by clicking the Check
process contracts after creating a correspondencemodel between a SecDFD

2 https://commons.apache.org/

https://commons.apache.org/

192 8 Static Security Compliance Checks

Figure 8.10 Component diagram showing the implementation of the SecDFD contract ver-
ification

Figure 8.11 Screenshot of the static security compliance checks

and its implementation. The information marker on the SecDFD in the center of the
figure shows that the Forward contract in line 87 has been found in the implemen-
tation and is implemented as expected accordingly. When no violations are shown,
the implementation can be considered compliant with the specified contracts.

8.4 Security Compliance Checks between Models & Code 193

8.4.3 Evaluation of the Contract Verification

In this section, we evaluate if the proposed contract checks (Section 8.4) can effec-
tively detect convergence, absence, and divergence between the planned security
requirements and the implemented security mechanisms. We focus on the effective-
ness of the SecDFD contract verification to answer the following objective.

O-Effectiveness: How effective is the proposed approach in the verification of
SecDFD contracts specified on data flow diagrams?

Setup. It is important to evaluate if the proposed checks can effectively be used in
the context of realistic projects. To this aim, we have used open source Java projects,
as opposed to illustrative projects. Further, as we are interested in the effectiveness
of the proposed compliance checks, we execute the evaluation for all process con-
tracts, encrypt, decrypt, forward, and join. We evaluate the approach with perfectly
compliant SecDFDs (i.e., verification results only include convergences, and there
are no absence or divergence violations) and with SecDFDs with injected process
contracts. In case of the fully compliant SecDFDs, all the detected compliance vio-
lations are false positives (FPs). Injecting the process contracts allows us to measure
expected compliance violations (e.g., an absence of a join contract), which we mark
as true positives (TPs). If the expected compliance violation is not found (according
to the injected contract), we mark it as a false negative (FN). Finally, if we find
unexpected compliance violations we mark them as false positives (FPs). As a term
of measure, we adopt the well-understood precision (T P/(T P + F P)) and recall
(T P/(T P + F N)) of detected compliance violations.

Execution. Two projects are used as subjects for this evaluation. The first subject is
the iTrust project, which is used as the running example in this thesis and introduced
in detail in Chapter 2. The second subject is Eclipse Secure Storage that provides the
capability to store and read sensitive data to other Eclipse plugins. Eclipse Secure
Storage is introduced in detail as a second case study for the GRaViTY approach
in Section 15.2. For both projects, we created based on the documentation and
implementation of the projects two SecDFDs each, a total of four SecDFDs. As the
created SecDFDs (all four) have been reverse-engineered from the implementations,
these are perfectly compliant and are contained in the repository associated with
this thesis. An example of such a SecDFD for iTrust is shown in Figure 8.9. An
example of a SecDFD for Eclipse Secure Storage is provided as part of a second
case study in Chapter 15.

194 8 Static Security Compliance Checks

First, to verify the initially security-compliant state, we applied the contract
verification to the two projects. We expected to detect no divergences or absences
between the SecDFD and the implementation.

Afterward, we injected violations into the software systems and checked if these
are detected. The violations are injected by adding random contracts to the SecDFDs
that are not implemented. After every injection, we executed the contract verifica-
tion and checked if the expected violation has been detected, if additional false
alarms have been raised, or if expected convergences are not detected any longer.
We generated injections of all contract types (encrypt, decrypt, forward, and join).
Regardless of the contract type, we injected all possible contracts that have not been
specified on the initial SecDFD.

New encrypt and decrypt contracts can be injected independently of each other.
An encrypt contract can be injected to every process that has no encrypt contract
in the initial SecDFD and a decrypt contract to every process that has no decrypt
contract. Accordingly, it can happen that we injected a decrypt contract to a process
that has already an encrypt contract and the other way around.

For the injection of forward and join contracts, we injected for every process
of a SecDFD all possible contracts that have not been already specified. To do so,
we calculated all possible combinations with one outgoing flow. To calculate the
combinations we considered all incoming and outgoing assets. For instance, for a
processwith two incoming and twooutgoing assets (and no specified forward, or join
contract), we injected 6 possible contracts. Every incoming asset can be forwarded
to every outgoing asset (4 forward contracts) and the pair of incoming assets can
be joined with both outgoing assets as target (2 join contracts). If a combination is
equivalent to an existing contract, it is omitted.

Table 8.2 Results of evaluating the cryptographic contracts verification

Eclipse iTrust

1 2 1 2 Overall

TPs 12 48 59 70 189

FPs 0 0 0 0 0

FNs 0 0 11 0 11

precision 100% 100% 100% 100% 100%

recall 100% 100% 84.28% 100% 94.5%

8.4 Security Compliance Checks between Models & Code 195

Table 8.3 Results of evaluating the processing contracts verification

Eclipse iTrust

1 2 1 2 Overall

TPs 1 29 55 67 152

FPs 0 28 1 10 39

FNs 14 29 23 14 80

precision 100% 50.88% 98.21% 87.01% 79.58%

recall 6.67% 50% 70.51% 82.71% 65.52%

Results. Tables 8.2 and 8.3 depict the results of the contract verification based on
the injected contracts.We show the results per SecDFDandoverall. The results of the
evaluation are in favor of using our approach to execute security compliance checks
between the design and implementation of a software system. For the execution
of the verification on the fully compliant SecDFDs, we achieved 100% precision
and recall. Since the effectiveness of the proposed contracts must also be studied
in the context of imperfectly mapped SecDFDs. In what follows, we discuss the
effectiveness of the approach in detecting absences of specified contracts.

For evaluating the verification of encrypt and decrypt contracts, we injected 200
additional encrypt and decrypt contracts into the SecDFDs. Most injected contracts
(except 11) were correctly detected as absent. The 11 undetected absent contracts
belong to the same SecDFD of the iTrust project. After investigating them, we
noticed that all of them have been injected into processes that already have a encrypt
or decrypt contract. The reason for this defect is that in the list of well-known
cryptographic operations the project-specific specified signature for encryption is
also specified for decryption. As iTrust uses a crypto-function that can be used
for encryption and decryption, this is a correct classification. In this function, a
parameter specifies whether encryption or decryption should be performed. Since
we only check for at least one method call for encrypt/decrypt, we can not detect
an absence in this particular case.

To evaluate the forward and join checks we injected 232 contracts into the
SecDFDs. In contrast to the verification of cryptographic contracts, the results pre-
sented in Table 8.3 paint a more diverse picture. On the one hand, the processing
contracts verification reaches a very good precision (98.21% and 87.01%) and recall
(70.51% and 82.71%) on the iTrust project. On the other, the verification performs
below par on the Eclipse Secure Storage project. In addition, there is a huge differ-
ence between the two SecDFDs on the Eclipse Secure Storage.

196 8 Static Security Compliance Checks

In particular, the verification showed a poor performance for the SecDFD called
Eclipse 1. Two reasons handicap the verification:

First, external entities are not part of the software systemand cannot bemapped to
elements from the software system. For example, the external entity registered
user in Figure 8.9 represents an arbitrary iTrust user that is accessing the software
system from her internet browser that is not part of the software deployed on the
iTrust server. Similarly, the data can be accessed over a local Java API that allows
plugins to access data. In such cases we attempt at guessing possible incoming
flows by considering, e.g., every parameter of the methods mapped to a process as
a possible source but also all returns of called methods that have not been mapped
to any process. For instance, the change password process (iTrust 1) is heav-
ily interacting with an external entity and the processes reset password and
authenticate interact with a data store which results in very many guesses
weakening the results.

Second, despite the reduction when extracting flows, described in Section 8.4,
the overlapping asset types caused both FPs and FNs. In the example, this com-
munication of change password is implemented by mainly using assets whose
correspondences are overlapping (mainly strings). In general, representing sensitive
objects with string values is prevalent in Eclipse Secure Storage. This also affected
the performance of the processing contracts verification on the second SecDFD
(Eclipse 2). Yet, the verification still achieves a recall and precision of 50%. This
happened because the asset types of injected contracts overlapped with the asset
types of the implemented contracts. For instance, consider two existing and fulfilled
forwards of assets that are both mapped to the type String. In Figure 8.9 for
instance, these are the forward of ID on the change password process and the
forward of the newPassword and oldPassword. In addition to these expected
forwards, there are some additional uses of strings that are not representing assets,
e.g., a parameter representing a second submission of the new password change
password process. As discussed in Chapter 2, this second submission of the new
password is used to avoid typing errors by comparing the two versions of the new
password. Now we inject a join of ID and newPassword to newPassword. As
the default value is a guessed flow, we could easily ignore it before this injection
but now it exactly contributes to the injected join contract and we have to report
this contact as convergence. However, we cannot any longer report the forward of
data as convergence as the flow pattern is nowmapped to the injected join contract.
Accordingly, we now report a false divergence. In this case, at least the user would
have been warned about a violation but the information about the assets was not
entirely correct.

8.4 Security Compliance Checks between Models & Code 197

As the iTrust project does not have as many overlapping asset-type correspon-
dences and the SecDFDs have fewer external entities, the results are much better
for this subject than for the Eclipse Secure Storage. Again, the missed violations are
mainly due to overlapping asset correspondences as shown in the previous expla-
nation.

Overall, the contract verification is fairly precise (80%) and reaches a recall of
more than 65%. Generally, the presented contract verification works and can bridge
the huge gap between early design models and concrete implementations. Though,
it suffers from overlapping correspondences. Also, missingAPI specifications of the
software system, i.e., the issue of mapping external entities, harms the performance
of the contract verification.

8.4.4 Threats toValidity

In this section, we discuss internal and external threats to the execution of our
experiments as well as threats to their construction that might threaten the validity
of our evaluation.

External Validity
The main threat to external validity is our selection of samples, based on a lim-
ited number of open-source projects, partially originating from a teaching context.
Regarding the validity of the studies conducted to evaluate the security compli-
ance checks, the open source projects do not contain well-known security viola-
tions, thus we consider them secure in this respect. The rationale for our selection
was the manual effort that was required for creating the ground truth of our tech-
nique, a full correspondencemodel between high-level DFD elements and low-level
implementation elements. However, as a result, the generalization of the results to
larger projects in other domains is limited. To mitigate this threat, the considered
projects were chosen to be representative of realistic projects by providing good
documentation, including architectural information, such as, wikis, use cases, sce-
narios, requirements, state charts, and the like. The available documentation enabled
building good design models, close to the intended architecture. Further, we partly
mitigate this threat by experimenting with contract injections in evaluation.

Internal Validity
Regarding internal validity, the main threat of our evaluation is researcher bias.
In absence of pre-existing ground truths and design models, the ground truth and
design models for our evaluation were created manually by the authors, possibly

198 8 Static Security Compliance Checks

introducing a risk of creating a biased result. Tomitigate this threat, the ground truths
and the design-level models were carefully discussed between all authors involved
in the publication [207]. The created models and ground truths are of similar size
and complexity and are available online3.

Construct Validity
Concerning construct validity, we consider the threat of misinterpreting compliance
violations in the context of design-level models, implementation-level models, and
violations detected by static code analysis. However, to the best of our knowledge,
our interpretations are in line with the existing literature [93].

8.4.5 Conclusion on the SecDFD Contract Verification

We introduced a novel approach for tackling the problem of automating the code-
level verification of planned security mechanisms. In particular, we have developed
a solution with tool support for executing security compliance checks between an
abstract designmodel and its implementation (in Java). Once defined, the correspon-
dence model is leveraged for an automated security analysis of the implementation
against the design. Two types of security compliance checks are executed: a rule-
based check for a set of cryptographic operations, and a local data flow check for data
processing contracts specified in the model. The results of the compliance checks
(convergence, absence, and divergence) are lifted to the attention of the user via the
user interface of our tool.

Our approach was evaluated with two studies on open source Java projects,
focused on assessing the performance from different angles. The rule-based secu-
rity compliance checks are very precise (100%) and rarely overlook implemented
cryptographic operations (recall is 94.5%). In addition, the local data flow checks
are fairly precise (79.6%) but may overlook some implemented flows (recall is
65.6%), due to the large gap between the design-time SecDFD models and the
implementation.

Regarding future improvements, we note that extending the SecDFD with
strongly typed assets could improve the performance of the security compliance
checks. The introduction of strongly typed SecDFD assets could allow a more pre-
cise correspondence model to the implementation, which would make the local data
flow checks cleaner. Such strongly typed assets are, e.g., given in detailed UML

3 Contract verification implementation and evaluation data: https://github.com/SvenPeldszus/
GRaViTY-SecDFD-Mapping/

https://github.com/SvenPeldszus/GRaViTY-SecDFD-Mapping/
https://github.com/SvenPeldszus/GRaViTY-SecDFD-Mapping/

8.5 Optimized Data Flow Analysis 199

activity diagrams that support the typing of dataflows with types defined in class
diagrams. In addition, the missing correspondences to the external entities could be
better approximated by relying on parsed API specifications (e.g, JavaDoc). Finally,
the evaluation of the security checks could be improved by including more open
source projects, especially projects with known security violations.

8.5 Optimized Data Flow Analysis

Secure information flow analysis dates back to the 70s and has been heavily studied
ever since [219–221]. In principle, the idea is to perform a static analysis of the
program to show that if executed, a program does not leak confidential informa-
tion. Data flow analysis computes the data dependencies, i.e., which variables are
dependent, to determine how data propagates in a program. Data flow analyzers take
as input an abstracted representation of the code, e.g., an abstract syntax tree or a
control flow graph, to perform the analysis. Taint analysis is a kind of information
flow analysis where data objects are tainted at the source and tracked to the sink
using data flow analysis [221]. It is one of the most used data flow analyses and
has even been integrated into some programming languages, e.g., perlsec [222] in
Perl. Source methods are characterized by reading data from a system resource,
e.g., a remote database or user input, and returning them to the caller. Contrarily,
sink methods write to system resources. An alarm is raised if a tainted object (i.e.,
source) flows into a forbidden location (i.e., sink) in the program.

8.5.1 Optimizing Data Flow Analysis based on Security
Requirements

To perform a data flow analysis, a developer needs to identify the sources and sinks
of secret data in the implementation. More importantly, to perform a meaningful
and precise data flow analysis, the sources and sinks must be identified correctly.
For instance, we have found the standard substring method in Java (java.lang.
String.substring(int, int):String) as one of the sink method sig-
natures in an existing list of identified sinks4. This will result in many false alarms
raised by the analyzer since it seems unlikely that data can leave the software system
through this method and it is a very common operation over strings in Java. Dually,
overlooking an important source may result in overlooking true leaks. Though some

4 SuSi repository: https://github.com/secure-software-engineering/SuSi

https://github.com/secure-software-engineering/SuSi

200 8 Static Security Compliance Checks

sources and sinks can be extracted from library APIs [223], finding project-specific
sources still remains a challenge. In addition, many data flow analyzers work with a
flat security policy. Specifically, they raise an alarm if there is an access path between
any of the source methods and any of the sink methods. But, certain tainted data
might be expected to flow to some sinks, e.g., writing a hashed password to iTrust’s
database, but not others. If all the tainted objects are treated equally, the analyzer
raises false alarms. In response to this challenge, we aim to automatically extract
project-specific sources and sinks for each SecDFD asset.

Project-specific sources
The SecDFD modeling approach requires the user to specify confidential assets,
thus their source element (in the model) can easily be determined. There are three
possible types of source elements: an external entity, a data store, or a process. If
the asset source is an external entity and it is mapped to method definitions, their
signatures are collected as sources. But, if no correspondencewith the external entity
exists, e.g., for the entity registered user from Figure 8.9, the signatures of
themappedmethod definitions of the processes reading from that entity are collected
instead. If the asset source is a data store, it can be mapped to methods or types.
First, the signatures of method definitions mapped to the data store (if any) are
collected. Second, if the data store is mapped to a type, e.g., a class, the signatures
of method definitions defined by this class are also collected, but only if the return
type matches the asset type. Finally, an asset source can be a process element,
e.g., a random number generator. If there is no process contract with this particular
asset on the output, then the signatures of the method definitions mapped to the
process are collected. But, the asset may originate in the process as a result of a
transformation, e.g., a join of two assets. In this case, the assets on the contract inputs
are traced backward reaching either an external entity, a data store, or a process with
no contracts impacting the traced asset. The signatures of the method definitions
mapped to the traced element are collected as sources.

Allowed sinks
We collect the sink method signatures from [223] (excluding methods of Android-
specific packages) and exclude the allowed sinks. The allowed sinks are maintained
for each confidential asset. These are method implementations mapped to SecDFD
elements where the confidential asset exits the software system, i.e., external entities
and data stores. For example, the secret flowing into the data store db in Figure 8.9
is expected to flow there. Therefore, we consider the data store db as an allowed
sink for this specific asset.

8.5 Optimized Data Flow Analysis 201

8.5.2 Tool Support for Optimized Data Flow Analysis

Figure 8.12 shows a component diagram of the implementation of the optimized
data flow analysis.We implemented the optimized data flow analysis in a component
DataFlowAnalysis as an extension to the SecDFD contract checks presented
in Section 8.4. For this reason, the new DataFlowAnalysis component is reg-
istered at the ICheck interface of the ContractVerification component.
This allows an execution of an optimized data flow analysis when the implementa-
tion is checked for compliance with a SecDFD. In this work, we perform the data
flow analysis using FlowDroid [33], a state-of-the-art taint analyzer for Android
applications, but also applicable to Java programs. The 2.7.1 release of FlowDroid
was obtained from its release site5 and is imported as a library in our plugin.

FlowDroid raises an alarm if and only if an object flows from a predefined
list of source methods, i.e., these objects are tainted, into sink methods, i.e., they
violate the security policy. The sources and sinks must be identified and are passed
as parameters to the analyzer. To simplify the analysis, FlowDroid relies on the
capabilities of the Soot compiler framework [224] which converts Java bytecode
into the Jimple [225] intermediate code representation. This makes FlowDroid’s
analysis precise as it is flow-sensitive, i.e., the call graph is aware of the order of
statements, and context-sensitive, i.e., the call graph is enriched with the context of
the callees. In addition, the Jimple representation can handle Java reflection, but only
for reflective calls where the types of all referenced classes are known. The analysis
in FlowDroid is also object-sensitive, meaning that the call graph distinguishes
method invocations on different object instances since it uses access paths as taint
abstractions. In general, taint analyzers consider only explicit flows for performance

Figure 8.12 Component diagram for the optimized data flow analysis

5 FlowDroid release site: https://github.com/secure-software-engineering/FlowDroid/
releases

https://github.com/secure-software-engineering/FlowDroid/releases
https://github.com/secure-software-engineering/FlowDroid/releases

202 8 Static Security Compliance Checks

reasons [226], but FlowDroid also supports tracking implicit flows and shows good
results on benchmarks (86% precision and 93% recall on DroidBench [33]). We
refer the interested reader to [227] for more details.

The DataFlowAnalysis component of our implementation executes Flow-
Droid over its Java API. Following Section 8.5.1, we execute FlowDroid for every
asset in the SecDFD taking its set of allowed sinks and possible sources into account.

8.5.3 Evaluation of the Optimized Data Flow Analysis

The purpose of this study is to evaluate whether using our approach helps to reduce
the number of false alarms raised by an existing data flowanalyzer. In this section,we
present the design, execution, and results of this study for answering the following
objective.

O-Effectiveness: To what extent can the mapped design model (with our
approach) be used to reduce the number of false alarms raised by a data flow
analyzer?

Setup.
We investigate the performance of analysis with FlowDroid [33] initialized with
project-specific sources and sinks. To this aim, we built three configurations of
sources and sinks.Apart from thefirst configuration (Plain),we execute the analyzer
for each SecDFD asset separately. This experiment was conducted with the same
two projects as the evaluation of the contract checks in Section 8.4.3, namely, Eclipse
Secure Storage [203] and iTrust [47]. To the best of our knowledge, both projects
are free of data flow leaks. Therefore, all the reported leaks by the analyzer are
by default labeled as false alarms (FPs). In what follows, we introduce the three
configurations of sources and sinks handed to FlowDroid in detail.

Plain. Weexecute the analyzerwith the list of source signatures shippedwith Flow-
Droid [223] (herein Default sources) and sink signatures extracted from [223]
as described in Section 8.5.1 (herein Default sinks). Apart from Java method
signatures, this list contains signatures of methods specific to Android source
packages.We removed such signatures to avoid unnecessarily searching for them
with FlowDroid. Note, that this reduced the list of source signatures from 18,077
to 1,229 and sink signatures from 8,315 to 1,310. As a result of this filtering,
the Android SQL database API (SQLite) was also removed. To analyze Java

8.5 Optimized Data Flow Analysis 203

projects, we manually added signatures from the Java SQL API to the above list
of sources and sinks.

Partly Opt. We execute the analyzer (for each confidential asset) with project-
specific source signatures (herein SecDFD sources) and Default sinks. The
SecDFD sources are extracted per SecDFD asset, as described in Section 8.5.1.
Note that the SecDFD sources are extracted independently, and therefore may
not include any of the Default sources.

Fully Opt. We execute the analyzer (for each confidential asset) with SecDFD
sources and without allowed sink signatures (herein SecDFD sinks). The list
of allowed sink signatures is extracted per SecDFD asset, as described in Sec-
tion 8.5.1. The SecDFD sinks are obtained by removing the allowed sink signa-
tures from the Default sinks.

The results are compared concerning the number of FPs, as no actual leaks (TPs)
exist in the analyzed projects. In addition, we measure the number of extracted
project-specific source signatures and the number of removed sink signatures. A
false alarm (FP) is a detected leak with a unique pair of source and sink method
signatures, regardless of the access path where the leak is detected. The ratio-
nale for counting unique signature pairs is that comparing access paths would be
computationally expensive and not useful for this study. For instance, consider an
implementation of a function where the number of recursive calls depends on a
conditional. In this case, at least two access paths (when the conditional evaluates
to true and false) are detected. But the DFD does not specify such a level of
detail, thus we can not distinguish between the access paths of the detected data
leaks. The false alarms are aggregated per SecDFD, to enable comparison with the
Plain configuration.

As we execute the analysis for each SecDFD asset, we measure the project-
specific sources and sinks in the same manner. Specifically, to measure the number
of project-specific sources we count each discovered source signature per SecDFD
asset. Similarly, to observe the number of times we can remove an allowed sink, we
count each signature that has been removed for a unique asset.

204 8 Static Security Compliance Checks

1 Infoflow result = new Infoflow("" , false , null) ;
2 result . setSootConfig ((options , conf) −> {
3 conf . setCallgraphAlgorithm(CallgraphAlgorithm.AutomaticSelection) ;
4 conf . setImplicitFlowMode(ImplicitFlowMode.AllImplicitFlows) ;
5 conf . setAliasingAlgorithm(AliasingAlgorithm .FlowSensitive) ;
6 conf . setStopAfterFirstKFlows(100) ;
7 }) ;
8 result . setTaintWrapper(new EasyTaintWrapper(Collections .emptyMap())) ;
9 return result ;

Listing 8.2 Configuration of FlowDroid used in this study

Execution. Both projects used in this study include two SecDFDs, representing
two different scenarios. Listing 8.2 shows how we configured FlowDroid for all
our executions. This configuration was set up to achieve the best performance and
most conservative analysis, following the literature [227]. We configure FlowDroid
to use the default call-graph construction algorithm (SPARK). In addition, we have

Figure 8.13 False alarms (FPs) raised by the analyzer after three configurations of sources
and sinks per SecDFD (Eclipse Secure Storage on Top, iTrust on Bottom)

8.5 Optimized Data Flow Analysis 205

Table 8.4 Average false alarm reduction for the different configurations (aggregated per
project)

Configuration FPs on Eclipse FPs on iTrust Overall

Plain 15.65 2.7 9.18

Partly Opt. 9.45 (↓ 60%) 13.1 (↑ 485%) 11.28

Fully Opt. 5.95 (↓ 37%) 1.9 (↓ 85%) 3.93

Total (↓ 62%) (↓ 30%) (↓ 57%)

enabled implicit flow tracking and flow-sensitive aliasing. Note that, without track-
ing implicit flows, Fully Opt. produces no false alarms, while Plain still reports
many. Finally, we limit the static analysis to the projects, excluding third-party
libraries (cf. line 8 in Listing 8.2), and stop the analyzer after identifying 100 leaks
per run. We have implemented and executed the experiments using the JUnit Plugin
Test framework with a limit of 6 GB of memory consumption (for each execution
of the analyzer). The amount of allowed memory and the maximum number of
identified leaks were determined empirically. We have executed random parts of the
experiment with different configurations repeatedly and didn’t get different results.

Results.
Figure 8.13 shows the false alarms raised by the analyzer after three configu-

rations per SecDFD model as box plots. The average number of false alarms is
aggregated per project in Table 8.4 and the change in the number of false alarms is
presented. The main takeaway of the evaluation is that using our approach we were
able to

a) extract project-specific sources of secret data and
b) reduce the number of false alarms (up to 62%) raised by the data flow analyzer.

In what follows, first, we discuss the reduction with only project-specific sources.
Second, we discuss the reduction with removing allowed sinks.

Our measurements from the Partly Opt. configuration show that deriving
project-specific sources from the SecDFD is possible and can reduce the number
of FPs. For instance, in the case of Eclipse Secure Storage, we achieved an average
60% reduction of false alarms (Table 8.4). However, adding project-specific sources
can also lead to a rise in false alarms (as observed on iTrust). The number of project-
specific sources is realistic considering the project size (11 for Secure Storage and
10 for iTrust). In addition, the project-specific source methods are in fact accessing

206 8 Static Security Compliance Checks

sensitive resources, e.g., the java.sql.PreparedStatement.execute
Query() is called when iTrust authenticates the confidential credentials entered
by a user. But, the derived sources depend heavily on the correspondences. Since
iTrust is implemented with the dynamic Java Server Pages, FlowDroid can not
analyze the entire behavior of the program. Therefore, we are only able to reduce
the number of FPs after removing the allowed sinks.

We found that the number of FPs can be further reduced by removing allowed
sinks from the list of sinks passed to the analyzer (Fully Opt. configuration).
We have been able to remove 3 sinks (all from java.lang package) for Eclipse
Secure Storage and 36 sinks (all from java.sql package) for the iTrust project.
These sinks were included in the previous configurations but were derived in this
configuration as allowed for certain SecDFD assets. In particular, we observed a
further 37% average reduction of FPs for the Eclipse Secure Storage project, when
comparing the analysis results to the previous configuration (Partly Opt.). Com-
pared to the first configuration (Plain), considering only project-specific sources
and removing allowed sinks reduced the number of false alarms on average by 62%.
As project-specific sources were hard to find for the iTrust project, we compare the
analysis results to the initial configuration (Plain). Removing the allowed sinks in
iTrust reduced the number of FPs on average by 30%.

8.5.4 Threats toValidity

In this section, we discuss threats to the validity of our experiments. We identified
threats regarding three different categories.

External Validity
The main threat to external validity is our selection of samples, based on a lim-
ited number of open-source projects, partially originating from a teaching context.
Regarding the validity of the studies conducted to evaluate the security compliance
checks, the open source projects do not contain well-known data flow leaks, thus
we consider them secure in this respect. The rationale for our selection was the
manual effort that was required for creating the ground truth of our technique, a full
correspondence model between high-level DFD elements and low-level program
elements. However, as a result, the generalizability of the results to larger projects
in other domains is limited. To mitigate this threat, the considered projects were
chosen to be representative of realistic projects by providing good documentation.
The available documentation enabled building good design models, close to the
intended architecture.

8.5 Optimized Data Flow Analysis 207

Internal Validity
Regarding internal validity, the main threat of our evaluation is researcher bias. In
absence of pre-existing design models, the design models for our evaluation were
created manually by the authors, possibly introducing a risk of creating a biased
result. To mitigate this threat, the design-level models were carefully discussed
between all authors involved in the publication [207]. The created models are of
similar size and complexity and are available online6.

Construct Validity
With respect to construct validity, we consider the threat of misinterpreting compli-
ance violations in the context of design-level models, implementation-level models,
and violations detected by static data-flow analysis. Also, there could be issues with
the selected initial source and sink sets for the taint analysis. However, to the best
of our knowledge, our interpretations are in line with the existing literature [93].

8.5.5 Conclusion on the Optimized Data Flow Analysis

Once defined, the correspondence model is leveraged for an automated secure data-
flow analysis of the implementation against the design-time data-flow specifications.
The mapped design is leveraged to initialize and execute a state-of-the-art data flow
analyzer over the entire Java project. The results of the data-flow compliance checks
are lifted to the attention of the user via the user interface of our tool.

Our approachwas evaluated on two open-source Java projects, focused on assess-
ing the performance from different angles. Our approach enables a project-specific
data flow analysis with up to 62% fewer false alarms.

Regarding future improvements, we note that as for local data-flow analysis
strongly typed SecDFD assets could be mapped to the implementation more pre-
cisely, which would make the initialization of the data-flow checks cleaner and
more precise. In addition, the missing correspondences to the external entities could
be better approximated by relying on parsed API specifications (e.g, JavaDoc) for
improved identification of sources and sinks. Finally, the evaluation of the optimized
data-flow analysis could be improved by including more open source projects, espe-
cially projects with well-known data leaks.

6 Optimized data flow analysis implementation and evaluation data: https://github.com/
SvenPeldszus/GRaViTY-SecDFD-Mapping/

https://github.com/SvenPeldszus/GRaViTY-SecDFD-Mapping/
https://github.com/SvenPeldszus/GRaViTY-SecDFD-Mapping/

208 8 Static Security Compliance Checks

8.6 Specification of Incremental Security Checks

The presented solutions allow to effectively check for the security compliance
between security requirements specified in design-timemodels and their implemen-
tation by leveraging the correspondence model between the design-timemodels and
the implementation. However, these checks are hard-coded, lack a formal founda-
tion, and are not trivial to understand. In this section, we introduce security violation
patterns that allow the specification of security violations using the notation of graph
transformation and their detection (RQ3.2). Also, the security violation patterns are
designed to allow an incremental application to the changed parts of a software
system (RQ4.3). This allows efficient security compliance checks after changes, as
it allows us to only check the changed parts.

8.6.1 Background on HenshinModel Transformations

Using a graph-based representation of the program model, correspondence model,
and UML model, we consider the detection of security violations as in-place graph
transformation. We use the transformation language Henshin [228] to specify secu-
rity violation patterns of interest.Henshin is based ongraph transformation concepts,
which enables us to specify security violation patterns as declarative graph trans-
formation rules. A Henshin rule r : L → R, N AC consists of two graphs L and R
referred to as left-hand side and right-hand side, respectively, and a set of negative
application conditions on L . The notation L → R symbolizes a partial mapping
which, by adopting notations from set theory loosely, induces the graph patterns to
be found and preserved (L ∩ R), to be deleted (L \ R), to be created (R \ L) by a rule,
and those that are forbidden (N AC). In the visual Henshin transformation language,
the left- and right-hand side of a rule are integrated into a “unified graph”, the graph
patterns L ∩ R, L \ R , R \ L , and N AC are marked by stereotypes «preserve»,
«delete», «create», and «forbid», respectively.

8.6.2 Incremental Security Violation Patterns

During development but also maintenance, software systems are continuously sub-
ject to changes. While GRaViTY allows the propagation of structural changes
into the implementation [130, 154], we need a verification of the adapted design-
time security requirements on the implementation level. As a first idea, we could
re-execute all implementation-level security checks. However, this comes with

8.6 Specification of Incremental Security Checks 209

Figure 8.14 Rule-based specification of a security violation pattern for detecting violated
design-time security requirements in the implementation

two drawbacks. First, even when these have been adapted to reflect the current
security context knowledge, e.g., using security maintenance rules [206], these
implementation-level security checks are usually disconnected from the security
requirements specified on architectural models of the software system. Second, a
full compliance check is usually very time-consuming. For this reason, following
RQ4.3, we need an efficient verification of the compliance of the software system’s
implementation with the architecture in case of changes.

One example of such a UMLsec security specification is the Secure Dependency
check [6]. As introduced in Section 3.6.1, secure dependency aims to structure the
application into different security levels for critical class features. Access to features
on such a security level is only allowed by entities that obey these security levels
according to their security specifications.

210 8 Static Security Compliance Checks

To show the compliance of a software system’s implementation with the security
levels specified at design time, we have to prove that the implementation does not
contain violating accesses to elements representing critical members in the system
model. This can be done by either a blacklist or whitelist approach, meaning to
specify all violating access patterns or all allowed access patterns. As we want to
show violations, we are going for the blacklist approach and the specification of
violating access patterns. If we execute such a compliance check as a reaction to
changes on the model level or the implementation, an entire compliance check is
not necessary but it is sufficient to only check all changed parts.

For compliance checks,we leverage the information stored in the correspondence
model between theUMLsystemmodel and the programmodel. For every class in the
system model, we have one or more corresponding classes in the implementation.
The same holds for the operations and attributes of classes in the system model.
These are corresponding to one or more methods or fields in the implementation.
For example, in Java, it is a common practice to encapsulate a property from the
system model by the use of getter and setter methods at the implementation level.

In Figure 8.14, we show a rule for detecting a violation of the system model-
level secure dependency specification on the implementation level for the security
level of secrecy. We specified this violation pattern using Henshin transformation
rules [228]. The rule shows on the left the elements from the UML models, in the
center the correspondences from the correspondence model, and on the right the
elements from the program model.

On the UML model, the rule matches in part 1 of the rule every feature (opera-
tions or properties) contained in a class supplierwith the stereotype critical, that
contains the signature of the feature in the list of signatures on the level of secrecy.
Thereby, the containment is expressed in the condition on top of the rule. Also on
the UML model, in part 2 , the rule matches a client class that does not specify
the feature’s signature in a critical stereotype and which is connected with the other
class over the implementation. This connection to the implementation is expressed
in part 3 showing the correspondences between the matches in the UML model
and the match in the program model that have to be present. In part 4 of the rule,
the access from a member of a type in the implementation corresponding with the
class client to a member corresponding with the feature of the class supplier
is matched. If this rule matches, we found a security violation in the implementation
regarding the model-level security specification.

If we have a closer look at the name of the rule, we can see that this is followed
by parameters of the format kind name:type. These parameters make the rule
elements with the same name accessible to the conditions of the rule and the caller of
the rule. The parameter kinds in the rule arevar andin.Whilevar parameters only

8.6 Specification of Incremental Security Checks 211

serve as internal variables, parameters of kind in can be bound to an element when
calling the rule. For the shown rule, the parameter supplierCritical may be
bound by the rule’s caller. This allows us to bind this parameter to the«critical»
stereotypes that have been modified as part of a security maintenance step and to
restrict the compliance check only to the changed security requirements. Similarly,
we can bind other nodes for incremental security verification, e.g., to a changed
class in the implementation or UML model.

To answer RQ3 of how to support developers in preserving a software systems
security regarding an efficient verification of a software system’s implementation
compliance with the design-time security requirements after changes, we intro-
duced security violation patterns. Following RQ3.2, the security violation patterns
use algebraic graph transformation rules as a formal basis. As shown in this section,
using security violation patterns, we can specify security violations on the imple-
mentation level concerning to security properties specified in design-time models.
In case of changes, a matching of these patterns can be initialized with the changed
parts to restrict the search space and only execute compliance checks on the changed
parts.

8.6.3 Tool Support for Security Violation Patterns

As we specified security violation patterns using the Henhsin transformation lan-
guage, these can manually be executed using Henshin. Henshin provides a wizard,
that provides a graphical interface for executing Henshin rules on selected mod-
els. However, in our case the manual execution of the security violation patterns is
infeasible. For this reason, we make use of the Java API of Henshin. Whenever any
tracked artifact is changed, and a changed elements type is compatible with one of
the parameters of a security violation pattern, this element can be assigned to the
parameter and the security violation pattern be executed.

Figure 8.15 shows a component diagram of the implementation of security vio-
lation patterns in GRaViTY. The security violation patterns are implemented in
the component Security Violation Patterns. The use of the Henshin
API for matching the security violation patterns is represented by the use of the
ITransformation interface of the Henshin component. For matching the
security violation patterns, a program model (TypeGraph), UML model (UML
component), and the correspondence model between them (PM-UML
Correspondence) are used. To allow the manual execution of the security vio-
lation patterns, we integrated these into the CARiSMA tool [229] and the Hulk
design-flaw detection tool [21, 34].

212 8 Static Security Compliance Checks

Figure 8.15 Component diagram of the security violation pattern implementation

CARiSMA provides check implementations for UMLsec, among others, for
secure dependency. All checks implement an ICheck interface and are centrally
managed and executed through this interface. To allow the extension of CARiSMA
this interface is exported to the outside.As security violation patterns aimat checking
the compliance betweenUMLsec security requirements and the implementation, we
implemented this interface to allow the execution of the security compliance patterns
from CARiSMA.

Hulk provides design-flaw detection on programmodels using the TypeGraph
also used by the security violation pattern implementation. For this reason, we
also integrated the detection of the security violation patterns into Hulk. For this
purpose,Hulk specifies two interfaces. First, theIFlaw interface allows specifying
program model annotations that will be added to the program model as part of a
registered detection to specify thefindings. Second, theIDetect interface specifies
the operations that have to be implemented to execute the security violation pattern
detection by Hulk.

8.6.4 Evaluation of Incremental Security Violation Patterns

In this section, we study if our solution as implemented in our prototype is feasible to
solve the identified problems on a real-world software system.Wewant to show that
security violations due to real-world security knowledge changes can be detected
using our approach. Furthermore, it has to be possible to execute the detection with
a reasonable time after a change has occurred. In summary, we consider feasibility
regarding the following two objectives:

8.6 Specification of Incremental Security Checks 213

O1–Feasibility: The evaluation should show that the approach can be applied to
an evolution scenario on a real-world software system.

O2–Performance: Our evaluation should show the benefit of incremental security
violation patterns in the verification of changes.

We evaluated security violation patterns regarding two objectives. First, we studied
whether security violation patterns are feasible for detection security violations
on the implementation level regarding security requirements specified in design-
time models. Second, we studied the run-time benefit of the incremental security
compliance checks using security violation patterns.

O1–Feasibility
As an example to demonstrate the feasibility of our approach, we use a legal change,
namely the release of the EU General Data Protection Regulation (GDPR) in which
the European Parliament has adopted stricter regulations for the use of personal
data [53]. For simplicity, in the considered scenario, we assume that the protection
of personal data has not strictly been regulated by now and it is only regulated
that medical records have to be treated as sensitive information and require explicit
protection against their disclosure. This protection should be realized by assigning
a security level to sensitive information and restricting access to this security level.
Technically, this can be done by applying UMLsec secure dependency.

Figure 8.16 shows an excerpt from the systemmodel of the iTrust medical appli-
cation [47] with applied UMLsec secure dependency stereotypes. On the right,
the users of the software system are shown. These can be doctors or patients. For
both, a hashed version of the password and personal information like their home
address is stored. On the left, we see different actions that can be performed in
the software system. These actions are realized as controls. One of these con-
trols is the DiagnosisControl that allows users, depending on their rights,
to read or edit medical diagnoses. To access this control, a user has to log in
using the LoginControl. To check if a user can log in and determine her rights,
the LoginControl accesses the User object captured as «call» dependency
(shown on the bottom of the diagram). Thereby, the LoginControl potentially
has access to all information captured by the User class.

From a security perspective before the change of the regulation, only the pass-
word stored in the User class is sensitive and access has to be limited, e.g., by
restricting access to this information to entities that are on a required security
level. Accordingly, in Figure 8.16, we put the information stored in the property
password on the level of secrecy by adding the signature of this property to the
secrecy tag of the «critical» stereotype on the class.

214 8 Static Security Compliance Checks

Figure 8.16 Excerpt from the design model of iTrust after adaptation to new regulations by
adding new security requirements

After a release of the GDPR adopting stricter regulations for the use of personal
data, sensitive information also comprises every kind of personal data. This security
context knowledge change is reflected by the execution of security maintenance.
In this maintenance the following actions are performed, taking the new kind of
sensitive information as input:

1. Detection of every instance of the new kind of sensitive information in the
software system’s design-time models. In the example shown in Figure 8.16,
these are the properties firstName, lastName, and homeAddress.

2. Adding the detected instances to the security level of secrecy, as shown in Fig-
ure 8.16. The changes are highlighted in green and indicated by a ++.

3. Inspecting all incoming dependencies of the changed classes for the mitigation
of the introduced violation of Secure Dependency. Here, the CARiSMA can be
used to detect violating dependencies. For the shown example the considered
mitigations comprise:

a. Deletion of the dependency called check.
b. Extending the security level to LoginControl, the source of the violating

dependency.
c. Extraction of sensitive information into a new class.

8.6 Specification of Incremental Security Checks 215

As the class LoginControl has to access the class User to verify the pass-
word of the user, the deletion of the dependency in step 3 (a) is not possible. Also,
for the implementation of this class, the developers have already to consider the
security level of the class User. For this reason, a security expert decides to
extend the security level as proposed in option (b). For all other dependencies,
she decides similarly.

4. Aftermitigation has been performedby a developer, the security violation pattern
shown in Figure 8.14 is executed to detect violations of the new security level
on the implementation.

Afterward, matching the security violation pattern against the programmodel of the
iTrust implementation detects the occurrence illustrated in Figure 8.17,meaning that
a concrete security violation has been detected on the implementation. The elements
in Figure 8.17 are arranged as in the security violation pattern shown in Figure 8.14:
On the left, we see the elements from the design-time UMLmodel, the center shows
the elements from the correspondence model, and the right-hand part comprises the
elements from the program model. The concrete violation is the access to a getter
method of the property lastName by the method updateAllergies of the
class OfficeVisitControl.

The corresponding source fragment of the violating access is shown in List-
ing 8.3. The detected security violation takes place in the implementation that allows
doctors to edit health records as part of an office visit. To bemore precise, in amethod
implementing the update of a patient’s allergies. The concrete violation is the call
to the method getName (line 6). This method is part of a PatientDAO that is a
data access object for patient data. As no access to personal information has been
planned in the system model, the whole editing of health records should be done
over a patient ID which is resolved at line 6 and violating the defined security level.
Even more dangerous is that the only use of the personal information is as part of a
status message (line 10) if an allergy has already been recorded whichmight even be
written to log files. As mitigation of the security violation, personal information has
to be removed from this status message which makes access to personal information
obsolete.

O2–Performance
For applying continuous security checks in practice, the execution times of the
security checks are essential. As part of this objective, we study whether the execu-
tion times of the security violation patterns are feasible and what is the benefit of
incremental execution of the security violation patterns.

216 8 Static Security Compliance Checks

Fi
g
u
re

8
.1
7
Se

cu
ri
ty

vi
ol
at
in
g
m
at
ch

of
a
se
cu
ri
ty

vi
ol
at
io
n
pa
tte

rn

8.6 Specification of Incremental Security Checks 217

1 public class EditPHRAction extends PatientBaseAction {
2 private PatientDAO patientDAO;
3 . . .
4 public String updateAllergies(long pid , String description){
5 . . .
6 String patientName = patientDAO.getName(pid) ;
7 List<AllergyBean> allergies = allergyDAO. getAllergies (pid) ;
8 for (AllergyBean current : allergies){
9 i f (current . getDescription () . equals(bean. getDescription ())) {
10 return "Allergy " + bean.getNDCode() + " − " + bean.

getDescription () + " has already been added for " +
patientName + " . " ;

11 }
12 }
13 . . .
14 }
15 . . .
16 }

Listing 8.3 Security violating source code fragment from iTrust.

Setup. Regarding the application of security violation patterns, for the verification
of UMLsec secure dependency on the implementation level, two violation patterns
are required for each security level. First, for the client not being annotated with the
required security requirement, as shown in Figure 8.14. Second, for the opposite
direction, the supplier not being annotated with the required security level. We
applied these two patterns after two kinds of changes. First, changes that resulted in
a security violation and, second, changes that did not affect the security compliance.
Here, we did not change the structure of the implementation but edited the security
annotations to introduce a security violation. To quantify the benefit of incremental
security violation patterns, we executed the security violation patterns incrementally
and in terms of a complete security compliance check.

We measured the execution of the security violation patterns on an Intel Core
i5-6200U mobile CPU running at 2.30GHz with 8GB of memory. As the execution
environment, we used Ubuntu 20.04LTS and OpenJDK 14.

Results. For a security-compliant implementation, the incremental security viola-
tion patterns’ execution took on average 235 seconds, while the complete security
compliance check did not terminate within 60minutes.When investigating a change
that led to a security violation, the execution time of the incremental security vio-

218 8 Static Security Compliance Checks

lation patterns increased to 440 seconds on average. The full security compliance
check did not terminate within a reasonable time.

When discussing dynamic tracing in Section 6.4.2, we identified the potential
for inefficiency due to reverse navigation along the correspondence edges. In this
experiment, we faced this issue. For the considered security violation pattern a
reverse-navigation is necessary. In the incremental case, the amount of required
reverse-navigations is one time from the changed UML model element to a method
in the program model and then for each other method involved in an access relation
into the program model. In contrast to this, in the full application, the amount of
required reverse-navigations is in the worst case the cross product of all methods.

All in all, reconsidering objective O2, our tool prototype shows a run-time suf-
ficient for automatic execution, e.g., as part of a continuous integration pipeline.
While there is still potential for optimizing the prototype’s implementation, e.g.,
an incremental code-generation, we already achieved feasible execution times on a
consumer computer. Furthermore, we assume a continuous integration pipeline to
be executed on a server with relatively high computing power.

8.6.5 Threats toValidity

The validity of our demonstration of feasibility might be subject to some threats
discussed in what follows. Thereby, we differentiate between internal and exter-
nal threats.

Internal Validity
An internal threat to validity is that all experiments have been performed by our-
selves, precisely knowing how our tool prototype works. Nevertheless, this still
shows that our prototypical tool is suitable to solve the problem. However, this
might not be the way external users want to use the proposed approach.

Also, the run-time measurements are subject to an internal threat to validity. The
run-time performance of the automated tasks supported by our tooling and carried
out in terms of our feasibility study has been evaluated in a non-closed system. Thus,
we cannot rule out other computational tasks or processes we were unaware of to
impact our measurements negatively. Moreover, performance measurements could
be biased by just-in-time compilation overheads of the Java run time. However, we
did not aim for high-precision micro benchmarking in terms of our feasibility study
but to report about the maximal run times that we could observe in terms of our
study to showcase the applicability of our tooling in a real-world setting.

8.6 Specification of Incremental Security Checks 219

External Validity
The selection of iTrust as a subject system to demonstrate our approach’s feasibility
gives rise to an external threat. We cannot guarantee that iTrust is representative of
all other software systems our approach could be applied to.

With UMLsec Secure Dependency, we selected only one security check for
demonstrating the feasibility of graph transformation rules for security compliance
checks. This limitation gives rise to another threat. Again, we cannot guarantee the
generalizability of our results, this time to other security checks.

Finally, there is a threat that the considered changes in our feasibility study do
not represent all possible kinds of real-world changes. However, we cover notable
changes with different feasibility study effects, still showing our approach’s practi-
cal applicability.

8.6.6 Conclusion on Security Violation Patterns

We demonstrated the applicability and usefulness of the developed techniques in
a feasibility study on a medical information system. Thereby, we focused on two
aspects of feasibility. First, we considered the application to real-world problems
and, second, whether execution times are acceptable. Also, we studied the benefit of
the incremental execution of security violation patterns.We introduced how security
compliance checks leveraging security specifications on the system model can be
specified using security violation patterns. For these security violation patterns, we
demonstrated how to apply these incrementally to detect security violations on the
implementation level in case of changes in the system model.

9Verification and Enforcement of Security at
Run-time

In today’s software, security is one of the most important quality aspects [51, 54].
Several approaches exist to support security at design-time [73, 230, 231], e.g.,
using design-time models, but also statically during implementation [232, 233] and
at run-time [234–236]. Unfortunately, few approaches cover coupling these phases
so far [123, 237]. Here, we have shown in the previous chapters how to couple the
design time with the implementation time but did not look at the run-time, yet.

Following our approach, during software development, different representations
of a software system are created, e.g., to plan the security of a software system
before implementing it. All of these single representations have to be kept in syn-
chronization in the case of changes and compliance with all security requirements
has to be re-verified. As discussed in Chapters 6 and 8, we provide tool support for
this step. An automatization of this process is usually called round-trip engineer-
ing [238]. Relevant changes can occur as part of the normal development process but
also due to unexpected changes like the deployment of the software system with an
unexpected version of a library or due to an attack. To the best of our knowledge, no
existing approach for secure software engineering supports round-trip engineering
considering run-time information, albeit this is important for several security-related
reasons.

First, it is desirable to find vulnerabilities as early as possible [239]. For this rea-
son, support to automatize detection of and reaction to breaches should be provided
starting from the design time. Unfortunately, many security violations are hard to
detect in the system design or source code [240–242]. This especially applies to
vulnerabilities based on concepts as Java reflection, which are statically not analyz-
able to their full extent. Here, we need the possibility to enforce design-time security
decisions at run-time.

Second, as the source code is usually not generated from the design-timemodels,
divergences between the design-time security assumptions and the implementation

©TheAuthor(s), under exclusive license toSpringer FachmedienWiesbadenGmbH,
part of Springer Nature 2022
S. M. Peldszus, Security Compliance in Model-driven Development of Software
Systems in Presence of Long-Term Evolution and Variants,
https://doi.org/10.1007/978-3-658-37665-9_9

221

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-658-37665-9_9&domain=pdf
https://doi.org/10.1007/978-3-658-37665-9_9

222 9 Verification and Enforcement of Security at Run-time

likely appear [23]. To ease the investigation of the violations, the design-timemodels
should be automatically adapted to also contain the observations made at run-time.

All in all, this breaks down to our third research question of how to support
developers in the development of a secure software system.

RQ3: How can developers be supported in realizing, preserving, and enforcing
design-time security requirements in software systems?

To be more precise, in this chapter we are going to answer the third sub-question of
RQ3:

RQ3.3: How can design-time security requirements be enforced at run-time?

Inwhat follows,we introduce the run-time security enforcement ofGRaViTY, called
UMLsecRT. As shown in the previous chapters, the GRaViTY approach enables
developers to specify security requirements in design-time models or source code.
UMLsecRT takes these security requirements and monitors compliance with them
at run-time. Violations and findings at runtime, like possible attack sequences and
monitored calls, not covered by the design-time model, can be synced back to
the model by adapting it. If a security property is violated, e.g. by a vulnerability
introduced during an update or an attack, the system operator is notified and the
software system is brought into a safe state. What is considered a safe state in which
situation, is also handled within the security requirements.

Figure 9.1 Concept of the run-time monitoring in the overall approach

9 Verification and Enforcement of Security at Run-time 223

Figure 9.1 visualizes our approach for enforcing security at run-time and adapting
systemmodels based on run-time information.We explain the usage of the approach
step by step:

1. For round-trip engineering, a UML model consistent with the source code is
required, e.g., a class diagram for the UMLsec security requirements considered
in this thesis. If such a model is not available, our approach supports reverse
engineering it from Java source code as discussed in Chapter 7. If only security
monitoring is required (not the possibility for round-trip engineering), working
only on the source code is also possible. In this case, the security annotations
can be applied directly and only to the source code.

2. A developer annotates, assisted by tool support [74], the UMLmodel, the source
code, or bothwith security requirements derived from the project’s requirements.
Thereby, the UMLsec annotations can be directly used for static security checks
using the tooling of UMLsec and the static security compliance checks intro-
duced in Chapter 8.

3. Annotations added to the model are automatically synchronized with the source
code and vice versa. If only the UML model has been annotated, source code
annotations can be generated automatically from the model.

4. The annotated Java source code is executed and the execution is monitored for
security violations concerning the security annotations added in the earlier steps.

5. The design-time models are adapted based on the security-relevant data gath-
ered at runtime. For example, by adding sequence diagrams describing detected
violations.

Using the proposed approach, developers cannot only enforce compliance with the
security requirements specified during the development of a software systembut also
adapt the design-time models to inspect and react to security violations observed
at run-time. Including UMLsecRT, the GRaViTY approach proposed in this thesis
contains integrated tool support covering all phases from early software design over
the implementation of a software system to its execution.

The remainder of this chapter is organized as follows: Section 9.1 discusses back-
ground on security compliance at run-time. Afterward, we introduce an explanatory
security violation in the iTrust system in Section 9.2. We will use this security
violation to demonstrate our run-time monitoring approach. Section 9.3 introduces
this run-time monitoring approach and covers how to monitor for violations at run-
time, and how to perform countermeasures if security violations occur. Section 9.4
presents a prototypical implementation of UMLsecRT. In Section 9.5 we evaluate

224 9 Verification and Enforcement of Security at Run-time

the run-timemonitoring approach.We elaborate on threats to validity in Section 9.6.
In Section 9.7, we conclude and give an outlook on future work.

9.1 Background on Security Compliance at Run-time

Many security-related issues are related to concepts like Java reflection or dynamic
class loading. As such concepts are statically not analyzable, these have to be
checked at run-time.

1 public static Object reflectiveCall (Object instance , String name,
Object [] params) {

2 Class<?>[] types = new Class<?>[params. length] ;
3 for(int i = 0; i < params. lengt ; i++) {
4 types[i] = params[i] . getClass () ;
5 }
6 Method method = instance . getClass () .getMethod(name, types) ;
7 method. setAccessible (true) ;
8 return instance . getClass () . invoke(instance , method, params) ;
9 }

Listing 9.1 Example for Java reflection

Listing 9.1 demonstrates the infeasibility of static analysis for Java reflection.
The method reflectiveCall allows invoking an arbitrary method of any class.
For this purpose, the object instance on which the method should be invoked, the
name of the method, and values for the parameters are required. First, in lines 2–5,
the type of the method’s parameters are calculated. Afterward, in line 6, the method
retrieves an object representing the method to invoke and sets it to accessible in line
7. This allows to not only invoke public but also private methods. Finally, in line
8, the method is invoked and the return-value forwarded. In this implementation,
no specific value is given, that can be used to calculate the method to be invoked.
Possible values, e.g., for the method name, have to be traced across all call locations
of the method reflectiveCall. Thereby, the construction of the method name
can be arbitrarily complex and in the worst-case depend on external data, e.g., user
input.

Accordingly, many run-time checks have been developed. All of these checks
come with a high overhead making them infeasible to monitor the whole software
system. For example, the JBlare monitor has an overhead of a factor of 12 for class
loading and 4 for execution [243]. Again, the information about the most sensitive
parts of the software system, that should bemonitored under any circumstances, and

9.2 Example Security Violation 225

parts not relevant for the software systems security is available in the design-time
models.

While all these different security checks on the different artifacts can help in
the development of a secure software system, they are often limited to their area of
focus. However, such security checks are more powerful when they are combined.
For example, often information required by a security check on a lower level has
already been defined at design time. This information should be reused to avoid
misunderstandings and divergence in the security assumptions but also to improve
the effectiveness of the checks. Unfortunately, doing so is challenging and should
be assisted by tool support.

9.2 Example Security Violation

Aspart of theUC28, iTrust allows doctors to search for their patients. This search has
been implemented in the SearchUsersAction shown in Listing 9.2. A search
can be performed by calling the searchForPatientsWithName method.
While it has been planned that the functionality of this class is only available for
legitimate users, e.g., licensed health care professionals (LHCP), a check should be
performed when an instance of the class is created (line 7), this check of the MID
has not been implemented.

For the hashing of passwords, e.g., at the creation of new users in an iTrust instal-
lation or changing a password as described in UC57, the external library Apache
Commons1 is used in iTrust. Line 10 of Listing 9.3 shows one usage of this library.
The sha256Hexmethod of the library is used to hash a salted password at resetting
a user’s password in the database of the iTrust system. In the rest of the method, an
SQL statement for updating the hashed password and salt for a MID is created and
executed.

In Listing 9.4, we show how a malicious library can exploit the iTrust system
every time a newpassword is created, e.g., by executing a search for user information
and sending it to the outside.We assume that the Apache Commons library has been
replaced by a malicious version at deployment time. Whenever the sha256Hex
method of the malicious library is called, the malicious implementation tries to
query the data about patients in the iTrust system. For example, we use the home
address of a patient, that has been classified at the security level of secrecy. To
access this critical information, the malware makes use of the circumstance that it

1 Apache Commons: commons.apache.org

http://commons.apache.org

226 9 Verification and Enforcement of Security at Run-time

1 @Critical(secrecy={"search(String , String) : List"})
2 public class SearchUsersAction {
3

4 private PatientDAO patientDAO;
5 private PatientDAO personnel ;
6

7 public SearchUsersAction(DAOFactory factory , long loggedInMID) {
8 this .patientDAO = factory .getPatientDAO() ;
9 this .personnelDAO = factory .getPersonnelDAO() ;
10 }
11

12 @Secrecy
13 public List<PatientBean> searchForPatientsWithName(String firstName ,

String lastName) {
14 try {
15 i f ("" . equals(firstName)) firstName = "%" ;
16 i f ("" . equals(lastName)) lastName = "%" ;
17 return patientDAO. search(firstName , lastName) ;
18 }
19 catch (DBException e) {
20 return null ;
21 }
22 }
23

24 . . .
25 }

Listing 9.2 Source code of a class for accessing patients with security annotations

has been called from a sensitive method deeply in the iTrust system and the missing
authentication in the constructor of the SearchUserAction class.

The malware is implemented as follows. In line 6 of Listing 9.4, the mal-
ware makes use of the missing authentication in the constructor of the class
SearchUserAction and creates an instance. This instance is then used to search
for arbitrary patients in the iTrust system.Toavoiddetectionby static analyses, it now
uses the reflectiveCall of Listing 9.1. This method uses the Java-Reflection
API for invoking arbitrary methods. In line 9, the getIcAddress1method of the
class PatientBean is invoked in this way to access the critical data. Afterward,
the retrieved data is passed to a send method that sends the information to the
outside. Finally, in line 13, the original implementation of the library method is
executed and its return value forwarded.

9.2 Example Security Violation 227

1 public class AuthDAO {
2

3 public void resetPassword(long mid, String password) {
4 Connection conn = null ;
5 PreparedStatement pstmt = null ;
6 try {
7 conn = factory .getConnection() ;
8 pstmt = conn. prepareStatement("UPDATE users SET password=?,

sal t=? WHEREMID=?") ;
9 String sal t = shakeSalt () ;
10 String newPassword = DigestUtils .sha256Hex(password+salt) ;
11 pstmt . setString (1 , newPassword) ;
12 pstmt . setString (2 , sal t) ;
13 pstmt . setLong(3 , mid) ;
14 pstmt . executeUpdate() ;
15 pstmt . close () ;
16 } catch (SQLException e) {
17 throw new DBException(e) ;
18 } finally {
19 DBUtil . closeConnection(conn, pstmt) ;
20 }
21 }
22

23 . . .
24 }

Listing 9.3 Source code of the method for resetting a user’s password in iTrust’s database

228 9 Verification and Enforcement of Security at Run-time

1 package org .apache .commons.codec . digest ;
2

3 public class DigestUtils {
4

5 public static String sha256Hex(final String string) {
6 final List<PatientBean> patients = new SearchUsersAction action =

new SearchUsersAction(DAOFactory. getProductionInstance () , −1);
7 action . searchForPatientsWithName("%" , "%") ;
8 for (final PatientBean bean : patients) {
9 String address = (String) reflectiveCall (bean, "getIcAddress1" ,

new Object[0]) ;
10 / / do something evil with the address
11 send(address) ;
12 }
13 return sha256Hex_original(string) ;
14 }
15

16 }

Listing 9.4 Sourcecode of a Malicious Implementation of a Library

In the succeeding section, we introduce a realization of secure dependency on
code level which prepares run-time monitoring of this security requirement.

9.3 Verification at Run-time andModel Adoption

We propose to couple security at design-time with security at run-time by using
the notation for specifying security requirements in Java source code introduced
in Section 6.4.1. This notation maps the UMLsec secure dependency stereotypes
to corresponding Java annotations with the same semantics. When the retention of
these Java annotations is set to RUNTIME, these are contained in the Java bytecode
and can be monitored at run-time. Additionally, we utilize the reverse engineering
and synchronization of UML models annotated with UMLsec stereotypes and Java
source code annotated with security annotations (Section 6.2 and Section 6.4.1). We
further demonstrate how we realize countermeasures to mitigate security violations
at run-time. At the end of this section, we discuss how we automatically evolve the
software system’s architecture based on the information about security violations
collected at run-time.

9.3 Verification at Run-time and Model Adoption 229

9.3.1 Security Monitoring at Run-time

After the specification and static verification of security requirements, the next step
is to execute the annotated source code and to monitor the execution for security
violations (step 4 in Figure 9.1). To ensure that we detect every security violation
wrt. secure dependency, we have to check all method calls and field accesses for
their compliance with the specified security requirements. There are built-in secu-
rity mechanisms in Java, such as the Security Manager, but these are insufficient for
realizing UMLsecRT, because they cannot be configured fine-grained enough (only
on jar-file or classpath-entry level) and are only executed when the method check-
Permissions is explicitly called [61]. We need to take action as soon as any method
is entered or exited or any field is accessed. According to Secure Dependency, we
have to consider two cases that can appear at the same time:

1. the accessed member is missing an annotation, or
2. the accessing member is missing an annotation.

We reify monitoring by instrumenting the compiled code using Javassist, a frame-
work for bytecodemanipulation of Java programs [244, 245]. Instrumentation needs
to take place at run-time because it is not foreseeable which classes will be loaded,
e.g., due to dynamic class loading. We encapsulated the run-time part of UMLse-
cRT into a Java agent which is called before the main method of a Java program is
called. The byte code instrumentation provided by our agent is triggered every time
a class is loaded and instruments appropriate code to conduct the secure dependency
check at run-time. An excerpt from the code injected into methods is summarized
in Listing 9.5 and explained in what follows.

While the JVM maintains call stacks for all threads [246], required information
as the annotated security requirements are not accessible from these stacks. For this
reason, the UMLsecRT agent provides a global set of stacks for call traces, one stack
per thread. The corresponding stack for a method is retrieved as soon as the method
is entered (line 1 of Listing 9.5). Whenever a method is entered, the conditions
of secure dependency are checked in line 5. To accomplish this, whenever such a
relevant event occurs, we need to investigate the call trace backward and check both
if the originating method is annotated as required and if the accessed member is
annotated as requested by the originating method. In line 2, the security annotations
of the originating member are read from the stack, and in lines 3–4, the annotations
of the currently instrumented method are built by reading them from the bytecode
and hard-coding them into the injected code. Additionally, the method is pushed
to the stack (line 6). After all statements of the methods have been executed, but

230 9 Verification and Enforcement of Security at Run-time

before the return statement in line 8 is finally initiated, the method is removed from
the stack.

1 RTStack stack = RTStackManager. getStack(currentThread ()) ;
2 RTAnnotation originating = stack .peek() ;
3 String [] secrecy = . . . / / Signatures on the secrecy level
4 RTAnnotation accessed = new RTAnnotation("Signature of this method" ,

secrecySet) ;
5 check(originating , accessed) ;
6 stack .push(accessed) ;
7 . . . / / Original method code
8 stack .pop() ;

Listing 9.5 Code for monitoring security, injected before and after methods

As field accesses are statically analyzable [61], we check them whenever a new
class is loaded. Depending on the developer’s preferences, we can directly throw
security exceptions or instrument the field access in away that a security exception is
thrown when the access is executed. An exception to this is reflective field accesses.
Here, we instrument the Java reflection library methods to execute the required
checks.

In Figure 9.2, we demonstrate the security monitoring for the execution of iTrust
use case UC57 of changing a user’s password. The figure shows a control flow graph
excerpt on the left and the executed monitoring steps on the right. Due to numerous
involved methods and fields, we only look at the excerpt already considered in the
previous chapters. To be more precise, we use the methods discussed in the pro-
gram model excerpt of Figure7.5, which has been used in Chapter7 to introduce
the correspondence model between the DFD describing UC57 and the implemen-
tation. Among others, the considered excerpt contains the usage of the method
resetPassword, which is shown in Listing 9.3 of this section, by the method
changePassword. The implementation of the changePassword method has
been shown in Listing 2.1 when introducing iTrust in Chapter2. In addition to
these methods, we consider the usage of the sha256Hex method by the method
resetPassword.

First, we look at the execution sequence depicted in the control flow graph.
At the beginning of the execution, the method changePassword of the class
ChangePasswordAction is called by the user through thewebUI to change her
password. The user’s MID as well the data entered into the web-form (old password
and two times the new password) is passed to this method as parameter values. This
method accesses the field authDAO and calls the authenticatePassword
method on the field to check the correctness of the entered password to decide if a
change is permitted. The calledmethod executes additional calls, we do not consider

9.3 Verification at Run-time and Model Adoption 231

now. Afterward, the changePasswordmethod compares the two new passwords
by calling the equals method on the first password. In the considered execution
sequence, the passwords are equal and the reset of the password to the new password
is triggered by a call of resetPassword. As shown in Listing 9.3, this method
first calls a method for initializing an SQL statement and retrieving a salt, which we
do not consider in detail in this example. After these calls, the method sha256Hex
of the class DigestUtil is called. This method calls additional methods that
are beyond the considered scope of the example and are not depicted in detail in
Figure 9.2.

After, discussing the considered execution sequence,we now look at the executed
agent calls. To the beginning of every method a check and push functionality
has been written at instrumenting the classes. Accordingly, when entering the first
method of the considered sequence (changePassword), in agent call 1), the
security compliance of this method with the method on top of the stack is checked.
Afterward, the method changePassword is pushed to the stack at the end of this
agent call.

Next, the field authDAO is accessed. As all fields have been statically checked
at class loading, in agent call 2), the results of this check are loaded for the accessing
method changePassword.

For the call of the method authenticatePassword, agent call 3a) takes
place as soon as the body of this method is entered. Again, the top of the stack
is retrieved and the compliance between the current method and the top of the
stack is checked. In this case, the top of the stack is changePassword that
we pushed to the stack in agent call 1). After the compliance has been checked,
authenticatePassword is pushed to the stack. The same behavior takes
place for all methods invoked by authenticatePassword. When the exe-
cution of authenticatePassword ends, the top element is removed from the
stack in agent call 3b). As this takes always place as soon as a method is left,
this removed element is always the method whose execution ends, in this case,
authenticatePassword.

Afterward, the execution goes back to changePassword, that calls the
equals method. Again, the security compliance is checked in agent call 4a) and
the method is pushed to the stack. This method does not call any other methods and
is removed from the stack in agent call 4b).

Next, changePassword calls the method resetPassword, that is checked
for security compliance and pushed to the stack in agent call 5). This method now
calls some methods before calling sha256Hex. Here, we can see how the stack
grows with the dept of calls. The resetPasswordmethod has not been removed
from the stack yet. In addition, when it comes to agent call 6), sha256Hex is also

232 9 Verification and Enforcement of Security at Run-time

Figure 9.2 Events monitored at run-time and performed check steps

pushed onto the stack.Only considering themethods shown in Figure 9.2, after agent
call 6) themethodschangePassword,resetPassword, andsha256Hex are
on the stack.

In case one of the validations on the right of the figure fails, we provide various
reactions to mitigate the violation. We discuss these reactions in the next section.

9.3.2 Countermeasures

If a violation of secrecy or integrity is detected, we provide four different kinds of
countermeasures to study the violation and to prevent harm:

1. Log actions of potential attacks for future evaluation
2. End the attack by shutting down the application
3. Provide a statically defined value instead of the real value
4. Call operations implementing countermeasures

9.3 Verification at Run-time and Model Adoption 233

The simplest reaction is to log the call or access leading to a violation and all calls
and accesses which take place after the violation. This could be a classical textual
log file or sequence diagrams as generated by our automated system evolution,
described at the end of this section. Logging will not prevent damage caused by the
occurred violation but enables system developers to study the violation and adapt
the software system to prevent future damage. To actively encounter a violation,
we provide several reactions to stop exploiting a software system and thus combine
loggingwith additional countermeasures we discuss in the remainder of this section.

The first active reaction is to terminate the software system and notify the system
operator. Surely, the termination of a whole software system is in many cases unde-
sired. Considering software systems used in critical contexts, the damage caused by
a not running software system can be quite high, and considering a risk assessment
higher than a maybe limited data loss. For example, in September 2020, the EHR
system and many other systems of a German hospital have not been available due
to a ransomware attack. As a consequence, emergency patients were redirected to
other hospitals that may have played a role in the death of one patient [247]. In this
sense, an attacker could knowingly cause a security incident to ultimately provoke a
shutdown as the actual goal. For this reason, shutting down the system is no option
for iTrust. However, in software systems with low requirements regarding availabil-
ity, in combination with logging, a controlled shutdown might be a valid option. As
an alternative to keep the software system running and to actively prevent it from
harm,we support changing return andfield values in case of a violation. For instance,
returning null is a well-known reaction in case of unforeseen or unusual situa-
tions. This prevents the software system from disclosing real data to an attacker. For
this reason, our security annotations support having statically defined early return
or field values.

In many cases, realistic data cannot be specified statically but has to be gener-
ated dynamically to pass simple plausibility checks and not cause exceptions to be
thrown. For example, an array has to contain an expected amount of entries that can
depend on run-time information. Furthermore, there can be a need for additional
countermeasures to bring the software system into a fail-safe state and to protect
other parts of the software system from an ongoing attack.

Early return values are defined in both cases by a parameter earlyReturn of
@Secrecy and @Integrity. This parameter can be any primitive type, String,
null, or the name of a parameterless method within the class, which should be
called. This method can perform any operation accessible from the scope of the
accessed member. To avoid accidental use of methods providing countermeasures
at the regular program execution, we additionally provide @CounterMeasure:
whenever a method annotated in such a way is entered, UMLsecRT prohibits this
call by returning null.

234 9 Verification and Enforcement of Security at Run-time

1 public class PatientBean {
2

3 @Secrecy(earlyReturn = "secure")
4 private String icAddress1;
5

6 @Secrecy(earlyReturn = "secure")
7 public String getIcAddress1() {
8 return icAddress1;
9 }
10

11 @CounterMeasure
12 public String secure () {
13 StringBuilder s = new StringBuilder () ;
14 Random random = new SecureRandom() ;
15 for(int i = 0; i < 10 + random. nextInt(10) ; i++) {
16 s .append((char) random. nextInt (’z’ − ’a’) + ’a’) ;
17 }
18 SecurityManager . startSafeMode() ;
19 return s . toString () ;
20 }
21 }

Listing 9.6 Specification of a countermeasure

Listing 9.6 exemplifies the usage of calling an additional method to determine
an early return value: secure():String will be called if a security violation of
the secrecy property of the field icAddress1 or the method getIcAddress1
occurs at run-time. This method generates a random string that is returned instead
of the real address of the patient. Also, the software system is set into safe mode
at a central class SecurityManager. For example, this could mean that only a
limited set of functionality is working in this mode and non-essential functionality
that might have a critical impact if exploited, e.g., the changing of passwords is not
permitted.

9.3.3 Automated Software System Evolution

After the detection of a security violation, even if it has been mitigated by UMLse-
cRT, the software system has to be adapted to reduce the attack surface regarding
this violation. Especially for software systems extensible with plugins or accessible
over the Internet, systemmodels might not cover all possible ways the software sys-
tem can be extended or how it can be accessed, which makes adaptation difficult.

9.3 Verification at Run-time and Model Adoption 235

Here, the data logged by UMLsecRT can be helpful but a simple log file stating
what happened can be hard to understand and mappable to the architecture. For the
specification of call sequences, UML provides sequence diagrams [5]. Sequence
diagrams allow developers easily to understand which parts of the software system
are involved in a specific call sequence as the corresponding model elements are
directly used in the diagram.

To cope with these issues we suggest as the fifth step in Figure 9.1 an automated
evolution of the UML system models reverse-engineered in step 1. This automated
evolution covers:

1. addition of missing UML elements to the design-time models,
2. and documentation of security violations as sequence diagrams with explicit

references to involved UML elements.

As generating such diagrams might be time-consuming and requires the usage of
additional libraries such as the UML library, at run-time, UMLsecRT stores data in
a custom format that is used for model adaption afterward. Figure 9.3 shows the
format of the information recorded at run-time, specified as a class diagram.

For every application that is monitored using UMLsecRT, as soon as a security
violation is detected, a Protocol is created, containing information about the
date and time at which the security violation occurred (date) and the monitored
application (application and path). Also, the current call stack is stored in
the Protocol and extended as long as the monitored application runs.

Figure 9.3 Format used by UMLsecRT for recording call-sequences

For every member on the stack or accessed later, a Call is recorded. These calls
are stored in the order of their addition. For the identification of the member, this
Call contains the signature of the member member, the fully-qualified name of
the class defining the member (clazz), and the path from which the class has been
loaded (bin). Also, each call has a unique ID and contains the ID of the last call to

236 9 Verification and Enforcement of Security at Run-time

the member from which the current call originates (prevID). Finally, information
about violations or countermeasures is stored (violations).

In the remainder of this section, we discuss how these evolution steps can be
realized using the gathered data.

Addition of missing Elements
For the addition of missing elements, we consider two different UML diagrams
available in system models. First, the UML class diagram on which the secure
dependency property has been specified. On this diagram,we add the classes discov-
ered at run-time as well as observed dependencies. While this immediately allows
visualizing the violation of secure dependency, the concrete identification of the
classes missing in the system model might not be possible if these are not contained
in the known classpath but have been side-loaded maliciously. For this reason, we
also generate a deployment diagram showing from which artifact, e.g, a class file or
library, the class has been loaded. Furthermore, this allows distinguishing between
classes that have accidentally or maliciously the same name and namespace. Also,
we show from which device the missing classes have been loaded.

Figure 9.4 shows a deployment diagram of the running example combining the
class diagram with the deployment relation. The shapes with white background
resemble the elements coming from the (reverse-engineered) model. On top of the
figure, the adapted class diagram is shown, and at the bottom of the figure, the
adapted deployment is shown. Thereby, the deployment is a more detailed ver-
sion of the general deployment architecture shown in Figure 15.3, focusing on the
internal structure of the iTrust artifact. These two diagrams are connected by
«manifests» relations, expressing which artifacts contain which classes.

For the known part of the software system, it shows the usage of the
PatientBean by the class SearchUsersAction, for which a source code
excerpt is shown in Listing 9.2. Below those two types, we can see on which
artifacts those are deployed and on which execution environment they are man-
ifested. Both are expected parts of the iTrust implementation and are deployed
on the iTrustServer. Also, the class DigestUtil, which comes from the
Apache Commons library (commons-codec-1.9.jar), is an expected part of
the iTrust system. However, the call to the class PatientBean, that the mali-
ciously exchanged version of the library from Listing 9.4 performs, is not defined in
a design-time model. For this reason, UMLsecRT added a dependency expressing
this call to the model and highlighted it with a comment.

The shapes with a gray background on the right side of the figure were also
automatically added as evolution steps by a UMLsecRT guarded execution and
represent entities not present in the design-time models. These show further actions

9.3 Verification at Run-time and Model Adoption 237

of themalware introduced in Listing 9.4 that has not been considered by the system’s
developers. In this case, the DigestUtil calls an additional class Send that is
not contained in the design-time models.

For the identification of unknown and known elements comparing their fully
qualified names is not sufficient. A Java class that has the same fully qualified name
as a UML Classifier might still be injected by an attacker using a weakness of the
implementation. Also, there might be two Java classes with the same name and
namespace at run-time. Here, we improve the identification of elements by con-
sidering their manifestation dependencies specified in deployment diagrams such
as Figure 9.4. In addition to comparing the fully qualified names, we compare the
manifestation of UML elements in artifacts with the protection domains of Java
classes. A protection domain contains the information from where the classloader
loaded the class and is represented by the manifestation in the UML model. Based

Figure 9.4 Deployment and manifestation of classes with evolution

Figure 9.5 Sequence diagram automatically generated by UMLsecRT

238 9 Verification and Enforcement of Security at Run-time

on the protocol over which a class has been loaded, e.g. a file or socket, we can even
check if the deployment of the artifact manifesting a Classifier is the expected one.
In the deployment diagram shown in Figure 9.4, we can see that the class Send has
been loaded from a class file that came from an external server. In such cases, the
name of the node is set to the URL or IP address of the server it represents. In the
recorded data, this information is stored in the property bin.

Documentation of Security Violations.
To understand an attack it is not only necessary to show which method call or field
access leads to a security violation but it is of special interest which sequence of
actions the attacker performed. In what follows, we first show a sequence diagram
that has been generated for the example security violation. Afterward, we show
how such sequence diagrams can be generated from the data UMLsecRT collects
at run-time.

Example for a generated sequence diagram: Figure 9.5 is a sequence diagram
generated by UMLsecRT during monitoring execution of the running example, cf.
Listing 9.4. It outlines a call sequence leading to a security violation and the mitiga-
tion carried out against it. The call of the method getIcAddress1():String
by the method sha256Hex is the source of the security violation. For highlighting
this violation for developers, a Violation of Secrecy comment has been added to
the message representing this call. While this call is obfuscated by the use of Java
reflection in the implementation, we can show the effective calls in the generated
sequence diagrams. Which countermeasure has been executed is also shown in a
comment. In this case, the method secure() has been called as specified in List-
ing 9.6. After the violating call, the attacker called send(String) but due to
the countermeasure not with the secret value. As the software system has been set
into safe mode as part of the countermeasure, the user’s password is not changed
using the potentially malicious hash of the new password. Here, we assume that
resetPassword asks the SecurityManager about the current safe mode
state before changing passwords in the iTrust database.

Due to efficiency reasons, we do not keep track of all methods already being
returned but beginning with the violation all future accesses are recorded and will
be visualized. In this case, for the methods that have been called after the security
violation, this is just one additional call of send. An example for a method that
is not part of the generated sequence diagram but shown in the control flow graph
of Figure 9.2 is the method authentiatePassword, that already terminated
before resetPassword has been called.

9.3 Verification at Run-time and Model Adoption 239

Generating sequence diagrams: To generate sequence diagrams, we have to
translate our internal stack structure as shown in Figure 9.2 and recorded in the
format shown in Figure 9.3 into a sequence diagram. To do so, we translate every
method call into a synchronousmessage in the sequence diagram. For every accessed
field we generate a lifeline, e.g. the lifeline a of type AuthDAO in Figure 9.5. Also,
we create lifelines for classes if static members of those are accessed or we cannot
determine the variable the method is called on. For the first element on our stack,
we create a message from a start node. All other elements on the stack have always
exactly one predecessor from which the corresponding message originates and to
which the return message goes. Before the return message is added to the diagram,
first all successors are added to the diagram.As the list of predecessors is ordered,we
automatically get the correct sequence of messages. Listing 3 shows this procedure
in detail as pseudo-code.

As input for the generation of a sequence diagram, we take a Protocol compli-
ant to the specification in Figure 9.3 and return a UML Interaction containing
the sequence diagram. First, we initialize three maps in lines 1–3. The first map
names2lifelines, maps pairs of protection domains and class names to life-
lines. The second map allows immediate access to every processed Call using its
ID, and the third map, provides access to the return message generated for a Call,
using its ID. Afterward, we initialize a new Interaction in line 4.

Next, we iterate over all calls in the order of their addition, starting with the
first added call. In each iteration, we first lookup in the map names2lifelines
whether we already created a lifeline in the interaction I for the current Call or
not. If there is already a lifeline, retrieve this lifeline or create a new one otherwise.
Afterward, we lookup if we already translated the predecessor of the current Call
of this iteration. This should always return a Call except for the first recorded call
that has no predecessor.

In lines 8–17, we determine the kind of message suitable for representing the
current Call, and if suitable, the lifeline from which the current call originates.
If we process the call sequence’s first call, prevCall is not defined, and we
create an asynchronous message. Also, there is no lifeline from which this message
will originate. Otherwise, in line 9, we retrieve the lifeline for the source of the
call. Afterward, we distinguish between calls to constructors and methods or fields.
Here, we assume, that a constructor has the same name as the class in which it is
defined. For constructors, we create a create message and for all other members a
synchronous message.

In line 18, the message representing the Call is created using the previously
determined information. Please note that UML always handles a message, whose
source is not set, as found message, and no special treatment for the initial call

240 9 Verification and Enforcement of Security at Run-time

is required. Next, in lines 19–23, we create the reply messages for synchronous
messages as well as the highlighting for active times of a lane. Also, we add the
reply message to the map containing all replies.

Algorithm 3: Generation of a sequence diagram from UMLsecRT’s protocol.
Input : Protocol P
Output: Interaction I

1 names2lifelines := Map<(String,String),Lifeline>→new;
2 ids2calls := Map<long,Call>→new;
3 ids2replies := Map<long,Message>→new;

4 I := Interaction→new;

5 foreach call ∈ P.calls do
6 rhs := names2lifeline→getOrCreate(call.bin, call.clazz);
7 prevCall := ids2calls→get(call.prevID);

8 if prevCall = null then
9 kind := ASYNCH_CALL_LITERAL;

10 else
11 lhs := names2lifeline→get(prevCall.bin, prevCall.clazz);
12 if getNamme(call.member) = call.clazz then
13 kind := CREATE_MESSAGE_LITERAL;
14 else
15 kind := SYNCH_CALL_LITERAL;
16 end
17 end

18 message := createMessage(lhs,rhs,call.member,call.violations,kind);
19 if kind = SYNCH_CALL_LITERAL then
20 reply := createReply(lhs,rhs,call.member);
21 createBehaviorExecutionSpecification(message,reply);
22 messages→put(call.ID,reply);
23 end

24 successor := ids2replies→get(call.prevID);
25 if successor �= null then
26 message→getOccurrenceSpecification()→setToAfter(successor);
27 end

28 ids2calls→put(call.ID, call);
29 end
30 return I;

As the last creation step, in lines 24 to 27,we arrange the ordering of themessages.
If no explicit order is given, the messages are added to the end of the lifeline.

9.4 Tool Support for Monitoring and Adaption 241

Figure 9.6 Structure of the UMLsecRT implementation

However, if a message has been called within the active time of another message,
we have to adjust this order. For doing this, we retrieve the return message of the
predecessor, in line 24, and move the message created in this iteration before the
retrieved reply. If there was no reply message for the predecessor, no adjustment of
the order is required.

Finally, at the end of each iteration, we put the Call to the map of already
processed calls (ids2calls). After processing all calls in the protocol, we return
the generated Interaction.

9.4 Tool Support for Monitoring and Adaption

To evaluate UMLsecRT, we implemented prototypical tool support for UMLsecRT.
Generation of monitored call sequences as sequence diagrams and missing model
elements that appear at run-time is supported, too.We present the prototype in detail
in this section. In Section 9.5, we elaborate on the evaluation ofUMLsecRT in detail,
based on this prototype.

In Figure 9.6, we show the structure of our implementation, realizingUMLsecRT
as introduced in Figure 9.1, in detail. In both Figures (Figure 9.1 and Figure 9.6)
we use the same number labels for respective steps. In what follows, we elaborate
on the implementation’s key features in order of the number labels.

242 9 Verification and Enforcement of Security at Run-time

9.4.1 Java Annotations and IDE Support

For the security annotations on the source code level, we used the Java annota-
tions specified in Section 6.4.1 and added the support for countermeasures. To
ease development and further support the developer, we also implemented a valida-
tion plugin for the Eclipse IDE2 to validate GRaViTY annotations. This validation
mainly ensures if the types specified in early return values fit the types of annotated
fields and return types of annotated methods. This check covers not only statically
specified early return values but also return types of methods that are called in case
of security violations.

9.4.2 Validation at Run-time and Countermeasures

As soon as a developer annotated the UML model and Java source code with the
UMLsecRT annotations and synchronized the annotations as described before, he
executes the program and monitors it using UMLsecRT, cf. step 4.

To realize monitoring, we make use of bytecode instrumentation as provided
by the bytecode manipulation framework Javassist [244]. To access the run-
ning software system, we implemented a Java agent, which can be called, e.g.,
via the JVM’s -javaagent command-line, and is documented in the package
java.lang.instrument [248].

The JVM calls our agent whenever a class is loaded. Our agent then transforms
the bytecode of the class by injecting the code to keep track of the call stack, issuing
checking of the Secure Dependency conditions at appropriate times, as shown in
Figure 9.2 and Listing 9.5, and also to produce report data to realize model adaption
(step 5). Static checking of potential malicious field accesses is also executed when
the class is loaded. As the agent is also called on dynamically loaded classes, the
analysis we provide is a hybrid analysis not depending on the local availability of
all classes. Which of the discussed countermeasures should be performed, when
a security violation is detected, is specified as an argument when launching the
application with the agent.

A threat regarding security is that attackers can inspect the software systems
and add UMLsecRT annotations to their malicious code to avoid detection. This
issue can be solved by the addition of cryptographic signatures to the annotations. If
UMLsecRT annotations are only used as an internal security mechanism, commits
containing changes to security annotations can be only accepted from developers

2 Website of the Eclipse IDE: https://www.eclipse.org

https://www.eclipse.org

9.5 Evaluation of the Security Monitor 243

with sufficient rights. As the signature check only has to take place at the loading of
a class, this is a static overhead and has only a relatively low impact on long-running
programs of a software system.

9.4.3 Automated Adaption of Design-TimeModels

While we support synchronization of model and code, there may be associations
between the model and code that still are not covered and cannot be detected stati-
cally. This especially applies to dynamic behavior introduced by libraries and reflec-
tive calls. While program execution is monitored, cf. step 4 in Figure 9.6, our imple-
mentation of UMLsecRT keeps track of every method which has been entered and
not exited yet.

The prototype facilitates the graphical presentation of the observed call flows by
creating sequence diagrams (cfer. step 5 of Figure 9.6). As our tool can keep track
of every method and field that is accessed, we can check continuously if a call edge
detected in the monitoring has respective elements in the model. If not, the tool can
feed this information into the model by adding respective elements.

9.5 Evaluation of the Security Monitor

We evaluate the applicability of UMLsecRT and its tool support regarding three
objectives:

O1–Effectiveness Can we detect real-world security violations using UMLsecRT?
O2–Applicability Can we monitor real-world Java programs with a reasonable

run-time overhead using UMLsecRT?
O3–Usability How useful are the adapted UML models for investigating security

violations observed at run-time?

In the followingwe introduce the evaluation objectives in detail, present themethod-
ology and the evaluation’s results. We performed the experiments on a system
equipped with an Intel i5-6200U CPU, 8 GB RAM, and running Oracle JDK 8
on Ubuntu 20.04.

244 9 Verification and Enforcement of Security at Run-time

9.5.1 O1–Effectiveness of the Run-timeMonitoring

At first, we study the effectiveness of UMLsecRT for the detection of realistic
vulnerabilities and compare it to the Java security manager.

Setup. For this evaluation, we studied the causes of real-world security violations,
reproduced them, and evaluated the detection and mitigation of them as performed
by UMLsecRT and the Java security manager.

Common weaknesses of software are collected in the common weakness enu-
meration (CWE) using a unique ID for every entry [249]. However, the presence of
weaknesses does not imply that the weakness can be actively used to perform mali-
cious actions. Nevertheless, weaknesses in software should be detected and fixed.
In Table 9.1, we briefly summarize the CWEs considered in our evaluation and how
they are mitigated by UMLsecRT if they are exploited.

To study the effectiveness and precision of static weakness detection approaches
the Juliet tests suite has been created. For many CWEs, the Juliet test suite provides
a database of good and bad code examples [250, 251]. Unfortunately, it does not
contain examples to exploit the weaknesses maliciously. Such an exploit is needed
to violate Secure Dependency.

For example, the weakness CWE470 – Unsafe Reflection states that using the
Java reflection API to load classes based on external data is dangerous. To detect
this violation statically, it has to be determined if the values passed to the reflection
API, e.g., the name of a class to be loaded, are created from external data. A small
change in how the name of a class is passed to the API can have a huge impact on
the detection and this is what the Juliet test suite is designed for. While the detection
of all these different variations of a single weakness is challenging statically, the
concrete values can be inspected at run-time. As the Juliet test suite is designed
for static analysis tools, the examples for CWE470 end as soon as a class has been
loaded based on external data. The same applies to the other CWEs considered in
Juliet.

At run-time, we cannot change the underlying implementation of a software
system to remove exploits of weaknesses but have to mitigate the exploits. As we
can perform checks as soon as a class is loaded, we do not have to evaluate if we can
detect the loading of a class based on external data but if we can detect malicious
actions this class performs after it has been loaded. Here, we have three possibilities
to considermaliciousmethod calls as well as write and read accesses to fields.While
for CWE470 all three are possible, for other CWEs this is not the case. For example,
write accesses cannot be used to expose sensitive data as considered in CWE200.

9.5 Evaluation of the Security Monitor 245

Table 9.1 Considered CWEs and their mitigations by UMLsecRT

CWE description & mitigation

200 – Exposure of Sensitive
Information

UMLsecRT prevents the exposure
information by checking every access to data
declared as sensitive.

209 – Sensitive Information in Error
Message

If @Secrey is required from print methods of
exceptions, calls to those not compliant are
prevented.

226 – Sensitive Information
Uncleared in Resource

UMLsecRT prevents illegal access to fields
declared as sensitive.

327 – Broken Cryptography If required security guarantees of a hash or
encryption/decryption function have been
removed, e.g.,

328 – Reversible One-Way Hash due to an update of a library, UMLsecRT
prevents calls to those.

470 – Unsafe Reflection UMLsec Checks Accesses at run-time and
Prevents Forbidden Ones.

481 – Assigning instead of Comparing All assignments from locations not having
the required guarantees are prevented by
UMLsecRT.

486 – Comparison of Classes by
Name

As UMLsecRT does not rely on names,
malicious classes loaded due to comparison
by name cannot perform accesses they do not
have the rights for.

491 – Object Hijack Using Cloneable As UMLsecRT uses the security
requirements on the level of members,
classes injected using clonable cannot
perform accesses they do not have the rights
for.

498 – Clonable Class Containing
Sensitive Data

While usually security checks are
implemented in constructors, we check all
accesses to sensitive data.

499 – Serializable Class Containing
Sensitive Data

As every access is checked, no sensitive data
can be accessed during a malicious
serialization.

502 – Deserialization of Untrusted
Data

Methods of injected malicious classes can
only perform accesses they have the rights to.

586 – Explicit Call to Finalize As explicit finalize calls threat integrity, only
calls from methods guaranteeing @Integrity
are enforced.

829 – Functionality from Untrusted
Control Sphere

Also for external functionality, compliance
with specified security requirements is
enforced at runtime.

246 9 Verification and Enforcement of Security at Run-time

For this reason, based on the Juliet test suite and our research on CWEs, we
created executable test cases to study the effectiveness of the run-time monitoring.
Thereby, we consider two kinds of test cases, positive test cases and negative test
cases. Every positive test case contains an exploit that has to be detected at run-time
monitoring. In summary, we created test cases utilizing the 13 CWEs shown in
Table 9.1. For example, the violation shown in Listing 9.4 of the running example is
an instanceofCWE829utilizingCWE470 toperforman illegitimatemethod call that
leads to disclosure of data (CWE200). According to Listing 9.6, it is mitigated by the
call of a countermeasure. In this experiment, we always throw a SecurityException
as soon as a violation of Secure Dependency has been detected by UMLsecRT. In
Table 9.2, this case is used to test the secrecy case of a method call for the violation
in the first row. Every negative test case corresponds with a positive test case by
covering the same language construct but not containing a security violation, e.g.,
as the security annotations are consistent.

All test cases are around the size of this example and have been created wherever
possible for secrecy and integrity cases of field accesses and method calls. Our
examples cover calls from and to external libraries, reflective accesses to fields and
methods, reflective instantiation of objects, code injections into a Javascript engine
as well as a deserialization attack. All in all, we specified 13 different kinds of tests
with 37 expected security violations. For every expected security violation, there
is also an additional test case where the same action takes place but no security
violation is expected, giving us 74 test cases in total. All tests are available in our
replication package [252]. Table 9.2 gives an overview of the tests and which CWEs
they address.

Results. While the specification of the test cases using UMLsecRT was straight-
forward and UMLsecRT has been able to detect all expected security violations
without getting a single false positive, this was more challenging using the Java
security manager. The results of the experiment are shown in Table 9.2. A check-
mark stands for successfully mitigated and a cross for not possible to mitigate. In
some cases not all cases make sense, e.g., the test case for CWE209 – Sensitive
Information in Error Message cannot lead to a violation of integrity.

WhileUMLsecRT supports different kinds of security requirements, the standard
Java security manager does not support these. For this reason, we implemented the
security checks using the Java security manager without differentiating between the
different security requirements.

The second general limitation of the Java security manager we observed is that it
is not possible to check field assesses. Accordingly, we consider all test cases with
forbidden field accesses as failed. An exception to this is reflective field accesses.

9.5 Evaluation of the Security Monitor 247
Ta

b
le

9
.2

E
ff
ec
tiv

en
es
s
of

U
M
L
se
cR

T
an
d
th
e
Ja
va

se
cu
ri
ty

m
an
ag
er
:�

–
m
iti
ga
te
d,
(�

)
–
pa
rt
ly

m
iti
ga
te
d,

×
–
no

tm
iti
ga
te
d,
N
/
A
–
no

te
st
ca
se

U
M
L
se
cR

T
Se
cu
ri
ty

M
an
ag
er

Fi
el
d
R
ea
d

Fi
el
d
W
ri
te

M
et
ho
d
C
al
l

Fi
el
d
R
ea
d

Fi
el
d
W
ri
te

M
et
ho
d

C
al
l

K
in
d
of

A
ct
io
n
E
xe
cu
te
d
in

th
e

Te
st
C
as
es

C
W
E
s

Se
cr
ec
y

In
te
gr
ity

Se
cr
ec
y

In
te
gr
ity

1
A
pl
ug
in

ac
ce
ss
es

cr
iti
ca
l

m
em

be
rs
of

th
e
ho
st

20
0,

22
6,

48
6,

80
7,

82
9

�
�

�
�

×
×

�

2
In
te
rn
al
bu
g:

Se
cu
ri
ty

pr
op
er
tie
s

of
so
ur
ce

vi
ol
at
ed

20
0,

80
7

�
�

�
�

×
×

×

3
In
te
rn
al
bu
g:

Se
cu
ri
ty

pr
op
er
tie
s

of
ta
rg
et
vi
ol
at
ed

20
0,

80
7

�
�

�
�

×
×

×

4
A
cc
id
en
tia
la
ss
ig
nm

en
tt
o
fie
ld

bu
to

nl
y
re
ad

ri
gh
ts

48
1,

80
7

N
/
A

�
N
/
A

N
/
A

N
/
A

×
N
/
A

5
D
yn
am

ic
lo
ad
ed

cl
as
s
ac
ce
ss
es

da
ta

20
0,

22
6,

48
6,

80
7,

82
9

�
�

�
�

×
×

�

6
In
je
ct
ed

Ja
va
Sc
ri
pt

co
de

in
to

th
e

R
hi
no

en
gi
ne

20
0,

22
6,

80
7,

82
9

�
�

�
�

×
×

�

7
C
al
lp

ri
nt

st
ac

k
tr

ac
e
of

se
ns
iti
ve

ex
ce
pt
io
n

20
0,

20
9

N
/
A

N
/
A

�
N
/
A

N
/
A

N
/
A

�

8
R
efl
ec
tiv

e
ac
ce
ss

to
cr
iti
ca
l

m
em

be
rs

20
0,

22
6,

47
0,

80
7

�
�

�
�

(�
)

(�
)

(�
)

9
C
al
lt
o
fin

al
iz
e
w
ith

in
su
ffi
ci
en
t

pr
iv
ile
ge
s

58
6

N
/
A

N
/
A

N
/
A

�
N
/
A

N
/
A

(�
)

10
C
lo
ni
ng

of
a
cl
as
s
co
nt
ai
ni
ng

se
ns
iti
ve

da
ta

20
0,

49
8

�
N
/
A

N
/
A

N
/
A

×
N
/
A

N
/
A

11
Se
ri
al
iz
at
io
n
of

cl
as
s
co
nt
ai
ni
ng

se
ns
iti
ve

da
ta

20
0,

49
9

�
N
/
A

N
/
A

N
/
A

×
N
/
A

N
/
A

12
R
ep
la
ci
ng

cl
as
s
at
de
se
ri
al
iz
at
io
n

20
0,

80
7,

82
9

�
�

�
�

×
×

�
13

U
ns
ec
ur
e
m
et
ho
d/
fie
ld

in
ne
w

lib
ra
ry

ve
rs
io
n

20
0,

32
7,

32
8,

80
7

�
�

�
�

×
×

×

248 9 Verification and Enforcement of Security at Run-time

However, here the Java security manager only provides the possibility to check if
the use of Java reflection is allowed for the location the class has been loaded from
but not to check against the security requirement of the field. However, as some
kind of security check can be expressed, we consider this as partly successful. The
same applies to method calls executed via Java reflection.

One main goal of UMLsecRT is to not only protect from attacks but also to
mitigate security violations caused by bugs within the implementation. Here, the
granularity of the Java security manager does not allow us to specify security checks
within a single classpath entry. Last but not least, the security manager only allows
us to check invocations of methods that are under our control but not if an external
method invoked by us provides the expected security requirements.

To sum up, while the Java security manager can be effectively used to check
incoming method accesses originating from classes stored at a different classpath
as the code we want to protect, it provides not a sufficient granularity and expres-
siveness to enforce UMLsec security policies at run-time. On the other hand, the
proposed security policies can be effectively enforced at run-time using UMLse-
cRT. Also, if the software system has been developed using UMLsec, there is no
additional effort included in enforcing the UMLsec security requirements.

9.5.2 O2–Applicability of the Run-timeMonitoring

To use UMLsecRT in practice, it is vital to be able to monitor real-world programs
with reasonable overhead andwithout facing issues, e.g., due to exceptions. Thus, the
second evaluation objective targets to confront UMLsecRTwith different real-world
applications. More specifically, we aim at constituting which part of UMLsecRT is
responsible for the overhead to what extend and which programming constructs are
problematic to monitor.

Setup. To consider both real-world programs as well as realistic program execu-
tions, we applied the monitoring component of UMLsecRT to the DaCapo bench-
mark suite [253]. The DaCapo benchmark is a benchmark suite which is actively
maintained since 2006 and supported by industry. In version 9.12 DaCapo con-
sists of 14 real-world open source applications (the tomcat benchmark is currently
broken and therefore excluded by us [254, 255]) on which typical tasks are exe-
cuted. It, for instance, contains indexing of or search in large documents like the
King James Bible using Apache Lucene (luindex and lusearch) and XML to HTML
transformation (xalan). A list of the benchmarks is given in Table 9.3. As the major-
ity of the monitoring code is executed regardless of UMLsecRT annotations being

9.5 Evaluation of the Security Monitor 249

Table 9.3 Benchmarks of the DaCapo benchmark used for the evaluation of the run-time
monitoring

benchmark project characteristics execution time in ms slowdown

classes methods fields plain Java UMLsecRT

avrora 1,741 19,575 27,789 4,576 12,213 2.7

batik 2,121 66,734 350,799 4,195 14,145 3.4

eclipse 407 5,357 3,359 47,625 399,534 8.4

fop 1,204 29,814 86,919 2,137 15,749 7.4

h2 441 13,745 6,884 7,906 17,699 2.2

luindex 491 6,313 2,869 1,994 6,472 3.2

lusearch 491 6,313 2,869 3,839 15,967 4.2

pmd 644 35,606 49,432 4,138 13,595 3.3

sunflow 220 1,653 990 7,154 19,251 2.7

xalan 1,419 52,200 72,989 4,879 19,046 3.9

present in the code or not, we do not need to annotate the applications of the DaCapo
benchmark to evaluate the overhead of UMLsecRT.

As part of this objective, we conducted two experiments. At first, we measured
for every DaCapo benchmark the time needed to finish execution both with and
without monitoring. In the second experiment, we profiled, which percentage of the
DaCapo benchmark’s execution time has been spent on which tasks, to learn about
reasons for the expected slowdown.

Results. We have been able to monitor 10 benchmarks successfully and had prob-
lems on 3 benchmarks using jython or Geronimo. In these, a java.lang.VerifyError–
Inconsistent stack height exception is thrown when the programs themselves use
byte code instrumentation after UMLsecRT performed changes. As this exception
is also thrown if we insert only non-behavior-changing code, the cause seems not
to be UMLsecRT. Despite these 2 programs, there seem to be no problems with
monitoring real-world programs.

The execution times with and without security monitoring are denoted on the
right of Table 9.3. On average the execution with security monitoring is 4.1 times
slower than without security monitoring. If we look into the details of the different
benchmarkswe can see that there is a notable difference in the slowdownbetween the
different benchmarks. With a factor of 2.2, h2 has only a relatively small slowdown
while the Eclipse-based benchmark has the biggest slowdown with a factor of 8.4.

250 9 Verification and Enforcement of Security at Run-time

Figure 9.7 shows the distribution of time needed for central parts of UMLsecRT
among the benchmark executions. These are instrumenting the classes, checking
security annotations, creating new annotation objects, representing members and
their annotations, as well as the retrieval of the stack corresponding to the current
member. The benchmarks in the figure are sorted by their slowdownwith the bench-
mark with the highest slowdown on the top. We can see that the slowdown does not
directly depend on a single activity. On average, 56% of the slowdown is due to the
instrumentation of the loaded classes, 2.7% for checking the security annotations,
5.4% for creating new annotation objects, and 35.9% for stack retrieval. However,
there are huge differences between the individual projects. Whilst analyzing the
data, we can make out two groups, one mainly spending time for the retrieval of the
stack and one where the instrumentation of the classes takes the most time.

At looking closer into the execution times, we notice that the projects with
the lowest overhead are the ones running the longest already in the unmonitored
execution. An exception to this is Eclipse, where the OSGi classloader and the
structuring into plugins cause a high instrumentation overhead. A second exception
to this is fop, here the high instrumentation overhead due to the many classes in
combination with the short run-time of the benchmark leads to a high slowdown.
The very high instrumentation overhead for batik can be explained by the excessive
amount of fields that are all checked at classloading and many methods that have
to be instrumented. The same applies to fop, pmd, and xalan. All in all, it seems
like the slowdown is decreasing with the execution time. This and the average static
instrumentation overhead of 56%, indicate that UMLsecRT has a lower slowdown
for long-running applications than the measured average slowdown.

9.5.3 O3–Usability

Thepossibility to adapt the design-timemodels based on the observations at run-time
allows developers to easily study violations that have been observed and mitigated.
To study the usability of the adaption for the investigation of security violations, we
performed a user study and asked the participants for their opinion.

Setup. In our user study, we introduced the Eclipse secure storage, explained in
detail as the second case study in Chapter 15, to the participants. Afterward, we
showed them three representations of a security violation caused by an Eclipse plu-
gin executing an implementation, comparable to the one shown in Listing 9.4, in a
start-up action. The first representation was the stack trace of a security exception
that has been thrown at the beginning of the get(String,String)method of the Eclipse

9.5 Evaluation of the Security Monitor 251

Figure 9.7 Distribution of execution time for run-time monitoring (sorted by slowdown)

Figure 9.8 Usability of representations of a software system for the investigation of a security
violation

secure storage. The second representation was the generated deployment diagram,
comparable to Figure 9.4, and the third one the generated sequence diagram, compa-
rable to Figure 9.5. For all three representations, we asked the participants to identify
key aspects of the security violation. Next, we asked the participants to write down
the benefits and disadvantages of all representations. Finally, the participants had to
rate the usability of the different representations for the investigation of a security
vulnerability on a scale from one for not useful to five for very useful.

In total, 25 experienced software developers participated in our user study. Of
these developers, 56%had an experience ofmore than 10 years and another 28%had
more than 5 years experience. Two participants had less than 3 years of experience.

Results. In Figure 9.8, we show the results of the usability rating of our user study.
While the answers of the participants have low variance for the usability rating of

252 9 Verification and Enforcement of Security at Run-time

the well-known stack trace, the answers are more diverse for the proposed models.
Both, the stack trace and the sequence diagram, have been rated to be useful for
the investigation of the shown security violation with an average value of 3.52 and
4.08. The deployment diagram was rated with an average rating of 2.96. While 36%
of the participants rated the deployment diagram to be useful for the investigation
of a security violation the same amount of participants tends towards not useful.
For the stack trace and the sequence diagram, the majority of the participants rated
these representations to be useful (60% for the stack trace and 80% for the sequence
diagram). While the stack trace was mainly (11 votes) rated with a usability rating
of 4, the sequence diagram got as many ratings for very useful (rating of 5). In
addition, the sequence diagram got, with 9 votes for a usability rating of 4, nearly
the same amount of votes as the stack trace got. Only based on the votes, we can
conclude that the participants of our study have a diverse impression of the shown
deployment diagram but still see some use in it. The well-known stack trace is seen
as being useful, but the votes for the sequence diagram are even more positive.

When we look into the benefits and disadvantages identified by the participants
of our survey, we can see some trends. The stack trace is frequently rated as a
well-known structure that is linked to the code but does not provide very detailed
information regarding the security violation. Also, the deployment diagram does
not provide detailed information but is rated as a very simple entry point that is
also suitable for non-technical stakeholders. Also, the sequence diagram might be
suitable for non-technical stakeholders. Many participants agreed on the sequence
diagram giving a very detailed description of the security violation but at the cost
of readability for larger violations. Also, the models might require trained personal
for productive use. In summary, many participants commented that for them the
integration of all representations would be the best. While this was not explicitly
given as an option to the participants, this reflects the practices at developing a
software system using the proposed GRaViTY approach.

In summary, the participants of our case study rated the sequence diagram as
the best representation for providing details about the detected security violation.
However, for a practical application, the integration of all representation seems to
be the favorite of the participants. Here, we have not shown to the participants that
the deployment diagram and the sequence diagram are already integrated as they are
adoptions of the same model reusing the same elements. As the sequence diagram
uses methods as messages it provides the same integration with the code like the
stack trace and integration with the stack trace is straightforward.

In this evaluation, we showed that UMLsecRT can be used for effectively moni-
toring Java applications for compliance to security requirements specified at design
time. Furthermore, in our evaluation of the applicability we have shown that depend-

9.6 Threats to Validity 253

ing on the program size there is a huge initial overhead that relativizes with time.
Accordingly, an efficient implementation of UMLsecRT seems feasible for long-
running programs.

9.6 Threats toValidity

While evaluating UMLsecRT, we identified threats to validity that we discuss in
this section. First, we discuss threats to the internal validity of our evaluation, and
afterward, threats to the evaluation’s external validity.

9.6.1 Internal Validity

For studying the effectiveness of our approach in detecting security violations (O1),
we might have not covered all relevant cases. Here, we used the Juliet Testsuite
as a guideline for selecting relevant security violations that can be detected using
UMLsecRT. While there might be other relevant weaknesses that could be detected
and mitigated using UMLsecRT, we currently only consider the selected ones as
possible. If UMLsecRT is suitable to detect security violations due to other weak-
nesses, will be subject of future works.

RegardingO2–Applicability, we successfully showed that it is possible to mon-
itor for vulnerabilities and breaches in real-world Java programs. However, we did
not conduct the evaluation based on security breaches that have been documented
to be seen in the wild on real applications. Nevertheless, as part of the first experi-
ment regardingO1, we have shown that UMLsecRT is suitable to detect real-world
security violations in minimal examples.

The design of our user study (O3) did not allow the participants to interactively
apply our approach butwas based on generated views on a security violation selected
by us and presented in a survey. Also, we asked to consider all three presented
representations exclusively. These design decisions for the user might affect the
participants’ answers regarding the usability for inspecting security violations.

9.6.2 External Validity

On the one hand, it might seem like annotating the whole code basis is a huge
overhead and might threaten practical applicability. However, large amounts of
annotations are heavily used in industry, e.g., in the context of the Spring frame-

254 9 Verification and Enforcement of Security at Run-time

work [256] or Jackson [257]. On the other hand, most of the data needed by us has
already been collected at thread modeling and can not only be reused at low cost but
even improved by our approach. The suitability and usability of UMLsec to specify
this information have been evaluated in different contexts. In a public report of the
EU project VisiOn [80], the pilots write to feel able to analyze complex aspects of
privacy and security [79]. In a comparison of models for data protection by Pierre
Dewitte et al., the CARiSMA tool used by us ranked the highest for tool support,
indicating good applicability [258].

Regarding the performance of our implementation, we measured an overhead
for monitoring of 4.1x. While we have shown that the overhead for instrument-
ing the classes gets less relevant for long-running applications there is space for
improvement in the performance of the checks, this threatens the applicability to
real applications. This is mainly the retrieval of the UMLsecRT stack for the cur-
rent thread. Currently, this happens twice for every method call, when a method is
entered and when it is left. A possible solution could be to introduce a field to every
class holding the stack. For single-threaded applications this is simple, but if objects
are shared between multiple threads it gets more complicated.

The relevance of the slowdown could be reduced if, comparable to Bodden et
al. [259], only the critical core parts of an application are monitored. Here, again
the models used in UMLsecRT could be utilized to identify these parts.

Another possibility to implement UMLsecRT is to extend the existing Java anno-
tations to be used with aspects [260]. A drawback of this approach is that the
monitoring will be part of the target program. Also, the steering of a monitored
application is might not possible in a sophisticated manner as the aspects always
run on the application level. Apart from that, this has the immanent security risk
that an attacker gets to know that UMLsecRT aspects are part of the program and
uses reflection to deactivate or, even worse, taints them.

An external threat to the validity of our user study is the limited number of partic-
ipants that might not result in generalizable results for other groups of participants.
Nevertheless, the user study indicated good usability of the adapted system models
for investigating security violations. The usability from the user perspective can be
studied in detail in future works.

9.7 Conclusion on the Run-time Security Monitoring

In this chapter, we introduced an approach for coupling model-based security anal-
yses with the code level, lowering the effort needed for annotating the code base
and supporting round-trip engineering by providing feedback into the models.

9.7 Conclusion on the Run-time Security Monitoring 255

The approach supports reverse engineering of models from code and synchro-
nization of security annotations in model and code as well. Reaction to detected
security issues is supported by passive reactions like call trace logging or actively
by providing modified return values to protect real application data. Round-trip
engineering is supported both by feeding additional associations monitored dur-
ing execution back into the model as well as automatically generating sequence
diagrams of attacks to support developers in investigating attacks with graphical
support and related to the model. Thus, software system evolution detection is also
tackled.

We introduced UMLsecRT by realizing support for checking secure call depen-
dencies, by extending the realization Secure Dependency for the UMLsec extension
which could only be checked statically (and thus partly) by now. Our approach
is supported by a prototypical implementation. We realized support for the source
code level by utilizing the Java security annotations introduced in Section 6.4. Run-
time monitoring is provided by the UMLsecRT Java agent, while synchronization
of model and code is realized using triple graph grammars.

We applied our approach successfully to the iTrust EHR system and the Eclipse
Secure Storage. Details on the application to Eclipse Secure Storage are shown in
Chapter 15, in which we discuss the application of the GRaViTY approach to two
case studies. Also, we evaluated UMLsecRT in terms of effectiveness and applica-
bility against real CWEs andDaCapo benchmark. Results show that UMLsecRT can
be used in realistic application scenarios. However, during analyzing the evaluation
results, we identified potential for additional research.

Future work can primarily target a more efficient implementation to reduce the
current monitoring overhead and thus increase the applicability in real-world envi-
ronments. Apart from that, the evaluation can be expanded by both supporting addi-
tional security requirements and evaluate off-the-shelf applications having actual
security issues. Also, the applicability of UMLsecRT to other domains, like safety
or real-time processing guarantees, can be investigated.

Part IV

Maintenance

10Security-aware Refactoring of Software
Systems

This chapter shares material with the FASE’2018 publication„Controlling the
Attack Surface of Object-Oriented Refactorings“ [146] , the PPPJ’2015 publi-
cation „Incremental Co-Evolution of Java Programs based on Bidirectional Graph
Transformation“ [130] , and the TTC’2015 publications „Object-oriented Refac-
toring of Java Programs using Graph Transformation“ [131] and „A Solution to
the Java Refactoring Case Study using eMoflon“ [130]

In the previous chapters, we discussed the development of software systems
using a model-based security engineering approach. As part of this approach, we
considered the synchronization of changes among all artifacts of the software sys-
tem as part of incremental software development. Such changes do not only occur
during development but also at the maintenance of the software system after initial
development.

Maintaining software systems over a time is challenging. Due to continuous
changes in the software system, it is prone to structural decay which might give rise
to anti-patterns [21]. Anti-patterns qualify architectural decay in the large, involving
several classes spread over the entire program and result in a higher effort for
maintenance [13]. Also, there is the widespread assumption that software systems
prone to many anti-patterns are more likely to contain vulnerabilities [261]. The
reasoning behind this assumption is that such software systems aremore challenging
to understand and therefore to maintain. As a consequence, more errors are made,
including errors that lead to vulnerabilities.

©TheAuthor(s), under exclusive license toSpringer FachmedienWiesbadenGmbH,
part of Springer Nature 2022
S. M. Peldszus, Security Compliance in Model-driven Development of Software
Systems in Presence of Long-Term Evolution and Variants,
https://doi.org/10.1007/978-3-658-37665-9_10

259

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-658-37665-9_10&domain=pdf
https://doi.org/10.1007/978-3-658-37665-9_10

260 10 Security-aware Refactoring of Software Systems

Figure 10.1 Location of refactorings in the overall concept

Refactorings are a common measure to mitigate the effects caused by anti-
patterns and to improve the quality of the implementation [18]. However, as refactor-
ings lead to changes in the software system, they might affect security requirements
as studied in the previous chapters. As shown in Figure 10.1, refactorings interact
with the security requirements specified on the design-timemodels and source code.
For investigating the impact of arbitrary changes on a software system’s security
requirements, in Section 8.6, we introduced security violation patterns that can be
executed to check changed parts of a security system for security violations. While
this allows detecting security violating changes efficiently, their mitigation has to
be performed manually or the change has to be undone which might not always be
possible. In the best case, we can investigate changes before applying these to the
software system. Accordingly, we have to study the interaction of refactorings with
security requirements and have to find means to prevent refactorings from nega-
tively impacting security. We answer our fourth research question in the context of
object-oriented refactorings.

RQ4 How do changes within a software system affect its security compliance, and
how can these effects be handled?

The key idea is that whenever a developer applies a refactoring using our approach,
not only the behavior but also the software system’s security is preserved. For this
reason, we have to study the interaction between refactorings and security require-

10.1 Background on Object-Oriented Refactorings 261

ments. To study this interaction, we have to formalize refactorings first. This for-
malization builds the basis for studying the effects of refactoring systematically and
incorporating security-preserving constraints. Accordingly, the research questions
of this chapter are as follows.

RQ4.1: How can behavior-preserving refactorings be specified on a formal basis
and this specification be used for executing the refactorings?

RQ4.2: Howdo refactorings interactwith security requirements, and how canmali-
cious interactions be prevented?

In what follows, we first give a brief introduction to object-oriented refactorings in
Section 10.1. In Section 10.2, we introduce our formalization of behavior-preserving
refactorings and how these can be applied to a software system. Finally, in Sec-
tion 10.3, we study the interaction of refactorings with a software system’s security
requirements and show how security-preserving refactorings can be specified.

10.1 Background on Object-Oriented Refactorings

Opdyke was the first to propose refactoring as a countermeasure for the negative
consequences of software evolution, by defining 23 program restructuring rules
in a human-readable form [17]. Fowler expanded this catalog of refactorings (by
retaining its informal nature) in his seminal work [18], which serves as the de-
facto standard by now. Guided by such refactoring catalogs, software systems are
restructured manually by applying the described refactorings.

For example, the iTrust system has been developed as a class project over 25
semesters. Between the semesters, among others, the teaching assistants refactored
the iTrust implementation throughmanual restructurings for preparing amore easily
extensible version for the next semester’s class [50]. An example of a restructuring,
performed after the summer term of 2009, is the relocation of test cases that do
not access iTrust’s database to their own classes. By doing this, the initialization
of the database has been avoided for these test cases, and as a consequence, a
significant speedup has been achieved. In this case, the benefit of the refactoring
was twofold. First, an unnecessary initialization could be avoided by reducing the
coupling. Second, if a developer works on the relocated test cases, she does not
have to care about this initialization of the database and possible interactions, which
eases the work.

While refactorings as described before are often performed manually, tool sup-
port has been developed to assist at refactoring. Most recent refactoring implemen-

262 10 Security-aware Refactoring of Software Systems

tations usually rely on precondition-based program transformation rules directly
applied to the abstract syntax tree (AST) [62]. Nevertheless, the complex nature of
those rules, including an interplay between syntactic pattern matching at AST level
and semantic constraint checking of properties that crosscut the AST, still makes
refactorings prone to potentially produce erroneous results [63].

To tackle the inherent problems of recent refactoring implementations operat-
ing at the AST level, graph-based program transformation has been proposed as a
promising alternative for concisely and formally specifying and implementing OO
refactoring rules in a comprehensive way [24, 37, 135, 137, 138, 140, 144]. Here,
the program under consideration is transformed into an abstract and custom-tailored
program graph representation that essentially

(i) defines a restricted view on the AST containing only relevant high-level OO
program entities

(ii) and adds additional cross-AST dependencies making explicit (static) semantic
information being crucial to avoid behavior-scrambling refactorings [137, 139–
141, 143].

On this basis, refactorings are formalized in terms of endogenous transformation
rules at a program-graph level [37, 140]. However, for a graph-based program refac-
toring approach to finally become established in practical tools, seamless integration
and co-evolution of program source code and the accompanying program graph rep-
resentation are required.

10.2 Formalization of Object-Oriented Refactorings

Modern Java IDEs aim at assisting object-oriented software development workflows
with continuously interleaved co-evolution steps of program editing and program
refactoring. Program editing usually comprises manually performed program chan-
ges applied by a programmer at the source code level. In contrast, refactorings consist
of behavior-preserving program restructuring rules with complex preconditions,
usually formulated over an appropriate program abstraction. However, an example
of behavior-preserving manual restructuring is the teaching assistant restructuring
the iTrust system.

To integrate both steps into a comprehensive program evolution framework, we
present a graph-based approach for incremental co-evolution of Java programs. Our
approach is based on the concise graph-based representation of Java programs in
terms of the program model introduced in Chapter 5. On this basis, a precise formal

10.2 Formalization of Object-Oriented Refactorings 263

specification of object-oriented program refactorings can be defined in terms of
endogenous graph-transformation rules. To propagate the changes performed by a
refactoring on the programmodel into the software system’s implementation, we use
TripleGraphGrammars (TGG) for automated incremental synchronization between
a program model and the corresponding source code, as discussed in Section 6.2.

Based on three refactoring operations, namely Create Superclass, Pull-Up
Method, and Move Method, we illustrate the applicability of graph-based program
refactoring and the incremental synchronization as a basis for a comprehensive
co-evolution methodology for Java programs. In our experimental evaluation, we
compare our approach with the refactoring implementation of the Eclipse IDE 1,
uncovering a case that is handled incorrectly by Eclipse but handled correctly by
our technique. The experiments show that our framework builds a promising basis
for designing, formalizing, and implementing existing and novel OO refactorings
for Java-like programming languages comprehensively.

In what follows, we first discuss in Section 10.2.1 the challenges in refactoring
Java programs in general but also especially using formal approaches. Afterward, in
Section 10.2.2, we introduce the specifications of three refactorings using the nota-
tion of graph transformations. In Section 10.2.3, we discuss the propagation of the
changes made by refactoring application into a software system’s implementation
as part of the software system’s co-evolution using the TGG transformation pre-
sented in Chapter 6. A prototypical implementation of the discussed refactorings is
presented in Section 10.2.4. In Section 10.2.5, we evaluate the proposed refactoring
approach. Finally, we discuss threats to validity in Section 10.2.6 and conclude on
our formalization of OO refactorings in Section 10.2.7.

10.2.1 Refactoring of Java Programs

In this section, we illustrate challenges arising during the evolution andmaintenance
of Java programs, namely the erosion of a software system’s implementation [13].
To overcome the negative effects of code erosion, object-oriented refactorings have
been proposed.Refactorings comprise amethodology for incrementallymaintaining
and improving high-level structural properties of continuously evolving objected-
oriented programs while preserving their observable behaviors.

As illustrated by the restructuring example on iTrust in Section 10.1, refactoring
aims at restructuring a software system’s behavior without changing its external
behavior to improve the software system’s structure or other non-functional aspects,

1 Website of the IDE: https://www.eclipse.org

https://www.eclipse.org

264 10 Security-aware Refactoring of Software Systems

e.g., execution times as in the concrete example. At refactoring a software system in
terms of manual restructuring operations, developers have to constantly deal with
reasoning whether the desired change is possible without altering the behavior or
even ending in a not compiling or not executable state. In the concrete case, for
every method included in the test suite, it had to be judged whether the method can
be executed without the database running. This reasoning about the applicability of
planned restructuring can get arbitrary complex and challenging.

At the development of a software system, program evolution usually happens in
an ad-hoc manner in terms of small and local edits on certain parts of the source
code, whereas subsequent program maintenance steps consist of a predefined set of
arbitrary complex precondition-based program transformation rules, specified on
an appropriate abstraction of the concrete program such as an Abstract Syntax Tree
(AST) [62]. However, using the AST representation as a basis for the design and
application of program refactoring rules has two major drawbacks, namely:

1. Usually, object-oriented refactorings are applied to coarse-grained program enti-
ties, limited to the class-field-method level, whereas details of method imple-
mentations at the statement-expression level are out of scope. As a result, the
information represented in the AST is usually far too fine-grained and contains
many details being irrelevant for reasoning about refactorings.

2. To reason about behavior preservation of refactorings, additional (static) seman-
tic information, e.g., call dependencies among methods, has to be taken into
account. Those dependencies go beyond the pure syntactic structure of programs
and, thus, massively crosscut the tree hierarchy of the AST.

In this regard, graph-based program transformation has been proposed as a promis-
ing alternative to AST-based refactoring rules [135, 136]. When using graph-based
program transformation, the program is transformed into a restricted, more abstract,
and thus custom-tailored program model representation that

(i) only contains those program elements being relevant for object-oriented refac-
torings and, thus, facilitates concise formalization of high-level program trans-
formation operations, and

(ii) makes explicit additional semantic cross-AST (control and data) dependencies
among methods and fields, being crucial to reason about behavior preservation
of refactorings.

Based on this representation, program transformations are defined in terms of
endogenous graph transformation rules [37].

10.2 Formalization of Object-Oriented Refactorings 265

The general applicability of such a graph-based representation for Java programs
in combination with graph transformation rules to express program refactorings
has already been shown, e.g., in [24, 138, 140]. However, those existing works
leave open how to obtain a graph-based representation from the source code of a
given Java program and, conversely, how to propagate changes applied to that graph
presentation back into the source code.

As our running example illustrates, Java programs continuously undergo inter-
leaved edit operations on the source code and consecutive maintenance steps in
terms of refactoring rule applications. Hence, there is a strong necessity for a com-
prehensive graph-based program refactoring framework to include an automated
mechanism for incrementally synchronizing changes both of the source code, as
well as its respective program model representation to keep both views consistent.
In particular, an appropriate synchronization mechanism must be bidirectional in
the sense that arbitrarily interleaved changes in terms of source code edits, as well
as in terms of programmodel transformations are continuously propagated between
both representations in a consistency-preserving and automated manner.

Here, we employ Triple Graph Grammars (TGG) [160], a declarative way of
expressing bidirectional graph transformation rules, to facilitate incremental syn-
chronization between the AST and the program model representation of evolving
Java programs. Our implementation is based on eMoflon, a graph-transformation
engine incorporating support for TGG [162], and discussed in detail in Chapter 6.

In the next section, we show how to formalize refactorings using graph transfor-
mation rules. Afterward, we solve the open problem of propagating changes made
by refactoring operations into the implementation through using the bidirectional
exogenous graph transformation rules introduced in Chapter 6 to formalize the cor-
respondences between Java source code and its graph-based abstraction concisely.

Figure 10.2 Class diagram showing an excerpt of the PatientBean and
PersonnelBean

266 10 Security-aware Refactoring of Software Systems

10.2.2 Program Refactoring based on GraphTransformation

Programmodels, such as our programmodel introduced inChapter 5, are designed to
contain sufficient information for reasoning about particular program transformation
scenarios such as refactorings. To this end, program models provide an appropriate
abstraction layer for an intuitive and precise specification of program modifications
using declarative graph transformation rules. Here, the declarative nature of a rule
means that it only describes preconditions (patterns) under which the transformation
should be executed and how the expected result is supposed to look like but leaves
open how to actually check and execute those rules on a given input program.

As already mentioned in Section 10.2.1, object-oriented refactorings are an ideal
example for predefined program transformation operations which can be effectively
specified by program model patterns on the type graph. Those graph patterns are
supposed to identify all places in a program that may be refactored.Moreover, graph
transformation rules further comprise specifications of the actual programmodifica-
tions corresponding to refactoring operations. The theoretical framework of graph
transformations provides a declarative, rule-based technique for modifying graph-
based models such as program models [144]. In particular, a graph transformation
rule consists of a left-hand side (LHS) and a right-hand side (RHS), both consti-
tuting typed graphs, i.e., program models in our case, conforming to a given type
graph of the underlying modeling language. In this thesis, we use the type graph
introduced in Chapter 5 to specify transformation rules that express refactorings.
The application of a graph transformation rule on a given input program model
consists of

1. finding a match of the LHS within the given input program model, i.e., an
occurrence of the respective graph pattern specified by the LHS, and

2. transforming the input program model by replacing the match by an image of
the RHS which essentially imposes the deletion and creation of particular nodes
and edges, thus yielding the output program model.

In addition, the LHS and/or RHS part may contain negative application condi-
tions (NAC), i.e., graph patterns which are not allowed in the input and/or out-
put graph, respectively, for a successful transformation rule application. Intu-
itively, the LHS and RHS of a graph transformation rule can be conceived as
preconditions and postconditions, limiting the applicability of the graph trans-
formation operation specified by that rule. Generally, the precondition has to be
fulfilled by a given input graph for the transformation to become applicable. Sim-
ilarly, the postcondition has to be fulfilled by the transformation’s resulting output

10.2 Formalization of Object-Oriented Refactorings 267

Figure 10.3 Schematic representation of a Create Superclass refactoring – Left-hand side
and right-hand side

graph. In what follows, we show how this notation can be used to specify refactoring
operations based on three examples.

Create Superclass Refactoring
The first refactoring considered by us is the Create Superclass refactoring [18]. For
example, the iTrust system contains different kinds of users. Among others, these are
patients and personnel such as doctors. In the implementation, data about patients
is represented in terms of the class PatientBean, which we already investi-
gated in more detail in Chapter 9. Similarly, as for patients, data about personnel
is stored in a PersonnelBean. As shown in Figure 10.2, both beans implement
the Serializable interface but do not have a common parent in which shared
functionality could be implemented. TheCreate Superclass refactoring specifies the
conditions under which such a common parent can be created.

In general, Create Superclass is used to create a common superclass for a set of
classes that share a considerable amount of functionality [18]. This refactoring can
be seen as the first step towards an improved program structure. A new common
superclass of these classes sharing functionality is created, that can then be filled
with shared data or functionality.

Figure 10.3 shows a schematic representation of how the Create Superclass
refactoring is performed, considering two starting situations in the program model.
The black elements (without additional annotations) appearing in both the LHS
and the RHS, correspond to those entities within a given program model whose
matches are part of the rule context but remain unaffected by the program model
transformation. In contrast, red elements (annotated with --) in the LHS (on the left
in Figure 10.3 are deleted, while green elements (annotated with ++) in the RHS (on
the right in Figure 10.3) are created during rule application. The crossed-out blue
edge in the LHS represents a negative application condition. The patterns within

268 10 Security-aware Refactoring of Software Systems

cascaded boxes on both sides are recurring patterns, i.e., those patterns might occur
zero ormore times in a validmatch (respectively output) of the rule. The nodes of the
LHS and RHS graphs are identified using the notational style name:type, where
name is a unique identifier of an object at the level of program instance entities and
type is the node type in the type graph to which the object refers.

The semanticmeaning of the two refactoring rules is as follows. The child classes
either have to have the same superclass in the program model or none of them has a
superclass. From a technical point of view, each Java class has a superclass except
for java.lang.Object, which is the uppermost parent of all classes. However,
an explicit generalization of the class Object is not necessary in Java programs.

In case the refactoring’s preconditions and postconditions (see below) are ful-
filled, a newclassnew_superclasswill be createdwhichbecomes the superclass
of the child classes in the set classes, containing child1 and all classes that
have been matched to childN (classes := [child1] ∪ childN). Note
that a Create Superclass refactoring does not necessarily represent a valid refactor-
ing. It marks merely a part of the input program where it is looked for a possible
refactoring operation.

In addition to the conditions shown in Figure 10.3, the following precondition
has to be fulfilled for a Create Superclass instance:

– The classes contained in classes are implementing the same superclass. Note
that classeswith no explicitsuperclasses reference in Java are implementing
java.lang.Object. However, specifying this superclass explicitly in the
source code is a developer decision that does not influence the conditions for
Create Superclass.

Additionally, the result of a Create Superclass has to fulfill the following postcon-
ditions:

1. Each class in [child1] ∪ childN has an inheritance reference (parent
Classes) to the class new_superclass.

2. In case the classes in [child1] ∪ childN had an explicit inheritance
reference to a superclass parent before the refactoring, their new superclass
new_superclass has an inheritance reference to this parent.

Figure 10.4 shows aUMLclass diagram focusing on the classesPatientBean and
PersonnelBean, that has been extracted from the iTrust implementation after the
application of aCreate Superclass refactoring. Their new superclassUserBean has

10.2 Formalization of Object-Oriented Refactorings 269

Figure 10.4 PatientBean andPersonnelBean after the applicationof aCreate Super-
class refactoring

been inserted by the refactoring but does not contain any features, yet. Also, the two
generalizations of UserBean have been added by the refactoring.While the classes
PatientBean and PersonnelBean have public visibility in the extracted
UML model, the UserBean is shown with default visibility as currently no
visibilities are considered in the specification of the refactoring. Also, the name of
the created superclass has not been discussed yet as well as the package containing
this new class. All three properties are not necessary for checking the applicability
of the refactoring but are required when it comes to propagating the changes into
the source code.

Figure 10.5 shows a concrete realization of the two refactoring rules using the
Henshin notation. In this notation, the LHS and RHS of the rules are combined into
one single representation, using a similar notation for create (labeled «create»
instead of ++), delete (labeled «delete» instead of ––) and NACs (labeled
«forbid»). For simplicity, only rules considering exactly two child classes are
shown. In these two Henshin rules, we added conditions and patterns to handle the
properties neglected until now, e.g., regarding the visibility of the created superclass.

libraries: We can only create a superclass for classes that we can modify but not
for classes that are defined within a library. In the program model, the property
tLib is set to true for types that are defined within a library. Accordingly, the
Henshin rules contain conditions for assuring that tLib is set to false on all
nodes representing types that will be changed by the refactoring.

packages: The new superclass should be added to a package. While this could be
handled in the two rules identically, differentiating allows amore precise outcome
regarding the aggregation of coherent functionality. As the child classes can be
in different packages and the new class is common to all of them and not only
to a single child class, in the case we already have a superclass, the package this

270 10 Security-aware Refactoring of Software Systems

Figure 10.5 Model-transformation rules for Create Superclass refactoring including pre-
conditions

10.2 Formalization of Object-Oriented Refactorings 271

superclass resides in is selected. If we do not have a common parent, this is not
possible. In this case, we select randomly the package of one of the child classes.

superclass name: In both rules, the desired name of the new superclass can be
specified using a name parameter specified on the rules. The name of the created
superclass will be set to this name specified before matching by the developer.
Also, the NAC from Figure 10.3, ensuring that the class to be created does not
already exist, is detailed using this name parameter. It is checked that no type
with the name specified in the parameter (name) is defined in the package to
which the new class will be added.

default parent: Figure 10.3a specifies a Create Superclass refactoring for classes
that do not have an explicit superclass, meaning that these immediately extend
java.lang.Object. As in Java this does not have to be specified but can be
specified, in the programmodel this relation is made explicit in all cases. Accord-
ingly, Figure 10.3a checks whether the child classes extend java.lang.
Object instead of the NAC specified in Figure10.3a. This is necessary as the
next conditions require a differentiation between the two cases.

visibilities: At setting the visibility of the newly created class, we have to ensure
that this class is accessible for all child classes. If the child classes have an

Figure 10.6 Move Method refactoring specified as variability-based (VB) rule

272 10 Security-aware Refactoring of Software Systems

explicit parent, the new superclass will get the visibility that is set for this parent.
As the new class resides in the same package as the old superclass, using this
visibility, it is accessible for all child classes. In case the child classes have no
explicit parent, the new superclass is located in the package of one of the child
classes. In this case, we cannot easily give such a guarantee for accessibility. If
one of the other child classes is in a different package, public is required while
protectedwould be sufficient when all child classes are in the same package.
For simplicity, when there is no explicit superclass, the visibility public will
be used.

While the two discussed versions of the Create Superclass refactoring are very
similar, it is still necessary to specify these in twodifferent rules.Also, our discussion
has shown that there is the possibility to specify additional more detailed versions
of this refactoring. However, a user should not have to understand all of these
different versions of the refactoring and select the correct one. Here, variability-
based (VB) transformation rules allow specifying multiple transformation rules that
share common parts but also have individual parts within one transformation rule,
reusing the shared parts [262].

Figure 10.6 shows such a VB rule, that combines the two versions of the Create
Superclass refactoring. This rule has a base part that is always a part of the rule, and
variable parts that are specific to one of the two rules in Figure 10.5. The specific
parts are annotated with presence conditions, shown as dashed circles in the figure,
specifying in which variant of this VB rule this part is present. Thereby, the presence
conditions can contain logical expressions over a set of features. In addition, a feature
model gives additional constraints over the features. In our case, the rule has two
features of which exactly one has to be selected. Here, the two features stand for
the two rules we have.

In the end, the two rules shown in Figure 10.5 can be derived from this VB
rule. Therefore, one has to iterate over all possible feature combinations concerning
the VB rule’s feature model. For each feature combination, the corresponding rule
variant can be generated by selecting all elements that are not annotated with a
presence condition as well as those whose presence condition evaluates to true for
the current feature selection. For example, if we select the feature object, we
will get the rule for child classes having no explicit parent, shown in Figure 10.3a.
Accordingly, all elements annotated with objectwill be added to the rule variant,
e.g., the packages with the names java and lang or the attribute condition setting
the expected name of the old superclass to „Object“. All elements annotated with
parentwill not be added to the rule variant, e.g., the node representing themodifier
of the old superclass.

10.2 Formalization of Object-Oriented Refactorings 273

When such a VB rule is applied to the program model, first, the base part of the
rule is matched. If there are matches for the base part, these matches are extended to
all possible variants of the rule. Accordingly, we get the same matches as we would
match the two rules shown in Figure 10.5. For each of the matches, the deletions
and additions specified in the rule variant can be performed. Accordingly, VB rules
can be used to check the refactoring for all possible variations of the rule and to
execute one of the possible outcomes.

Although Create Superclass is a refactoring that only requires a few precondi-
tions, we include this operation to demonstrate that our synchronization mechanism
can cope with newly created class nodes in the program model during backward
transformation. Since those endogenous refactoring transformation rules only mod-
ify the program model (in the first place), we do not (yet) require bidirectional
synchronization for this step.

Pull-Up Method Refactoring
In this section, we discuss the Pull-Up Method refactoring [18] as the second refac-
toring considered by us.When looking at the iTrust system after applying theCreate
Superclass refactoring, shown in Figure 10.4, we notice that the PatientBean
and PersonnelBean contain similar functionality. For example, both contain a
method (getFullName) to calculate the full name from the first and last name
of a patient or personnel. As the idea of creating a shared superclass for these two
classes was to implement shared functionality there, it is a good idea to implement
the currently duplicated functionality in this new superclass. By performing such a
restructuring, the amount of duplicated code can be reduced and the risk for indepen-
dent evolution of code duplicated can be lowered. The Pull-Up Method refactoring
specifies how such a restructuring can be performed systematically and which con-
ditions for applicability have to be considered. For example, the proposed pull-up
of getFullName is not immediately possible, as this method has to access the
getters getFirstName and getLastName that are defined on the child classes.

As motivation for the challenges that come with this refactoring, consider the
synthetic Java program in Listing 10.1. The Java program initially consists of four
classes: A, B, C and E, assuming that all classes reside in the same package. The
classes A, B and C are in the following inheritance relation:

• Class B extends class A.
• Class C extends class B.

In this inheritance hierarchy, methods m and member variables mult are defined as
follows:

274 10 Security-aware Refactoring of Software Systems

1 public class A {
2 int mult = 3 ;
3

4 public int m(int a) {
5 return mult ∗ a;
6 }
7 }
8

9 public class B extends A {
10 int mult = 2;
11 }
12

13 public class C extends B {
14 public int m(int a){
15 return mult ∗ a;
16 }
17 }
18

19 public class E {
20 public void main (String [] args) {
21 A a = new A() ;
22 System. out . println (a .m(2)) ; / / output: 6
23

24 C c = new C() ;
25 System. out . println (c .m(2)) ; / / output: 4
26 }
27 }

Listing 10.1 Example Java program containing the possibility for a Pull-Up Method
refactoring

• Class A implements a method m which receives as argument an integer value a
and returns the value resulting from multiplying this value with the value 3 of
the member variable mult.

• Class B inherits the implementation of method m from class A, but redefines the
value of mult to 2.

• In contrast, class C overrides the implementation of method m, but (accidentally)
uses the same method body as the one in class A.

While the two implementations of m are clones, both implementations of method m
return different values as C.m accesses the redefined value of the member variable
mult in class B. These differing behaviors are demonstrated by the main method in

10.2 Formalization of Object-Oriented Refactorings 275

1 . . .
2 / / class D has been added
3 public class D extends B {
4 public int m(int a){
5 int tmp = 0;
6 for (int i = 0; i < mult ; i ++){
7 tmp += a ;
8 }
9 return tmp ;
10 }
11 }
12

13 public class E {
14 public void main (String [] args) {
15 A a = new A() ;
16 System. out . println (a .m(2)) ; / / output: 6
17

18 C c = new C() ;
19 System. out . println (c .m(2)) ; / / output: 4
20

21 D d = new D() ;
22 System. out . println (d.m(2)) ; / / output: 4
23 }
24 }

Listing 10.2 Example Java program after evolution

class E, calling both A.m and C.mwith the same parameter value 2 which produces
different results.

As an evolution step, assume a developer to insert a further class D, shown
in Listing 10.2, which also extends class B and overrides the implementation of
method m, similarly to class C. To demonstrate the execution of the newly inserted
method implementation, a corresponding call of D.m has been added to E.main.
While D.m uses an alternative way of computing the multiplication, the method
body of D.m implements the same functionality as C.m. As a result, we have two
sibling classes implementing the same methods with equivalent behaviors. Hence,
as a consequence of program evolution, the source code may exhibit undesirable
decay, e.g., duplicated/redundant code in this example, which potentially obstructs
maintenance and comprehensibility throughout subsequent development steps.

For instance, as motivated before, the Pull-Up Method refactoring proposed by
Fowler in [18] is concerned with situations such as observed for the example in

276 10 Security-aware Refactoring of Software Systems

1 . . .
2 public class B extends A {
3 int mult = 2;
4

5 public int m(int a){
6 int tmp = 0;
7 for (int i = 0; i < mult ; i ++){
8 tmp += a ;
9 }
10 return tmp ;
11 }
12 }
13

14 public class C extends B {
15 }
16

17 public class D extends B {
18 }
19

20 public class E {
21 public void main (String [] args) {
22 A a = new A() ;
23 System. out . println (a .m(2)) ; / / output: 6
24

25 C c = new C() ;
26 System. out . println (c .m(2)) ; / / output: 4
27

28 D d = new D() ;
29 System. out . println (d.m(2)) ; / / output: 4
30 }
31 }

Listing 10.3 Example Java program after the application of a Pull-Up Method refactoring
for method m

Listing 10.2 after inserting class D. In particular, developers may execute a Pull-Up
Method refactoring in a consecutivemaintenance step to eliminate code duplication.
As the concurrent implementations of method m in the classes C and D are semanti-
cally equivalent, it is possible to move one of their implementations into superclass
B and to erase the redundant code from C and D. The result of this refactoring
operation is shown in Listing 10.3.

For such program transformations to constitute correct refactorings, several pre-
conditions must be met to ensure behavior preservation. For instance, before apply-

10.2 Formalization of Object-Oriented Refactorings 277

ing Pull-Up Method, it has to be ensured that any call to the affected method is
resolved in exactly the same way before and after the refactoring. In our example,
the results of all three calls to the refactored method m in E.main yield the same
results as before the refactoring. In contrast, consider the slightly adapted imple-
mentation of E.main in Listing 10.4, where the Pull-Up Method refactoring is not
executed yet. Here, method m is called on object b of type B instead of D. In this
case, a pull-up of method m from C to B must be neglected as it would alter the
result of calling m on b as m would access a different field after the refactoring.

An example of a graph transformation rule for the Pull-Up Method refactor-
ing is shown in Figure 10.7 using the same notation as for the Create Superclass
refactoring. This rule is a simplified version of the Pull-Up Method refactoring rule
specified on our type graph.

1 public class E {
2 public void main (String [] args) {
3 A a = new A () ;
4 System. out . println (a .m(2)) ; / / output: 6
5

6 B b = new B() ;
7 System. out . println (b.m(2)) ; / / output: 6
8

9 C c = new C() ;
10 System. out . println (c .m(2)) ; / / output: 4
11 }
12 }

Listing10.4 Example JavaClassContaining anAccessProhibiting aPull-Up Method (PUM)
Refactoring

To summarize, the rule in Figure 10.7 is interpreted as follows: For a Pull-Up
Method refactoring to be applicable on a given input programmodel, theremust exist
a superclass with at least one (but possibly more) subclass(es) child1...N, each
having a method represented by the corresponding method definition(s) defini-
tion1...N. Those definitions are supposed to refer to method implementations
in sibling sub-classes, but having equivalent functionality.

In general, checking whether a given set of methods implement equivalent func-
tionality, is undecidable and, consequently, out of scope of preconditions for object-
oriented refactoring rules. In contrast, declaring a given set of sibling methods
as equivalent is usually obliged to the developer before invoking the refactoring
operation. Hence, we require those methods matched by definition1...N
to share the same signature signature. The NAC edge between parent and
signature in the LHS further ensures that no method with the same signature
already exists in the parent which would, otherwise, obstruct the pull-up operation.

278 10 Security-aware Refactoring of Software Systems

Figure 10.7 Transformation rule of a Pull-Up Method refactoring

Figure 10.8 Program model before and after a Pull-Up Method refactoring

When executing this transformation rule, all method definitions (including all
their connections) except for one are deleted from the sibling sub-classes, and the
preserved method definition1 (together with its signature) is moved (pulled up)
into the class parent.

Figure 10.8 shows a concrete example for an application of the Pull-Up Method
rule to the input programmodel corresponding to the source code in Listing 10.2. For
convenience, Figure 10.8 only contains a relevant excerpt of both program models.

10.2 Formalization of Object-Oriented Refactorings 279

Figure 10.9 Excerpt of the program model of the program in Listing 10.4

As the LHS of the refactoring rule in Figure 10.7 matches the input program
model in Figure 10.8a, the Pull-Up Method rule is applicable to this program. As
a result, one of the method definitions is deleted and the definition and signature
of the common method m are attached to the common superclass B. The resulting
output program model shown in Figure 10.8b corresponds to the source code in
Listing 10.3.

When considering themodifications shown in Listing 10.4, cf. the corresponding
programmodel excerpt in Figure 10.9, the refactoring rule is not applicable anymore
on this program model. To simplify the shown program model excerpt, instances of
TAccess are visualized as an edge labeled access from the source to the target of

Figure 10.10 Model-transformation rule for Pull-Up Method refactoring including precon-
ditions

280 10 Security-aware Refactoring of Software Systems

the access. This inapplicability is because that method B.m is accessed now, which
is inherited from the class A. A pull up of m from class C and D to class B, therefore,
changes the program behavior as m accesses different instances (and thus values)
of field mult before and after the pull-up operation. Such a potential violation
of behavior preservation is not directly detectable on a plain AST, whereas it is
explicitly recognizable by investigating the additional access edges in the program
model.

Again, the graphic representation of the of Pull-Up Method rule in Figure 10.7
does not include all necessary preconditions but rather covers a simplified ver-
sion for convenience. However, the missing parts may be represented similarly. For
example, as illustrated by the case of an infeasible Pull-Up Method in Listing 10.4
(Figure 10.9, respectively), the superclassmay inherit a methodwith a similar signa-
ture as the one being pull-upped. This may also lead to altered program behavior if
the inheritedmethod is called fromanother class.As this inheritedmethod ismapped
to a different signature object within the program model, we have to explicitly han-
dle this case by an additional graph pattern. The example in Listing 10.4 shows
that additional AST-crossing edges for representing static semantic dependencies
among program entities are necessary to neglect unsound refactorings.

Figure 10.10 shows a Henshin rule for the Pull-Up Method refactoring including
such additional application conditions:

libraries: As for the Create Superclass refactoring, only classes that do not come
from a library can be modified (tLib = false).

accesses: The preserved method definition is not allowed to access any other mem-
ber of the class it is defined in before the refactoring («forbid#1»). This NAC
is necessary as these members are not accessible from the superclass.

overriding: The violating access from the example is prevented by NAC
«forbid#2». In the end, we can get this violation every time a superclass
of parent defines a method with the same signature (signature) as the
one to be pulled upwards (definition0). Due to polymorphism, the child’s
superclass (parent) could always be used in the context of its own superclasses.
Thereby, this usage might contain an invocation of the overridden method real-
izing signature. As polymorphism is not statically analyzable, we forbid all
Pull-Up Method refactorings inwhich themethod to be pulled upwards overrides
an implementation from a superclass of parent. As this is semantically equiv-
alent to overriding a method with the same signature, we can avoid specifying a
type-hierarchy in the rule.

already implemented: The third NAC in the rule is the one already considered in
Figure 10.7. This NAC is expressed identically in NAC «forbid#3».

10.2 Formalization of Object-Oriented Refactorings 281

When applying the Pull-Up Method refactoring, it is not sufficient only to delete all
implementations of the child classes except one. For every deleted implementation,
the incoming accesses have to be redirected to the preserved method definition. This
redirect is expressed on the lower right of the rule.

Comparable to the Pull-Up Method refactoring, a Pull-Up Field refactoring can
be specified. As in Java fields hide fields of superclasses instead of overriding these
as methods do, this refactoring would require fewer preconditions. To be more
precise, «forbid#2» would not be necessary, as the original field would still be
accessible by using the super qualifier of Java.

Move Method Refactoring
The last refactoring considered by us is the Move Method refactoring [18]. We
conceive this refactoring as an essential refactoring, as it has been shown that Move
Method refactorings are considerably effective in improving class responsibility
assignment (CRA) [263] in flawed object-oriented program designs [264].

An example application context for aMove Method refactoring on iTrust is given
in Figure 10.11. This figure shows a program model excerpt focusing on the iTrust
source code shown in Listings 10.5, 10.6, and 10.7. These source code fragments
show relevant parts of the implementation of consistency checks at storing an office
visit in the iTrust system.

1 package edu.ncsu . csc . i t rus t .model. officeVisit ;
2

3 public class OfficeVisitValidator extends POJOValidator {
4

5 public void validate (OfficeVisit obj) throws FormValidationException
{

6 String patientMID = obj .getPatientMID() ;
7 . . .
8 errorList . addIfNotNull(checkFormat("Patient MID" , patientMID,

ValidationFormat .NPMID, false)) ;
9 . . .
10 }
11 }

Listing 10.5 Source code excerpt from the iTrust class OfficeVisitValidator

As soon as an office visit should be stored, the validate method of the
OfficeVisitValidator is executed to check the validity of the office visit
entry. An excerpt of the relevant source code is shown in Listing 10.5. Among
others, this method contains a check whether the MID of the patient meets the
expected format. For this check the method checkFormat, defined in the super-
class of the class OfficeVisitValidator, is called. Among others, in this

282 10 Security-aware Refactoring of Software Systems

call, the office visit object and the expected format as defined in the enumeration
ValidationFormat are passed to the method.

1 package edu.ncsu . csc . i t rus t .model;
2

3 public class POJOValidator {
4

5 abstract public void validate (T obj) throws FormValidationException;
6

7 protected String checkFormat(String name, String value ,
ValidationFormat format , boolean isNullable) {

8 String errorMessage = name + " : " + format . getDescription () ;
9 i f (value == null | | "" . equals(value))
10 return isNullable ? "" : errorMessage;
11 else i f (format .getRegex() .matcher(value) .matches())
12 return "" ;
13 else
14 return errorMessage;
15 }
16 }

Listing 10.6 Source code excerpt from the iTrust class POJOValidator

The implementation of the method checkFormat is shown in Listing 10.6.
This method reads a regular expression specifying the expected format and an error
message from the given instance of ValidationFormat. If the regular expres-
sion does not match, the error message is returned otherwise an empty string is
returned. The implementation of the enumeration ValidationFormat is shown
in Listing 10.7.

As the method checkFormat accesses besides methods from the Java stan-
dard library only members from the enumeration ValidationFormat and even
not a single member from its own class, considering the CRA problem, moving
this method to the enumeration could be a good idea. The conditions for such a
move operation to be behavior preserving are specified as part of a Move Method
refactoring.

Figure 10.12 shows the essential parts of a rule for Move Method refactorings
defined on our type graph, using the same notation as for the previous refactorings.
The rule takes a source class source, a target class target, a method signature
signature, and a method definition realizing the signature, deletes the contain-
ment arrow between source class and the pair of definition and signature (red arrows
annotated with --) and creates new containment arrows from the target class (green
arrow annotated with ++), only if such an arrow to the signature not already
exists before rule application. The latter precondition is expressed by a forbidden

10.2 Formalization of Object-Oriented Refactorings 283

1 package edu.ncsu . csc . i t rus t .model;
2

3 public enum ValidationFormat {
4

5 NPMID("[0−8][0−9]{0,9}" , "1−10 digit number not beginning with 9") ,
6

7

8 private Pattern regex ;
9 private String description ;
10

11 ValidationFormat(String regex , String errorMessage) {
12 this . regex = Pattern .compile(regex) ;
13 this . description = errorMessage;
14 }
15

16 public Pattern getRegex() {
17 return regex ;
18 }
19

20 public String getDescription () {
21 return description ;
22 }
23 }

Listing 10.7 Source code excerpt from the iTrust class ValidationFormat

(crossed-out) arrow. For a comprehensive list of all necessary preconditions, we
refer to [69].

Besides preconditions, for refactoring operations to yield a correct result, it must
satisfy further postconditions to be evaluated after rule application, especially con-
cerning accessibility constraints as declared in the original program, i.e., member
accesses like method calls in the original program must be preserved after refac-
toring [24]. As an example, Listing 10.8 shows a (simplified) postcondition for the
Move Method rule using the OCL notation. The postcondition is applied to every
class member (TMember) in the program and checks whether the declared acces-
sibility of the member is at least as generous as required, based on the canonical
ordering private < default < protected < public. For the calcu-
lation of a class member’s required access modifier, it utilizes the helper-function
requiredAccessibility(TMember) [69].

284 10 Security-aware Refactoring of Software Systems

context TMember
post : self . tModifier . tVisibil i ty >= requiredAccessibility (self)

Listing 10.8 Postcondition of a Move Method refactoring concerning the suitability of
member visibilities

For instance, if the Move Method refactoring is applied to POJOValidator,
the method checkFormat violates this postcondition, as the call originating from
the method validate, that is defined in a class from another package, requires
accessibility public, whereas the declared accessibility is protected. Instead
of immediately rejecting refactorings like this Move Method refactoring, we can

Figure 10.11 Excerpt from the program model focusing on the iTrust source code excerpts
in Listings 10.6, 10.7, and 10.5

Figure 10.12 Model-transformation rule for a Move Method refactoring

10.2 Formalization of Object-Oriented Refactorings 285

use an accessibility-repair operation for each member violating the postcondition
which therefore causes a relaxation of the visibilities [146]. Such a repair operation
sets the violating visibility to the lowest required visibility. However, this repair is
not always possible as relaxations may lead to incorrect refactorings altering the
original program semantics, e.g., due to method overriding/overloading [69].

In contrast, imagine a refactoring that moves amethod only having accesses from
members defined in one single class to this specific class. This refactoring would
satisfy the postcondition for any original visibility as the required accessibility
becomes private, whereas it had to be at least the default visibility before to
allow access. In those cases, we may also apply the repair operation, now leading
to a reduction of the visibility.

Figure 10.13 Model-transformation rule for Move Method refactoring including precondi-
tions

Besides the refactoring being behavior preserving, the refactoring has to be possi-
ble, meaning that all information accessed has to be accessible from the target class,
too. This is not given for every target of amove operation. Figure 10.13 shows aHen-
shin VB rule of a Move Method refactoring that includes both, behavior-preserving

286 10 Security-aware Refactoring of Software Systems

constraints and constraints ensuring the move to be possible in terms of compatible
target classes.

The rule’s central part is the method definition (methodDef) and method
signature (methodSig) pair in the rule’s center. The definition represents the
implementation of the method that should be moved to a different class. The
node sourceClass represents the class currently defining the method and the
node targetClass the class the method should be moved to. The movement is
expressed by deleting the references between the sourceClass and the method
(methodSig/methodDef) and adding these references for the targetClass.

For the movement of a method to be possible (but not necessarily behavior-
preserving), some conditions have to hold:

1. The source class and target class are not part of a library (tLib = false).
2. As template types only serve as a placeholder for concrete type specifications in

variables, the target class cannot be a template type («forbid»#template
tName="T").

3. The target class does not already implement a method with the same method
signature («forbid»#alreadyImplemented).

4. Themethod is not overriddenor overriding anothermethod («forbid»#over-
ridden and «forbid»#overriding).

5. There is no call from another class to the method through a sub-class of
sourceClass («forbid»#synthetic).

Based on the presented conditions, in principle, possible moves of methods can be
identified. However, for a correct refactoring, the method has to be accessible from
the scope of its original location after the refactoring [18]. We consider three cases
in which we can guarantee the accessibility of the moved method. The fulfillment
of already one case is enough to guarantee reachability. We assign one feature of
the VB rule’s feature model to every of the considered cases. The patterns of every
case in the rule are the ones annotated with the corresponding features. The cases
considered by us are:

static: Static methods do not have an object as execution context. For this reason,
static methods can be moved to every class.

param: Parameters specify parts of a method’s execution context. For this reason,
the instances of the method’s parameters are accessible from the source class
and the method can be moved to the types of parameters.

field: As for parameters, through fields, the method stays accessible in its original
context as the method can be invoked on the field.

10.2 Formalization of Object-Oriented Refactorings 287

In this section, we have shown the formalization of three refactoring operations
on the type graph used in this thesis. Next, we discuss the application of these
refactorings to Java programs as part of the GRaViTY framework.

10.2.3 Co-Evolution due to Refactoring Application

While tailoring the graph-based representation of Java programs, one of the central
questions is how to determine an appropriate level of abstraction for the program
model to meet the particular program transformation scenario. In some cases, it may
be even convenient to directly use the original AST as a program representation.
ASTs have the advantage that they contain a complete representation of the syntactic
elements of the program at any level of granularity. Moreover, numerous tools
provide out-of-the-box solutions to modify programs at the AST level [265, 266].
Furthermore, Eclipse and Java compilers have their own Java AST representation,
too [267]. Using these tools, it is possible to synchronize the Java source code and
its AST representation without the risk of losing information.

Nevertheless, in application scenarios where the program modifications involve
the analysis of complex inter-dependencies, as shown in our refactoring examples,
AST may suffer from being too detailed for an efficient transformation specifica-
tion. In those cases, a custom-tailored program model representation such as the
type graph presented in Chapter 5 is desirable. However, transforming programs
into abstract representations necessarily involves the loss of program information
which obstructs the backpropagation of changes corresponding to program model
transformations into the affected part of the source code and, vice versa, in case of
source code edits. Hence, an appropriate synchronization mechanism is required to
incrementally ensure consistency between both the source code and the program
representation of Java programs. As described in Section 6.2, bidirectional graph
transformation provides such techniques.

In what follows, we discuss the suitability of this bidirectional graph transfor-
mation for propagating the changes made by the three refactoring operations into
the source code. The suitability to update the program model in case of changes in
the implementation has already been discussed in Chapter 6.

Create Superclass Refactoring Changes made by a Create Superclass refactor-
ing can be propagated by our synchronization approach as packages, classes,
and inheritance relations are expressed on the same level of abstraction in the
implementation and the program model. As no elements with abstractions, e.g.,
method definitions, are touched by this refactoring, there is no risk for the loss

288 10 Security-aware Refactoring of Software Systems

of information. Accordingly, we can always propagate Create Superclass refac-
torings from the program model into the implementation.

Pull-Up Method Refactoring For the Pull-Up Method refactoring, there is a risk
that the body of the method definition that has been pulled up is lost. However,
the presented TGG has been designed to preserve the bodies of method and field
definitions. This property has been discussed in detail in Section 6.2.2. Accord-
ingly, the synchronization of changes made by a Pull-Up Method refactoring is
possible without issues.

Move Method Refactoring As for the Pull-Up Method refactoring, there is the
risk for the Move Method refactorings that the information about the body of the
method definition that will be moved is lost. For the same reasons as before, this
risk is mitigated in the TGG used for synchronization.
The next risk is that the implementation of the method cannot be adapted to the
new location, meaning that there can be errors in the way how the data used in
the method is accessed. Here, we have to consider two cases, static methods, and
non-static methods. As static methods cannot access data specific to objects, an
adaption of the accesses is not necessary and the propagation of these is possible.
For non-static methods there might be the need to adapt the method, e.g., if the
method is moved to a parameter type, this parameter has to be replaced by a
parameter providing access to the previous owning class. Such adaptions on the
statement level cannot be specified on the program model and therefore not be
propagated by the TGG. The method would be propagated with an unchanged
method body, which eventually has to be adapted by a developer.
Such cases can be handled by refactoring implementations working on an AST
ormodel having similar granularity, e.g., the Eclipse refactoring implementation.
By combining such an implementation with our approach, we can benefit from
both approaches. We can have the detailed preconditions and postconditions of
our approach together with the possibility of detailed adaptions on the statement
level.

To conclude, we can propagate all refactorings to the implementation without the
loss of information. However, for the Move Method refactoring there might be
situations that require additional changes by developers after the synchronization.
For all other refactorings, no manual changes are required.

10.2 Formalization of Object-Oriented Refactorings 289

Figure 10.14 Component diagram of the refactoring implementation and integration into
GRaViTY

Figure 10.15 Presentation of a refactoring in the GRaViTY refactoring UI

290 10 Security-aware Refactoring of Software Systems

10.2.4 Tool Support for the Application of Formalized
Refactorings

Our implementation of the refactorings relies on the graph-transformation engine
Henshin [26] for the execution of the refactoring on the program model. Cur-
rently we support the refactorings Pull-Up Method, Create Superclass, and Move
Method. Figure 10.14 shows a component diagram of our refactoring implementa-
tion. The refactorings are specifiedwithin the Refactorings component as Hen-
shin rules on the type graph of our programmodel. The Refactoring component
uses the Henshin transformation engine (Henshin component) to match possible
refactoring opportunities and to execute refactorings. After the execution of a refac-
toring on the programmodel, implementation of our synchronization in thePM TGG
component is used to propagate the changes into theMoDiscomodel and to generate
the refactored source code from this model. The refactoring implementation can be
used in two ways:

API: The Refactorings component exports an API (IRefactorings), that
allows us to match and execute refactorings from Java applications. For each
refactoring a isApplicible and performmethods are implemented allow-
ing us to check if a refactoring is possible and behavior-preserving beforemodify-
ing the programmodel. Afterward, the change can be inspected before triggering
the synchronization with the implementation.

UI: The Refactorings component extends the Eclipse IDE with graphical sup-
port for executing refactorings. A developer can for example right-click on a
method in the source code and select to pull this method upwards. Then methods
with the same signature in siblings of the class defining the selected method
are proposed to be pulled upwards, too. The applicability of the refactoring is
checked and if applicable, the affected methods and classes are shown to the
developer as shown in Figure 10.15. Here, the developer selected to pull the
method getFullName upwards after the fields firstName and lastName
as well as their getters and setters have been pulled upwards to the parent. Oth-
erwise, the developer would have been informed about the inapplicability of
the refactoring. After the developer confirms her selection, the refactoring is
executed.

Thepresented tool support allowsdevelopers to effectively refactor software systems
as part of the GRaViTY development approach.

10.2 Formalization of Object-Oriented Refactorings 291

Table 10.1 Evaluation results for the refactorings

Test Case Eclipse GRaViTY Refactorings
Refactoring Elements Success Success Duration in

ms

1 csc 8 yes yes 48

2 csc 8 yes yes 46

3 pum 10 yes yes 211

4 pum 7 yes yes 44

5 pum 5 yes yes 45

6 pum 5 yes yes 44

7 csc 8 yes yes 50

8 csc 8 yes yes 46

9 pum 8 yes yes 46

10 pum 8 yes yes 45

11 csc 10 yes yes 26

12 pum 10 yes yes 289

13 pum 10 yes yes 46

14 csc+pum 5 yes yes 260

15 csc+pum 5 yes yes 286

16 csc 146 yes yes 149

17 csc 146 yes yes 960

18 23csc+24pum 48 yes yes 3185

19 pum 11 no yes 63

10.2.5 Evaluation of the Refactoring Technique

To demonstrate the feasibility of our technique, we created an evaluation framework
called Automated Refactoring Test Environment (ARTE) [131]. ARTE provides test
cases consisting of

(i) input Java source code to be transformed into an equivalent program model,
(ii) one or more refactorings to be performed on the program model, and
(iii) the output Java program expected after performing the refactorings.

ARTE also supports negative test cases, where the given refactoring or chain of
refactorings should not be applied to the input program. In those cases, the refac-

292 10 Security-aware Refactoring of Software Systems

toring implementation under test should is supposed to detect some precondition to
fail and to deliver a corresponding message to the user.

Based on ARTE, we empirically studied the correctness of the refactoring appli-
cation.Here,we used a version of our tool prototype that has been presented in [130].
Technically, this version differs in two aspects from the one presented in this chapter.
First, JaMoPP [143] has been used for parsing Java source code and was replaced by
MoDisco to support newer Java versions. Second, the presented graph patterns had
been specified using the SDMnotation of eMoflon [162, 268] that has been replaced
by Henshin rules. These are visually closer to the patterns introduced in this chapter.
Besides the readability of the rule specification, the SDM’s run time performance
in 2015th transformation tool contest on refactorings was rather weak [145], while
Henshin performed in the comparable class responsibility assignment case of 2018
rather good [269]. As both, Henshin and eMoflon built upon the formalism of
algebraic graph transformations, the evaluation of the application’s correctness is
transferable. In what follows, we first introduce the setup of our experiment and
discuss the results of the experiments afterward.

Setup.Wemanually specified our test input programs to cover the most interest-
ing cases regarding the refactoring operations Pull-Up Method (pum) and Create
Superclass (csc). Most of the test programs contain only a few classes and methods,
representing a minimal positive or negative example for a particular (set of) pre-
condition(s) under investigation. In this way, we mainly focused our experiments
on assessing correctness as a refactoring implementation is only practically relevant
if it complies with a considerable amount of correctness criteria. In this regard,
we considered scalability and performance measures to be of secondary impor-
tance in our setting. Although the test programs have been specified manually, they
already existed before we implemented our approach. In particular, our test cases
cover all crucial preconditions known from the literature. Those test cases consti-
tute executable Java programs, although they merely perform basic console output
operations.

ResultsTable 10.1 summarizes the results for the test cases inARTEand includes
a comparison to Eclipse regarding the correctness of the refactoring specifications.
(Eclipse offersPull-Up Method for Java andCreate Superclass can also be simulated
by performing Extract Superclass with no extracted elements.)

The current version of ARTE contains 9 test cases for Pull Up Method, 7 test
cases forCreate Superclass and3 test cases combiningboth refactorings. Each row in
Table 10.1 represents one test case, identified by its number. The first column shows
the kind of refactoring(s) being tested by that particular test case.Multiple executions
of refactorings of the same kind are represented by corresponding numbers, e.g.,
Test Case 18. The second column, Elements, represents the size of the test case

10.2 Formalization of Object-Oriented Refactorings 293

concerning the number of classes, constructors, methods, and fields of the input
program. The third and fourth columns represent the correctness of the refactorings
specified by Eclipse and our approach, respectively, by showing if the test cases
have been successfully executed. Note that Test Case 19 contains our example
scenario introduced in Section 10.2.1. Thus, results regarding correctness underpin
the relevance of our approach. Eclipse does not check for external method accesses
and, as a consequence, fails at TestCase 19. In our approach,wehavemade this check
convenient by adding access edges to the program model and succeed in this test
case as well. The fifth column contains our execution times for each test case, given
in milliseconds. Unfortunately, we were not able to provide time measurements
for Eclipse as we could not separate the actual methods performing the refactoring
from other Eclipse tasks and the overhead caused by the graphical interface. Based
on manual time measurements, we assume that the Eclipse execution times are
comparable to ours, thus indicating the practical relevance of our technique.

The test cases 15 and 16 in ARTE also determine if synchronization de facto
happens incrementally, i.e., the unaffected program parts remain untouched and are
not regenerated – this is ensured by including program parts in the test input that
are behaviorally equivalent to the original ones, but having different code being
generated by the transformation.

Concluding the evaluation results, we found that our implementation prototype
fulfills the requirements of all our test cases, i.e., our refactoring specifications
are proven to be correct for typical cases of the respective refactoring operation.
Moreover, multiple refactorings can be applied sequentially to the program model
before synchronizing it with the source code. The synchronization has proven to be
incremental according to the notion above.

10.2.6 Threats toValidity

In this section, we discuss threats to the internal and external validity of the evalu-
ation of our refactoring approach.

Internal Validity
We evaluated our refactoring approach based on synthetic examples that have been
specified by ourselves. Here, lies a risk that we did not consider all relevant cases.
To mitigate this threat, we discussed among the authors of [130] the considered
cases until we have not been able to find any uncovered case.

294 10 Security-aware Refactoring of Software Systems

External Validity
The evaluation based on synthetic examples might limit the generalization of the
results. The systematic specification of examples indicates the possibility of gener-
alization.

Also, due to the short run-time of the refactorings, effects like the Java garbage
collection might have a high impact on the measured run times. To mitigate this
threat, we reported the median run time of multiple executions.

10.2.7 Conclusion on Formalizing Refactorings

In this section, we have shown how OO refactorings can be formalized using graph
transformation rules and how the changes made by these rules on the program
model can be propagated into the implementation.While graph transformation rules
have only been suitable to check the applicability of an OO refactoring before,
using our approach also their application is possible. Furthermore, our evaluation
has shown the effectiveness of our refactoring implementation to detect behavior-
changing refactorings upfront. However, while we consider visibilities at checking
and executing refactorings, we currently only consider these from the perspective
of correctness.

10.3 Security-aware Refactorings

The validity of proposed refactorings is mostly concerned with purely functional
behavior preservation [24], whereas their impact on extra-functional properties like
program security has received little attention so far [270]. However, applying elab-
orated information-flow metrics for identifying security-preserving refactorings is
computationally too expensive in practice [271].

In what follows, we first summarize an experiment on the interplay between
refactorings and visibilities in Section 10.3.1. Afterward, based on the insights
from this experiment, we introduce possible security-preserving extensions to the
Move Method refactoring in Section 10.3.2. Thereby we use the formalization as
introduced in Section 3 and extend it with additional security-preserving constraints.
Finally, we conclude in Section 10.3.3.

10.3 Security-aware Refactorings 295

10.3.1 Controlling the Attack Surface of Object-Oriented
Refactorings

For studying the interplay between refactorings and security, as an alternative to
elaborated information-flow metrics, we consider attack-surface metrics as a suf-
ficiently reliable, yet easy-to-compute indicator for the preservation of program
security [214, 215]. Attack surfaces of programs comprise all conventional ways
of entering a software system by users/attackers, e.g., invoking API methods or
inheriting from super-classes, such that an unnecessarily large surface increases
the danger of exploiting vulnerabilities. Hence, the goal of a secure program design
should be to grant the least privileges to class members to reduce the extent to which
data and operations are exposed to the world [215]. In Java-like languages, accessi-
bility constraints by means of modifiers public, private and protected
provide a built-in low-level mechanism for controlling and restricting informa-
tion flow within and across classes, sub-classes and packages [69]. Accessibility
constraints introduce compile-time security barriers protecting trusted system code
from untrusted mobile code [272]. As a downside, restricted accessibility privi-
leges naturally obstruct possibilities for refactorings, as CRA updates (e.g., moving
members [264]) may be either rejected by those constraints, or they require to relax
accessibility privileges, thus increasing the attack surface [273].

Considering the attack surface of an object-oriented program, the refactoring of
moving checkFormat, discussed in Section 10.2.2, should be definitely blamed
as harmful. The enforced relaxations of accessibility constraints for ending in a
compiling state unnecessarily widen the attack surface of the original program. This
especially applies to those refactorings widening the visibility of security-critical
methods. In contrast, the imaginary refactoring allowing to reduce the visibility of
the moved method should be appreciated as it even narrows the attack surface.

Ruland et al. presented a search-based technique to find optimal sequences of
refactorings for object-oriented Java-like programs regarding sets of optimization
objectives [146]. Their model-based tool implementation, called GOBLIN, repre-
sents individuals, i.e., intermediate refactoring results, as program-model instances
complying with the program model introduced in Chapter 5. Hence, instead of
regenerating source code after every single refactoring step, they apply and eval-
uate sequences of refactoring operations, specified as model-transformation rules
in Henshin [218], to the program model. To this end, they apply MOMoT [274], a
generic framework for search-based model transformations.

To deal with the discussed interaction between class member’s visibilities and
design quality, together with Ruland et al., we investigated this relation, by explicitly
taking accessibility constraints into account in GOBLIN [146]. We apply Move

296 10 Security-aware Refactoring of Software Systems

Method refactorings as introduced in combination with operations for on-demand
strengthening and relaxing of accessibility declarations [69] and control their impact
on attack-surface metrics. As objectives, we consider

1. elimination of design flaws, particularly,

(a) optimization of object-oriented coupling/cohesion metrics [275, 276] and
(b) avoidance of anti-patterns, namely The Blob [21],

2. preservation of original program design, i.e.,minimizing the number of changes,
and

3. attack-surface minimization in terms of class member visibilities.

Our experimental results gained from applying refactorings to real-world Java pro-
grams provide us with detailed insights into the impact of attack-surface metrics
on fitness values of refactorings and the resulting trade-off with competing design-
quality objectives. To ensure the functional validity of the applied refactorings,
we specified them as graph transformation rules and included some preconditions
and postconditions as shown in Section 10.2.2 [130, 131, 145]. Our experimental
results demonstrate that attack-surface impacts of refactorings deserve more atten-
tion in the context of refactoring recommendations, revealing a practically relevant
trade-off (or, even contradiction) between traditional design-improvement efforts
and extra-functional (particularly, security) aspects. Also, Ruland et al. uncover in
the experiment that existing tools are mostly unaware of attack-surface impacts of
recommended refactorings [146]. As a consequence of these observations, in the
next section, we investigate the specification of security-preserving refactorings by
enriching our refactoring specifications with security-preserving constraints.

10.3.2 Security Preserving Refactorings

By applying the UMLsec secure dependency check at the design phase, the imple-
mentation will be structured into security-critical parts and non-security-critical
parts. This architecture allows to encapsulate security-critical parts and to lower
the attack surface. At refactoring, we have to ensure that we not only preserve this
design but also do not open new attack vectors that might result in new attacks.

Critical Class Member Visibilities
Considering the attack surface discussed in the previous experiment, one example

10.3 Security-aware Refactorings 297

Figure 10.16 Specification of a Move Method refactoring enriched with security constraints

that makes attacks easier is to give a classified member wider visibility. This change
might allow an attacker to directly access a classified member, e.g., from injected
code, which was not possible before.

In Figure 10.13 of Section 10.2.2, we showed the formalization of the Move
Method refactoring as Henshin rule. However, in this VB rule, we did not consider
visibilities as a security-critical element but added a postprocessing step that sets the
visibility of the moved member to the narrowest visibility possible for the program
to compile. In Figure 10.16, we show a variation of this rule that includes constraints
on the visibilities of members that are critical according to the UMLsec security
requirements.

For critical members, we prevent refactorings that would increase their visibility.
Accordingly, we extended the rule’s feature model with a feature critical indi-

298 10 Security-aware Refactoring of Software Systems

cating critical versions of the rule. In these critical versions, the method to be moved
is annotated with a security requirement, captured by instances of the node type
TAbstractCriticalElement. Iff critical is selected, visibilities
have to be selected in the feature model, containing features associated with con-
straints on visibilities.

The visibility of a method is given in the attribute tVisibility of
the :TModifier node. Java programs can contain four different visibilities we
have to consider:

public: The first case is public methods for that no additional restrictions apply.
package: Methods with the visibility package can only be moved to classes in the

samepackage as the source class. This condition is expressedby the:TPackage
node that is part of the rule if the feature package is selected.

protected: For the visibility protected, two possibilities allow the move, expressed
by the features protectedA and protectedB.

protectedA: As for the visibility package, the target class is in the same package
as the source class. For this reason, the TPackage node is also part of the
rule if the feature protectedA is selected.

protectedB: The target class is a child of the source class. This is represented
by an instance of a parentClass reference with the presence condition
protectedB.

private: Private methods cannot be moved to another class. Since the method’s
visibility is part of all rule products, no explicit handling of private methods is
required.

Every rule product containingcritical eithermoves amethodwith public, pack-
age, or protected visibility. For the protected visibility, there are two non-exclusive
options. As we did it for possible targets of the move, we explicitly include case
protectedA ∧ protectedB as we expect these refactorings to be more ben-
eficial due to the close distance between the source and target class. For methods
that are not critical, no restrictions for moving these apply.

Critical Class Member Target Class
While class visibilities can be an indicator of a software system’s security standard,
these are no strong security mechanisms. Usually, a software system’s security
design combines security levels with authentication mechanisms at the borders of

10.3 Security-aware Refactorings 299

the security levels. Here, UMLsec’s secure dependency allows specifying which
class members belong to which security level.

A weakening of the security design can happen if a classified member is relo-
cated into a class that did not contain classified members before. In this case, we
increase the size of the security-critical code and may open new attack vectors
through the original members of the class the member has been relocated to. After
the refactoring, code that had been developed applying strong security standards is
combined with code that has been treated less critically. Also, security mechanisms
might not apply to the non-critical code. For example, the Java security manager
can be configured to treat specific locations in the software system differently. Con-
sidering the run-time verification of secure dependency presented in Chapter 9, by
definition, accesses to critical members within the class defining the critical mem-
bers are treated as secure. Accordingly, additional members get access to classified
information that has not been considered to have this access. This additional access
might cause security violations.

To prevent such Move Method refactorings, in Figure 10.17, we present addi-
tional application conditions preventing moves of critical members into non-critical
classes. In the figure, for simplicity, we only show the conditions for the secrecy
case. However, the conditions for the other cases, e.g., the integrity case, are defined
analogously.

The idea of these application conditions is that themember to bemoved either has
no security annotations («forbid#secrecy») or if the member has a security
annotation («require#secrecy») additional conditions have to be fulfilled.
These additional application conditions capture that the target class of the move
(targetClass) is already on the considered security level, in this case, the secu-
rity level secrecy. A class is on the security level of secrecy if it defines a member
on this security level or accesses a member on the security level. On the program
model, this can be expressed in two ways.

First, similarly toUMLsec in theUMLmodels, using thecritical annotation.
Application condition «require#secrecy1» captures this case. A move to the
target class for a method classified with secrecy is allowed, if targetClass
is annotated with TCritical and this annotation has a secrecy reference to a
method or field (TMember). Where this member is defined is not relevant in this
case as the targetClass is on the security level of secrecy regardless of defining
a member on this level itself or having a member that accesses a member on this
security level.

The second case is that the TSecrecy annotation is used to put a member of
targetClass on the security level of secrecy. This case is shown in applica-
tion condition «require#secrecy2». For the move to be allowed, it is suf-

300 10 Security-aware Refactoring of Software Systems

Figure 10.17 Security extension to the Move Method refactoring regarding allowed targets
for critical methods

ficient that one of the two application conditions «require#secrecy1» and
«require#secrecy2» is fulfilled.

10.3.3 Conclusion on the Security Preserving Refactorings

In this section, we have shown that there is a significant interplay between refac-
torings and security specifications such as visibilities. However, it is possible to
optimize a software system’s design and these security requirements at the same
time. From a security perspective, the considered metrics like the attack surface
measured in terms of visibilities are only a minor indicator of a software system’s
security.We showcased how the formal refactoring specifications can be extended to
preserve security constraints, e.g., specified using UMLsec’s security requirements.

10.4 Conclusion on the Refactoring of Security-Critical
Software Systems

While the refactoring of a software system is already challenging, this challenge even
gets greater on security-critical software systems. In this chapter, we have shown
how refactorings can be formalized using graph transformation languages. Existing
works show that such formalizations allow reasoning about the correctness of the
refactorings regarding them not changing a software system’s behavior [24]. Also,
such formalization allows checking the applicability of the refactorings upfront [24,

10.4 Conclusion on the Refactoring of Security-Critical Software Systems 301

37]. However, the correctness of the refactored implementation could not be guar-
anteed as the refactorings had to be performed manually on the implementation.
Here, we showed how this gap can be overcome using the program model and
synchronization mechanism introduced in this thesis. Finally, we have shown how
the formalized refactorings can be extended with security constraints, leveraging
design-time security requirements.

In summary, the presented solution allows the restructuring of security-critical
software systems as part of the GRaViTY development approach. During this task,
the discusses security extensions allow to automatically prevent security-violating
refactorings.

Part V

Variants

11Specification of Variability throughout
Variant-rich Software Systems

This chapter shares material with the GPCE’2018 publication „Model-Based Secu-
rity Analysis of Feature-Oriented Software Product Lines“[277].

Software product line engineering [278] enables the systematic reuse of software
artifacts through the explicit management of variants in terms of variability. A
Software Product Line (SPL) is a family of software product variants sharing a set
of core assets and differing in a set of features, that is, increments of functionality
only present in some of the product variants. Representing an SPL in terms of
features, and mapping these features to development artifacts such as design-time
models and source code allows generating individually-tailored product variants
on-demand by retrieving the corresponding artifacts for a given feature selection.
Since SPLs are useful for tailoring products to diverse customer needs, companies
such as Boeing, Bosch, Hewlett Packard, Toshiba, and General Motors use SPLs to
develop business-critical software [279].

Individually tailored variants of software systems have made our everyday lives
considerably easier, and yet they give rise to a rapidly growing multitude of security
threats. To allow dealing with these threats but also to allow traceability of security
requirements on different system representations, we need an appropriate notation
for security assumptions as well as for variability points. These requirements have
to allow automated security analysis, e.g., by detecting instances of security viola-
tion patterns and traceability in case of changes. Figure 11.1 shows the integration
of variability into the GRaViTY approach. Comparable to security requirements,
the variability specifications correspond to each other. The required notations for
security assumptions and variability points are represented by the Variability and
Security extensions on the UML models, the source code, and the program model.

While the specification of security requirements on UMLmodels and the source
code has been introduced by us in Chapters 3.6.1 and 6.4, the interaction of these
with variability has not been considered until now. Given these circumstances, the

©TheAuthor(s), under exclusive license toSpringer FachmedienWiesbadenGmbH,
part of Springer Nature 2022
S. M. Peldszus, Security Compliance in Model-driven Development of Software
Systems in Presence of Long-Term Evolution and Variants,
https://doi.org/10.1007/978-3-658-37665-9_11

305

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-658-37665-9_11&domain=pdf
https://doi.org/10.1007/978-3-658-37665-9_11

306 11 Specification of Variability throughout Variant-rich Software Systems

Figure 11.1 Variant-rich software systems in the concept of the GRaViTY approach

question is how we can apply the developed techniques for security compliance
checks and maintenance to software product lines as considered in the fifth research
question of this thesis:

RQ5: How canwe verify and preserve security compliance in variant-rich software
systems?

For answering this research question, first, we have to find a suitable notation for
variability. This notation has to allow efficient ways to detect security violations
on software product lines and to support developers in restructuring them. In this
regard, we aim at representing variability similarly across all artifacts considered
by GRaViTY. Furthermore, we must be able to keep the variability specifications
consistent.Accordingly, in this chapter,we answerRQ5.1 regarding the specification
of structural variability on Java source code, UMLmodels, and the program model:

RQ5.1: How can we specify variability throughout a software system, including
design-time models and security requirements?

In this chapter, we assume that implementation-level variability is specified using
Antenna [25] preprocessor statements. For supporting the consistent specification
of variability across the artifacts considered in GRaViTY, as shown in Figure 11.1,
we make the following contributions:

11.1 Background on Variability Engineering 307

1. Two variability extensions oriented on Antenna for specifying variability
throughout all artifacts considered in GRaViTY:

(a) The SecPL profile to specify variability in UML models.
(b) An extension to GRaViTY’s type graph to allow explicit reasoning about

variability in program models.

2. An approach for parsing Antenna variability annotations in the implementation
and mapping these to the two proposed variability extensions for preserving the
consistency of the variability specifications.

For demonstrating the variability-related approaches of this thesis, we converted the
iTrust system into a software product line. As shown in Chapter 2, the iTrust system
has been developed based on use case descriptions. In the iTrust product line, it is
possible to configure the software system to only contain selected kinds of users
and selected use cases. For example, a version of the iTrust system can be deployed
that does not allow patients to access the software system and therefore also does
not contain the use cases describing activities performed by patients.

In this chapter, we discuss how to support developers in the model-driven devel-
opment and maintenance of secure software product lines supporting design-time
UMLmodels, source code, and our programmodel. First, we introduce background
on variability engineering in Section 11.1 and our addition of variability to the iTrust
example in detail. In Section 11.2, we discuss how we can specify variability on
UML models and the program model considering the existing Antenna notation for
variability on Java source code [25]. We present our prototypical tool support for
variability across all artifacts in Section 11.3 and evaluate the suitability of the intro-
duced variability notations in Section 11.4. Finally, we discuss threats to validity in
Section 11.5 and conclude on our variability extensions and their integration into
GRaViTY in Section 11.6.

11.1 Background onVariability Engineering

Variability engineering is concerned with variability in arbitrary kinds of systems.
In this chapter, we focus on software systems and variability within their software.
A software product line constitutes a configurable software system built upon a
common core platform [280]. Product implementation variants are derivable from
those generic implementations in an automated way by selecting a set of domain
features, i.e., user-visible product characteristics, to be assembled into a customized

308 11 Specification of Variability throughout Variant-rich Software Systems

Figure 11.2 Feature model excerpt of a software product line version of the iTrust system

product variant. Software product line engineering defines a comprehensive process
for building and maintaining a product line. During domain engineering, a product
line is designed by

(1) identifying the set of relevant domain features within the problem space and
(2) by developing corresponding engineering artifacts within the solution space

associatedwith a feature (combination) for assembling implementation variants
for feature selections.

In what follows, first, we discuss the concept of features in an SPL in detail. After-
ward, we discuss how variability is implemented, and finally, we discuss how to
deploy an executable product from an SPL.

11.1.1 Feature Identification and Specification

Technically, a feature is a unit of functionality that can be configured, that is, switch-
ing features on or off [279]. During domain engineering, logical dependencies
between features further refine the valid configuration space by restricting combi-
nations of features. For instance, domain feature models provide an intuitive, visual
modeling language for specifying the configuration space of a product line [281].
Feature models comprise a tree-based representation of feature dependencies. In a
feature model, a feature can only be selected if its parent feature has been selected.
Besides, there are constraints on the child features of a parent feature, such as
mandatory features or group constraints for all child features.

11.1 Background on Variability Engineering 309

There are various tools and notations for specifying feature models [281–284].
In this thesis, we use FeatureIDE [284, 285] and its notation. Figure 11.2 shows
an excerpt of a particular feature model created from the use cases of the iTrust
system and their dependencies, complying with Figure 2.1 and the corresponding
description of Chapter 2.

In our iTrust product line, we consider every use case and its realization in
the software system to be a feature of the software system. In addition, the users
supported by the system are considered as features of the software system. In the
feature model, these are concrete features, meaning that they are directly used in
the implementation or specification of the software system. Besides these concrete
features, there are abstract features that allow structuring in the feature model. For
example, the abstract feature Users is used to group the roles that can be supported
by the product line.Among others, these arePatients and, grouped under another
abstract feature, LHCPs, and HCPs.

In the context of iTrust system, the feature HCP has always to be selected while
Patients and LHCP are optional. If a feature is mandatory or optional, this is
denoted by a filled or empty circle. As a mandatory use case, we specified UC11
(Document office visit). The feature corresponding with this use case has two child
features (UC10 and UC37) that are grouped in an or-groupwhichmeans that at least
one of the two features has to be selected. Besides or-groups there are alternative-
groups in FeatureIDE, stating that exactly one feature has to be selected. As we
reverse engineered our iTrust product line from a single product, there are no use
cases that exclude each other in this case.

Last, there are crosstree constraints stated below the feature model that are con-
straints over the features that have to hold in addition to the constraints in the tree
representation. Crosstree constraints are logical constraints over the features of the
feature model. In FeatureIDE, besides primitive logical operators like and, or, and
not, complex logical operators like implication and bi-implication are
supported. For example, if the feature UC30 has been selected, this implies that
LHCP and Patients have to be selected, too.

The shown feature model comprises 16 concrete features, of which at least four
features have to be selected. The features HCP, UC3, and UC11 have to be selected
in all cases. In addition, UC10 or UC37 has to be selected. All in all, there are 528
possible configurations of our reverse-engineered iTrust feature model.

310 11 Specification of Variability throughout Variant-rich Software Systems

11.1.2 Implementation of Variability

After the identification and specification of features, the next step is implementing
the SPL. To establish traceability, features can be mapped directly to source code
and to design-time models:

• Preprocessor directives can be used to annotate feature-specific code portions,
and the entire code-base can be divided into modules [279].

• Design models can be annotated with presence conditions over a set of fea-
tures [286].

In GRaViTY, we use preprocessor directives specified using Antenna [25] for spec-
ifying variability on Java source code. Antenna provides C-like preprocessor direc-
tives for Java. As the directives are not part of the Java language, inAntenna these are
specified in comments. Originally, Antenna has been developed for JavaME apps but
can also be used with standard Java applications. FeatureIDE provides support for
Antenna preprocessor directives and allows using features from FeatureIDE feature
models in the directives.

Listing 11.1 shows an excerpt of the iTrust implementation of use case UC10
of doctors entering or editing personal health records of patients. The whole class
should only be part of the deployed iTrust system if the feature assigned to this use
case (UC10) has been selected. This variability is realized by an Antenna prepro-
cessor directive in line 1. This directive states that everything behind this directive
is only part of the software system if the condition of the directive evaluates to true.
Such #if directives have always to be followed by a #endif directive that states
where the conditional part ends. In line 33, this specific directive corresponding to
the #if from line 1 is shown. Nesting of preprocessor directives is possible, for
example, the editing of health records can interact with the management of allergies
if feature UC67 is selected. In this case, the class contains a field allergyDAO
and an method updateAllergies for managing allergies (lines 4–6 and 9–31).
The implementation of the updateAllergies method checks among others if
the allergy has already been added to the patient and if there are interactions with
prescriptions of the patient but only if the management of allergies as considered in
use case UC37 is part of the software system.

11.1 Background on Variability Engineering 311

11.1.3 Product Deployment

After implementing a software product line, we have to deploy executable products
of our software product line. Here, features not only correspond to configuration
parameters within the problem space of a product line but also refer (to assemblies
of) engineering artifacts within the solution space at any level of abstraction. For
instance, concerning the behavioral specification of variable software systems at
the component level, modeling approaches such as state machines are equipped
with feature parameters denoting well-defined variation points within a generic
product line specification including any possible model variant [287]. This way,
explicit specifications of common and variable parts among product variants within
the solution space allow for systematic reuse of engineering artifacts among the
members of a product family.

Variability comes in two flavors, depending on the time when features are con-
figured to get a product configuration:

static: Variability that is resolved at the deployment of the software system, e.g.,
by compiling a version of iTrust that only contains the selected use cases.

dynamic: Variability that is present at run-time anddynamically resolved according
to the circumstances of the execution. For example, extensions of iTrust that are
not part of the bought product but can be dynamically enabled or disabled at
run-time if a more expensive version of the product is bought or expired.

While static variability does not allow to change the product configuration after
deployment, for dynamic variability, it is possible to reduce the configuration space
available after deployment by statically configuring a subset of the available features.

For the development of an SPL using Antenna and FeatureIDE, FeatureIDE
allows developers to statically select a (partial) feature configuration and comments
out all the source code that is not part of the selected configuration. Accordingly, if
a complete feature configuration has been selected, the remaining code comprises
a compilable and deployable product of the SPL. Reconsidering the SPL shown
in Listing 11.1, we selected in FeatureIDE a configuration that contains UC10
and UC67 but in which UC37 is deselected. For this reason, the implementation
belonging to UC37 has been commented out by FeatureIDE (lines 20–27).

312 11 Specification of Variability throughout Variant-rich Software Systems

1 / /# i f UC10
2 public class EditPHRAction extends PatientBaseAction {
3 private final PatientDAO patientDAO;
4 / /# i f UC67
5 private final AllergyDAO allergyDAO;
6 / /#endif
7 private final HealthRecordsDAO hrDAO;
8 . . .
9 / /# i f UC67
10 public String updateAllergies(long pid , String description) {
11 . . .
12 String patientName = this .patientDAO.getName(pid) ;
13 List<AllergyBean> allergies = allergyDAO. getAllergies (pid) ;
14 for(AllergyBean cur : allergies){
15 i f (cur . getDescription () . equals(bean. getDescription ())) {
16 return "Allergy "+bean.getNDCode()+" has already been added

for "+patientName+" . " ;
17 }
18 }
19 . . .
20 / /# i f UC37
21 / /@List<PrescriptionBean> beansRx = this .patientDAO.

getCurrentPrescriptions(pid) ;
22 / /@for(PrescriptionBean element : beansRx) {
23 / /@ i f (element . getMedication() .getNDCode() . equals(bean.getNDCode()))

{
24 / /@ return "Medication "+element . getMedication() .getNDCode()+"

is currently prescribed to "+patientName+".";
25 / /@ }
26 / /@}
27 / /#endif
28 . . .
29 return "Allergy Added" ;
30 }
31 / /#endif
32 }
33 / /#endif

Listing 11.1 Excerpt of the Java class EditPHRAction of the iTrust SPL using Antenna
preprocessor directives

11.2 UML and PMVariability Extension 313

11.2 UML and PMVariability Extension

Comparable to Antenna for the specification of variability in Java source code,
we need mechanisms for specifying variability on UML models and the program
model. For this purpose, we introduce a variability extension to the type graph and
for variability within UMLmodels the SecPL profile, allowing users to specify vari-
ability in the program model and respectively UML models. To annotate structural
and behavioral elements that only exist in some products, model elements can have
presence conditions, that is propositional expressions over a set of features. The
set of features is defined using a feature model, a standard SPL representation. We
aim at using the same feature model as for the source code throughout all artifacts
considered within GRaViTY, including source code, UML models, and program
models.

Within this thesis, we assume that SPLs were originally developed at the imple-
mentation level using Antenna, a widely-spread preprocessor mechanism for anno-
tating Java source code with variability [25]. However, other preprocessor mecha-
nisms with similar annotations could be potentially supported without much addi-
tional effort. On top of that, developers might use custom annotations such as
@Secrecy to specify security requirements on fields and methods that will be
extracted and added to the output model as discussed in Chapter 6.

In what follows, first, we introduce our variability extensions to the program
model and UMLmodels. Afterward, discuss how these extensions can be integrated
into the GRaViTY synchronizationmechanism to support Java SPLs specified using
Antenna.

11.2.1 Variability Notations in GRaViTY

To specify variability on all artifacts considered within the GRaViTY approach, we
need mechanisms comparable to Antenna to reflect the variability annotations on
these artifacts. In this section, first, we introduce our variability extension to the
type graph of our program model, and afterward, a profile for specifying variability
within UML models.

Program Model Variability Annotations
The program model is an abstract view on the implementation abstracting all infor-
mation from the statement level. Accordingly, we have to reflect theAntenna prepro-
cessor statements in the samemanner. Figure 11.3a showsour variability extension to
GRaViTY’s type graph.Wedefine a newannotation typeTPresenceCondition

314 11 Specification of Variability throughout Variant-rich Software Systems

Figure 11.3 Metamodels of the GRaViTY variability extensions

generalizing TAnnotation. This new annotation type contains a presence con-
dition (pc) under which the annotated program model element is part of a product.
ThisTAnnotation can be applied to anyTAnnotatable element from the type
graph, e.g., TMember or TAbstractType covering methods and fields as well
as all kinds of types. This allows for covering variability on the class-method-field
level. However, Antenna allows also variability on the statement-level of methods
and fields. As the programmodel does not contain this information in detail, we have
to cover this variability differently. The visible effects of statements in the program
model are accesses between members (TAccess and its child types). Depending
on the variability at the statement level some accesses might be present in a prod-
uct or not. As these are also TAnnotatable, we can reflect this information by
annotating accesses with a corresponding instance of TPresenceCondition.

Figure 11.4 shows an excerpt of the iTrust program model including the pro-
posed variability extension. The shown excerpt focuses on the statements in lines
12 and 21 of the iTrust source code shown in Listing 11.1. These statements belong
to the method updateAllergies of the class EditPHRAction. This class
itself is wrapped by the preprocessor statements//#if UC10 ... //#endif.
This is reflected by the TClass representing EditPHRAction being annotated
with a TPresenceConditon, as shown in the top left side of Figure 11.4. The
TMethodDefinition representing updateAllergies is again wrapped by
additional Antenna preprocessor statements. In the end, this method is part of the
software system if UC11 ∧ UC67 are part of the feature configuration. As the
existence of the TMethodDefinition depends on the existence of the defining

11.2 UML and PMVariability Extension 315

TClass, this method is only annotated with a TPresenceCondition whose
pc is set to UC67. In the statements in lines 12 and 21, both times the field
patientDAO is accessed. This field is only part of the software system if the fea-
ture UC10 is selected. Again, the corresponding presence condition already applies
to the defining TClass. Accordingly, the node of the type TFieldDefinition
is not annotated with an additional presence condition. All additional Antenna pre-
processor statements relevant for the considered excerpt are at the statement level of
the method updateAllergies. For the statements in line 12, no additional pres-
ence conditions apply. Accordingly, the two resulting accesses, a TRead of the field
patientDAO and a TCall of the method getName, are not annotated with any
additional presence conditions. In contrast to this, the statements in line 21 are only
part of themethod if the following presence condition holds:UC10∧UC67∧UC37.
Again, we do not have to repeat conditions that are derived from owning elements.
Accordingly, the two accesses are only annotated with TPresenceConditions
whose pc is set to UC37. The called method getCurrentPrescriptions is
conditional itself.

SecPL Variability Stereotype
Our variability extension for UML models works similarly to the one presented for
the program model. Figure 11.3b shows the UML profile specification of this vari-
ability extension. We specified a «Conditional» stereotype that is applicable

Figure 11.4 Program model excerpt showing the application GRaViTY’s variability exten-
sion

316 11 Specification of Variability throughout Variant-rich Software Systems

Figure 11.5 Excerpt from the iTrust SPL’s design model showing the usage of the SecPL
profile

Figure 11.6 Excerpt from the implementation model of the iTrust SPL showing the usage
of the SecPL profile

to every UML Element and has a presence condition (presenceCondition)
as a tagged value. The tagged value presenceCondition specifies the con-
dition under which the annotated Element is present in products of the UML
model product line. In presence conditions, we support propositional formu-
las with negations, conjunctions, and disjunctions over the set of features. In
addition, to ease the development of UML product lines, we specified a con-

11.2 UML and PMVariability Extension 317

straint ConstraintConditional that evaluates the syntactical correctness of
presenceConditionwithin aUMLeditor.While the process ofmanaging pres-
ence conditions can be complicated, adequate tool support is a promising strategy
to support users during such tasks [288].

For the demonstration of the application of «Conditional», we applied the
stereotype to two excerpts of iTrust SPL’s design-time models. In Figure 11.5,
an excerpt of the design model is shown, that is focusing on UC9 of the iTrust
system of providing a patient with access to her health records. As an example
for health records, we show the recorded office visits of a patient. For accessing
health records, a ViewRecordsPatientsControl has been specified, that
checks which health records are visible to a Patient user and provides them.
As the LoginControl used to introduce Secure Dependency in Figure 3.6 of
Section 3.6.1, theViewRecordsPatientsControlhas access to the attributes
of the class User, and therefore, has to be on the security level of secrecy for the
signature of the attribute password:String. In Figure 11.6, we show the same
excerpt of the implementation model as in Figure 3.4 from the introduction of
model-driven development in Section 3.3.

Variability onUMLmodels can be specified using the SecPL«Conditional»
stereotype. For instance, the classPrescription in Figure 11.5 is present if the feature
UC37 is selected and the class ViewRecordsPatientControl is present if
the features UC9 and Patients are selected.

If a conditional element owns other elements, these owned elements are only
part of the model if the owning element is part of the model. For example, the
attribute medication:Medication is only part of the software system if
Prescription is part of the software system. While it is possible to anno-
tate associations with «Conditional» often their precedence condition can be
derived from the presence conditions of the elements at the ends of the association.
For example, office visits have an association with the prescriptions made during
the visit. As the association end prescriptions has only a value if the feature
UC37 is selected and the class Prescription is present, this association is also
only present if the feature UC37 is selected. The «call» dependency between
ViewRecordsPatientControl and Prescriptions is only present if it’s
own presence condition is fulfilled and the presence conditions at all ends. In this
case, the features UC9, UC19Patients, and UC37 have to be selected.

Using GRaViTY’s two presented variability extensions, variability can be speci-
fiedonUMLmodels and the programmodel in a consistentway.Also, the underlying
mechanism is directly oriented on Antenna, allowing to synchronize the variability
annotations among all three artifacts. We discuss this synchronization in the next
section.

318 11 Specification of Variability throughout Variant-rich Software Systems

Figure 11.7 Concept of GRaViTY’s reverse engineering mechanism for SPLs

11.2.2 Parsing of Antenna Annotations andMapping toModels

To integrate variability on all artifacts supported within the GRaViTY approach, we
have to be able to parse the Antenna annotations in the source code and to synchro-
nize these with the variability annotations in the program model and UML models.
However, despite our primary intention to support security by design, in practice,
security concerns often need to be addressed in codebases long after they were
initially deployed. Apart from poor planning, a root cause are migration scenarios
where the original application was developed for an offline context [289]. In this
section, besides the integration into the synchronization mechanism of GRaViTY,
we study the application of ourmethodology to situationswhere the goal is to harden
an existing software system. To this end, we provide a mechanism for the reverse
engineering of SecPL models from existing codebases. Our mechanism extends the
state-of-the-art methodology for model-based reverse engineering, which is con-
cerned with the process of obtaining useful higher-level representations of legacy
systems [4].

The key idea is to let the developers annotate security-critical parts of the source
code of the input SPL. We can then generate a UML class model product line that
is amenable to the analysis capabilities to be introduced in Chapter 12. However,

11.2 UML and PMVariability Extension 319

an application as part of the synchronization mechanism discussed in Chapter 6 is
also possible. In principle, the proposed TGGs could be extended with additional
rules comparable to those for synchronizing security requirements. However, as
Antenna preprocessor statements are defined in comments, detailed information
about the lines in which these are specified is not present in the MoDisco model
used by GRaViTY as intermediate source code representation. While in most cases
the comments are related to the expected model elements, this is not always the
case. For example, an //#endif directive after the closing brace of a method
definition might be associated in the MoDisco model to the next method definition
in the source code. For this reason, supporting variability annotations as part of the
TGGs is currently not feasible.

Figure 11.7 gives an overview of our mechanism’s internal workings. We use the
TGG transformation introduced in Section 6.2.2 to extract a UMLmodel or program
model from the existing Java codebase. In addition, we parse the Antenna prepro-
cessor annotations from the source code to add corresponding «Conditional»
stereotypes in the UML model and @TPresenceCondition annotations in the
program model.

In the following, we show a regular expression used during our parsing process,
which simultaneously acts as a lightweight specification of possible annotations.
Ifdef directives respecting the following expression are represented as presence
conditions of elements in the class diagram.

//\s ∗ #i f (de f)?. ∗ (n|r) (11.1)

Figure 11.8 Component diagram showing the integration of the variability processing into
GRaViTY’s synchronization mechanism

320 11 Specification of Variability throughout Variant-rich Software Systems

This expression matches every line comment starting from the beginning specified
by the // to the end of the line which has the keyword if or ifdef directly after
the start characters, ignoring white space. The rest of the line contains the presence
condition.

Listing 11.2 shows a source code excerpt illustrating the use of our variability
annotations. The given regular expression matches lines 1 and 5 of the source code
excerpt. Based on the position of those matches in the source code and the positions
of the endif directives we can calculate which Java elements are covered by such
an annotation. This also covers GRaViTY’s security annotations. The positions of
Java elements are again determined by matching regular expressions.

1 / /#i fdef UC37
2 @Critical(secrecy={"medication :Medication"})
3 public class Prescription {
4 . . .
5 / /# i f U19Patients
6 . . . / / #endif
7 } / /#endif

Listing 11.2 Source code with Antenna and GRaViTY’s security annotations

11.3 Tool Support for the Synchronization of Variability
Annotations

Figure 11.8 shows a component diagram of our implementation of GRaViTY’s
variability extension. We specified our variability extension to the type graph as
EMF metamodel in the Variability component. Comparably, we specified our
UML variability profile in the component SecPLProfile extending the standard
UML metamodel and the UMLsec profile.

To create instances of program models and UML models using our variability
extensions, we implemented the Antenna parser discussed in Section 11.2.2 in the
VariabilityProcessor component. This component parses the Antenna
preprocessor statements and relates these to the features specified in FeatureIDE
feature models. Also, this component is registered as a postprocessor at the
TGG-based synchronizations realized in the components PM TGG and UML TGG.
These two components have been discussed in detail in Section 6.2.3. After
a program model or UML model has been created or updated using GRaV-
iTY’s synchronization mechanism, the VariabilityProcessor component
searches the locations of all model elements in the source code and checks which
Antenna preprocessor statements apply to these. If one ore more Antenna prepro-

11.4 Evaluation of the Variability Extension 321

cessor statements apply, corresponding instances of TPresenceCondition or
«Conditional» are created.

11.4 Evaluation of theVariability Extension

In the previous section, we introduced a prototypical implementation of GRaViTY’s
variability extension. Based on this implementation, we evaluate the feasibility to
represent SPLs using GRaViTY on the levels of UMLmodels and programmodels.

Setup. In our evaluation,we appliedour reverse engineeringmechanism tomultiple
large open-source projects. By doing this, we produced SecPL models and program
models by applying our reverse engineering mechanism to the available codebases.
While most selected projects featured Antenna annotations specifying variability on
the source code level, this was not the case for OpenJDK’s1 implementation of the
Java Secure Socket Extension (JSSE) and iTrust. Comparable to iTrust, we extended
JSSE’s codebase with variability, by assigning features to the different supported
protocols. As simple existing product lines, we considered the text editor called
Notepad [290]. As real-world examples, that have already been subject to earlier
SPL research [291], we considered MobilePhoto and Lampiro. MobilePhoto [292]
is a mobile multi-media platform with academic background. Lampiro [293] is an
instant messaging client which has been naively developed as a software product
line with Antenna and therefore of special interest for applicability of our approach
to real examples. Our Lampiro model is the largest one considered, comprising 29K
elements in the reverse-engineered UML model, including classes, dependencies,
and operations.

Results. We have been able to successfully generate UML class diagrams and pro-
grammodels for all examples and to add the expected variability annotations to these.
After generating the models, we randomly checked whether the models are anno-
tated as expected with TPresenceConditon and «Conditional». Thereby,
we tried to focus on the most complicated Antenna preprocessor statements, e.g.,
multiple levels of nesting or complicated conditions. During this inspection, we did
not find any missing or dislocated presence conditions.

1 OpenJDK: http://openjdk.java.net/

http://openjdk.java.net/

322 11 Specification of Variability throughout Variant-rich Software Systems

11.5 Threats toValidity

In this section, we discuss threats to the validity of the experiment showing the
practical applicability of our proposed variability extensions.

11.5.1 Construct Validity

The main threats to validity concern the construction of our tool prototype. For the
support of Antenna preprocessor statements, we implemented an ad-hoc solution
that has major drawbacks that may threaten validity: The ad-hoc implementation
based on regular expressions cannot guarantee scalability and completeness. For this
reason, we did not consider scalability or performance in our evaluation. Regarding
completeness, we currently do not support variability at the statement level of meth-
ods. However, we discussed the principle suitability of our variability extensions to
express this variability on the program model and in UML models. Nevertheless,
we have shown the feasibility to express variability in the program model and on
UML models as well as the possibility to create a solution for synchronization.

11.5.2 Internal Validity

The main concern regarding internal validity is the manual inspection of the gener-
ated models by us. This inspection comes with two threats. First, we did not inspect
all variability annotations in the implementation and the generatedmodels andmight
have overseen divergences. However, as our focus was on the suitability to express
variability and not to evaluate our synchronization mechanism in detail, the results
indicate, in combination with our discussion, the suitability to express variability
on the program model and in the UMLmodels. Second, we might have been biased
by our knowledge about the strength and weaknesses of our implementation. To
lower this threat, the authors of [277] performed the review in a pair-programming
manner.

11.5.3 External Validity

We considered only a limited number of SPLs in our experiments which might limit
the generalization of our observations to other SPLs. Tomitigate this threat, we tried
to consider SPLs from different domains and of different sizes.

11.6 Conclusion on GRaViTY’s Variability Extension 323

11.6 Conclusion on GRaViTY’s Variability Extension

In this chapter, we presented variability extensions for UML models and the pro-
gram model. Also, we discussed the synchronization of UML models and program
models containing variability with their implementation and presented a reverse
engineering approach. While the proposed parsing and mapping mechanism works
in an ad-hoc manner it has been shown to be suitable for practical problems. How-
ever, currently, only the propagation of variability annotations in the implementation
into the program model and UML models is possible. When models and code may
be subject to evolution, keeping security requirements synchronized on both levels
is challenging. To also support these two opposite directions, in the future, one can
extend the MoDisco parser to allow the explicit parsing of Antenna preprocessor
statements and the synchronization of these usingTGGs.By improving this synchro-
nization between the different artifacts of SPLs, one can provide a full integration
as part of the GRaViTY approach. Nonetheless, we have successfully shown the
possibility to represent variability consistently across the artifacts of variant-rich
software systems.

12Security in UML Product Lines

This chapter shares material with the GPCE’2018 publication “Model-Based Secu-
rity Analysis of Feature-Oriented Software Product Lines” [277].

As discussed in the previous chapters of this thesis, security is a business-critical
factor in enterprises, since each security issue implies a potential loss of customer
trust. Since security concerns permeate the entire software system, the systemdesign
needs to treat them as first-class citizens. To this end, model-based techniques, such
as UMLsec [73], can be used to specify and analyze the consistency of security
requirements in early phases, such as in architecture models at design time. Con-
sidering this, we have shown in the previous chapters of this thesis how security
requirements thatwere specified at design time can be traced throughout the develop-
ment process and how compliance with these security requirements can be verified.

However, security becomes yet more challenging during the development of
Software Product Lines (SPLs, [279]). For themanagement of security requirements,
developing an SPL is challenging due to the complexity arising from variability:
an SPL with n features can include up to 2n individual products. In domains like
automotive engineering, where SPLs can have thousands of features [294], the
resulting software engineering problems can be of astronomical scale.

In many cases, practical solutions for handling variability involve trade-offs
between precision and traceability. For instance, during testing of SPLs, develop-
ers use sampling techniques [38, 295, 296], in which a selection of all products
is considered to uncover implementation defects. However, in the case of security,
sampling is problematic: a vulnerability affecting any of the products represents
a potential leakage of secrets and, therefore, a business risk. Worse, a remarkable
research result indicates that focusing on a selection of an SPL’s products for secu-
rity engineering might be harmful: security measures implemented in a subset of all
products can be used by attackers to automatically generate exploits for the remain-
ing products [297, 298]. For these reasons, we need an efficient way to specify and

©TheAuthor(s), under exclusive license toSpringer FachmedienWiesbadenGmbH,
part of Springer Nature 2022
S. M. Peldszus, Security Compliance in Model-driven Development of Software
Systems in Presence of Long-Term Evolution and Variants,
https://doi.org/10.1007/978-3-658-37665-9_12

325

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-658-37665-9_12&domain=pdf
https://doi.org/10.1007/978-3-658-37665-9_12

326 12 Security in UML Product Lines

analyze the security requirements of all products in an SPL as considered in the
fifth research question of this thesis.

RQ5: How can we verify and preserve security compliance in variant-rich soft-
ware systems?

When developing SPLs, comparable to security by design, variability should be
considered from the very beginning. For this purpose, developers can use the SecPL
profile introduced in the previous chapter (Section11.2) to specify variability already
on design-timemodels. Here lies a significant challenge in the interaction of design-
time security and variability. Due to variability, it can be the case that the presence
of a security violation depends on some variable part of the product line and is not
contained in every single product. Also, it can be that specific security requirements
are variable parts themselves, e.g., only apply if the software system is deployed for
a specific country.We needmeans to specify variability interactingwith security and
to verify the compliance of this specification. For this reason, this chapter extends
Chapter 11’s answer to RQ5.1 to also support detailed specification of variability
within security requirements and answers RQ5.2 regarding verification of security
requirements in UML model product lines:

RQ5.1: How can we specify variability throughout a software system, including
design-time models and security requirements?

RQ5.2: How can security violations be detected on SPLs?

To address the need for specification and analysis of security requirements on the
level ofUMLmodels,wepropose a comprehensivemethodology formanaging secu-
rity in SPLs systematically as an extension of the GRaViTY development approach
on software product lines [277]. Specifically, as shown in Figure12.1, we make the
following contributions:

1. An extension of the SecPL profile presented in Section11.2, allowing users
to specify variability in security requirements besides variability on structural
model elements. For this purpose, SecPL refines UMLsec’s stereotypes for the
specification of security requirements and extends these with presence condi-
tions. (RQ5.1)

2. A family-based security analysis approach for the efficient checking of the secu-
rity requirements expressed using our UML profile. The key idea is to express
security checks as OCL constraints [299]. We provide such encodings for the
most prominent UMLsec checks; additional ones may be created by experts.

12 Security in UML Product Lines 327

Figure 12.1 The SecPL approach’s concept to security in UML product lines

To avoid the combinatorial explosion arising when each product is generated
and analyzed separately, we evaluate these OCL constraints using a method for
constraint checking on feature-annotated models based on SAT solvers [300].
Here, we either obtain a counterexample, that is, a subset of features giving rise
to an insecure product, or proof that all products are secure. (RQ5.2)

To our knowledge, our work is the first to support a model-based security analysis
of all products in a software product line. While our analysis relies on template
interpretation [300], one of our key contributions is to provide suitable encodings
of security constraints that we feed as input to template interpretation, similar to
other analysis techniques that rely on a backend SAT solver. Moreover, to the best
of our knowledge, our evaluation is the first to assess the benefit of a template-
interpretation-based technique on a set of realistic models.

Our methodology uses UML-based system models for capturing the system
design and annotating it with security requirements. In industry, system models
are used for various purposes, including informal communication, documentation,
learning, and code generation; UML is the most widely applied modeling language
in many software domains [185]. We rely on UMLsec, introduced in Section3.6.1,
and combine it with feature-based variability engineering. However, our approach is

328 12 Security in UML Product Lines

Figure 12.2 SecPL profile excerpt showing variability and security stereotype specification

not limited to UML but can be adapted to modeling languages with similar diagram
types as well, for example, SysML [301] for automation systems.

First, in Section12.1, we introduce our extension to the SecPL profile fromChap-
ter11. Afterward, in Section12.2, we discuss how products can be derived consid-
ering the variability within security requirements. In Section12.3, we introduce
our family-based security analysis supporting variability within structural UML
elements and security requirements. We introduce a prototypical implementation
of this security analysis in Section12.4 and evaluate the approach in Section12.5.
Finally, we discuss threats to validity in Section12.6 and conclude in Section12.7.

12.1 Security andVariability Profile

We provide a UML extension to support the specification of security requirements,
product-line variability, and security variability. The SecPL profile extends UML
with 17 security and variability stereotypes and tagged values. The security-specific
concepts of SecPL are built atop of those of UMLsec [73]; annotating elements
with variability-specific presence conditions is inspired by solutions such as model
templates [286].

To support variability we extended the stereotypes of UMLsec with presence
conditions. Figure12.2 shows an excerpt with three of SecPL’s stereotypes and
their relationship to UML and UMLsec. Besides the stereotype «Conditional»
that extends the UML meta-class Element, already introduced in Section11.2,
we show the two security-specific stereotypes «ConditionalCritical» and
«ConditionalSecrecy» that generalize their non-conditional counterparts
from UMLsec. All in all the SecPL profile consists out of 17 stereotypes simi-

12.1 Security and Variability Profile 329

lar to the presented ones and includes validation rules for the well-formedness of
the presence conditions.

12.1.1 «ConditionalCritical»

The «ConditionalCritical» generalizes UMLsec’s «critical» to spec-
ify security requirements. In this thesis, we mainly focus on the security require-
ments of protection fromunauthorized view access (secrecy) and unauthorizedmod-
ification (integrity). However, we also cover the other security requirements pro-
vided by the UMLsec profile. To this end, «ConditionalCritical» inherits
«critical»’s tagged values for these requirement kinds. Each of these tagged
values stores a list of operation signatures and property signatures. Variability of
security requirements is specified using a list of presence conditions, which are
mapped to the corresponding signatures based on their position in the list.

For example, in Figure12.3, if prescriptions are part of the software system,
access to the prescriptions of an office visit should only be allowed for legitimate
entities. For this reason, the member end prescriptions of the association
between OfficeVisit and Prescription must be on the security level of
secrecy. As this member end is only part of the software system if the feature UC37
is selected, this security requirement is only meaningful in this case. Accordingly, a
«ConditionalCritical» with the presence condition UC37 is applied to the
class OfficeVisit.

Multiple requirements on the same element are supported by leaving certain posi-
tions in the lists of the tagged values empty so that each presence condition ismapped
toprecisely one entry. For example, the classViewRecordsPatientControl-
ler has a second conditional security requirement regarding the property
medication of the class Prescription. While for the first security require-
ment only the feature UC37 has to be selected, this security requirement is only
relevant and present when UC37 ∧ UC19Patients have been selected. This is
the case as the class Prescription and the dependency to it have to be part of
the model for this security requirement to be meaningful.

12.1.2 «ConditionalSecrecy»,
«ConditionalIntegrity», etc.

These stereotypes control the existence of their non-variable counterparts from the
standard UMLsec profile in products of the SPL. A «ConditionalSecrecy»

330 12 Security in UML Product Lines

Figure 12.3 Excerpt from the iTrust SPL’s design model showing the usage of the SecPL
profile including variability and security stereotypes

functions as an instance of «secrecy»with a presence condition specifying under
which constraint the «secrecy» is present in the product models of the SPL.

For example, in Figure12.3, the OfficeVisit has only a member end
prescriptions if the feature UC37 is selected. If this feature is selected, the
signature of the member end is put to the security level of secrecy. Accordingly, a
«secrecy» stereotype is required on the dependency between ViewRecords
UserAction and OfficeVisit but only if the feature UC37 is selected. This
is represented by an instance of «ConditionalSecrecy» with the presence
condition UC37.

As its non-variable counterpart, «ConditionalSecrecy» plays an impor-
tant role also on dependencies in deployment diagrams as considered in theUMLsec
Secure Links check. For example, Figure12.4 shows an excerpt from iTrust’s imple-
mentation model including variability. Patients are communicating with the iTrust
system, e.g., performing the actions discussed before. Until now, we did not con-
sider a patient that has not authenticated herself at the system but is only accessing
the public pages provided by the iTrust system. In this case, less restrictive security
requirements apply. If a patient is logged in or not can be representedwith a dynamic

12.1 Security and Variability Profile 331

feature loggedIn. If the patient is logged in, all information communicated with
the iTrust system has to be treated as confidential while this is not the case for the
information transferred on the public pages on which no sensitive information can
be entered. This is represented by an instance of «ConditionalSecrecy» on
the dependency between the artifacts Patient and iTrust at the bottom of the
figure.

12.1.3 «ConditionalEncrypted»,«ConditionalLAN», etc.

Similar to the «ConditionalSecrecy», these stereotypes control the exis-
tence of their non-variable counterparts and can be applied to communication paths
in UML models. The deployment diagram in Figure12.4, shows a usage of the
«ConditionalEncrypted» stereotype on a communication path in the iTrust
UML product line. Over the communication between the iTrust web application
and patients only publicly available information is communicated as long as no user
authenticated herself at the iTrust system. Accordingly, we assume, that informa-
tion has only to be threatened on the security level of secrecy if the user authen-
ticated herself at the system. For guaranteeing secrecy for patients that should be
able to access the software system from the Internet, in UMLsec an encrypted

Figure 12.4 Excerpt from the implementation model of the iTrust SPL showing the usage
of the SecPL profile

332 12 Security in UML Product Lines

communication path is a suitable measure. For cost reasons, we only want to use
encrypted communication ifwe have to.Accordingly,wemake the use of the encryp-
tion, specified by «encrypted» in the non-variable UMLsec profile, dependent
on the fact whether the patient authenticated herself. For identifying if the authen-
tication took place, we use the dynamic feature loggedIn as presence condition
but this time on an instance of «ConditionalEncrypted» at the communica-
tion path between the WebServer and the MobileDevice of the patient. The
communication path between the WebServer and iTrustServer represents a
LAN connection specified by the non-variable «LAN» stereotype of UMLsec. This
communication path type is suitable for both, with no explicit security requirement
on the data communicated along with it and the security requirement of secrecy. As
the type of this connection is not dependent on the state of the Patient’s authen-
tication, here we do not use the variable counterpart «ConditionalLAN».

12.2 Deriving Products

When it comes to deployment of the software system products have to be derived for
the SPL to get an executable product. Products of the SPL are derived by configuring
the features, that is, selecting a specific subset of features. On the implementation,
using Antenna with FeatureIDE, this is realized by commenting out all source code
parts whose presence condition does not evaluate to true. Similarly, there is the need
to derive products from themodel product lines including security requirements, e.g.,
to investigate a security violation that has been detected in a specific product. As for
the implementation, products of the model product line are derived by configuring
the features. As a result, model elements and security requirements whose presence
conditions evaluate to false are removed from the model, yielding a regular UML
model annotated with UMLsec security requirements.

As an example, we configure a product that only contains the use cases shown
in the use case diagram in Figure12.5. Doctors can only document office visits,
make prescriptions and view the prescriptions of patients for whose they are a
LHCP. Patients can view their general records but not the fully detailed prescription
reports. The corresponding feature configuration is {HCP,LHCP,Patients,UC3,
UC9, UC11, UC19, UC37}.

Figure12.6 shows the result of deriving a product for this configuration of our
example SPL from Figure12.3. Inactive elements such as the call-dependency from
ViewRecordsPatientControl to Prescription have been removed.
Also, all conditional security stereotypes have been removed or replaced by the

12.2 Deriving Products 333

Figure 12.5 Use case diagram showing the use cases supported in a product of the iTrust
product line

Figure 12.6 Design model product of the iTrust product line with UMLsec security require-
ments

corresponding standard UMLsec stereotypes. For example, the «Condition-
alCritical» on the class OfficeVisit has been replaced with an non-
variable «critical» as the feature UC37 is part of the configuration. The
«ConditionalCritical» on the class ViewRecordsPatientAction
has been partly merged with the already existing «critical» stereotype on this
class. The «ConditionalCritical» specifies security levels for two signa-

334 12 Security in UML Product Lines

tures but with different presence conditions. The first presence condition UC37
evaluates to true as the feature UC37 is part of the configuration. Accord-
ingly, the signature prescriptions:Prescription[*] is added to the
«critical» stereotype. In contrast to this, the second presence condition UC37
and UC19Patients evaluates to false as the feature UC19Patients is not
part of the configuration. For this reason, the specification of the security level for
the signature medication:Medication is not part of the derived product.

12.3 Family-based Security Analysis

A prime benefit of model-based security approaches is the possibility to perform a
security analysis on design-time models, allowing the implementation of security
by design practices. For example, using the Secure Dependency check, we can
determine if objects in the software system respect the security requirements of
the data they send and receive. In the product line setting addressed by SecPL,
performing such analysis on each product of an SPL separately is infeasible since
the number of products can grow exponentially with the number of features. To deal
with this challenge, we propose a family-based security analysis, which lifts checks
such as Secure Dependency from the level of individual products to the entire SPL.

Our analysis assumes an encoding of the to-be-performed check as an OCL con-
straint. We provide such encodings for two widely used UMLsec checks; additional
ones may be provided by an expert user. To evaluate such a constraint against the
design-time model at hand, we use a method called template interpretation [300].
Template interpretationwas originally designed for checkingwell-formedness prop-
erties, such as “each association has at least two member ends”, in unstereotyped
UML models with variability. To address our security setting, our OCL constraints
also take stereotypes into account. Template interpretation generates a certain propo-
sitional formula that can be evaluated using an SAT solver. In the formula, features
are represented as variables. If the formula is satisfiable, the SAT solver returns a
satisfying example, that is, a subset of features giving rise to an insecure product.
Else, we have proof that the security requirement is fulfilled in each product.

In the remainder of this section, we present our security checks with their OCL
encodings, we illustrate the generation of a certain formula via template interpreta-
tion, and we wrap up.

12.3 Family-based Security Analysis 335

12.3.1 UMLsec Checks as OCL Constraints

We focus onUMLsec’s Secure Links and Secure Dependency checks [73]. In combi-
nation, these checks support the analysis of security requirements on the physical and
logical system levels. We consider the security requirements secrecy and integrity
from Section3.6.1.

As defined in Section3.6.1, for the Secure Dependency check two properties
have to hold in a compliant software system:

(i) for all s ∈ S.members: s ∈ C .secrecy ⇔ s ∈ S.secrecy,
(ii) for all s ∈ S.members: s ∈ C .secrecy ⇒ d is stereotyped «secrecy», where

C and S refer to the client and supplier of a «call» or «send» dependency
and s refers to the signature of a member.

We specified an OCL version of the Secure Dependency check. For brevity, the
illustration in Listing 12.1 focuses on an excerpt, capturing the “⇒” direction of
property (i) and the full property (ii) of the Secure Dependency check.Also, we show
only the secrecy case of this check. In the full constraint, the opposite direction and
the integrity case are considered analogously.

Dependencies representing a potential dependencyd are aggregated on lines 1–9.
On lines 1–3, we consider both models and packages, since both concepts
may represent subsystems. On lines 10–13, we check whether the dependency’s
target class has a «critical» stereotype so that the set of secrecy members
exists. Note that we use the function has as a shortcut to check if an element
has a particular stereotype. Interfaces do not need to have this stereotype, since
their implementing classes do. On lines 14–27, we iterate over the secrecy-
stereotyped members of the source class to check if the dependency has the required
«secrecy» stereotype (line 17), and if the operation in question is tagged with
secrecy in the «critical» stereotype of the target class, in case it exists. As a
simplification of the shown OCL constraint we show instead of iterating over both
getOperations() and getProperties() a method getMembers().

Similar to the Secure Dependency check, we encoded the Secure Links check as
an OCL constraint. The Secure Links is a check concerning the physical deploy-
ment of a software system. It analyses whether the network of nodes with their
communication paths respects the user-specified security requirements concerning
a given attacker model. In what follows, we recall a definition [73] for the secu-
rity requirement «integrity». A corresponding definition for «secrecy» is
obtained by replacing the considered threat with read. The Secure Links check has
been introduced in detail in Section3.6.1.

336 12 Security in UML Product Lines

1 context Model inv :
2 let callSendRelations = self .allOwnedElements()→select (e |
3 e→oclIsKindOf(Package) and (
4 e . has(securedependencies) or self . has(securedependencies)
5)
6)
7 →collect (p |p.allOwnedElements()
8 →select (d |d→oclIsKindOf(Dependency)) and (d. has(call) or d.has(send))
9)
10 in callSendRelations→forAll (cs |
11 cs . target→forAll (trg |
12 trg→oclIsKindOf(Interface) or (trg→oclIsKindOf(Class) and trg . has(cr i t ica l

))
13)
14 and cs . source→forAll (src |
15 src . getStereotypeApplications(cr i t ica l)→forAll (srcCritical |
16 srcCritical . getSecrecy()→forAll (srcSecrecy |
17 cs .has(secrecy) and
18 cs . target→select (trg | trg→oclIsKindOf(Class))→forAll (trg |
19 trg .getMembers()→forAll (mem |mem.getName() <> srcSecrecy)
20 or
21 trg . getStereotypeApplications(cr i t ica l)→exists (trgCritical |
22 trgCritical . getSecrecy()→exists (trgSecrecy | trgSecrecy = srcSecrecy)
23)
24)
25)
26)
27)
28)

Listing 12.1 Secure Dependency OCL constraint (secrecy case, excerpt)

A subsystem fulfills Secure Links iff for all «integrity» dependencies d
between objects on different nodes n,m, ∃ communication path p between n and m
with a stereotype s so that write /∈ Threats(s), where Threats(s) is a set
of threats posed by an outside attacker to s-stereotyped communication paths.

We specify the Secure Links check using the OCL constraint in Listing 12.2. The
check is formulated for theUMLelement model, butwe also consider the contained
packages on line 3, since both concepts can be used to represent subsystems. Note
that we use the function has as a shortcut to check if an element has a particular
stereotype. In UML, deployment is based on the notion of artifacts being deployed
to a node. On line 7, we assume that artifacts aggregating some objects and their

12.3 Family-based Security Analysis 337

1 context Model inv :
2 let callSendRelations = self .allOwnedElements()→select (e |
3 e→oclIsKindOf(Package) and e .has(securelinks) or self . has(secureLinks)
4)→collect (p | p.allOwnedElements())→select (d |
5 d→oclIsKindOf(Dependency) and (
6 (d.has(call) or d.has(send))
7 and d. source→oclIsKindOf(Artifact) and d. target→oclIsKindOf(Artifact)
8)
9)
10 in let pathsBetween(srcNode:Node, trgNode:Node) :Set(ComminicationPath) =

srcNode.getCommunicationPaths()→select (comm |
11 comm.getMemberEnds()→select (end | end.getType() = trgNode)→size () > 1
12)
13 in callSendRelations→ forAll (cs |
14 cs . source→forAll (src |
15 src . getDeploymentRelationships()→forAll (srcDep |
16 srcDeployment .getLocationNodes()→forAll (srcNode |
17 cs . target→forAll (trg |
18 trg . getDeploymentRelationships()→forAll (trgDep |
19 trgDep .getLocationNode()→forAll (trgNode |
20 pathsBetween(srcNode, trgNode)→exists (comm |
21 not callSend .has(integrity)
22 or comm.has(LAN) or comm.has(wire) or comm.has(encrypted)
23)
24)
25)
26)
27)
28)
29)
30)

Listing 12.2 Secure Links OCL constraint (integrity case)

security requirements have been specified. The set of callSendRelations
computed on lines 2–9 represents the dependencies d of the Secure Links definition.
We check the condition by iterating over node pairsn,mon lines 13–20 and checking
if permitted kinds of communication paths are in place on lines 21–25. Specifically,
for «integrity»-stereotyped dependencies, these kinds include precisely LAN,
wire, and encrypted. A variant of this constraint exists for the secrecy case.

For example, an «Internet»-typed communication path signifies the use of
an unencrypted connection, allowing an outside attacker to perform man-in-the-

338 12 Security in UML Product Lines

middle attacks. An «encryption»-stereotyped communication indicates the use
of encryption, shielding from the write attack by an outside attacker.

12.3.2 Template Interpretation

Template interpretation [300] supports the evaluation of OCL constraints on models
in which model elements are annotated with presence conditions (such models are
called model templates in [300]). The key idea is to replace the standard OCL
semantics with a variability-aware one: The result of evaluating a constraint is
not a plain value, but a set of value-formula pairs, where the formulas specify the
condition under which each of the values occurs. This condition, in turn, depends on
the presence conditions of the model elements involved in the constraint. Based on
this set, to find out if a particular value can actually occur, we combine its formula
with the constraints specified in the feature model. We feed the result to an SAT
solver to efficiently check whether the formula can be satisfied.

Since we aim to establish if a particular constraint, representing a security check,
holds in all configurations, we feed the negation of the condition under which it eval-
uates to true to the SAT solver. Note that we do not translate OCL constraints into
SAT problems, but calculate all possible outcomes of the OCL constraint execution
and the conditions under which they can occur concerning the feature model.

For instance, to check if a particular class is stereotyped with the stereo-
type «critical», we can evaluate the constraint class.has(critical)
on the class. Assuming standard OCL semantics, the result of this check is
true or false. But with template interpretation, we take presence conditions
into account. For the class Prescription in Figure12.3, the following result
is obtained: {(true, UC37), (false, ¬UC37)}. Similarly, for the class
OfficeVisit {(true, UC37), (false, ¬UC37)} but this time due to
the «ConditinalCritical». The paper [300] explains how to generate such
sets of value-formula pairs for arbitrary OCL constraints, including those with com-
plex operators such as forAll() and size().

We need to answer the question if an OCL constraint c representing a secu-
rity check sec, such as Secure Links, on an element e holds in all products of a
considered SPL. This question can be represented as the following SAT problem:

s = f ∧ (p∗(e) ⇒ ¬ctrue) (12.1)

Here, f is the conjunction of the feature constraints in the feature model, p∗(e) is
e’s extended presence condition, and ctrue is the condition under which c evaluates

12.3 Family-based Security Analysis 339

to true. The extended presence condition of the element e is taken into account as
the constraint can only be evaluated if the element is part of the software system.
For example, considering the constraint self.getClientDependencies()
→size()>1 for the class ViewRecordsPatientAction in Figure12.3, we
would obtain for the constraint locally on the class that ctrue = U19Patients
∨ Patients. Please note, that the dependency to the class Patient is implicit
conditional as the class Patient is conditional. However, for the existence of the
dependencies the presence condition of class ViewRecordsPatientAction
is also a dependency, leading to ctrue = (U19Patients∨ Patients)∧ UC9∧
UC9 = UC9 ∧ Patients. The feature constraints are taken into account because
they determine the allowed set of configurations. For example, the feature model in
Figure11.2 contains the constraint Patients ⇐⇒ (UC9∨ UC19Patients∨
UC30 ∨ UC40Patients). Due to this constraint, we can know that all products
that contain the feature UC9 have more than one outgoing dependency at the class
ViewRecordsPatientAction.

The implication allows neglecting irrelevant configurations in which e is absent
and thus, cannot violate the constraint. The extended presence condition p∗(e)
accounts for the containment hierarchy: The presence of an element depends on the
presence of its container objects. Therefore, p∗(e) is obtained via the conjunction
of e′s presence condition with the presence conditions of its container elements.

The output of evaluating s with a SAT solver is either the result that c is true
in all configurations, that is, sec holds in e for all products, or a witness, that is, a
configuration leading to a product in which sec is not fulfilled in e.

12.3.3 Discussion of Correctness and Performance

In this section, first, we discuss the correctness of the presented approach, and
second, factors impacting its performance.

Correctness of the Security Checks: The correctness of template interpretation
relies on the argumentation in [300]. The correctness of our implementation,
including the OCL constraints, was studied by systematic testing. Specifically,
we systematically extended the test cases of the existing implementation with
variability: We considered all possible combinations of annotating the involved
elements with variability. The resulting test suite comprises 54 test cases. As test
oracle, we used the existing Java-based implementation of UMLsec’s checks in
CARiSMA, the standard implementation of UMLsec. For a given SecPL-based
test model, we enumerated all products, producing a set of UMLsec models on

340 12 Security in UML Product Lines

which we performed the CARiSMA check. The results of the variability-aware
security check and the single CARiSMA checks were equivalent in all cases,
yielding confidence in the correctness of our analysis.

Performance of the Security Checks: The performance of the overall security
analysis depends on the generation of the formula as well as the SAT check.
As argued in [300], the generation procedure has polynomial complexity con-
cerning the size of the inputmodel. Formost ofOCL’s operators, the generation is
linear; however, in the case of size, it requires quadratic time, since it considers
the cross-product of model elements. SAT solving is NP-complete in general, but
state-of-the-art SAT solvers can handle a million variables and several millions
of constraints efficiently [302], which is more than sufficient for typical product
line scenarios.

12.3.4 Extensibility of the Approach

In the previous sections, we introduced a security and variability profile and con-
straints for two UMLsec checks on UML product lines. The approach has been
designed to allow flexible extension according to the needs of a software project.
For the extension of the approach, we identified two dimensions:

Support of Additional Security Checks: We provide OCL encodings for the
widely used UMLsec checks: Secure Links and Secure Dependency [105, 106,
303–305]. As illustrated in the example, in combination, these checks aim to
protect secrecy and integrity on the physical and the logical level. Our solution is
extensible in the sense that expert users can define additional checks by providing
additional stereotypes with a corresponding OCL encoding. These checks can
be used by end-users for annotating and checking UML models transparently,
without using or understanding OCL.

Adaptation to Domain-Specific Languages: Our profile, but also extended pro-
files, can be applied in combination with domain-specific languages that are
based on UML profiles. For example, a central diagram type in SysML mod-
els is block diagrams. The blocks in block diagrams are elements of the UML
type Class with the stereotype «Block». Accordingly, SysML blocks can own
properties, just like classes in class diagrams can do. The properties in SysML
aremore fine-grained, reflected in additional SysML-specific stereotypes such as
«AdjunctProperty» or «DistributedProperty». Since the catego-
rization of properties in these stereotypes is orthogonal to the included security
requirements, the Secure Dependency check can be applied to block diagrams

12.4 Tool Support for Family-based Security Checks of UML Product Lines 341

straightforwardly, by applying both the SysML and the SecPL stereotypes to the
underlying UML model.

As shown in this section, SecPL can easily be extended to cover additional security
checks and to be applicable to different domains.

12.4 Tool Support for Family-based Security Checks of UML
Product Lines

The analysis is implemented as a prototypical plugin for the Eclipse IDE using
the Papyrus UML editor for creating and annotating UML models. During the task
of annotating UML models, the user is supported with well-formedness checks of
presence conditions, an overview of feature usages in the UML model as well as
the option to execute our check on all products. Figure12.7 shows a screenshot of
the Papyrus UML editor in the Eclipse IDE and the SecPL tool support for speci-
fying UML product lines. In the center of the figure, the iTrust model excerpt from
Figure12.3 is shown in the Papyrus editor. At the bottom of the figure, the SecPL
extension is shown. The SecPL Features view contains a list of all features defined
in the FeatureIDE model of the project. In this case, this is the feature model from
Figure11.2 used as an example in this chapter. The view shows for every feature if it
is currently used in the UML product line or not. Also, for every feature, the location
of the usage and the corresponding presence condition can be shown. For example,
the feature Patients is used in two locations. Both times in a «Conditional»
stereotype on the classes Patient and ViewRecordsPatientControl. On
top of the view, the number of possible configurations and whether security viola-
tions have been found using the SecPL checks.When introducing the feature model,
we mentioned that there are 528 possible configurations of the feature model but
in Figure12.7 it is stated that there are 464 possible configurations. This is due to
the feature of analyzing partial configurations. In this case, the feature Patients
is selected by a checkmark meaning that only the configurations containing the
feature Patients are considered. This allows to first only focus only on partial
configurations at the development and broaden the scope afterward.

To allow developers to actively trigger the SecPL checks or to integrate them into
a continuous integration pipelinewe integrated theSecPLchecks into theCARiSMA
tool. Figure12.8 shows the integration of SecPL into CARiSMA. In the figure’s
center, we can see a CARISMA analysis configuration file. In this file, besides
the fair exchange of the classic CARiSMA implementation, the two SecPL checks
are added to the configuration. For the current execution, which can be triggered

342 12 Security in UML Product Lines

Figure 12.7 Papyrus UML editor with SecPL Features View showing usages of features in
UML product lines

by clicking on the RUN button, only the SecPL Secure Links check is selected.
The results of this execution are shown in the Analysis Results view at the figure’s
bottom.

Since our OCL constraints are formulated in a rather coarse-grained fashion,
based on the model- and package-level, determining the root cause of a failed check
can be a non-trivial task for developers. However, for debugging purposes, devel-
opers can use the produced witnesses to inspect a single product where the issue
occurs, rather than the full SPL representation. During this task, she can use full-
fledged tool support, e.g., as provided by CARiSMA [229], for the analysis of the
detected insecure product. If a product with security violations is detected, the stan-
dard UMLsec check is automatically executed on this product to generate detailed
error messages, using the standard implementation of UMLsec by the CARiSMA
tool. The user interface for this task is shown in Figure12.9. To produce a security
violation, we changed to presence condition of the «ConditionalCritical»

12.4 Tool Support for Family-based Security Checks of UML Product Lines 343

Figure 12.8 Integration of SecPL into CARiSMA

Figure 12.9 Detection of a Security Violation using SecPL

344 12 Security in UML Product Lines

on the class ViewRecordsPatientControl to be more restrictive for the sig-
nature prescription:Prescription on the security level secrecy. As we
can see in the SecPL Features view, the iTrust UML product line now contains at
least one security violation and one configuration containing a violation is stated
(Patients ∧ UC9 ∧ UC11 ∧ UC37). The UML product for this configuration
is automatically generated and the default CARiSMA Secure Dependency check
is executed on this product. Details on the violation in the product are shown as
before in the Analysis Results view of CARiSMA. In this case, the changed pres-
ence condition lead to the class ViewRecordsPatientControl not specify-
ing prescription:Prescription on the security level of secrecy in this
product.

12.5 Evaluation of SecPL

We designed a methodology for specifying and analyzing security requirements in
software product lines. In this section, we evaluate the following aspects of our
methodology:

• O1–Efficiency To what extent does our family-based analysis improve the effi-
ciency of the security analysis?

• O2–Scalability How does our analysis scale to product lines with large feature
models and domain models?

• O3–Usefulness Is our methodology easily understandable, usable, and applica-
ble to realistic software engineering projects?

For this evaluation, we use the prototypical implementation of the SecPL analysis
presented in the previous section. We performed all experiments on a Windows 10
PC with an Intel i5-3570K, 8 GB of RAM, and Oracle JDK 8 inside of an Eclipse
Neon.3 instance which was allowed to allocate up to 6 GB memory.

12.5.1 O1–Efficiency of the Security Checks

To evaluate our methodology based on realistic subjects, we collected a suite of
models suitable for our security- and variability-oriented setting. The collection
was performed based on convenience sampling, in most cases by reusing evaluation
samples from the existing literature on software product lines and model-based
security.Wegive an overviewof our subjects inTable12.1with relevant information,

12.5 Evaluation of SecPL 345

Table 12.1 Subjects of the efficiency evaluation of the variability-aware security checks

Project
name

Input artifacts #Elements #Call #Features #Products

BMW Magazine article 116 13 16 54

E2E UMLsec models 130 14 7 94

BCMS UML models 3,034 4 8 254

JSSE Java 24,077 28 6 64

Notepad Java + Antenna 252 4 13 512

MobilePhoto Java + Antenna 4,069 35 13 3,072

Lampiro Java + Antenna 29,045 24 20 5,892

including thenumber of dependencieswith«call» and«send» stereotypes, since
they are a key part in both considered checks. The models stem from a variety of
sources that can be divided into two groups.

The first group represents original modeling examples. First, we created a model
based on the description of the in-car system of BMW. Second, we used a UMLsec
scenario obtained from theCARiSMAdevelopers from their prior collaborationwith
an industry partner and extended it with variability: EndToEndEncryption (E2E) is
based on a set of system models specifying different versions of Munich Re’s IT
infrastructure [306]. For our evaluation, we refactored those models into a product
line. Third, the Barbados Car Crash Management System (bCMS) [307] is based
on a requirements specification of the car crash management system SPL. For our
evaluation, we used an available UML implementation in the form of enumerated
products [308] and manually refactored it into a SecPL model. While the bCMS
model is relatively large, only a small part of themodel required security annotations,
resulting in four relevant calls.

The second group is made up of projects from the open-source Java context.
As discussed in Section11.4, we produced SecPL models by applying our reverse
engineering mechanism to the available codebases. We consider OpenJDK’s imple-
mentation of the Java Secure Socket Extension (JSSE), a particularly interesting
security-critical scenario. Besides variability annotations, we added security anno-
tations based on security-critical keywords like “keystore”. Notepad [290] is a text
editor in which the opening and writing of files are security-critical. For example,
many iOS apps have been infected by a corrupted editor [309]. MobilePhoto [292]
is a mobile multi-media platform supporting for sharing media over an Internet
connection. Lampiro [293] is an instant messaging client which has been naively

346 12 Security in UML Product Lines

developed as a software product line. In these cases, we added security annotations
to the codebase and propagated these into the models at reverse engineering.

Setup. We experimentally evaluated the efficiency of our analysis using themodels
described above, using the state-of-the-art tool, CARiSMA, as a baseline. For each
model, we compared the execution time for checking the SecPL model using our
analysis (SecPL check) to the sum of the execution times for checking all prod-
ucts using CARiSMA, which supports regular UMLsec checks on single products
(product-wise check). In both cases, we measure the timespan from loading a UML
model with SecPL stereotypes to the delivery of the analysis results for all products.
Our analysis is more efficient if the execution times of the SecPL implementation
are significantly lower than those of CARiSMA.

Results. The product-wise check produced a result for five out of seven subjects,
BMW, E2E, BCMS, JSSE, and Notepad. In these cases, the SecPL checks were
between one and three orders of magnitude faster (Figure12.10). For the subjects
MobilePhoto and Lampiro, the product-wise check terminated with a garbage col-
lection (GC) overhead exception after 700 to 1,000 checked products and 3 to 5
hours of run time, whereas the SecPL checks took below 100 seconds. On aver-
age, the product-wise check spent 91.6% of the time generating the products, and
the remaining 8.4% performing the checks. We observed that the run time of the
product-wise check mainly depends on the number of products, whereas the SecPL
check is mainly influenced by the model size and the number of relevant calls. In
sum, SecPL outperformed the product-wise check constantly.

Figure 12.10 Execution times of the family-based SecPL check and the product-wise check
with CARiSMA

12.5 Evaluation of SecPL 347

O2–Scalability of the Security Checks
For our scalability evaluation, we needed to freely control the size of our test models.
To this end,we generated syntheticmodels. Our rationalewas to createmodels being
representative of realistic examples, which we address as follows.

To study the effect of the model size, we generated large class models, being
amenable to the Secure Dependency check. Based on typical cases in the security-
critical portions of the realistic examples, we incrementally added classes with on
average four operations and three dependencies. Our initial model contained two
classes with one call dependency between them and one operation each. In each
iteration, we added a class with a «critical» stereotype and a normally dis-
tributed number of operations, on average four, and a normally distributed number
of dependencies, on average three.We added all member signatures of classes reach-
able over a dependency to the secrecy tag of the class’s «critical» stereotype.
The resulting model is potentially expensive to check:

(i) it comprises many involved dependencies and operations, and
(ii) since it fulfills Secure Dependency, every class treats all relevant signatures

with secrecy, the check does not terminate early with a counterexample.

To study the effect of the feature model size, we took a randomly generated UML
model from the model-size experiment with 4K classes, incrementally added inde-
pendent features to the feature model successively, and assigned each feature to one
class in the model via a suitable «conditional» stereotype.We checked models
annotated with between zero and 4K features, adding 50 features in each iteration.

Setup. To experimentally evaluate scalability, we measure the execution times of
our SecPL implementation on different synthetic models with a growing number
of model elements and features as described above. Our analysis is scalable if the
execution time avoids exponential growth for increasingly larger domain models
and feature models.

Results. In our scalability experiment regarding model size, the largest generated
model we checked had 524KUML elements, including 66K classes with an average
number of four operations and three call dependencies to other classes. As shown in
the upper part of Figure12.11 the execution of this test case took 97.3 minutes. The
regression function we calculated from these measurements is a second-order poly-
nomial and fits the measured data with a coefficient of determination (R2) of nearly
one (0.999985). This observation is in line with the performance considerations

348 12 Security in UML Product Lines

Figure 12.11 Scalability results of SecPL regarding Number of Classes and Number of
Features

for template interpretation. For our scalability experiment regarding the number of
features, we used a randomly generated model with 4K UML classes (32K UML
elements) and successively added up to 4K independent features (1.04 ·101233 prod-
ucts). The measured data points as illustrated in Figure12.11 show a higher vari-
ance compared to those from the previous experiment. The analysis took between
57 and 58 seconds up to 1.7K features and started oscillating between 58 and 60
seconds until around 4K features. In sum, our analysis showed scalable behavior
up to thousands of features, the magnitude of large product lines in automotive
engineering [294].

12.5.2 O3–Usefulness of the Tool Support and Security Checks

To evaluate the usefulness of our methodology, we conducted a user experiment
with participants from academia and industry.

12.5 Evaluation of SecPL 349

Setup. Werecruited nine participants fromacademia, two of themwith a significant
industrial background, andone representative of an industry partner. Theparticipants
from academia came from three universities and one private research institute and
had their focus on security, SPL, and modeling domains. The industry-experienced
academics had long-running backgrounds as IT freelancers. Moreover, one of them
was employed at a large steel-based technology group at the time of the experiment.
The industry partner, SinnerSchrader, is Germany’s fourth-largest digital marketing
company and cooperates with many major international companies.

After a short introduction to SecPL, we asked the participants to perform a
development task based on an in-car system oriented on a BMW system described
in the literature [310]. This software system allows users to unlock their BMW car
using a mobile application. It has been shown that sensitive data is released in error
messages if a specific modem has been selected in the car product line. The task
was to extend a provided UMLmodel of this software systemwith a new alternative
modem type by using our tool prototype while addressing the included security
requirements. Afterward, the participants filled in a questionnaire in which they
rated their subjective experience in eight questions based on a five-point Likert scale.
Five questions addressed usability concerns, such as the difficulty of specifying a
new security requirement; three questions were concerned with understandability,
such as the certainty that the participant’s understanding of the used stereotypes was
correct. We provide a replication package including the task, questions, and results
together with the submission.

After the experiment, we conducted informal interviews with all participants,
in which we asked for feedback concerning usability and understandability. In the
interviews with the industry-based and -experienced participants, we additionally
asked them to comment on the applicability of our methodology to their business
segments and those of their customers.

Results. In what follows, we discuss the results of our evaluation regarding the
usefulness of the proposed approach. First, we discuss the approach’s usability and
understandability. Next, we discuss the practical applicability of the approach.

Figure 12.12 Aggregated answers from the user study regarding the usability and under-
standability of SecPL

350 12 Security in UML Product Lines

Usability and Understandability: The answers to our questions indicate that our
methodology is easily usable and understandable. According to Figure12.12 in
both categories, more than 70 percent of the answers suggest a high or very high
usability and understandability, an impression confirmed by the feedback in the
interviews. On the downside, some participants perceived the editing of anno-
tations through Papyrus’s user interface as cumbersome, as reflected by some
of the negative scores for usability. Moreover, some participants were worried
that a larger model “cluttered” with annotations may become hard to read. A
promising strategy to deal with these issues is by providing improved tool sup-
port, for example, to support the editing of largemodels based on custom-tailored
views [311], including views on individual products of the product line [312].
A further question raised by participants was where to start when annotating the
modelwith security requirements. To this end, approaches analyzing higher-level
security specifications and suggesting SecPL security annotations can be help-
ful [74].Moreover, a textual UMLnotationmay further help to improve usability.
Despite the mostly positive understandability ratings, one participant reported
considerable problems while understanding the stereotypes. An interactive help
system may help to further improve understandability.

Practical Applicability: According to our industry partner’s representative, our
notation for specification and analysis of security requirements on product lines
is an accurate fit for their business needs. As an example for a possible appli-
cation, they mentioned a current collaboration in the automotive domain on
real-time car software upgrades based on changing customer needs. They want
to dynamically advertise and sell upgrades according to customers’ needs by
dynamically reconfiguring the car, e.g., to sell the usage of the trailer hitch for
some days when the customer is relocating. The specification and analysis of
security requirements on software product lines are essential for this concept.
The participant deemed our graphical notation on UML models as a possibility
to realize the specification in a user-friendly way.
One of the industry-experienced participants conjectured that our approachmight
be very helpful for developers familiar with modeling, but felt that he was not
proficient enough in this topic to really judge applicability.
The other industry-experienced participant, who is also employed for a steel-
based technology group, stated that our methodology could be used for coordi-
nating the development of security-critical software inmultiple distributed teams.
If the project has been planned using UML, specially trained team members can
easily annotate the models with required and provided security levels of class
members.However, for direct use in industry, the tool support has to be improved;
distributed and parallel editing of UML models has to be supported. Neverthe-

12.6 Threats to Validity 351

less, he pointed out that these are general issues with model-based development,
and that they are by no means necessarily aggravated by incorporating SecPL.

To conclude, these first impressions give a promising outlook on the applicability of
our methodology in the industry. Since we do not require any artifacts beyond those
involved in typical software development processes, our participants found that an
alignment of our methodology with these processes seems generally possible.

12.6 Threats toValidity

In this section, we discuss threats to validity according to four categories of threats.

12.6.1 External Validity

External validity is threatened by our limited selection of models that may not be
representative of all realistic models.While our suite of test subjects selected forO1
represents a broad variety of use cases, we cannot generalize our findings to arbitrary
models. Themodels generated for our scalabilitymeasurements inO2were inspired
by the realistic ones used to evaluate O1; their purpose was to illustrate the effect
of increased model size and feature number. The model in O3 is by no means
representative for all possible usage contexts; however, it was chosen as a critical
example inspired by a real case. Also, we performed the experiment only with a
limited number of expert users.

12.6.2 Internal Validity

Regarding internal validity, a potential threat concerns the correctness of our imple-
mentation. In Section12.3, we argued for the correctness of our OCL implementa-
tions of the considered UMLsec checks by using CARiSMA as a test oracle. Since
both implementations were developed independently from another, the identical
results from the test suite give us a high level of confidence in the correctness of
our implementation. For additional user-specified constraints, correctness has to be
ensured as well, for example, by providing a similar test suite. Moreover, while we
aimed to systematically specify all security requirements in the considered exam-
ples, we cannot guarantee the completeness of our security annotations.

352 12 Security in UML Product Lines

12.6.3 ConclusionValidity

Concerning conclusion validity, a more definitive verdict on the practical applicabil-
ity of our methodology requires the involvement of a larger sample of practitioners.
To this end, the conduction of a broader developer survey in the future could help
to prove or disprove our conclusion. In particular, we did not evaluate if users
can work with our reverse-engineered models effectively, which depends on the
employed model editor’s usability during the editing of larger models.

12.6.4 Construct Validity

Regarding construct validity, our methodology is based on existing technology,
such as template interpretation and the Papyrus UML editor, which also impact its
applicability. Our evaluation assesses the applicability of these techniques in the
domain of software security, which has not been done in previous work. Moreover,
to the best of our knowledge, we also provide the first evaluation of a template-
interpretation-based technique on a set of realistic models.

12.7 Conclusion on Security in UML Product Lines

Security is one of the hardest properties of software to accomplish in practice. With
this work, we provide a comprehensive methodology for the model-based security
analysis of software product lines. We extended our UML variability extension to
also support variability within UMLsec security requirements. Using the SecPL
profile, users specify security requirements as well as variability information as part
of the design-time system models. Furthermore, we investigated how we can detect
security violations on the UML product lines without iterating over all products.
For this purpose, we specified UMLsec checks as OCL constraints and evaluated
these using a template interpretation technique of Czarnecki et al. [300]. This way,
our analysis addresses the scalability issues encountered in this setting by lifting the
analysis to the level of the entire product line rather than individual products. In our
evaluation, this solution enabled the analysis of realistic product lines in realistic
cases where the naive approach terminated without a result; a user study indicates
the usefulness of our methodology.

12.7 Conclusion on Security in UML Product Lines 353

In the future, our work can mainly be extended in two directions. First, our
methodology can be applied to a broader selection of use cases. Since UMLsec has
been used in protocol engineering [104], a promising application involves protocol
families. Second, an extended form of our analysis could inform the automated
configuration of a product line, e.g., by considering the established security degree
and the cost for security measures to assess solutions.

13Security Compliance and Restructuring in
Variant-rich Software Systems

This chapter shares material with the FASE’2018 publication “Taming Multi-
Variability of Software Product Line Transformation” [313] and “A Staged Tech-
nique for Software Product Line Transformations” submitted for publication.

In the previous chapter, we discussed the specification and verification of security
requirements on UML model product lines. With this contribution, we reached the
state at which we started at the beginning of this thesis for single-product software
systems. We have the means to specify and verify UMLsec security requirements
in product lines but the verification of these requirements on the implementation
is missing. Also, the maintenance support of GRaViTY, e.g., security-preserving
refactorings, has not been transferred to software product lines, yet.

In general, despite the benefits of software product lines, a growing amount of
variability leads to combinatorial explosions of the product space and, consequently,
to severe challenges. Notably, this applies to software engineering tasks such as
refactorings [314], refinements [315], and evolution steps [316], which, to support
systematicmanagement, are often expressed asmodel transformations. In this thesis,
we used model transformations for security-preserving refactorings in Chapter 10
and to specify security violation patterns in Section 8.6. The open challenge is the
application of these model transformation rules to software product lines as part
of the GRaViTY development approach. In this chapter, we provide an approach
that allows the application of the security violation patterns and security-preserving
refactorings to variant-rich software systems. By doing this, in combination with
the previous chapters’ contributions, we answer RQ5 to its full extend.

RQ5: How canwe verify and preserve security compliance in variant-rich software
systems?

©TheAuthor(s), under exclusive license toSpringer FachmedienWiesbadenGmbH,
part of Springer Nature 2022
S. M. Peldszus, Security Compliance in Model-driven Development of Software
Systems in Presence of Long-Term Evolution and Variants,
https://doi.org/10.1007/978-3-658-37665-9_13

355

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-658-37665-9_13&domain=pdf
https://doi.org/10.1007/978-3-658-37665-9_13

356 13 Security Compliance and Restructuring in Variant-rich Software Systems

Tobemore precise, followingFigure 13.1, by applying the security violation patterns
to software product lines, in addition to Chapter 12’s answer concerning UML
product lines, we answer RQ5.2 for the program model. As the program model
is a representation for analyzing the source code, we also answer this research
question for the implementation. Togetherwith theUMLmodel-level security check
from Chapter 12, we answer RQ5.2, entirely covering design-time models and the
implementation of variant-rich software systems. Using the same approach, we can
apply the security-preserving refactorings to software product lines and answer
RQ5.3.

RQ5.2: How can security violations be detected on SPLs?
RQ5.3: How can we apply security-aware refactorings to SPLs?

To be more precise, our answers to RQ5.2, in terms of applying security violation
patterns to SPLs, and RQ5.3, of how to apply refactorings to SPLs, are specific
instances of the general problem of applying multi-variant transformation rules to
SPLs. In this chapter, we provide a generic solution to this problem and demonstrate
this solution on the two examples.

Generally, when applying a given model transformation to a software product
line, a key challenge is to avoid enumerating and considering all possible products
individually. To this end, Salay et al. [317] have proposed an algorithm that “lifts”

Figure 13.1 Concept including security-compliance checks and restructurings in variant-
rich systems

13 Security Compliance and Restructuring in Variant-rich Software Systems 357

regular transformation rules to a whole product line. The algorithm transforms
the SPL, represented as a variability-annotated model, e.g., using SecPL or the
variability annotations for the program model, in such a way as if each product had
been considered individually.

Yet, in complex transformation scenarios as increasingly found in practice [318],
not only the considered models include variations but the transformation system can
contain variability as well, for example, due to desired optional behavior of rules,
or for rule variants arising from the sheer complexity of the involved meta-models.
While several works [319–321] support systematic reuse to improve maintainabil-
ity, variability-based model transformation (VB) [322, 323] also aims to improve
the performance when a transformation system with many similar rules is exe-
cuted. To this end, these rules are represented as a single rule with variability
annotations, called VB rule. During rule applications, a special VB rule applica-
tion technique [262] saves redundant effort by considering common rule parts only
once. In Chapter 10, we used these VB rules to specify variability in refactorings,
e.g., regarding possible targets of Move Method refactorings. In summary, for cases
where either the model or the transformation system alone contains variability, solid
approaches are available.

However, a more challenging case occurs when a variability-intensive transfor-
mation is applied to an SPL, e.g., the refactorings formalized using graph transfor-
mation in Section 10.2. In this multi-variability setting, where both the input model
and the specification of a transformation contain variability, the existing approaches
fall short to deal with the resulting complexity: One can either consider all rules,
so they can be “lifted” to the product line, or consider all products, so they become
amenable to VB model transformation. Both approaches are undesirable, as they
require enumerating an exponentially growing number of artifacts and, therefore,
threaten the feasibility of the transformation.

In this chapter, we introduce a methodology for SPL transformations inspired by
the uniformity principle [324], a tenet that suggests handling variability consistently
throughout all software artifacts. We propose to capture the variability of SPLs
and transformations using variability-annotated models and rules. Model and rule
elements are annotated with presence conditions, specifying the conditions under
which the annotated elements are present. The presence conditions of model and
rule elements are specified over two separate sets of features, representing SPL and
rule variability. Annotatedmodels and rules can be createdmanually using available
editor support [325, 326], or automatically from existing products and rules by using
merge-refactoring techniques [327, 328].

358 13 Security Compliance and Restructuring in Variant-rich Software Systems

Figure 13.2 Overview of the multi-variant model transformation

Given an SPL and a VB rule, as shown in Figure 13.2, we provide a staged rule
application technique (black arrow) for applying a VB rule to an SPL. In contrast
to the state of the art (shown in gray), enumerating products or rules upfront is
not required. By adopting this technique, existing tools that use transformation
technology, such as refactoring engines, may benefit from improved performance.
Specifically, we make the following contributions:

• We introduce a staged technique for applying a VB rule to an SPL. Our technique
combines core principles of VB rule applications and lifting while avoiding their
drawbacks regarding enumerating all products or rules upfront.

• We present an algorithm for implementing the rule application technique, which
supports efficient rule applications by relying on state-of-the-art SAT solvers.

• We evaluate the usefulness of our technique by studying its performance in a
substantial number of cases within two software engineering scenarios including
the refactorings introduced in Chapter 10.

Our work builds on the underlying framework of algebraic graph transformation
(AGT) [144]. AGT is one of the standard model transformation language paradigms
[329]; in addition, it has recently gained momentum as an analysis paradigm for
other widespread paradigms and languages such as ATL [330]. We focus on the
annotative paradigm to variability. Suitable converters to and from alternative para-
digms, such as the composition-based one [312], may allow our technique to be
used in other cases as well.

In what follows, first, we introduce our application scenario in terms of a state
machine from the iTrust SPL as well as a UML refactoring rule in Section 13.1.
Afterward, in Section 13.2, we introduce ourmulti-variant transformation approach.

13.1 Application Scenario 359

InSection13.3,we introduceour implementationof themulti-variant transformation
as an extension of the Henshin transformation engine. We evaluate this approach in
Section 13.4 regarding performance in two realistic scenarios including the refac-
torings introduced in Chapter 10. Finally, we discuss threats in Section 13.5 and
conclude in Section 13.6.

13.1 Application Scenario

In this section, first, we introduce an exemplary product line within our iTrust
running example, and second, a refactoring product line for UML models.

13.1.1 iTrust example SPL

As the iTrust application scenario for this chapter, we consider a state machine
from iTrust’s design-time models. This state machine specifies the states during the
treatment of a patient within a hospital using iTrust. The core states are oriented on
an example from [331] but have been simplified and adapted to iTrust. Generally,
the treatment of a patient involves four states. First, the patient is admitted to
the hospital. Afterward, the patient is in the state of diagnosis in which doctors
inspect the patient to find the reasons for her health issues. After the patient has
been diagnosed, the treatment starts. Finally, when the patient has recovered,
she is discharged.

Figure 13.3 shows a simplified state machine product line for the treatment of
a patient using iTrust. Unlike the example in [331], we do not consider cases of

Figure 13.3 State machine showing the states of a patient’s treatment

360 13 Security Compliance and Restructuring in Variant-rich Software Systems

patients deploying additional symptoms or detailed triggers for state changes. In
our example, we included variations of the state machine depending on how the
iTrust SPL is deployed. To be more precise, we considered the following three
optional features:

physiatry: A custom-tailored version of iTrust has been developed for a customer
operating a physical medicine and rehabilitation clinic, also known as physiatry.
This physiatry is integrated into a bigger hospital and therefore does not the ability
to create diagnoses but relies on the diagnoses created by the hospital. To keep
the system’s user interface simple and reduce the attack surface, iTrust can be
deployed without the functionality to edit diagnoses. Instead, the functionality to
import diagnoses from an external source, e.g., the hospital into that the physiatry
is integrated, has been added.

external: The functionality to import diagnoses from external sources, that has
been developed for the physiatry, has been used to support the general import
of diagnoses from other hospitals. If the imported diagnosis is plausible, the
diagnosis state can be bypassed and the treatment can be started immediately.
Whenever a patient enters the treatment state, a checkup has to be performed.
As diagnoses are necessary in case the imported diagnosis is not plausible, this
feature cannot be combined with the physiatry feature.

specialist: The third optional feature allows treatment by external specialists as
part of the treatment. If treatment by external specialists is supported, after the
regular treatment, patients can be handed over to a specialist. In this case, patients
enter an additional state before being discharged.

Concrete products can be obtained from configurations in that each optional feature
is either set totrue or false. A product arises by removing those elements whose
presence condition evaluates to false in the given configuration. For instance, select-
ingexternal and deselectingphysiatry andspecialist yields the product
shown in the right of Figure 13.3. Since all features are optional and physiatry
excludes external, the SPL has six configurations and products in total.

13.1.2 RuleVariants

In complex model transformation scenarios, developers often create transformation
rules that are similar but different from each other. For example, the refactorings

13.1 Application Scenario 361

introduced in Chapter 10 had similar base parts but different variations, e.g., regard-
ing possible target classes of Move Method refactorings or security constraints.

As a simpler example, consider the two refactoring rulesfoldEntryActions
andfoldExitActions (Figure 13.4), calledA andB in short. These rules express
a “fold” refactoring for state machine diagrams: if a state has two incoming or
outgoing transitions with the same action, these actions are to be replaced by an
entry or exit action of the state. The rules have a left- and a right-hand side (LHS,
RHS). TheLHSspecifies a pattern to bematched to an input graph, and the difference
between the LHS and the RHS specifies a change to be performed for each match,
like the removing of transition actions, and the adding of exit and entry actions.

In addition, both rules each contain twoNegative Application Conditions (NACs,
[333]). Intuitively, a NAC specifies a particular pattern whose presence is forbidden,
yielding a precondition that needs to be fulfilled to render the rule applicable at a
given place in the model. NAC1 of rule A specifies that the state receiving the entry
action, identified with x, may not already have an entry action. NAC1 of rule B
specifies the equivalent condition for exit instead of entry actions. These NACs
are required in state machine diagrams that only support one entry and exit action
per state. In both rules, NAC2 specifies that the target state may not be a complex
state, which is a state nesting sub-states. These NACs are required to enforce a
general policy that such complex states may not have entry or exit actions since
the actual entry and exit action would be performed within the nested states. NACs

Figure 13.4 Two rules for refactoring state machines (adapted from [332])

362 13 Security Compliance and Restructuring in Variant-rich Software Systems

Figure 13.5 Feature model of the Move Method refactoring rule, including all security con-
straints

are considered in conjunction, that is, the rule is only applicable if both NACs are
satisfied.

13.1.3 Variability-basedModel Transformation

Rules A and B are simple; however, in a realistic transformation system, the number
of required rules can grow exponentially with the number of variation points in the
rules. An example of these is the security constraints for refactorings discussed in
Section 10.3.2. Figure 13.5 shows the Move Method refactoring’s feature model,
including all security constraints introduced in Section 10.3. Only the application
conditions avoiding the increase of a method’s visibility when moving the method
to another class (feature visibilities and its child features) and the semantic-
preserving features (targets and its child features) already result in 20 variants
of this refactoring rule. The four additional security constraints for moving methods
only to critical classes introduced in Section 10.3.2 are not included yet. For these,
we have four additional application conditions per considered UMLsec security
level. As two of these conditions are exclusive, these can be represented by one
feature, e.g., secrecy for the secrecy case of the conditions. In the end, these can
be compared to three possible configurations for each security level. Assuming the
three security levels secrecy, integrity, and high of UMLsec, there are 64 variants
of these constraints. In combination with the visibility constraints, we get 1,264
variants of the Move Method refactoring. To avoid such a combinatorial explosion,
a set of variability-intensive rules can be encoded into a single representation using
a VB rule [323, 328].

A VB rule consists of an LHS, a RHS, a feature model specifying a set
of interrelated rule features, and presence conditions annotating LHS and RHS

13.1 Application Scenario 363

Figure 13.6 Variability-based rule encoding the two example rules

Table 13.1 Approaches for dealing with multi-variability

Independent combinations

Approach Example General case

Naive 12 2#FP * 2#Fr

VB transformation [323] 6 2#FP

Lifting [317] 2 2#Fr

Staged application (new) 1 1

elements with a condition under which they are present. Individual “flat” rules are
obtained via configuration, i.e., binding each feature to either true or false.

TheVB ruleA+B, shown in Figure 13.6, is equivalent to the individual rulesA and
B. Notably, nodes, edges, and the negative application conditions NAC1 and NAC2
each have a presence condition. The scope of these presence conditions is generally
the entire NAC. (A possible design alternative would be to annotate individual NAC
elements with presence conditions. However, this option’s practical usefulness is
limited by semantic complications related to the notion of “subrule", which we will
discuss later.) The featuremodel specifies a root feature refactorwith alternative
child features foldEntry and foldExit. Since exactly one child feature has to
be active at one time, two possible configurations exist. The two rules arising from
these configurations are isomorphic to rules A and B.

364 13 Security Compliance and Restructuring in Variant-rich Software Systems

13.2 Multi-Variant Model Transformation

Usually, we design model transformations such as foldActions but also the
refactorings introduced in Chapter 10 or the security violation patterns from Sec-
tion 8.6 for applications to a concrete software product represented by a single
model. However, in various situations, it is desirable to extend the usage context to
a set of models collected in an SPL. For example, during the batch refactoring of
an SPL, all products should be refactored uniformly.

Variability is challenging for model transformation technologies. As illustrated
in Table 13.1, products and rules need to be considered in manifold combinations.
In our example of refactoring of the state machine from the iTrust SPL, without
dedicated variability support, the user needs to specify 6 products and 2 rules indi-
vidually and trigger a rule application for each of the 12 combinations. A better
strategy is enabled by VB model transformation: by applying the VB rule A+B,
only 6 combinations need to be considered. Another strategy is to apply rules A
and B to the SPL by lifting [317] them, leading to 2 combinations and the biggest
improvement so far. Still, in more complex cases, all of these strategies are insuf-
ficient. Since none of them avoids exponential growth along with the number of
optional SPL features (#FP) or optional rule features (#Fr), the feasibility of the
transformation is threatened.

13.2.1 Solution Overview

A variability-based rule, e.g., the specification of a refactoring, represents a set of
similar transformation rules, while a product line represents a set of similar models.
Variability-based rule application allows us to save matching effort by considering
shared parts of rules to a graph only once. We can show that the sets of partially and
fully flattened rule applications are equivalent.

For every fully flattened (FF) rule application, we can find a corresponding
partially flattened (PF) one, and vice versa: Given a FF rule application at a base-
match, we compose the base-match with the product inclusion into the model to
obtain a match into the model. Per Theorem 2 in [323], a match induces a VB
match and rule application. From a diagram chase, we see that the base-match is
the morphism arising from rerouting mc onto the product Pi . Consequently, the
rule application is PF. Conversely, a PF variability-based rule application induces a
corresponding FF rule application by its definition.

13.2 Multi-Variant Model Transformation 365

Fi
g
u
re

1
3
.7

St
ag
ed

ru
le
ap
pl
ic
at
io
n
of

a
V
B
ru
le
to

a
pr
od

uc
tl
in
e

366 13 Security Compliance and Restructuring in Variant-rich Software Systems

Lifting takes a single rule and applies it to a model and its presence conditions
in such a way as if the rule had been applied to each product individually. The
considered rule in our case is a flat rule with a match to the model.

The key idea of lifting a variability-based rule to a product line is as follows: each
match of a flat rule to a product includes a match of the base rule into the model.
The absence of such a match implies that none of the rules has a match, allowing us
to stop without considering any flat rule in its entirety. Such exit point is particularly
beneficial if the VB rule represents a subset of a larger rule set in which only a few
rules can be matched at one time. Conversely, if a match for a base rule exists, a rule
application arises if the match can be rerouted onto one of the products. In this case,
we consider the flat rules, saving redundant matching effort by reusing the matches
of the base rule.

We propose a staged rule application technique for applying a VB rule to an
SPL to address this situation. As shown in Figure 13.7, this technique proceeds
in four steps discussed below. Each step has a success case (arrows labeled with
a checkmark) and an exit case (arrows labeled with a cross). Exit cases lead to
immediate termination of the rule application.

• In step 1, we consider the base rule, that is, the common portion of rules encoded
in the VB rule, and match its LHS to the full model, temporarily ignoring its
presence conditions. For example, considering rule A+B, the LHS of the base
rule contains precisely states x1, x2, and x. A match to the model is indicated
by dashed arrows. Using the presence conditions, we determine if the match can
be mapped to any specific product.

• In step 2, for each prematch, we consider the base rule NACs, that is, the VB
rule’s NACs that do not have an explicit presence condition, equivalent to the
presence condition true. For a given prematch, we check a subset of the base
rule NACs (which we characterize in this paper) that can be checked at this point.
Prematches that do not fulfill these base rule NACs are filtered out. Our example
prematch fulfills the one relevant NAC (NAC3) since treatment does not nest
any substates; hence the NAC is fulfilled. If any prematches are remaining after
filtering, we are in the success case; otherwise, the exit case is reached.

• In step 3, we extend the identified prematches of the base rule to identify pre-
matches of the rules encoded in the VB rule again ignoring presence conditions.
In the example, we would derive rules A and B; in general, to avoid fully flat-
tening all involved rules, one can incrementally consider common subrules. An
example prematch is denoted in terms of dashed lines for the mappings of tran-
sitions and actions. If we obtain a non-empty set of prematches, we are in the
success case, otherwise in the exit case.

13.2 Multi-Variant Model Transformation 367

• In step 4, to perform rule applications based on identified prematches, we use
lifting to apply the rule for which the match was found. Lifting transforms the
model and its presence condition in such a way as if each product was considered
individually. In the process, it also checks a remaining condition that renders the
prematches proper matches (discussed later). In the example, only products for
the configuration {external=true; previous=false} are amenable to
the foldAction refactoring. Consequently, the new entry action assignHCP
has the presence condition external ∧ ¬physiatry, and other presence
conditions are adjusted accordingly.During lifting, a certain condition is checked.
The condition determines if the match can be mapped to any specific product
(based on the model’s presence conditions) so that all NACs of the flattened rule
are satisfied. If none of the considered matches fulfills these conditions, the exit
case is reached. Otherwise, we are in the success case.

Performance-wise, the main benefit of this technique is twofold: First, using the
termination criteria, we can exit the matching process early without considering
the specifics of products and rule variants. This early termination is particularly
beneficial in situations where none or only a few rules of a larger rule set are
applicable most of the time, which is typically the case, for example, in translators.
Second, even if we have to enumerate some rules in step 2, we do not have to start the
matching process from scratch, since we can save redundant effort by extending the
available base matches. Consequently, Table 13.1 gives the number of independent
combinations (in the sense that rule applications are started from scratch) as 1.

13.2.2 Multi-Variant Transformation Algorithm

We present an algorithm for implementing the VB rule ř ’s staged application to a
product line P . The main idea is to proceed in four steps:

1. First, we match the base rule of ř to the model, ignoring presence conditions,
obtaining a set of prematches.

2. Second, we check certain NACs of the base rule on the prematches to filter out
those prematches with violations.

3. Third, we consider individual rules as far as necessary to obtain prematches to
the model.

4. Fourth, based on the matches, we perform the actual rule application using the
lifting algorithm from [317] in a black-box manner.

368 13 Security Compliance and Restructuring in Variant-rich Software Systems

Algorithm4 shows the computation inmore detail. Our formalization so far supports
the checking of NACs as part of the lifting phase. In that phase, we consider an
individual flattened rule rc to which we apply Sayal et al.’s lifting operator, which
is geared for dealing with NACs, including those of rc. In our multi-variability
scenario, relying on lifting leads to a sound, but not necessarily efficient solution:
it might lead to considering many flat rules arising from the VB rule individually,
only to discover late in the process that none of these rules is applicable, due to
NACs being not fulfilled.

Algorithm 4: Staged application of a VB rule to a product line.
Input : Product line P, VB rule ř
Output: Transformed product line P

1 precheckBaseNACs := precheckBaseNACs(ř);
2 BMatches := findPreMatches(ModelP , r0);
3 foreach mbase ∈ BMatches do
4 BNACMatches := findNACMatches(ModelP , mbase, precheckBaseNACs);
5 �pc :=

∧
{ pc ∈ pcs(mbase) };

6 �nac :=
∨

{
∧

{ pc ∈ pcs(mbNac) } | mbNac ∈ BNACMatches };
7 if �P ∧ �pc ∧ ¬�nac is SAT then
8 foreach c ∈ configs(ř) do
9 flatRule := rř .removeAllElements(e | c � pce);

10 flatRule := flatRule.removeAllNACs(n | c � pcn);
11 PreMatches := findPreMatches(ModelP , flatRule, m);
12 foreach m pre ∈ PreMatches do
13 NACMatches := findNACMatches(ModelP , m pre , nacs(ř) /

precheckBaseNACs);
14 lift(P, flatRule, m pre , NACMatches);
15 end
16 end
17 end
18 end

As a performance optimization, we allow certain NACs to be checked early.
We consider the base rule NACs, that is, the set of NACs that are shared by all
subrules of the considered VB rule. In general, not every base rule NAC can be
checked early in the way we do it. This is because the additions that a subrule
performs to the base rule might render a NAC fulfilled that is not fulfilled when
considering just the base rule. Elements that matched the NAC’s pattern for the base
rule, match the additions of the subrule and cannot be matched by the NAC’s pattern

13.2 Multi-Variant Model Transformation 369

anymore. Hence, checking the involved NAC for the base rule only would lead to
some prematches being prematurely discarded.

To determine if a given NAC can indeed be checked early, we define a property
called precheck-NAC and provide a sufficient criterion to check it. The intuition
behind precheck-NAC is to determine those NACs that, when fulfilled in the larger
context of an extended rule, are also fulfilled in the smaller context of the base rule.

First, in line 1, we compute the set of base rule NACs for which a precheck is
possible. To this end, we apply the precheck-NAC criterion to all base rule NACs
and collect those that fulfill the criterion. Afterward, in line 2, ř ’s base rule r0 is
matched to the model ModelP , leading to a set of prematches for the base rule.
If this set is empty, we have reached an exit criterion and can stop directly, as the
following part is skipped. Otherwise, given a match mbase, in line 7, we check if at
least one product Pi exists onto that m can be rerouted.

To this end, in lines 4–7, we use an SAT solver to check if there is a valid
configuration of P’s feature model for which all presence conditions of matched
elements evaluate to true, and at the same time, no NAC can be matched in all
valid configurations of P’s feature model. In line 4, we match all base NACs on the
model ModelP using the match mbase as the context for each NAC. For the match
of the base rule, we calculate the conjunction of the presence conditions of the nodes
matched by the base rule, giving the condition under which the match is part of the
model. In line 6, we calculate the disjunction over the conditions for being part of
the model of all NAC matches. The condition for a NAC match to be present in a
product of the model is again the disjunction over the matched elements’ presence
conditions. The formula considered in line 7 checks whether a base match mbase is
liftable: this is the case if there exists a product that includes all matched elements,
and there exist no NAC matches extending mbase.

If there is a valid configuration fulfilling the condition, we iterate over the valid
configurations of ř in line 8 (we may proceed more fine-grained using partial con-
figurations; this optimization is omitted for simplicity). A flat rule is obtained in
lines 9 and 10 by removing all elements and NACs from the rule whose presence
condition evaluates to false. We match this rule to the model in line 11; to save
redundant effort, we restrict the search to prematches that extend the current pre-
match. The absence of such a prematch is a further exit criterion for the current rule
configuration c. Otherwise, we match for every prematch all NACs of the flatRule
that have not been matched yet. Afterward, in line 14, we feed the flat rule, the
prematch, and the matches of the NACs to lifting in line 13. The evaluation of final
NAC and dangling conditions is left to lifting; in the positive case, P is transformed
afterward.

370 13 Security Compliance and Restructuring in Variant-rich Software Systems

For illustration, consider the prematch m1 = {admitted, diagnostics,
treatment} for the rule foldActions from Figure 13.7. In line 1, we consider the
rule’s NACs. Based on the previous descriptions, we know that NAC3 is a base NAC
and fulfills the precheck condition, and thus, is stored in precheckBaseNACs.
Thenwe calculate�pc. As none of the states involved in the prematch has a presence
condition,�pc is set totrue. Similarly,�nac is set tofalse because the prematch
m1 fulfills the only considered (NAC3). Altogether, the constraint is satisfiable and
the prematch liftable. Therefore we consider theVB rule’s configurations. Two valid
configurations exist, c1 = {foldEntry=true,foldExit=false} and
c2 = {foldEntry= false,foldExit=true}. Considering c1, the pres-
ence condition foldExit evaluates to false; removing the corresponding elements
yield a rule isomorphic to Rule A in Figure 13.6. Now, prematch m1 is extended
using this rule, leading to a prematch as shown in step 3 of Figure 13.7, and then
lifted, as discussed in the earlier explanation of the example. Step 3 is repeated for
configuration c2; yet, as no suitable prematch in c2 exists, the shown transformation
is the only possibleone.

This algorithm benefits from the correctness results shown in [313]. The effect of
the rule application to the products is the same as if each product had been considered
individually. In terms of performance, two limiting factors are the use of a graph
matcher and an SAT solver; both of them perform an NP-complete task. Still, we
expect practical improvements from our strategy of reusing shared portions of the
involved rules and graphs, and from the availability of efficient SAT solvers that

Figure 13.8 Component diagram of the Multi-Variant Henshin implementation and its inte-
gration into GRaViTY

13.4 Evaluation of the Multi-Variant Model Transformation 371

scale up to millions of variables [302]. This hypothesis is studied in our evaluation
in Section 13.4.

13.3 Tool Support for Multi-Variant Model Transformation

We implemented our technique for Henshin [218, 228], a graph-based model trans-
formation language. Henshin itself is not part of the GRaViTY framework but is
insensitively used by the framework for applying transformation rules.

Figure 13.8 shows a component diagram focusing on the multi-variant extension
of Henhsin and its integration into GRaViTY. The multi-variant transformation
algorithm presented in Section 13.2.2 is implemented in the component Henshin
MultiVar that extends the default Henshin implementation from the component
Henshin. The implementation of the multi-variant transformation is based on
a mapping from EMF elements to their presence conditions. To support arbitrary
meta-models, Henshin MultiVar defines an interface IVariability that is
used to request the presence conditions for the model a transformation is applied to.
This interface specifies method signatures for requesting the presence conditions of
model elements and updating their presence conditions as well as loading the used
feature model.We implemented this interface as well for our variability extension to
the type graph as for SecPL.When theRefactorings component is used to apply
a refactoring to an SPL or the SecurityViolationPatterns component is
used to check an SPL for security violations, these can use the standard interface
provided by the Henshin transformation tool.

13.4 Evaluation of theMulti-Variant Model Transformation

To evaluate our technique, we applied our implementation to two transformation
scenarios with product lines and transformation variability. In the first scenario, we
applied a large set of relatively small edit detection rules to UML product lines in the
first application scenario. In the second scenario, we calculated all possible Move
Method refactorings on Java software product lines, including various conditions
for their applicability. Our evaluation’s goal was to study if our technique indeed
produces the expected performance benefits in these scenarios. The implementation

372 13 Security Compliance and Restructuring in Variant-rich Software Systems

of our evaluation and the considered subjects and rules are available in our GitHub
repository1.

13.4.1 Detection of Edit Operations

The first experiment’s goal is to study the performance of the stage rule application
on a large set of relatively small detection rules, of which only a few match on the
models.

Setup. The transformation is concerned with the detection of applied editing oper-
ations during model differencing [334]. This setting is particularly interesting for a
performance evaluation: Since differencing is a routine software development task,
low latency of the used tools is a prerequisite for developer effectiveness. The rule
set, called UmlRecog, is tailored to the detection of UML edit operations. Each
rule detects a specific edit operation, such as “move method to superclass”, based
on a pair of model versions and a low-level difference trace. UmlRecog comprises
1404 rules, which, as shown in Table 13.2, fall into three main categories: Cre-
ate/Set, Change/Move, and Delete/Unset. To study the effect of our technique on
performance, an encoding of the rules into VB rules was required. We obtained this
encoding using RuleMerger [328], a tool for generating VB rules from classic ones
based on clustering and clone detection [335]. We obtained 504 VB rules; each of
them representing between 1 and 71 classic rules. UmlRecog is publicly available
as part of a benchmark transformation set [308].

We applied this transformation to the 6 UML-based product lines specified in
Table 13.3. The product lines came from diverse sources and include manually
designed ones (1–2), and reverse-engineered ones from open-source projects (3–6).

Table 13.2 Subject refactoring rule set used in the evaluation of the staged rule application

Category #Rules #VBRules

Create/Set 274 171

Delete/Unset 164 121

Change/Move 966 212

Total 1404 504

1 GitHub repository containing the implemented tool and evaluation data: https://github.com/
SvenPeldszus/henshin-multivar

https://github.com/SvenPeldszus/henshin-multivar
https://github.com/SvenPeldszus/henshin-multivar

13.4 Evaluation of the Multi-Variant Model Transformation 373

Each product linewas available as aUMLmodel annotatedwith presence conditions
over a feature model. To produce the model version pairs used by UmlRecog, we
automatically simulated development steps by non-deterministically applying rules
from a set of edit rules to the product lines, using the lifting algorithm to account
for presence conditions during the simulated editing step.

As a baseline for comparison, we considered the lifted application of each rule
in UmlRecog. An alternative baseline of applying VB rules to the flattened set of
products was not considered: The SPL variability in our setting is much greater than
the rule variability, which implies a high performance penalty when enumerating
products. Since we currently do not support besides negative application conditions
any advanced transformation features, e.g., amalgamation, we used variants of the
flat and theVB ruleswithout these concepts.We used aUbuntu 20.04 system (Oracle
JDK 1.8, Intel Core i5-6200U, 8GB RAM) for all experiments.

Results. Table 13.4 gives an overview of the results of our experiments. The total
execution times for our technique were between 7.14 and 13.58 seconds, compared

Table 13.3 Subject product lines of the staged rule application’s evaluation

SPL #Elements #Products

1: InCar 116 54

2: E2E 130 94

3: JSSE 24,077 64

4: Notepad 252 512

5: Mobile 4,069 3,072

6: Lampiro 29,045 5,892

Table 13.4 Execution times (in Seconds) of the lifting and the staged transformation
approach

Create/Set Delete/Unset Change/Move TOTAL

lift stage factor lift stage factor lift stage factor lift stage factor

InCar 2.83 2.29 1.24 0.94 0.66 1.43 32.35 4.73 6.84 36.12 7.68 4.70

E2E 3.42 2.77 1.24 1.00 0.65 1.54 25.48 4.81 5.30 29.90 8.22 3.64

JSSE 3.92 3.44 1.14 1.07 1.01 1.06 25.71 9.13 2.82 30.70 13.58 2.26

Notepad 2.04 2.04 1.00 0.69 0.75 0.92 23.96 4.34 5.52 26.69 7.14 3.74

Mobile 3.08 2.17 1.42 0.74 1.05 0.71 24.86 4.54 5.47 28.69 7.76 3.70

Lampiro 3.39 2.41 1.41 0.73 0.63 1.15 25.49 7.76 3.28 29.60 10.80 2.74

374 13 Security Compliance and Restructuring in Variant-rich Software Systems

to 26.69 and 36.12 seconds for lifting, yielding a speedup by factors between 2.26
and 4.7. For both techniques, all execution times are in the same order of magnitude
across product lines. A possible explanation is that the number of applicable rules
was small: if the vast majority of rules can be discarded early in the matching
process, the execution time is constant with the number of rules.

The greatest speedups were observed for the Change/Move category, in which
rule variability was the greatest as well, indicated by the ratio between rules and
VB rules in Table 13.2. This observation is in line with our rationale for reusing
shared matches between rules. Regarding the number of products, a trend regarding
better scalability is not apparent, thus demonstrating that lifting is sufficient for
controlling product-line variability. Still, based on the overall results, the hypothesis
that our technique improves performance in situations with significant product-line
and transformation variability can be confirmed.

13.4.2 MoveMethod Refactorings

Refactorings have been proposed as an efficient measure for optimizing the object-
oriented structure of programs [18]. Practically, as discussed in Chapter 10, refactor-
ings are often performed in an ad-hoc manner. However, to allow the demonstration
of correctness, they can be specified using graph transformation rules [130, 131,
145]. In contrast to the change detection rules for UML diagrams, considered for
the evaluation of the performance, the refactorings introduced in Section 10.2, are
more complicated.

Setup. In this experiment, we study the application of a complicated refactorings
operation, including various application conditions. Computationally, the detection
of possible refactorings is themost expensive part of applying a refactoring specified
as graph transformation rule. Also, the matches found for VB rules are always
matches for specific rule products. There is no difference between applying the rule
using only lifting or applying a VB rule product. For this reason, in this experiment,
we calculate all possible Move Method refactorings on each subject system of the
experiment. For this purpose, we use a variant of the visibility-preserving Move
Method refactoring introduced in Section 10.2 that is not restricted to only critical
members. In total, the considered Move Method refactoring has 20 variants.

As subject systems, we use the Java-based subjects from the previous evalu-
ation part as well as an SPL created from the iTrust Electronics Health Records
Application, introduced at the beginning of this chapter. For the iTrust application,
various use cases have been defined. Based on these use cases, we create an SPL by

13.4 Evaluation of the Multi-Variant Model Transformation 375

Ta
b
le

1
3
.5

Su
bj
ec
tp

ro
du
ct
lin

es
fo
r
th
e
ap
pl
ic
at
io
n
of

M
ov

e
M

et
ho

d
re
fa
ct
or
in
gs

an
d
ex
ec
ut
io
n
tim

es

SP
L

C
od

e
M
et
ri
cs

SP
L
M
et
ri
cs

R
es
ul
ts

M
ea
su
re
m
en
ts

L
L
O
C

#C
la
ss
es

#M
et
ho
ds

#F
ea
tu
re
s

#P
ro
du
ct
s

#M
at
ch
es

#R
ef
ac
to
ri
ng
s

L
if
t

St
ag
e

Sp
ee
du
p

N
ot

ep
ad

89
4

41
92

15
51
2

25
6

12
6

0.
5s

0.
1s

4.
68

M
ob

il
e

5,
91
9

10
0

53
6

13
3,
07
2

30
5

21
5

0.
3s

0.
3s

1.
30

JS
SE

20
,9
00

22
0

1,
87
6

6
64

18
,6
28

17
,7
23

6.
5s

3.
7s

1.
75

iT
ru

st
32
,5
53

44
3

3,
10
6

20
54
8

26
,2
87

26
,1
64

13
7.
3s

11
.2
s

12
.2
3

L
am

pi
ro

34
,5
50

25
8

2,
03
7

20
5,
89
2

36
,4
75

33
,5
92

16
.2
s

10
.1
s

1.
60

376 13 Security Compliance and Restructuring in Variant-rich Software Systems

assigning features to use cases and actors related to the use cases. A summary of the
considered subject systems and metrics regarding their size are shown in Table 13.5
ordered by logical lines of code (LLOC).

Results. Table 13.5 gives an overviewof the experiment’s results. For every subject,
we show the median value of 10 runs. On average, the matching is 4.31 times faster
using our staged application than lifting the rule products. The median speedup is
1.75. All in all, there is a high variance between the different subject’s speedups.
Furthermore, as expected, there are matches of rule products representing the same
refactoring, e.g., for the rule product f ield ∧ param also the products containing
only one of the two features match. For this reason, we show for every subject both
numbers, the number of rule matches, and the number of refactorings resulting from
these matches.

If we investigate the results in more detail, we can identify some factors influenc-
ing the speedup. As Lampiro and iTrust are approximately the same sizes in terms
of LLOC and numbers of features, we inspect them closer. Remarkably, the iTrust
feature model has much more restricting constraints than the Lampiro one, as there
are only 548 possible configurations with the same number of features. However,
as both approaches evaluate these constraints in the same way and there tend to be
more evaluations in the staged application (of base-match and pre-match), this can-
not be the reason for the considerable difference in speedup. With 443 classes and
3106 methods, there are 1.37 million moves to check for iTrust and 523 thousand
for Lampiro, with 258 classes and 2,037 methods. Of these possible moves, 2%
are possible refactoring matches for iTrust and 7% are possible refactoring matches
for Lampiro. These refactoring matches are calculated from 3020 and 1575 base
matches. Here, we can see the reason for the considerable speedup on iTrust. While
the number of moves to check nearly triples (2.6x), the number of matches only
slightly increases (1.4x), and the rejections are to a significant amount due to the
base rule.

This evaluation shows that the staged application of VB rules results in a signifi-
cant speedup for both many small rules and large, complicated rules on real-world-
sized models. Furthermore, in the refactoring experiment, we have seen that base
NACs have a significant influence on the execution time of VB rules. Finally, the
experiment demonstrates the application of GRaViTY’s security-preserving refac-
torings to software product lines.

13.6 Conclusion on Multi-Variant Model Transformation 377

13.5 Threats toValidity

In this section, we discuss threats to validity. First, we discuss the external threats
we identified, and second, we discuss threats to construct validity.

13.5.1 External Validity

We only considered a limited set of scenarios, based on six product lines and one
large-scale transformation.We aim to apply our technique to a broader class of cases
in the future. The version pairs were obtained in a synthetic process, arguably one
that produces pessimistic cases. Our treatment so far is also limited to a particular
transformation paradigm, AGT, and one variability paradigm, the annotative one.
Still, AGT and annotative variability are the underlying paradigms of many state-of-
the-art tools. Finally, while we now consider advanced AGT concepts in the form of
negative application conditions, there are still other concepts not addressed by our
work. Specifically, we do not address amalgamation, a feature enabling a “for all”
operator in rules [336]. However, studying the interaction between amalgamation
and variability is worthwhile future research.

13.5.2 Construct Validity

While the observed performance improvements make a clear case for the practical
usefulness of our technique, it has some assumptions with implications concerning
usefulness. Specifically, we rely on annotative representations, whichmight be chal-
lenging toworkwith for developers due to the use of embedded presence conditions.
While there is first empirical evidence suggesting that annotative representations of
model-based software product lines do not impairmodel comprehension [337], there
is currently no user study of the usability of VB rules.

13.6 Conclusion onMulti-Variant Model Transformation

To allow the application of refactorings and security violation patterns to SPLs
we introduced a multi-variant model transformation approach allowing applying
variability-based transformation rules to software product lines. To be more precise,
we propose a methodology for software product line transformations in which not
only the input product line but also the transformation system contains variability.

378 13 Security Compliance and Restructuring in Variant-rich Software Systems

At the heart of our methodology, a staged rule application technique exploits reuse
potential concerning shared portions of the involved products and rules. We present
a formalization of our technique, including an optimization that supports an efficient
checking of negative application conditions, an advanced transformation feature.We
demonstrated practical benefit by applying our technique to two scenarios from a
software evolution context. We observed speedups in all considered cases, in some
of them by one order of magnitude. As part of this evaluation, we have shown
how our methodology can be used for refactoring software product lines using the
security-preserving refactorings presented inChapter 10. The application of security
violation patterns introduced in Section 8.6 to SPLs works analogously.

The proposed multi-variant transformation approach is not only applicable to
our two scenarios but to every variability-based transformation rule and product
line. For example, the UML product line UMLsec checks, currently expressed by
us using OCL constraints, could also be implemented using this technique.

In the future, further variability dimensions, e.g., meta-model variability as con-
sidered in [338], can be explored towiden the applicability of the proposed approach.
Also, the application of VB rules to product lines using different variability concepts
such as feature-oriented programming (FOP) [279, 339] is a worthwhile extension.
In feature-oriented model-driven design, the ideas of FOP have been combined with
model-driven design [340]. The open question is how we can support the models
created using this development approach.

While we offer a sufficient criterion for the preponing of NAC checks, further
improvements could be made by strengthening this criterion, ideally by comple-
menting it with a necessary one. Finding such a criterion presents a potential use
case for conflict and dependency analysis [341]. Also, one can study the support of
sophisticated graph transformation concepts such as amalgamation and path expres-
sions, potentially allowing us to express more sophisticated security checks on soft-
ware product lines.

Furthermore, there is potential in static rule analysis allowing run-time optimiza-
tions of the rule matching. For example, consider a VB with a rule product that is
entirely contained in another rule product. Comparable to base rules, first matching
the contained rule product and extending the match could be more efficient than
calculating entirely new matches for both rule products. While in this scenario, the
one rule is a kind of base rule for the other, there can also be situations where
multiple rule products are similar in more than the base rule of the VB rule, and
it is beneficial to consider a second level base rule. As all these considerations do
not take run-time information into account, statically calculating such situations
and building an application strategy is very promising for optimizing the VB rule
application.

13.6 Conclusion on Multi-Variant Model Transformation 379

To conclude, using the presented approach, we can verify security requirements
not only throughout the life-cycle of a single software product but also at the devel-
opment of SPLs. Also, themaintenance of a software system in terms of refactorings
is supported in this scenario. This allows the application of the GRaViTY approach
to software product lines.

Part VI

Tool Support and Application

14The GRaViTY Framework

Throughout this thesis, we presented prototypical implementations of the discussed
approaches.At implementing the single tool prototypes for evaluation,we frequently
reused implementations of tool prototypes implemented as part of other chapters.
OurGitHub repository 1 provides an integration of all tool prototypes into the overall
GRaViTY framework. The implementation of the GRaViTY framework is licensed
under the open-source Eclipse Public License (EPL)2.

In this chapter, we discuss the integration of the presented tool prototypes, result-
ing in the holistic GRaViTY framework for supporting the model-driven develop-
ment andmaintenance of secure software systems. For this purpose, first, we discuss
the structuring of GRaViTY into Eclipse plugins. Afterward, we consider GRaViTY
as SPL and discuss its configuration space. Finally, we discuss the extensibility of
the GRaViTY framework and conclude.

14.1 Structuring into Eclipse Plugins

GRaViTY extends the Eclipse IDE with functionalities for the model-driven devel-
opment of secure variant-rich software systems. For implementing such extensions,
Eclipse supports a plugin mechanism based on OSGi3. For installation, plugins are
bundled into features that are deployed to Eclipse update sites. For GRaViTY, we
deployed 27 plugins in 14 features on our update site4. Figure 14.1 shows a screen-
shot of the GRaViTY update site in the Eclipse Install New Software view. In this

1 GRaViTY’s GitHub Repository: https://github.com/GRaViTY-Tool/gravity-tool
2 Eclipse Public License (EPL). https://www.eclipse.org/legal/epl-2.0/
3 OSGi Working Group Website: https://www.osgi.org/
4 GRaViTY Update Site: https://www.gravity-tool.org/updatesite/

©TheAuthor(s), under exclusive license toSpringer FachmedienWiesbadenGmbH,
part of Springer Nature 2022
S. M. Peldszus, Security Compliance in Model-driven Development of Software
Systems in Presence of Long-Term Evolution and Variants,
https://doi.org/10.1007/978-3-658-37665-9_14

383

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-658-37665-9_14&domain=pdf
https://github.com/GRaViTY-Tool/gravity-tool
https://www.eclipse.org/legal/epl-2.0/
https://www.osgi.org/
https://www.gravity-tool.org/updatesite/
https://doi.org/10.1007/978-3-658-37665-9_14

384 14 The GRaViTY Framework

view, the features of GRaViTY are shown and can be selected for installation into
Eclipse.

All tool parts presented in the previous chapters are integrated with each other
according to Figure 14.2 building the GRaViTY framework. This figure shows only
the components of GRaViTY but no external dependencies, e.g., dependencies to
Henshin, eMoflon, CARiSMA respectively UMLsec, or SecDFDs. Such dependen-
cies are already mentioned in previous chapters, in corresponding sections describ-
ing the tool support in detail. To allow a head-less usage of GRaViTY, e.g., as part
of a continuous integration framework, in almost all tool prototypes, the UI is sep-
arated from the backend. In what follows, we introduce the components shown in
Figure 14.2 in detail.

core-feature: The core-feature bundles basic functionality for interacting
with the Eclipse API and the general logic for managing tasks of GRaV-
iTY. Thereby, the plugin org.gravity.eclipse.ui contains function-
ality executed in the UI, e.g., adding a GRaViTY menu to Eclipse. The
org.gravity.eclipse plugin contains interactions with the Eclipse

Figure 14.1 Screenshot of GRaViTY’s update site

14.1 Structuring into Eclipse Plugins 385

Fi
g
u
re

1
4
.2

C
om

po
ne
nt

di
ag
ra
m

of
G
R
aV

iT
Y
’s
im

pl
em

en
ta
tio

n

386 14 The GRaViTY Framework

backend. For example, in this plugin, a resolver between the Java model of
Eclipse JDT and the type graph is implemented. Given an element from one of
the two models, the resolver allows retrieving the corresponding element in the
other model.

model-feature: GRaViTY’s type graph itself and the visualization of program
models presented in Section 5.3 are realized by the plugins org.eclipse.
typegraph.basic and org.eclipse.typegraph.basic.ui. Also,
the implementation of org.eclipse.typegraph.basic enriches the
type graph with queries such as the search for a type in a program model by its
fully-qualified name. These two plugins are bundled as the model-feature.

synchronization-feature: This feature contains shared helper functionalities for
the synchronizations supported by GRaViTY. Currently, this is only the org.
gravity.modisco plugin, providing a wrapper and processing support for
the concrete implementations of the synchronizations. The three synchroniza-
tions supported by GRaViTY are bundled by three additional features that are
shown as sub-components of this feature. The implementation of these synchro-
nizations has been discussed in detail in Section 6.2.3.

java-pm-feature: The synchronization between Java source code, represented
by a MoDisco5 model, and GRaViTY’s program model is bundled into
the java-pm-feature. This feature bundles two plugins. First, the
org.gravity.tgg.modisco.pm feature containing the TGG for syn-
chronizing MoDisco models with the program model. Second, a user
interface for configuring the synchronization, e.g., configuring for how
many projects program models should be cached, is implemented in the
org.gravity.tgg.modisco.ui plugin.

java-uml-feature: This feature contains the synchronization between Java
source code andUMLclass diagrams, implemented in theorg.gravity.
tgg.modisco.uml plugin.

pm-uml-feature: The synchronization and correspondencemodel between pro-
gram models and UML class diagrams are contained in this feature. The
plugin org.gravity. tgg.pm.uml implements the functionality to
create a correspondence model using the other two synchronizations.

refactoring-feature: The security-aware refactorings as introduced in Chapter 10
represented by the refactoring-feature. Again, the UI is separated
from the backend implementation in the plugins bundled by the feature. The

5 Eclipse MoDisco Project: https://www.eclipse.org/MoDisco/

https://www.eclipse.org/MoDisco/

14.1 Structuring into Eclipse Plugins 387

plugin org.gravity.refactorings implements the backend and org.
gravity.refactorings.ui the UI.

design-flaw-feature: The design-flaw-feature bundles the implementa-
tion of the design-flaw detection tool Hulk [21, 34]. Among others, this fea-
ture contains two plugins that are of primary interest for this thesis. First, the
org.gravity.hulk.antipatterngraph plugin defines an extension to
the type graph allowing annotating program models with design-flaw informa-
tion. Second, the main logic of Hulk but also various OO metrics, code-smells,
and anti-pattern detections are implemented in the org.gravity.hulk plu-
gin. Both plugins are used in this thesis for the realization of the security metrics
(org.gravity.security.metrics).

security-feature: Most security-related implementation parts are bundled into the
security-feature. The org.gravity.uml.refinements plugin
contains the implementation of the UMLsec extension for tracing between UML
modelswith different abstraction levels, introduced in detail in Section 6.3.6. The
Java security annotations and their counterparts in the programmodel, discussed
in detail in Section 6.4.1, are contained in the org.gravity.security.
annotations plugin. From this plugin, we also export a library only con-
taining the Java annotations. The org.gravity.security.violation.
patterns plugin implements tool support for the security violation pat-
terns, introduced in Section 8.6. The security metrics discussed in Section 8.3
are realized as an extension to the Hulk design-flaw detection tool in the
org.gravity.security.metrics plugin.
Security-related implementation parts of GRaViTY focusing on run-time secu-
rity are bundled into a separate feature deeply coupled with this feature.

umlsecrt-feature: This feature bundles the tool support for the run-timemonitor
introduced inChapter 9.The run-time agent (carisma.rt.agenet), dis-
cussed in detail in Section 9.4, is the only component of GRaViTY that is not
an Eclipse plugin but a standalone Java project. The tool support for specify-
ing countermeasures for the run-time agent and adaptingUMLmodels based
on observations by the agent is integrated into the Eclipse IDE as plugins
again. These features are realized by the plugins carisma.rt.editor
and carisma.rt.adapt, also discussed in detail in Section 9.4.

secdfd-feature: All implementation parts related to SecDFDs [111] are bun-
dled in this feature. First, these are the semi-automated mappings between
DFDs and source code as introduced in Section 7.2. These are realized in the
org.gravity.secdfd.mapping plugin. Second, the static compliance

388 14 The GRaViTY Framework

checksdiscussed inSections 8.2, 8.4, and8.5, are realized in theorg.gravity.
secdfd.compliance plugin.

variability-feature: The support for SPLs is bundled in the variability-
feature. This feature bundles the shared parts of the owned more specific
variability features. To be more precise, this is the parsing of Antenna prepro-
cessor statements based on regular expressions as discussed in Section 11.3
and realized in the org.garvity.eclipse.java.spl plugin. The two
owned features bundle plugins for supporting variability on the program model
and UML model level.

pm-variability-feature: This feature bundles the plugin org.gravity.
typegraph.spl, providing variability support on the program model.
This implementation has been discussed in detail in Section 11.3.

secpl-feature: Plugins providing support for variability on theUMLmodel level
are bundled in the secpl-feature. First, this is the plugin carisma.
profile.umlsec.variability allowing to annotate UML models
with presence conditions and creating these annotations from Antenna pre-
processor statements as discussed in Section 11.3. Second, the security
checks for UML product lines are implemented in the plugin carisma.
check.variability. Third, thecarisma.variability.editor
plugin provides editor support for variability on UML models. The imple-
mentation of the last two plugins has been discussed in detail in Section 12.4.

Figure 14.2 also shows the dependencies between the different plugins. For example,
the TGG-based synchronization between Java source code and the program model,
realized in the plugin org.gravity.tgg.modisco.pm, requires the plugins
that define the type graph of the program model (org.gravity.
typegraph.basic),GRaViTY’sMoDiscowrapper (org.gravity.modis-
co), and the org.gravity.eclipse plugin. These dependencies are discussed
in detail in the sections discussing the single parts of GRaViTY’s implementation.

In total, the GRaViTY’s implementation comprises 37k lines of handwritten
code. Including generated code, e.g., from the specification of the TGGs or themeta-
models, the whole GRaViTY tool has 574k lines of code. With up to 574k lines of
code, GRaViTY comprises a medium up to large software project when generated
code is considered. Due to this size, there is a considerable risk for errors that must
be mitigated through appropriate quality assurance. Furthermore, the GRaViTY
framework has been developed and maintained over the past 6 years, building upon
a tool prototype for the transformation tool contest (TTC) 2015 [131, 145]. Fre-
quently, implemented functionality had to be adapted to be more general, cover new

14.2 GRaViTY as Software Product Line 389

cases or better fit new contributions toGRaViTY.Among others, GRaViTYhas been
adapted to new frameworks multiple times, e.g., new versions of Java, Eclipse, or
eMoflon. All of this requires the implementation of systematic quality assurance. To
build the foundation for systematic quality assurance, we implemented the contin-
uous integration principle. For this purpose, besides the deployment technology of
Eclipse, we use Maven in combination with Eclipse Tycho6 for building the GRaV-
iTY framework. Eclipse Tycho is a Maven extension providing support to build
Eclipse plugins using Maven. Also, our continuous integration pipeline includes
regression tests and static analysis using SonarQube. In total, we implemented 205
regression tests.

14.2 GRaViTY as Software Product Line

GRaViTY’s implementation as 27 Eclipse plugins allows a flexible deployment
tailored to the needs of a developer that wants to apply the GRaViTY approach. In
the end, GRaViTY can be seen as a software product line that allows developers to
use the desired parts of GRaViTYwithout overloading the Eclipse IDE with unused
functionality.

In the GRaViTY SPL, each plugin is represented by one of the 27 concrete fea-
tures of the featuremodel in Figure 14.3. This featuremodel also includes constraints
expressing the dependencies between the single plugins. All in all, there are 15.755
possible configurations of GRaViTY. While in principle, 15.755 configurations are
possible, not all of these combinations are meaningful for an installation in Eclipse.
For example, GRaViTY can widely be deployed without a user interface which
reduces the dependencies at usage by other plugins but does not allow the usage
by developers. However, considering the integration of GRaViTY into a third-party
application this might be a useful configuration, e.g., as discussed in Section 10.3.1,
GOBLIN uses the refactorings and design-flaw detection of GRaViTY but comes
with its own user interface. Nevertheless, such configurations are unlikely to be
useful in an installation over GRaViTY’s update site for manual use by developers.

To avoid such installations and to reduce the variability to an amount suitable
for developers, the features of GRaViTY aggregate the plugins that are likely to be
used together. Figure 14.4 shows an extension of GRaViTY’s feature model with
features representing the deployment information captures in the update site fea-
tures. The features from Figure 14.3, representing GRaViTY’s plugins, are shown
collapsed. The features on GRaViTY’s update site are assigned to categories, repre-

6 Eclipse Tycho: https://projects.eclipse.org/projects/technology.tycho

https://projects.eclipse.org/projects/technology.tycho

390 14 The GRaViTY Framework

Figure 14.3 Feature model showing the relations among GRaViTY’s plugins

Figure 14.4 Extension to GRaViTY’s feature model including the features provided at the
update site

sented by abstract features in the feature model. The installable update site features
are represented by concrete features in the feature model. These concrete features
are coupled by constraints with the collapsed features representing plugins. For
simplicity, these constraints are not shown in the feature model. For example, the
Type_Graph feature contains the org.gravity.typegraph.basic and
org.gravity.typegraph.basic.ui plugins. These two plugins are repre-
sented by the typegraph and typegraph.ui features in the feature model.
This inclusion in the Type_Graph feature can be expressed by an inclusion con-
straint: Type_Graph ⇒ typegraph ∧ typegraph.ui. In this context,

14.3 Conclusion on the Implementation of GRaViTY 391

plugins can only be installed as part of an update site’s features which has to be
expressed as two additional implications: typegraph ⇒ Type_Graph and
typegraph.ui ⇒ Type_Graph. Considering these three constraints, there
are two valid configurations. Either all three considered features are selected or
none of them. In the same way, we expressed all relations between the update site
features and their contained plugins. In summary, this leads to a significant reduc-
tion of variants. The number of variants is reduced to 66 variants of GRaViTY that
can be installed from the GRaViTY update site.

14.3 Conclusion on the Implementation of GRaViTY

In this chapter, we outlined the technical integration of the single tool prototypes to
a modular overall tool framework called GRaViTY. This tool framework has been
implemented as a prototype to demonstrate and evaluate the approaches developed
and presented within this thesis. Altogether, the GRaViTY framework reached a
significant size. The modular architecture allows a deployment suitable to the needs
of developers using the GRaViTY approach without overloading their IDE with
unused functionality. Also, the modularity supports the reuse of GRaViTY in future
research projects. For example, theGOBLIN tool has shown how single components
of GRaViTY can be reused in other tools. In this regard, throughout this thesis,
we discussed various possible extensions to GRaViTY. Also, the single parts of
GRaViTY can be reused as part of other research approaches.

First, the fine-grained structuring of GRaViTY into plugins allows efficient reuse
in other projects without including too many new dependencies. Due to this struc-
turing, clear interfaces have been defined for accessing the single plugin’s function-
alities. We discussed most of these interfaces in the implementation sections of this
thesis.

On the downside, the integration ofGRaViTY into Eclipsemight hinder the reuse
in contexts outside of Eclipse. In this regard, the used MoDisco plugin for parsing
Java source code has the tightest coupling with Eclipse as it requires a running
Eclipse workspace. While this can be achieved by deploying GRaViTY together
with a headless Eclipse, this is no efficient solution.

Second, it can be beneficial to extend GRaViTY itself, e.g., to provide new
analyses. In this scenario, GRaViTY’s fine-grained structure is beneficial, too. It
is most likely, that such an extension will be implemented as an additional plugin.
However, this plugin will not only use the existing functionalities of GRaViTY
but also extend and influence GRaViTY’s functionality. For example, additional
preprocessing or postprocessing steps for GRaViTY’s synchronization step could

392 14 The GRaViTY Framework

be necessary. As discussed in Section 6.2.3, for this purpose, we export interfaces
using Eclipse’s extension points. The feasibility of these exported extension points
has been demonstrated in the Master’s thesis of Mebus that extended GRaViTY’s
program model with data flow and had to register additional processing steps for
this purpose [150].

All together, GRaViTY can easily be extended to cover additional functionali-
ties but also be reused in additional contexts. One major drawback of GRaViTY’s
implementation is the tight coupling with Eclipse. This coupling hinders the reuse
of GRaViTY outside the Eclipse ecosystem. Here, the used MoDisco plugin for
parsing Java source code has the tightest coupling with Eclipse as it requires a run-
ning Eclipse workspace. In future versions of GRaViTY, this coupling should be
reduced to allow even better use of GRaViTY also in additional contexts. Here, we
mainly see the integration of GRaViTY into additional IDEs but also continuous
integration frameworks such as Maven or Gradle.

15Case Studies

In the previous chapters, we applied the locally restricted contributions of this thesis
to the iTrust running example. However, we did not discuss and evaluate the inte-
gration of these single contributions to the overall GRaViTY approach outlined in
Chapter 4. In Chapter 14, we presented the technical integration of the single tool
prototypes presented throughout this thesis into the GRaViTY tool.

In this chapter, we evaluate whether the GRaViTY tool is suitable to support the
development of secure software systems as intended. In this regard, we identified
two objectives we focus on. First, we investigate whether the technical integration
of GRaViTY allows an application of the GRaViTY approach throughout software
development processes. Second, we focus on the perspective of developers and
security experts working with GRaViTY. Here, we are interested in the practical
usability of GRaViTY when applied to software development. Thereby, we focus
more on usability as part of software development than on detailed usability in terms
of software ergonomics, e.g., regarding the realized user interface. In the end, we
investigate if GRaViTY can be applied to model-driven development, as outlined in
Chapter 3, without changing the performed procedures as a measure for usability.

O1–Technical Feasibility: Is the integration of the tool prototypes technically fea-
sible to support the development of secure software systems?

O2–Practical Usability: Can the GRaViTY approach be practically applied to
develop secure software systems without changing MDD procedures?

In the previous chapters, we performed controlled experiments for evaluating the
presented approaches. As both objectives of this chapter target qualitative real-world
experiences, case studies provide suitable means to investigate the objectives [342].
Accordingly, to study the two objectives, we demonstrate and discuss the application
of the overall GRaViTY development approach to two real-world case studies.

©TheAuthor(s), under exclusive license toSpringer FachmedienWiesbadenGmbH,
part of Springer Nature 2022
S. M. Peldszus, Security Compliance in Model-driven Development of Software
Systems in Presence of Long-Term Evolution and Variants,
https://doi.org/10.1007/978-3-658-37665-9_15

393

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-658-37665-9_15&domain=pdf
https://doi.org/10.1007/978-3-658-37665-9_15

394 15 Case Studies

The first case study is iTrust that has already been used as the running example.
The second case study is the Eclipse Secure Storage of the Eclipse IDE. As the
developers of iTrust provide complete documentation and there aremodels available
in existing research [23, 49–51], we use iTrust to demonstrate the feasibility of the
GRaViTY approach for developing a new software system taking security into
account in Section 15.1. While Eclipse also provides good documentation of the
implementation, there are no requirements or models available. For this reason,
in Section 15.2, we apply the GRaViTY approach to Eclipse Secure Storage to
demonstrate the feasibility of using GRaViTY on legacy projects.

The description of both case studies is structured into multiple development
steps. For each step, first, we generally introduce the step. Then we describe the
execution of the development step by applying GRaViTY, and afterward, we present
a discussion of our observations in this step. After all steps of a case study, we
generally discuss our observations in this case study.

15.1 Case Study 1: iTrust

As introduced in Section 2.2, iTrust comprises an Electronic Health Records system
developed as a class project over 25 semesters [47, 50]. The main documentation is
provided as requirements describing use cases of the iTrust system. The software
system itself has been implemented in Java using Java Server Pages (JSP). Also,
design-time models have been created as part of various research [54, 343].

15.1.1 Description of the Case Study Execution

In this case study, we simulate the implementation of the iTrust system using GRaV-
iTY from the very beginning, starting with requirements engineering. After the ini-
tial development of the software system, we focus on the restructuring of iTrust as
part of the maintenance. Finally, we showcase the conversion of iTrust into an SPL.
In all steps, we reuse the existing iTrust artifacts and create all required artifacts
following the GRaViTY development approach.

Requirements Engineering
As discussed in Section 3.3.1, usually the development of a software system starts
with an analysis of the domain as part of the requirements engineering. The knowl-
edge about entities and relations within the software system’s domain is captured in
a domain model. The domain model elements are then used to specify their realiza-

15.1 Case Study 1: iTrust 395

Fi
g
u
re

1
5
.1

U
se

ca
se

di
ag
ra
m

re
fin

in
g
iT
ru
st
’s
do

m
ai
n
m
od

el

396 15 Case Studies

tion in the software system. Here, the specification of the software system’s intended
functionality is one of the first steps of requirements engineering. For this purpose,
the UML provides the notation of use case diagrams. A detailed use case diagram
for iTrust has been discussed in Section 2.2. In this section, we focus on the relation
of this use case diagram with the domain model.

Execution. To simulate the requirements engineering, we manually recreated
iTrust’s use case diagrambased on iTrust’s requirements. Thereby,we took a domain
model as given and refined it by specifying the use case diagram. Whenever there
was a refinement relation between the use case diagram and the domain model,
we explicitly modeled this relation. Figure 15.1 shows some of these refinement
relations between entities from the domain model and the use case diagram ele-
ments. On the left side of the figure, the domain model introduced in Section 3.3.1
is shown. The domain model shows basic concepts in a hospital such as doctors
treating patients. On the right side of the figure, an excerpt of the use cases of iTrust
is shown focusing on the basic treatment of patients by doctors. As use case diagrams
do not specify data or structures of the software system but basic tasks performed
in a software system, only domain model entities corresponding to actors in the use
case diagram are refined. In the concrete diagram, two kinds of doctors (LHCP and
HCP) are defined that perform treatment-related tasks such as documenting office
visits (UC11). In the next step, the domain model and use case diagrams are refined
further to specify an architecture that allows the implementation of the specified use
cases.

Discussion. Considering the models used in this part of the case study, refinement
relations are suitable to model explicitly specify the relations and come only with
a low overhead for the considered models. Accordingly, we can assume both, the
technical feasibility (O1) and the practical usability (O2) as given.

Software Architecture and Security Modeling
After requirements engineering, based on the requirements models and the textual
requirements, the software system’s architecture is specified. Following the princi-
ple of security by design, we have to consider security requirements explicitly in
this step. Accordingly, in this section, we discuss the simulation of the architecture
specification for the iTrust system. The model-driven development of iTrust’s soft-
ware architecture has been discussed in detail in Section 3.3. In this part of the case
study, we focus on the feasibility of refinements for specifying software architecture
and security engineering.

15.1 Case Study 1: iTrust 397

Execution. In what follows, we do not focus on the architecture itself but a simu-
lated incremental growth of the architecture until the state described in Section 3.3
is reached. Thereby, we consider interleaving steps of extending the architecture
and security engineering.

Starting from the models developed at requirements engineering, we iteratively
refine thesemodels until we reach a detailed specification of the iTrust system. After
every extension step, comprising the addition of a coherent set of model elements, a
security engineering step takes place. Here, we considered the security engineering
using UMLsec and SecDFDs as presented in Section 3.6. As the SecDFD and
UMLsec specifications and checks are known from the literature, we do not focus
on their usage but the Secure Realization security-refinementmechanism introduced
in Section 6.3.5. As part of our case study,we simulated these steps by selecting parts
of the design and implementation models introduced in Section 3.3 and iteratively
rebuilding themodels.Whenever we added a new part to themodels, we also created
the corresponding refinement relations as discussed in Section 6.3.

We started our simulation with a domain model already containing fundamental
security requirements, such as that personal data has to be classified at the security
level of secrecy as introduced in Section 3.6.1. Based on this model, we simulated
three evolution steps:

1. In the first step, we defined classes in the design model refining persons and
actors of the domain model and use case diagram.

2. Afterward, we added the data classes for storing medical information about
patients.

3. Finally, we added classes and operations for implementing the functionality of
the use cases.

Discussion. As we only used technology provided by standard UML and no exten-
sions of GRaViTY, these non-security-related refinements have been labor some but
straightforward. Also, the specification of Secure Realization was straightforward
but often triggered security-related follow-up tasks.

After every extension step, we have been provided with a list of missing security
realizations for fulfilling the Secure Realization security requirement. As we did not
specify security requirements as part of extending the design model but considered
their specification as a separate task performed after the extension, these security
violations are expected. Practically, these lists of security violations served as todo-
lists for the abstract domain model level security requirements to consider in the
design model.

398 15 Case Studies

The same applies to the security violations detected by default UMLsec checks,
such as secure dependency, executed each time after specifying new security refine-
ments. At the explicit specification of realizations, additional security requirements
necessary due to dependency were obviously and added by us. However, there have
cases we did not immediately recognize. These cases have been reported to us by
CARiSMA at checking secure dependency. Here, as intended by the check, we have
been thinking about whether a security level should be extended to a new class or
if we should overthink the dependency. However, as the given design of iTrust is
required for the subsequent steps of the case study, we fixed all reported security
issues by adding the required UMLsec stereotypes.

Nevertheless, this demonstrates not only the technical feasibility (O1) of the
GRaViTY approach but also the effectiveness of UMLsec and Secure Realization
in detecting potential security issues and positively influencing the security design
of a software system. Also, from our perspective, GRaViTY’s security reporting
naturally integrated into the development process.

Implementation
After reaching a state in which the design-timemodels are detailed enough, we have
to start implementing the software system. Thereby, tracing is required from the first
written line of code for applying the GRaViTY approach. For this reason, we focus
on the integration of GRaViTY’s tracing approach into software development.

Execution. Using the synchronization mechanism of GRaViTY, we generated an
early class layout from the implementation model. Afterward, we filled this lay-
out manually with functionality. During this step, the implementation model has
been kept synchronized by GRaViTY with the manual changes. We performed this
manual extension by copying and pasting implementation fragments of the iTrust
implementation into the generated class layout. However, as the MoDisco parser
is not incremental, in addition, we had to simulate these changes on the MoDisco
model by manually copying the corresponding changes into this model. After every
set of source code changes, we generated a MoDisco model and copied the changes
into the MoDisco model used by GRaViTY, making the changes processable for the
used TGG.

Discussion. In this case study, we have been able to successfully generate an initial
code skeleton that is connected with the design-time models through GRaViTY’s
correspondence model. From a user perspective, there was no difference compared

15.1 Case Study 1: iTrust 399

to code generation using other modeling tools such as Enterprise Architect1 or
Astah2.

Furthermore, we have been able to continuously synchronize the growing source
code with the design-time models. However, while in a final product this should be
performed automatically at suitable points of time, e.g., whenever a build is triggered
in the IDE or a change is committed to a repository, this synchronization had to be
simulated in this case study. As already mentioned, the reason for this was the
non-incremental implementation of the MoDisco parser that did not allow feeding
changes directly into the TGGs for synchronization. Nevertheless, we demonstrated
the principle feasibility of continuous synchronization from a technical point of
view (O1). The practical feasibility from a viewpoint of a developer (O2) seems
reasonable but suitable execution points have to be identified in future works.

Security Compliance
The continuous verification of the planned and implemented security is an essential
contribution of GRaViTY. As part of this case study, we investigate how these
verification steps integrate into the software development process.

Execution. Comparable to the incremental specification of the software system’s
architecture, we also interleaved security verification steps with the implementation
steps. These implementation steps have been discussed as the subject of the previous
part of this case study. After synchronizing every change made on the implementa-
tion with the design models, we manually executed all security compliance checks.

Discussion. As in the generated class design and the first pasted code fragments
no security mechanisms have been contained, all have been reported as absent. For
this reason, initially, we faced a long list of absences regarding the planned security
design. However, aswe incrementally addedmore functionality from iTrust’s imple-
mentation, the size of the lists of absences reduced until we got rid of all absences.
Thereby, the absences functioned as a kind of todo-lists for security-related tasks
and as selection criteria for the next code fragments to paste. As the inserted source
code was security compliant, no other violations have been reported. The violat-
ing case has been considered in the evaluations of the static security compliance
approaches in Chapter 8. Nevertheless, this demonstrated the technical feasibility
(O1) of GRaViTY’s security compliance checks. From the perspective of usabil-
ity (O1), using GRaViTY’s security compliance checks is comparable to other

1 Enterprise Architect: https://www.sparxsystems.com/products/ea/index.html
2 Astah: https://astah.net/

https://www.sparxsystems.com/products/ea/index.html
https://astah.net/

400 15 Case Studies

static analyses, e.g., PMD3 or Checkstyle4. However, the automated execution after
changes, which static analysis tools often offer, should also be added to GRaViTY
for increasing its usability.

Restructuring
After reaching the state in which our case study system’s implementation was
identical to the original iTrust implementation, we investigated this implementa-
tion regarding possibilities for restructuring the software system. Thereby, we only
focused on restructuring in terms of refactorings. Concrete possibilities for refac-
toring iTrust have been discussed in Chapter 10.

Execution. To find’ additional refactoring opportunities, we executed the search-
based optimization tool GOBLIN [146], discussed in Section 10.3.1, on iTrust.
Thereby, we added all three refactorings introduced in Section 10.2 (Create Super-
class, Pull-Up Method, and Move Method) to GOBLIN. Besides, the optimization
criteria considered in the summarized experiment of Ruland et al. (design-flaws,
coupling/cohesion, visibilities, and the number of changes), we also added the Crit-
ical Design Proportionmetric discussed in Section 8.3 as an optimization criterion.

Discussion. Due to iTrust’s architecture along with the Java server pages, most
times the implemented functionality was already well-located, and we only rarely
found additional beneficial refactoring opportunities. Applying the refactorings we
found, did not differ much from applying the refactorings integrated into the Eclipse
IDE. For this reason, we consider the technical feasibility (O1) and the usability
(O2) as given.

Variability Engineering
As the last part of this case study, we considered the re-engineering of iTrust into an
SPL. In this case study, we mainly focus on the specification of an SPL in terms of
the variability within all artifacts of the software system. However, we also consider
the security checks for SPLs.

Execution. As described in Section 11.1, we started on the use case diagrams with
the identification of possible features. Finally, we ended in assigning individual use
cases to features. Afterward, we investigated two different approaches for realizing
the identified features in the software system. First, a top-down approach by speci-

3 Website of the PMD analyzer: https://pmd.github.io/
4 Website of Checkstyle: https://checkstyle.org/

https://pmd.github.io/
https://checkstyle.org/

15.1 Case Study 1: iTrust 401

fying variability on the models and propagating it to code, and second, a bottom-up
approach in which we specified variability on the source code and propagated it
into the design-time models. After realizing the variability in the iTrust system, we
executed the SecPL checks to verify the security of the iTrust SPL.

Discussion. While annotating the use case diagrams with presence conditions was
straightforward, issues emerged within this model-based re-engineering method.
Mainly, the design-time models considered by us rarely contained detailed behavior
specifications allowing us to judge the side effects of presence conditions. For the
re-engineering, it turned out to be more efficient in adding Antenna preprocessor
statements into the implementation using FeatureIDE. Here, we have been able to
adjust the presence conditions until we achieved compiling source code. Afterward,
we propagated these presence conditions into the UML models using GRaViTY’s
tool support introduced in Section 11.3.

As our restructuring of iTrust into an SPL ended in the state described in Chap-
ter 11, we expected no security violations regarding the SecPL checks when execut-
ing these on the entirely restructured SPL. This expectation was fulfilled in this case
study. The GRaViTY approach is technically feasible (O1) to specify variability on
UML models and the Implementation as well as to propagate the Antenna annota-
tions into the design-time models. Regarding usability (O2), additional support is
needed for the re-engineering of a software system into an SPL on the model level.
In contrast to this, the bottom-up re-engineering was very usable. To this end, it
seems likely that the forward engineering of an SPL from the beginning comes with
good usability as fewer implementation level dependencies have to be considered
at specifying variability. However, this should be studied in more detail in future
works.

15.1.2 Discussion of the Observations

In this case study, we have shown that the integration of the single approaches works
for the considered case study. Only triggering the propagation of implementation-
level changes had to be simulated by providing changes on theMoDiscomodel level.
This limitation can be overcome by incremental parsers [344] such as Tree-Sitter5.
Altogether, we consider the technical feasibility of the GRaViTY for supporting the
development of secure software systems (O1) as given for the considered waterfall-
like case.

5 Tree-Sitter: https://tree-sitter.github.io/tree-sitter/

https://tree-sitter.github.io/tree-sitter/

402 15 Case Studies

Considering the usability and the integration into the development process (O2),
we never had the impression that wewere using the tool only for the purpose of using
the tool. There was always a benefit in using the tool and it only rarely impacted the
development process. However, more seamless integration and more automation in
the execution of the tool would be beneficial and interrupt the development process
less. Especially in the context of security checks, huge lists are presented when a
developer decides to execute the security checks. Instead of executing all security
checks on the whole software system after finishing a coherent set of changes, these
checks should be extended to support near real-time notifications when modeling or
implementing a specific part of the software system. Also, only information relevant
to the part of the software system a developer is currently working on should be
shown.

15.2 Case Study 2: Eclipse Secure Storage

Our second case study focuses on applying GRaViTY to a security-critical part of
the Eclipse IDE. Eclipse Secure Storage [203] is used by Eclipse plugins such as
the Eclipse git client to store confidential data like passwords. The Eclipse Secure
Storage is implemented as an Eclipse plugin itself using Java. How exactly the
secure storage works is described in the help document of Eclipse [203]. However,
this description is rather high-level and complemented by the low-level API docu-
mentation. We consider Eclipse Secure Storage due to its security-criticality, good
documentation, and wide usage in practice.

15.2.1 Discussion of the Case Study Execution

In this case study, we focus on migrating legacy projects to GRaViTY. In what
follows, we first discuss the reverse engineering of the Eclipse Secure Storage to
create a state in which the application of the GRaViTY approach is possible. Next,
we discuss security engineering, aiming at making security requirements explicit
and checking the software system regarding compliance with them. Finally, we
discuss the run-time monitoring of the Eclipse Secure Storage based on a fictive
malicious Eclipse plugin and the adaption of the reverse-engineered models.

Reverse Engineering of Models
The first essential step for applying GRaViTY to legacy projects is to reconstruct
trace links between design-time models and the implementation. If no design-time

15.2 Case Study 2: Eclipse Secure Storage 403

models are available, models suitable for developers or security experts to work
with must be reverse-engineered. This reverse engineering can be performed both
manually or by automated tool support.

Execution. As there are no models available for Eclipse Secure Storage, the first
step of this case study was the reverse engineering of models. For the reverse engi-
neering of models, we followed a three-step approach. First, we manually created
data flow diagrams and UML activity diagrams based on the documentation of
Eclipse Secure Storage. Afterward, we automatically reverse-engineered a detailed
UML class diagram from the source code of Eclipse Secure Storage using GRaV-
iTY.Finally,weused the semi-automatedmapping approach to establish refinements
between the manually created diagrams, the automatically reverse-engineered class
diagram, and the software system’s implementation.

Data Flow Diagrams and Activity Diagrams: To get a better understanding of
Eclipse Secure Storage, in a first step wemanually reverse engineered Data Flow
Diagrams showing essential processes of Eclipse Secure Storage. As discussed in
Section 3.6.2, UML activity diagrams can be specified analogously. After spec-
ifying the first DFD, we applied the semi-automated mapping approach intro-
duced in Chapter 7 for creating a correspondence model between design-time
models and source code as well as the structural compliance checks discussed
in Section 8.2. Based on these compliance checks, we have been able to adapt
our DFD to reflect the implementation better. Whenever we detected a struc-
tural divergence, we investigated this divergence and adapted the DFD. Also, the
semi-automated mapping proposed classes we did not consider to be involved
in the scenario but are involved in the scenario and have been accepted by us as
correct suggestions. In summary, the reverse engineering approaches and com-
pliance checking made it easier to get a detailed understanding of Eclipse Secure
Storage in detail by putting our focus on detected divergences or unexpected
correspondences.
Figure 15.2 depicts the final DFD of the Eclipse Secure Storage. An arbitrary
plugin attempts to access a secret by sending a request including path informa-
tion of where to look for the secret, e.g., a password request for a user name
of a Git account. The secure storage queries an internal tree-like data structure
to find the corresponding node containing the requested secret. Next, the cache
is queried for the secret value, which can be in clear text, i.e., secret on flow 6
in Figure 15.2, or encrypted, i.e., encr. data. on flow 7. If the value is in
clear text, the secret is sent to the plugin. In the case of an encrypted value, a
decrypt operation either fetches the root password from the operating system or

404 15 Case Studies

prompts the user to provide it. Upon successful decryption, the secret is sent to
the requesting plugin in flow 10 of Figure 15.4.

Implementation-level Class Diagram: In Figure 15.3, we present an excerpt from
the reverse-engineered UML model of Eclipse Secure Storage. For showing the
internal working of Eclipse Secure Storage, we included classes from Eclipse’s
Git implementation to represent a concrete plugin accessing the Eclipse Secure
Storage. The class SecurePreferences, at the bottom left of Figure 15.3, repre-
sents mappings between secrets and keys to access them internally. The field
name holds the name of the context under which a secret is stored. If a secret
is requested using the get method of this class, the secret is loaded from the
key store and the user may have to provide her master password to unlock the
keyring. The interface ISecurePreferences specifies public methods over which
secret data of different plugins can be accessed. Stored secrets can be requested
using the method get and written using put. This interface is implemented by the
class SecurePreferencesWrapper that wraps the internal instances of the class
SecurePreferences using container objects.
The two classes of the Eclipse Git implementation responsible for storing pass-
words are shown at the top of the figure (Activator and EGitSecureStore). These
are initialized by Activator at the startup of the application. For this initializa-
tion, the SecurePreferencesFactory of the Eclipse Secure Storage is used to get
the default password store and initialize the class EGitSecureStore. Then, this
class provides a mapping between Git repositories and associated user names
and passwords using the ISecurePreferences interface.

Creation of Refinements: To allow the security tracing between the SecDFDs and
the UML class diagrams, we replaced every SecDFD with a UML activity dia-
gram as shown in Section 3.6.2. When in the correspondence model between the
DFDs and the source code, a DFD element had a correspondence with a source
code element that corresponds to an element from the UML class diagram, we
created a refinement reference from the class diagram element to the activity
diagram element corresponding with the DFD element.

Discussion. In this case study, we noticed that the semi-automated mapping
approach proposed within this thesis is not only suitable for restoring a correspon-
dencemodel betweenDFDs and source code but assists in defining aDFD for a given
implementation of a software system. As we did not transfer the semi-automated
mappings to UML activity diagrams, we had to manually perform this transition
by first reverse engineering DFDs and corresponding activity diagrams, mapping
the DFDs to the implementation, and then transferring the mappings from the DFD

15.2 Case Study 2: Eclipse Secure Storage 405

Figure 15.2 DFD for reading a secret from the Eclipse Secure Storage

Figure 15.3 Eclipse Secure Storage annotatedwithUMLsec SecureDependency stereotypes

to the UML activity diagram. However, as this process is straightforward, there
seems to be no reason to object to the technical realizability of this task. Accord-
ingly, we consider the technical suitability of the reverse-engineering (O1) as given.
Regarding the usability and benefits for the developers (O2), the application of our
approach gave us more detailed insights into the implementation than only studying
the implementation and its documentation.

406 15 Case Studies

Static Security Specification and Checks
One of the two main goals of applying GRaViTY to legacy projects is to create
artifacts that allow an easier specification of security requirements, comparing to
their specification on the implementation, and the security compliance checks with
these security requirements. The other main goal is to continue with the continuous
verification of the software system’s security after the initial state has been proven
to be secure. In this part of the case study, we focus on creating such an initial secure
state using GRaViTY.

Execution. After the reverse engineering of design-time models, we started anno-
tating these with security requirements. Here, we started with essential security
requirements on the SecDFDs and more detailed security requirements on the class
diagram, afterward.

SecDFD: Figure 15.4 shows an excerpt (for clarity) of the SecDFD for the Eclipse
Secure Storage example discussed before. If a plugin requires secret data that is
cached encrypted, the user must enter a passwordwhen prompted, c.f. pass.
ext. in Figure 15.4. The externally provided password is then used to decrypt
the cached secret data, and if this was successful, the plugin is allowed to read it.
First, the designermust specify that the external password is confidential. Second,
the designer needs to specify the process contract, e.g., a decrypt contract (DECR)
for the process Decrypt_data. Since the external password is confidential, it
should not be leaked to other plugins running in the environment. These simple
extensions allow us to identify such behavior in the model. For instance, the
extended notation [111] is shipped with a simple label propagation (using a
dept-first search) according to the specified process contracts. Once the labels
have been propagated, a static check is executed to determine if any confidential
information flows to an attacker zone. In Figure 15.4, the Plugin is not amalicious
entity, i.e., it is not part of an attacker zone. The developer can manipulate the
elements of attacker zones to change the design model and improve security.

UMLsec: As part of the design phase, we extended the reverse-engineered UML
model (Figure 15.3) with annotations according to UMLsec Secure Depen-
dency. For example, as Eclipse Secure Storage intends to provide secure stor-
age of secrets, all objects representing secrets and methods for accessing
secrets should be put on the secrecy security level. Accordingly, the class Se-
curePreferences is annotated «critical» and the secrecy list holds
the signature get(String, String,SecurePreferencesContain-
er):String (visualized in the comment linked to the class), all classes with
a dependency to this class that is stereotyped with «call» have to respect

15.2 Case Study 2: Eclipse Secure Storage 407

this secrecy security level. This is represented by a «secrecy» stereotype on
the dependency and «critical» containing this signature, as on the class
SecurePreferencesWrapper.

1 @Critical(secrecy={"get (String , String , SecurePreferencesContainer) :
String"})

2 public class SecurePreferencesWrapper implements ISecurePreferences {
3 private SecurePreferences node;
4

5 @Secrecy
6 public String get (String key, String def) {
7 return node. get (key, def , container) ;
8 }
9 }

Listing 15.1 Source code of the password store with security annotations

Listing 15.1 shows the Java security annotations that have been automatically
propagated to the Java source code from the SecurePreferencesWrapper
shown in Figure 15.3. The value secrecy={get(String, String):
String} of «critical» is represented by a @Secrecy annotation on the
get method in line 5 of the example. Additionally, the security requirement
secrecy is specified for amemberwith the signatureget(String,String,
SecurePreferencesContainer):String in the @Critical annota-
tion in line 1. This method is called in line 7 of the source code fragment.

Discussion. Annotating the reverse engineered-models with security requirements
was straightforward. Unlike the iTrust case study, there is only one level of inheri-
tance simplifying this step. Technically, we demonstrated the feasibility of the tools
for annotating themodels and especially ofGRaViTY’s synchronizationmechanism

Figure 15.4 SecDFD for reading a aecret from the Eclipse Secure Storage

408 15 Case Studies

for propagating the security requirements into the implementation. Accordingly, the
technical feasibility (O1) is given. From a developer’s perspective, the main strug-
gles in annotating the models lie in the used UML editors. The handling of the
relatively large UML class diagram is not as fluently as the navigation through
the Java source files. However, once a suitable view had been created, for us, this
graphical representationwas easier to follow than the source code files. To conclude,
regarding O2 the approach is usable in principle but there could be improvements.
First, by better editor support and second by an automated creation of views on
UML models.

Run-TimeMonitoring
In the last part of this case study, we focus on leveraging the specified security
requirements to enforce these at run-time using UMLsecRT. In the implementation
of a software system specified by a UML model, the dependencies stereotyped
with «call» are usually implemented as method calls and field accesses. Even
if a model does not contain violations, at run-time it has to be guaranteed that
the security requirements specified at design time are not violated. Furthermore,
detecting all dependencies which can occur at run-time is statically undecidable,
e.g., due to the use of Java reflection [122, 240]. What can also not be foreseen
from a static perspective are violations caused by an exchanged library or malicious
code. In Eclipse, for example, every installed plugin can access the password store.
Which plugins a developer installs into her Eclipse IDE is not predictable. However,
considering the discussed security annotations, only plugins that comply with the
secrecy security level should be allowed to access the password store.

Execution. To execute this part of the case study, we implemented a malicious
plugin trying to illegally access passwords stored in the Eclipse Secure Storage.
Moreover, we extended the Eclipse Secure Storage implementation with counter-
measures for actively preventing such illegal accesses. After these two extensions,
wemonitored Eclipse with the UMLsecRT agent and executed themalicious plugin.
In what follows, we first introduce the malicious plugin. Afterward, we exemplary
introduce one of the defined countermeasures. Finally, we discuss the execution of
the UMLsecRT agent and the adaptions performed by the agent.

Example Security Violation: In Listing 15.2, we showhow amalicious plugin can
exploit the secure storage API to read the stored passwords. To avoid detection
by static analyses, it uses the Java-Reflection API for accessing the getmethod
of the class ISecurePreferences. To achieve this, in line 2 the malware
navigates to the ISecurePreferences instance holding the desired passwords and

15.2 Case Study 2: Eclipse Secure Storage 409

then accesses them in lines 3 to 5. First, a Method object is requested, set to
accessible, and finally the value of this method is requested and passed to a
method sendPassword.

Counter measures: Listing 15.3 exemplifies the usage of calling an additional
method to determine an early return value: secure():String will be called
if a security violation of the secrecy property of the method get occurs at run-
time. This method generates a random password that is returned instead of the
real one.

1 public String readPassword(ISecurePreferences s) {
2 ISecurePreferences git = s .node("git / gitlab") ;
3 Method m = git . getClass () .getMethod("get" , . . .) ;
4 m. setAccessible (true) ;
5 return (String) m. invoke(git) ;
6 }

Listing 15.2 Source code of a malicious Eclipse plugin

Monitoring and adaption: Figure 15.5 showsadeployment diagramof theEclipse
Secure Storage we reverse engineered before the execution of the security
monitoring. The shapes with white background resemble the elements com-
ing from the (reverse-engineered) model. On top is the call between the class
EGitSecureStore and the interface ISecurePreferences from Fig-
ure 15.3. Below those two types, we can see onwhich artifacts those are deployed
and on which execution environment they are manifested. The shapes with a
gray background on the right were automatically added as an evolution step by
a UMLsecRT guarded execution. These show actions of the malware introduced
in Listing 9.4 that have not been considered by the system’s developers.
Figure 15.6 is a sequence diagram generated by UMLsecRT during monitoring
execution of the Eclipse IDE including the Eclipse Secure Storage and the mali-
cious plugin (see Listing 15.2). It outlines a call sequence leading to a security
violation and themitigation carried out against it. The source of the security viola-
tion is the call of the method get(String,String):String, commented
with Violation of Secrecy in the diagram, that has been called by the method
readPassword. While this call is obfuscated by the use of Java reflection in
the implementation, we can show the effective calls in the generated sequence
diagrams.Which countermeasure has been executed is also shown in a comment.
In this case, the method secure() has been called as specified in Listing 15.3.
After the violating call, the attacker called sendPassword(String) but due
to the countermeasure not with the secret value. As discussed in Chapter 9, due
to efficiency reasons, only beginning with a security violation all future accesses

410 15 Case Studies

1 public class SecurePreferencesWrapper implements ISecurePreferences {
2 @Secrecy(earlyReturn = "secure")
3 public String get (String key, String def) {
4 return node. get (key, def , container) ;
5 }
6

7 @CounterMeasure
8 public String secure () {
9 StringBuilder s = new StringBuilder () ;
10 Random random = new SecureRandom() ;
11 for(int i = 0; i < 10 + random. nextInt(10) ; i++) {
12 s .append((char) random. nextInt (’z’ − ’a’) + ’a’) ;
13 }
14 return s . toString () ;
15 }
16 }

Listing 15.3 Specification of a countermeasure

are recorded and will be visualized. In this case, this is just one additional call
of sendPassword.

Discussion. As showcased, we successfully applied the run-time monitoring for
detecting and mitigating the security violation based on the security requirements
specified on the reverse-engineered models. Also, the models have been adapted
to investigate the security violation in detail. As shown in Figures 15.5 and 15.6,
detailed models have been generated allowing us to get a deeper understanding.
However, as we might be biased, this part of the case study should be repeated with
independent developers and security experts. Nevertheless, the technical feasibil-
ity (O1) has been demonstrated in the context of a legacy project, and from our
side, there are also strong indications for good usability for developers and security
experts (O2).

15.2 Case Study 2: Eclipse Secure Storage 411

Figure 15.5 Deployment and manifestation of classes with adaptions

Figure 15.6 Sequence diagram automatically generated by UMLsecRT

15.2.2 Discussion of the Observations

Similar to the first case study, we have been able to use GRaViTY throughout the
whole considered scenario.However, there are two limitations. First, the propagation
of security requirements from the SecDFDs into the class diagrams and the imple-
mentation required manual workarounds. However, overcoming this limitation by
additional tool support seems reasonable. Second, we did not consider continuous
security checks at maintenance and extension of Eclipse Secure Storage. Neverthe-
less, as we reached a state comparable to an intermediate state of the iTrust case
study, synchronizing future changes is theocratically possible. That we have been
able to use the created correspondence model to propagate security requirements
from the design-time models into the implementation is also an indication in this
regard. Accordingly, we can assume the technical feasibility of GRaViTY (O1) for
the application on legacy projects to be given. Regarding the usability from the
perspective of developers and security experts, we had the goal of verifying the
security of Eclipse Secure Storage statically and at run-time. Considering this goal,
all actions have been straightforward. Especially, we did not have to care about
the synchronization between the reverse-engineered models and the implementa-
tion as intended by GRaViTY. However, annotating the UMLmodels using Papyrus

412 15 Case Studies

has been somewhat cumbersome and could be improved. Nevertheless, as software
ergonomics are not the focus of O2 and GRaViTY did not extend Papyrus to the
UMLsec stereotypes, we assume good usability.

15.3 Threats toValidity

The validity of the two case studies discussed in this chapter is subject to multiple
threats. In this section, we discuss possible threats to validity and our mitigation for
lowering the impact of the identified threats.

Themain treat identified by us is that the case studies havemainly been performed
by the author of this thesis. This might give rise to a threat to internal validity as the
author could be biased. To clearly outline this threat, we described the case studies
and the performed development activities and our conclusions in detail. Additional
case studies with independent developers and security experts should be performed
in future works.

The generalization of our observations and conclusions might be limited as we
only considered two subject systems. To lower this threat, we selected the subject
systems from two different domains, namely healthcare and storage of secrets. Also,
both subject systems have been selected to use as different technologies as possible.
The iTrust system is a web application based on JSP while Eclipse Secure Storage
is based on Eclipse plugins.

In every case study, we simulated one development scenario. Here, we have
not been able to cover every possible scenario. For example, we have no scenario
explicitly focusing on the application of GRaViTY in agile software development.
Nevertheless, the two considered scenarios are fundamentally different allowing
us to increase our coverage as far as possible within the available resources. Also,
we descriptively outlined the principle suitability of GRaViTY to cover additional
development scenarios. Nevertheless, additional development scenarios should be
considered in the future.

15.4 Conclusion on the Case Studies

We successfully applied GRaViTY as part of the two case studies considered in
this chapter. Thereby, we demonstrated the technical suitability of the developed
approach (O1) for developing secure software systems. As some parts of the case
studies requiredmanual simulations of parts of the approach, additional tool support
can make the development more effective. Nevertheless, our case studies revealed

15.4 Conclusion on the Case Studies 413

that the current implementation of the GRaViTY approach already provides much
support for effectively and efficiently aiding the development of secure software
systems. Altogether, the case studies demonstrated the technical feasibility (O1) of
GRaViTY.

Considering the key assumptions on users of the GRaViTY approach introduced
in Section 4.1, we can also assume good usability from the perspective of developers
and security experts (O2). In what follows, we discuss our observations regarding
the four key assumptions.

Suitable Views: As part of the case studies, we specified security requirements
mainly on design models. While it was necessary to specify some security
requirements on a very detailed version of these models, often it was possi-
ble to specify security requirements on abstract models and to propagate these
into more detailed models and the implementation.

Side effects: While performing the case studies, we never had to care about the side
effects of our actions. However, there still have been some situations in which
we had to resolve conflicts caused by side effects. But these have always been
presented to us prominently by the tool support, e.g., by an additional dependency
causing security issues revealed by the continuous security checks.

Synchronization: In the case study, we have always been able to synchronize our
changes without facing issues. As our case studies only partly contained the
situation in which larger changes on the UML models had to be propagated into
the implementation theremight be cases inwhich issueswith the synchronization
can arise. However, such cases have explicitly been discussed in Section 6.2.

Continious Security: Throughout the whole case study, the primary goal of con-
tinuous security compliance checks has been reached. After specifying the first
security requirements we have always been able to check the software system
for security violations.

While the principle usability has been demonstrated, the case studies also revealed
space for future improvements. The software ergonomics not explicitly considered
in the case studies should yield more attention in future works. Also, additional
automatization should be considered in the future. Thismainly targets the automated
execution of synchronization steps and security verifications. Regarding security
verifications, more incremental execution of the checks should be considered to
allow near real-time feedback and focusing only on parts currently in the scope of
a developer. Last but not least, reverse engineering of more abstract models and
automated extraction of views should also be targeted.

Part VII

Closing Chapters

16RelatedWork

In this chapter, we discuss works related to the GRaViTY approach introduced in
this thesis. To the latest of our knowledge, GRaViTY is one of the first approaches
allowing continuous and integrated model-based security engineering covering the
whole software development life cycle. Therefore, most related works target single
parts of GRaViTY. Accordingly, we structured this chapter along with the main
areas considered in GRaViTY. First, in Section 16.1, we discuss related works
regarding tracing and synchronization of changes. In Section 16.2,wediscuss related
approaches for ensuring the security compliance of software systems. Afterward, we
discuss related works aiming at the refactoring of software systems in Section 16.3.
Last, in Section 16.4, we discuss related works in the domain of software product
lines.

16.1 Tracing betweenModels and Code

In GRaViTY, the tracing between models and code plays an essential role in the
approach. Both, the management and leveraging of traces are also an essential part
of other works.

Winkler and Pilgrim performed a survey on traceability in requirements engi-
neering and model-driven development [345]. While traceability in both domains
has much in common, they are still separated. In requirements engineering trace-
ability mainly means to follow requirements throughout the development process
and in model-driven engineering traceability mainly means to explicitly create trace
links between corresponding artifacts.While we consider security requirements and
follow them in case of security context knowledge changes, our approach tracing
mainly takes place in the area of model-driven development.

©TheAuthor(s), under exclusive license toSpringer FachmedienWiesbadenGmbH,
part of Springer Nature 2022
S. M. Peldszus, Security Compliance in Model-driven Development of Software
Systems in Presence of Long-Term Evolution and Variants,
https://doi.org/10.1007/978-3-658-37665-9_16

417

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-658-37665-9_16&domain=pdf
https://doi.org/10.1007/978-3-658-37665-9_16

418 16 RelatedWork

In the single underlying model approach (SUM), Atkinson et al. define a single
model, that can express all information about the software system [346]. Suitable
views according to the current task are extracted from this model. The SUM is
comparable to the different connected UML models of our approach, in which we
integrate all design-time information. SUM supports an automated extraction of
views that could be helpful in GRaViTY for manual edits of the generated parts of
the implementation model. While we support well-known plain UML, SUM made
many modifications to the UML to support all those kinds of different abstractions.
Also, SUM does not provide an integration with the concrete implementation.

With VITRUVIUS Kramer et al. developed a SUM approach that also integrates
Java source code [347]. Unlike our approach, the trace links to the model are written
into the source code as annotations and might lead to unreadable source code, as
discussed in Chapter 6.

On a very similar technical basis as our framework is the Codeling tool of Kon-
ersmann [348]. The idea of Codeling is the integration of architecture model infor-
mation into the program code. Like our approach, Konersmann uses TGGs for the
model to model transformations at architecture extraction. In contrast to us, he
does not continuously keep the extracted models up to date but always writes all
changes, made on an extracted model, back to the source code. Every time an archi-
tectural view on the software system is needed, Codeling extracts it again. By doing
so, Konersmann circumvents the challenge of incremental updates required by our
TGG-based synchronization, presented in Section 6.2.2, at the cost of massively
increasing the code base with additional information.

Combinations of models, metamodels, and transformations, such as those used
in GRaViTY for keeping all artifacts synchronized and allowing tracing, are often
referred to as megamodels [349]. When developers work in parallel on different
artifacts, issues regarding restoring consistency can arise [350]. In GRaViTY, this
can be the case if there are conflicting structural changes in the UML models and
the source code. Stevens presents an approach for resolving such conflicts based on
build-time information [351].

Commercial tools like Enterprise Architect (EA) also provide round-trip engi-
neering for UML models and Code [352]. The main limitation of these tools is the
restriction to UML models very close to the code which eases the synchronization.
While EA allows a translation from UML stereotypes to Java annotations, which
could be used for transferringUMLsec annotations into the code, they do not support
more complex information transfers.

While all approaches are dealing with the same challenges as us in similar ways,
none of them provides the support to maintain security requirements on different

16.2 Security Compliance of Models and Code 419

artifacts in a sophisticated way and to check those security requirements in between
the different artifacts.

Explicitly designed for the tracing of the security structure and properties is the
SecSTAR approach of Fang et al. [353]. SecSTAR monitors the software system
execution and traces security-related information throughout the software system.
Based on the recorded diagrams for security analysis are generated. These diagrams
can be seen as part of the system model considered by us. Nhlabatsi et al. present an
approach to monitor assumptions about security requirements, such as the location
of devices, at run time [354]. Thereby, security requirements are specified upfront
and might be subject to knowledge changes as considered by us.

Similar to our considered problem of mapping DFD elements to code, feature
location techniques aim to find the code assets that contribute to the implementation
of a given feature. Twoexisting surveys [355, 356] summarize the variety of available
techniques, which largely differ in their assumed input, program representation, and
required degree of user interaction. Most closely related to ours are those works that
derive an initialmapping based onname similarities and use it as input for a structural
search. Zhao et al.’s approach [357] assumes as input a set of features provided in
one textual description for each feature. They use an information retrieval technique
called Latent Semantic Analysis (LSA) to identify a set of seed elements deemed
as relevant for each feature. They then filter a call graph representation of the input
program to remove those branches that do not include a relevant element. Strüber
et al.’s approach [358] uses LSA in the same way, then scores all elements based
on topology measures and assigns each element to the feature it is deemed most
relevant for. Font et al.’s approach [359] assumes user-specific input seeds that they
extend with a genetic algorithm to generate a candidate for the implementation of
the given feature; a textual description of the input feature is then used to judge
the relevance of the identified fragment. In contrast to feature location techniques,
which use textual descriptions and manually specified correspondences as input, we
rely on a different source of information. Our heuristics exploit the rich structural
information given by the input DFDs to guide the search of the programmodel; that
is, we exploit an assumed correspondence between the two models being available
in our scenario.

16.2 Security Compliance of Models and Code

In this section, we discuss works related to the continuous security compliance
checks between models and code presented in this thesis. First, we focus on model-
based works for the specification and analysis of security. Afterward, we discuss

420 16 RelatedWork

works explicitly focusing on security compliance among different artifacts. Finally,
we discuss works for monitoring or enforcing security at run-time.

16.2.1 Model-Based Security Analysis

An overview of model-based security analysis can be found in [360], which reviews
existing approaches for security analysis of model-based object-oriented software
designs, and identifies ways in which these approaches can be improved and made
more rigorous. A newer systematic literature review on model-driven security in
general can be found in [361]. Most security specifications of the considered works
provide a DSL based on UML’s profile mechanism.

UMLsec [6] provides a model-based approach to develop and analyze security-
critical software systems, in which security requirements such as secrecy, integrity,
and availability are expressed in UML diagrams [5]. UMLsec is provided as a
UML profile, containing different stereotypes and tagged values to annotate UML
diagrams with security requirements of which only a few have been considered
in this thesis. The CARiSMA tool performs the corresponding security analysis
[362]; it has been applied to various industrial applications, e.g., to investigate
the security of the Common Electronic Purse Specifications [363]). Furthermore,
UMLsec andCARiSMAare the foundation for various other works. Ahmadian et al.
extended CARiSMA to support privacy-related security requirements and checks
regarding their consistency [364–367]. Also, they provide support for selecting
suitablemeasures for preventing the identified privacy threats. Similarly,Ramadan et
al. extend CARiSMAwith fairness checks for preventing systematic discrimination
by the developed software system already at design time [368–370].

Siveroni et al. [371] researched supporting the design and verification of secure
software systems, emphasizing the early stages of development like requirements
elicitation. The proposed approach realizes static verification of properties and
enables to reason about temporal and general properties of a UML subset, e.g.
UML state machines. Formal verification carried out using the SPINmodel checker.
The approach focuses solely on the early stages of software design and thus only
properties that can be checked statically.

Other work addresses the model-based use of security patterns [372–374]. Fur-
ther researchmakes use of aspect-orientedmodeling formodel-based security [375].
[376] proposes an approach for model-based security verification.

16.2 Security Compliance of Models and Code 421

16.2.2 Security Compliance

Existing works onmaintaining security consistently in different development stages
focus on forward and reverse engineering, that is, the automated transformation of
a more high-level to a more technical representation, and back. Considering for-
ward engineering, Ramadan et al. [377] use model transformation to automatically
generate security-annotated UML class models [6] from security-annotated BPMN
models. Ahmadian et al. use security requirements (SecBPMN [378]) to provide
suggestions to developers which elements in UML diagrams might correspond to
the annotated BPMN elements [74, 367].

Most closely related to ours is the approach of Nguyen et al. [379, 380]. Com-
parable to us, they propose a model-driven security approach. While we focus on
data security, they focus on authorization in the software system under development.
Security requirements defined at design-time, are enforced in later phases of software
development and their enforcement is tested. Concerning security tests, Schiefer-
decker et al. provide a survey on model-based security testing techniques [381].
Besides architectural models, as considered in our approach, also threat, fault, and
risk models, as well as weakness and vulnerabilities models, are used for deriving
security tests. Usually, security tests can be automatically generated based on test
generation criteria.

Abi-Antoun et al. [382], which is concerned with DFD-to-code conformance
checks. They automatically reverse engineer a DFD from the given implementa-
tion, calling it the source DFD. The user has to specify a mapping between a man-
ually created high-level DFD and the source DFD, which is then used to uncover
inconsistencies. In contrast to this manual approach to mapping, our approach is
semi-automated: It automatically proposes an initial set of mappings, which is iter-
atively refined based on user feedback.

Some research addresses linking the model to the code level within model-based
security through model-driven reverse engineering [383, 384]; similar to our work,
Martínez et al. [384] use OCL to specify security policies.

Considering evolving software systems, Anisetti et al. present a security certifi-
cation scheme for evolving services [385].

Beyond the security scope of this paper, conformance checking is generally a
well-studied topic in model-driven engineering. Paige et al. [386] use metamodels
as the common reference point to enable conformance checks between diagrams
representingdifferent viewson a software system.Diskin et al. [387] present a frame-
work for global consistency checks of heterogeneous models based on constraints.
By supporting the explicit specification of overlaps between the considered models,
they avoid the need for a global metamodel. Expanding on this work, König and

422 16 RelatedWork

Diskin [388] improve the efficiency of this approach by supporting an early local-
ization of relevant parts of the models whose consistency is to be checked. Reder
and Egyed [389] propose an efficient approach to consistency checking based on
predefined consistency rules. However, none of these works address security, and
an application to data flow-related threats as addressed by DFDs is not obvious.

The problem of measuring attack surfaces serving as a metric for evaluating
secure object-oriented programming policies has been investigated by Zoller and
Schmolitzky [215] and Manadhata and Wing [214], respectively.

Closely related to the specification of security checks is the specification of design
flaws, such as code smells or anti-patterns. A commonmethod to detect code smells
and anti-patterns through software metrics. Simon et al. define a generic distance
measure that can be applied to identify anomalies inducing certain refactorings in an
underlying language [390]. Mäntylä makes use of atomic metrics to evaluate their
applicability for code smell detection compared to human intuition, concluding that
metric-based detection often contradicts human perception [391]. Munro proposes
to capture informal code smell descriptions by means of a set of metrics and to
identify possible occurrences in Java programs based on those metrics [392].

16.2.3 Run-time Security Monitoring

Lee et al. focused on inter-app communication in Android that may enable an
attacker to inject arbitrary activities [393]. Ultimately, user interaction can be
hijacked to break the Android sandbox mechanism. Thus, they propose a static
analysis tool using operational semantics of the activity life-cycle, unveiling poten-
tial vulnerabilities. In contrast to that, UMLsecRT aims at providing the developer
a lightweight model extension to cover up security risks in early design phases,
coupled with the source code and run-time.

Ion et al. [394] investigated the security policy architecture of J2ME (Java for
mobile devices), which in contrast to Java Standard Edition does not provide an
extensible security architecture. They modified the J2ME VM to be able to deal
with custom security policies at run-time with no considerable overhead. In con-
trast, UMLsecRT uses a Java agent and thus does not require changes to the VM.
By incorporating model-based design, we support developers in gaining additional
knowledge about how the code behaves at run-time.

Costa et al. present a more fine-grained and flexible policy-based security mech-
anism for J2ME and implemented it in two variants [115]. First, similar to [394],
by adapting the J2ME VM, facing the issue that keywords in policies are restricted
to the methods that can be intercepted at fixed enforcement points. Second, based

16.3 (Security-aware) Refactorings 423

on byte-code manipulation, preceding and succeeding every call to the J2ME API.
They noticed a performance overhead below 5, while we achieve a similar overhead,
supporting full Java and monitoring all accesses.

Hiet et. al propose to secure Java Web applications by monitoring information
flows [243]. They extend Blare, an intrusion detection tool on OS level, to realize a
policy-based intrusion detection by tracing inter-method flows in Java applications,
supported by the JRE calling an internal security manager before every I/O access.
They encountered a slow down of factor 12 for loading and factor 4 for execution.
Blare requires a modified Linux kernel to run on, while JBlare requires a modified
JRE, which are heavy-weight assumptions against the target environment. Reacting
to breaches or preventing them as well as round-trip engineering is not discussed.

Bodden et al. present an approach to reduce the time to invest in run-time ver-
ification of large programs [259]. Given a sufficient number of users, parts of the
run-time verification are distributed among the users. Instead of instrumenting the
whole program, only a partition is instrumented at a time. Using regular expressions,
traces for unwanted behavior are specified. The authors implemented two variants,
noticing generally a high instrumentation overhead.

Staicu et al. performed a large-scale study of 235,850 Node.js applications, iden-
tifying two APIs giving direct system access [395]. They tackle this issue by first
building templates for all values passed to injection APIs. After that, a run-time
policy is synthesized to support monitoring, which is integrated into the code by
code rewriting. Checking also is supported at design time by static checks.

Ognawala et al. propose a mixture of concrete and symbolic execution to detect
non-trivial vulnerabilities [396]. They let the user interactively investigate calls in-
depth and assess possible vulnerabilities on a graphical representation. While the
authors focus on other types of vulnerabilities than we do, they also conclude that
an interactive, graphical vulnerability report supports developers to prioritize bug
fixing activities.

16.3 (Security-aware) Refactorings

Various techniques have been proposed for both, graph-based program transforma-
tion and object-oriented program refactoring. In this section, we mention the most
important work and relate it to the technique proposed in Chapter 10 of this thesis.
Also, we discuss existing works regarding their relation to security aspects of the
refactored software systems.

While general work on representing programs as graphs has been proposed
decades ago [397], recent work particularly focuses on graph transformation for

424 16 RelatedWork

the purpose of reengineering (e.g., refactoring). Initially, Eetvelde et al. proposed
the application of graph rewriting rules to typed program graphs for program refac-
torings [135, 136]. Based on this work, the notion of rule refinement to treat hier-
archical program substructures as a whole, as well as the notion of rule cloning are
introduced for multiple instantiations of rewriting rules [398]. Thereupon, Mens et
al. developed a foundation for refactoring Java-like programs based on algebraic
graph transformations that comprises object-oriented standard refactorings such as
Pull UpMethod and Extract Field [24, 140].Moreover, Ferenc et al. propose Colum-
bus, a tool that applies metamodeling techniques to support graph transformations
on C++ programs [9]. With a particular focus on Java, Corradini et al. proposed a
graph transformation system for Java programs [137]. Moreover, mature tools, such
as JaMoPP [143] and MoDisco [141, 161] exist that provide modeling techniques
to translate Java programs into a graph-based representation.

While all of the aforementioned approaches partially overlap with our proposed
technique (in fact, our refactorings are very similar to those proposed by Mens et
al.), we extend existing work by proposing a systematic and formalized method for
bidirectional, graph-based program transformation for the first time.

Program refactoring is a fundamental concept in software reengineering for spec-
ifying allowed changes in a software system. It has been proposed more than 15
years ago as ameans to improve the structure of source code in a behavior-preserving
fashion [18, 64]. However, while the concept and the technique have been shown
to be valid and useful, many existing implementations, such as in the Eclipse IDE,
are limited (or even erroneous) due to their informal nature [66, 69]. Hence, various
methods have been proposed to formally specify refactorings and, thus, to allow for
verifying behavior preservation. For instance, Schaefer et al. formulate refactoring as
a dependency preservation problem that, amongst others, preserves name bindings
after refactorings [67]. Moreover, they extend the idea of decomposing refactor-
ings by considering micro-refactorings as very basic blocks of macro-refactorings,
being easier to implement and verify [63]. Thereupon, chained refactorings are
built by applying macro-refactorings in a predefined order. Further works on mak-
ing refactorings more reliable use constraint checking [69] and type checking [62].
We extend these methods by a) proposing a graph-based method for refactoring and
b) by supporting the co-evolution of the textual and graph-based representation of
the program utilizing bidirectional program transformation.

To test the correctness of performed refactoring operations, Mongiovi et al. pro-
pose SafeRefactorImpacthas [399] that analyzes a refactoring operation and gener-
ates test cases for the impacted methods.

Steimann and Thies were the first to propose a comprehensive set of accessibility
constraints for refactorings covering full Java [69]. Although their constraints are

16.4 Software Product Lines 425

formally founded, they do not consider software metrics to quantify the attack sur-
face impact of (sequences of) refactorings. Alshammari et al. propose an extensive
catalog of software metrics for evaluating the impact of refactorings on program
security of object-oriented programs [212]. Similarly, Maruyama and Omori pro-
pose a technique [270] and tool [31] for checking if a refactoring operation raises
security issues. However, all these approaches are concerned with general secu-
rity and accessibility constraints of specific refactorings, but they do not consider
explicit security requirements.

Ghaith and Ó Cinnéide consider a catalog of security-relevant metrics to rec-
ommend refactorings using CODe-Imp [400]. Finally, Abid et al. propose to pri-
oritize refactoring operations to improve the quality of security-critical code first
for preventing future security violations [401]. Security-critical files that should be
prioritized at refactoring are identified by the history of vulnerabilities, security bug
reports, and a set of keywords.

16.4 Software Product Lines

We consider related works regarding software product lines in two directions. First,
we generally consider the transformation of product lines. Here, we mainly relate
other works to our variability extension of Henshin introduced in Chapter 13. Sec-
ond, we consider approaches targeting the security of software product lines.

16.4.1 Product Line Transformations

During an SPL’s lifecycle, not only the domain model but also the feature model
evolves [402, 403]. To support the combined transformation of domain and feature
models, Taentzer et al. [404] propose a unifying formal framework that generalizes
Salay et al.’s notion of lifting [317], yet in a different direction than us: focusing on
combined changes,this approach is not geared for internal variability of rules; similar
rules are considered separately. Both works could be combined using a rule concept
with separate feature models for rule and SPL variability.

Beyond transformations of SPLs, transformations have been used to implement
SPLs. Feature-oriented development [340] supports the implementation of features
as additive changes to a base product. Delta-oriented programming [405] adds flex-
ibility to this approach: changes are specified using deltas that support deletions
and modifications as well. Impact analysis in an evolving SPL can be performed
by transforming deltas using higher-order deltas that encapsulate certain evolution

426 16 RelatedWork

operators [316]. For increased flexibility regarding inter-product reuse, deltas can
be combined with traits [406]. Sijtema [319] introduced the concept of variability
rules to develop SPLs using ATL. Conversely, SPL techniques have been applied to
certain problems in transformation development. Xiao et al. [407] et al. propose to
capture variability in the backward propagation of bidirectional transformations by
turning the left-hand-side model into an SPL. Hussein et al. [321] present a notion
of rule templates for generating groups of similar rules based on a data provenance
model. These works address only one dimension of variability, either of an SPL or
a transformation system.

In the domain of graph transformation reuse, rule refinement [320] and amalga-
mation [336] focus on reuse at the rule level; graph variability is not in their scope.
Rensink and Ghamarian propose a solution for rule and graph decomposition based
on a certain accommodation condition, under which the effect of the original rule
application is preserved [408]. In our approach, by matching against the full domain
model rather than decomposing it, we trade off compositionality for the benefit of
imposing fewer restrictions on graphs and rules.

16.4.2 Security of Software Product Lines

Sion et al. [409] present a research agenda towards systematically addressing secu-
rity concerns in software product lines in a way that considers security separate from
other variability dimensions by allowing to express security and its variability, select
the right solution, properly instantiate a solution, and verify and validate it. This
research agenda seems certainly relevant and worthwhile, but there do not seem to
be results published to date.

Myllärniemi et al. [410] propose a kind of modeling language for specifying
security and functional variability at the architectural level of a software system.
Their solution allows the user to select among multiple countermeasures; however,
security analysis in the style of ourwork is not possible in this solution, since security
requirements on the level of threats and assets are deliberately left outside the scope
of this work.

Nadi and Krüger [411] use the modeling language Clafer, which combines fea-
ture modeling and metamodeling, for modeling cryptographic components. In com-
parison, their work could be considered a specific product line of security-relevant
software products, whereas our goal is to apply security concepts to harden arbitrary
software product lines.

Mellado et al. [412, 413] present approaches which deal with security require-
ments from the early stages of the product line life cycle systematically and intu-

16.4 Software Product Lines 427

itively way especially adapted for product line based development. These works do
neither address the system design nor the implementation, as we do in this thesis.

Fægri and Hallsteinsen [414] present a software product line reference archi-
tecture for security. This work does not use a model-based design approach, as we
do.

General scalability issues arising due to variability have motivated a variety
of software analyses for SPLs; for an overview, see the comprehensive survey by
Thüm et al. [415]. A key distinction is that between product-based approaches that
operate on a selection of all products, and family-based ones that lift the analysis to a
representation of the overall SPL. Product-based approaches are useful in scenarios
where the result does not need to be complete, a prime example being testing.

Model-based testing of SPLs [287, 416–418] focuses on the use of dedicated test
models for this purpose. To improve test coverage, Cichos et al. [287] derive test
cases from a “150%” test model for the SPL, and Johansen et al. [416] use a certain
notion of covering arrays that can be derived from the feature model. Ali et al. [417]
propose a methodology for reducing the specification effort during model-based
testing of SPLs. Lachmann et al. prioritize products by their risk for failures for
integration tests of SPLs [419]. These approaches do not aim to ensure a complete
analysis of all products of the product line.

The SecPL security analysis and security checks based on the multi-variant
model transformation, introduced by us, fall into the category of family-based anal-
ysis, which aims at completeness w.r.t. all products. Most works in this category
focus on program analyses, such as syntax and type checking [420], static program
analysis [421], or model checking [421]. A seminal model-level work is the well-
formedness analysis for model templates by Czarnecki and Pietroszek [300] that we
used as a foundation for our analysis (see Section 12.3). While this work operates
on vanilla UMLmodels to validate well-formedness constraints, our analysis works
on stereotyped UMLmodels for checking security requirements. Salay et al’s [317]
work on the lifting of transformation rules tomodel-based SPLs includes amatching
step that can be considered a family-based analysis. However, none of these works
addresses security.

17Conclusion

This thesis aimed at investigating the state of the art of security compliance in
model-driven development and maintenance of variant-rich software systems, the
identification of open problems in realizing. As motivated in the introduction to
this thesis, considering security at the development and maintenance of software
systems is as challenging and important as never before. While software systems
are becoming more complex, they also process more sensitive information, and new
attack vectors constantly emerge.Amongothers, this especially applies for the sector
of health care, considered throughout this thesis in terms of the iTrust EHR system
as the running example. In recent research, following the principle of security by
design [28], various approaches for eliciting suitable measures within a software
system’s design have been developed [6, 111, 361]. However, the compliance of a
software system’s implementation with the planned security stayed an open issue
tackled in this thesis.

As discusses in Chapter 3, besides design-time security approaches, there are
various approaches for supporting the development of secure software systems in
all stages of software development. However, mostly these approaches are limited to
their local specialties and are not integrated as required for the effective development
of secure software systems. One reason for this lack of integration is missing trace-
ability among the development artifacts of software systems. Furthermore, often,
this causes inconsistencies, e.g., between the planned and implemented design. To
be more precise, such inconsistencies, potentially leading to security violations,
are often caused by continuous changes as part of the development process. Often,
such changes are not reflected in all artifacts. Regarding security, not only structural
consistency is essential but also security preservation. For this reason, practitioners
frequently claim that they cannot apply simple refactorings without requiring a full
re-certification of the whole software system. Finally, the significant reuse among

©TheAuthor(s), under exclusive license toSpringer FachmedienWiesbadenGmbH,
part of Springer Nature 2022
S. M. Peldszus, Security Compliance in Model-driven Development of Software
Systems in Presence of Long-Term Evolution and Variants,
https://doi.org/10.1007/978-3-658-37665-9_17

429

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-658-37665-9_17&domain=pdf
https://doi.org/10.1007/978-3-658-37665-9_17

430 17 Conclusion

software systems, e.g., in terms of variants of a product, makes all of this even more
complicated.

To overcome these problems, in this thesis, we presented an integrated approach
for continuous security compliance checks at the model-driven development of
software systems. The proposed GRaViTY approach addresses the five challenges,
identified at problem discussion in Section 1.1, for supporting security compliance
at the development and maintenance of variant-rich secure software systems as
follows:

Inconsistency and missing traceability: In Chapter 6, we introduced a combi-
nation of tracing within UML models and correspondence model-based trac-
ing between UML models and their implementation. While we use standard
UML technologies for tracing among UML models with different abstraction,
we employ TGGs [422], a bidirectional graph transformation technology, for
tracing between models and code. Based on transformation rules, TGGs build a
correspondence model between two models and allow to automatically synchro-
nize changes between the two models. This allows us to prevent inconsistencies
throughout the software development automatically. Furthermore, in Chapter 7,
we discussed semi-automated restoring of traceability and the reverse engineer-
ing of UML models.

Non-integrated solutions: To overcome non-integrated solutions, GRaViTY con-
nects design-time security with implementation-level security. In this regard,
the presented automation allows us to effectively check security at low costs
by allowing security experts to only specify security requirements once in com-
bination with an automated propagation based on our tracing mechanism. In
Chapter 8, we discussed the leveraging of design-time security requirements for
implementation-level security checks. Based on the design-time security specifi-
cations, we execute implementation-level security checks. Besides newly devel-
oped checks, specifically tailored for verifying considered design-time secu-
rity requirements, we also discussed how state-of-the-art taint analysis can be
improved by connecting design-time securitywith the data flow analyzer. Finally,
in Chapter 9, we presented a run-timemonitor for detecting andmitigating viola-
tions of design-time security requirements. Furthermore, we support an adaption
of the design-time models to allow an inspection of observed security violations.

Security-aware restructuring: For supporting the security-aware restructuring of
software systems, in Chapter 8, we introduced incremental security violation
patterns that can be used for detecting security violations after changes. Espe-
cially, we discuss their incremental execution for efficiently verifying the secu-
rity compliance of single changes instead of full security compliance checks.

17.1 Research Outcomes 431

In addition, we provide security-preserving refactorings for ensuring security
compliance at implementation-level restructuring in Chapter 10. The security-
preserving refactorings allow checking security compliance of changes before
modifying the implementation.

Variant-rich systems: Finally, in Chapter 11, we investigated the application of
the proposed approach to variant-rich software systems. For the verification of
the consistency of UMLsec security requirements in model product lines, we
encoded the checks as OCL constraints and applied a state-of-the-art template
interpretation approach. For the application of arbitrary pattern-based checks,
e.g., the security violation patterns or our security-preserving refactorings, we
extended the Henshin graph transformation engine to support variability in two
dimensions. First, we support variabilitywithin transformation rules, and second,
the models the rules are applied to.

Besides evaluations of the single contributions within the proposed approach, we
successfully evaluated the feasibility of the overall approach on two real-world case
studies in Chapter 15.

17.1 Research Outcomes

At the beginning of this thesis, in Section 1.3, we identified five research questions
regarding the development of secure software systems based on the identified prob-
lems. In this section, we summarize our research outcomes and give answers o the
research questions.

RQ1: How can security requirements be traced among different system representa-
tions throughout a software system’s development process?
We investigated the suitability of refinement relations for tracing among UMLmod-
els. In this regard, UML already comes with sufficient language elements for the
specification of trace links among UML models with different abstractions. How-
ever, the creation and maintenance of trace links among UML models is laborsome
but can be assisted by tool support. For the tracing of security requirements among
UML models more sophisticated refinement rules have to be defined. For this pur-
pose, we extended the UMLsec profile for tracing security refinements. For the
tracing between UML models and the implementation, we identified TGGs as a
suitable solution that not only provides trace links but also a mechanism for change
propagation.

432 17 Conclusion

RQ2: How can we apply model-based security engineering to legacy projects that
have no or disconnected design-time models?
We identified the creation of suitable tracing structures between models and code as
the main challenge in applying the GRaViTY approach to legacy projects. For this
reason, we investigated the suitability of the TGG approach for reverse engineering
UML class diagrams including correspondence models for tracing. We success-
fully demonstrated the application for reverse engineering UML class diagrams.
For supporting early design-time models, we proposed a semi-automated mapping
approach for restoring a correspondence model between the design-time models
and the implementation.

RQ3: How can developers be supported in realizing, preserving, and enforcing
design-time security requirements in software systems?
We discussed leveraging the created trace links for security compliance checks
among models and the implementation. Based on these trace links, structural com-
pliance can be verified in terms of correspondence, divergence, and absence. Regard-
ing explicit security compliance, we identified two possibilities for security trac-
ing, namely the propagation of security requirements and dynamic security tracing.
Using the provided security tracing, developers can be supported by security checks
in implementing a security-compliant software system. First, security checks tai-
lored to single design-time security requirements can be executed on the implemen-
tation parts corresponding with relevant model elements for checking the presence
of security measures in the implementation. Here, we demonstrated the feasibil-
ity of static checks and dynamic checks at run-time. Second, the configuration of
state-of-the-art security analyses can be optimized to be more precise and effective.
Altogether, developers can be supported by automatically reporting security viola-
tions in the implementation concerning design-time security requirements. Further-
more, the adaption of design-time models based on observations at run-time allows
developers to investigate security violations and improving software systems.

RQ4: How do changes within a software system affect its security compliance, and
how can these effects be handled?
Changes in a software system can affect security in manifold directions. For han-
dling the effects of changes, we investigated two approaches. First, an automated
propagation of changes to all artifacts of a software system in combination with
an incremental re-execution of security compliance checks on the parts of the
software system affected by the change. The TGGs used for tracing allows the

17.2 Assumptions and Limitations 433

propagation of changes between the UMLmodels and the implementation followed
by an automated security verification. Here, the security violation patterns allow
an incremental verification of the implemented security. Second, the prevention
of violating changes by enriching change specifications with security-preserving
constraints. Taking OO refactorings as change specifications, we investigated how
security-preserving refactorings can be specified and executed. Such security-
preserving refactorings allow the restructuring of a software system by preserving
its security. In combination, both approaches allow to effectively handle the impact
of changes on a software system’s security.

RQ5: How can we verify and preserve security compliance in variant-rich software
systems?
Themain challenge in supporting software product lines is the practical infeasibility
of applying the developed security checks and security-preserving refactorings to
all products of an SPL. Also, for allowing tracing within a software product line,
variability has to be supported on all artifacts of the software system. However,
when specifying variability similarly on all products, structural and security tracing
using our approaches does not differ from a single product software system. For
supporting security compliance within SPLs, we investigated the application of
security checks and security-preserving refactorings to SPLs by specifying formally
these and utilizing application technologies that take care of the variability. Thisway,
variability has not to be considered in the specification of the security checks and
refactorings, allowing the application to both single product software systems and
SPLs. For verifying security onmodel product lines, we demonstrated the suitability
of the interpretation ofOCLconstraints to verifyUMLsec security requirements. For
the application of security-preserving refactorings and security violation patterns,
we introduced multi-variant model transformations.

17.2 Assumptions and Limitations

Throughout the thesis, we outlined assumptions on the application of the single parts
of our approach and discussed its limitations. In this section, based on the discussed
assumptions and limitations, we discuss assumptions and limitations for the overall
GRaViTY approach.

434 17 Conclusion

17.2.1 Required Artifacts

Our main assumption is that our approach will be applied to software systems
developed using a model-driven development approach. The presence of design-
time models as a prerequisite for using our approach might lead to limitations of its
applicability. In this regard, we consider two factors that might limit the practical
applicability of our approach.

First, the required model-driven development approach might not be applicable
in the context of agile project development. However, considering the legal require-
ments inmany security-critical domains, standards such as the ISO/EC62304 for the
development of medical device software [7], the development, and maintenance of
the artifacts required by our approach is a prerequisite in most cases. Such standards
do not require specific development processes as long as the required artifacts are
provided. The same applies to our approach. For example, Rumpe demonstrates how
software systems can be developed agile using model-based development [423].

Second, our approach may not be able to reimburse the costs incurred to cre-
ate the required models. However, as our approach’s main scope is large software
systems developed for strongly regulated areas, these artifacts are likely required
by standards, with which the software systems have to comply. In this case, there
are no additional costs for using our approach. For all other software systems, the
application of our approach might require additional effort to create those artifacts.
From this perspective, the only reason standing against our approach might be that,
up to some size, manually keeping the security context knowledge up to date and
manually selecting measures in case of changes might be more cost-efficient than
using our approach for (semi-)automating these activities. In comparison with this,
the automated reverse-engineering of UML models can be a cost-efficient solution
to apply our approach. Either way, if developers want to apply our approach, they
have to implement model-driven development practices.

17.2.2 Tracing and Synchronization

The application of the TGGs for realizing the tracing and synchronization gives
rise to multiple limitations. These limitations mainly consider the detailedness of
the used models and transformations as well as concurrent change handling. As a
consequence, these have an effect on the application of the approach andmight limit
its application or extension.

17.2 Assumptions and Limitations 435

First, the specification of the transformation is laborsome and sometimes needs
preprocessing for being realizable. This high effort might limit the approach’s appli-
cability to other programming languages than Java.

Second, as well the TGGs of our approach as the semi-automated mappings
require detailed models of a software system. The synchronization between models
and code, needs a UML class diagram on the same level of abstraction as the
implementation. The semi-automated mappings need less detailed models but the
consideredDFDsmight still bemore detailed than practitioners would specify them,
e.g., as a part of STRIDE [110].

Third, conflicting concurrent changes is not only a problem concerned with the
TGGs used by us, but generally this problem is relevant for the synchronization of
multiple artifacts that may change independently of each other. In the context of
megamodels, this problem has been discussed in detail for transformations compa-
rable to the ones considered by us [349].

17.2.3 Security Requirements and Checks

In this thesis, we only considered a limited set of security requirements. We focus
on data security in terms of security levels and processing contracts. However, for
capturing security at its full extend, additional security requirements have to be
considered. Such additional security requirements could not only require additional
ways to specify them on all relevant artifacts but could also open new challenges in
tracing and synchronization.

As a consequence of the selected security requirements, currently, we only verify
the structural properties and the presence of security measures. Consequently, we do
not verify the completeness of enforcing design-time security requirements. While
this still allows to detect a wide variety of security compliance issues, additional
security checks might be required to reach a state of completeness that would allow
an automated security certification.

For specifying security checks, besides hand-written code, we inspected the suit-
ability of graph transformation rules andOCL constraints. However, security checks
are often based on path expressions or detailed analysis on statement level currently
not supported within GRaViTY. Although specifying security checks based on such
concepts can simply be supported by using additional tools, e.g., the Graph Repos-
itory Query Language (GReQL) of JGraLab for path expressions [424, 425], more
foundational research is necessary for applying path expressions to software product
lines.

436 17 Conclusion

17.2.4 Security Preservation and Re-Certification

Although one of the motivations of this thesis was to allow the preservation of secu-
rity in case of changes as an step towards supporting incremental re-certifications,
the support for this is still limited. The proposed security-preserving refactorings
allow including certification preserving constraints but possibly limit the applica-
bility of the refactorings to non security critical cases. As a consequence, when
a security-critical part of a software system has to be refactored, it is likely that
changes are necessary that require an re-certification. In such cases, incremental
security verification approaches such as the proposed security violation patterns
can help in efficiently detecting security violations caused by changes but are not
in a state in which guarantees can be given. For this purpose, additional security
requirements have to be covered.

Nevertheless, the proposed approaches are still a significant step towards auto-
mated re-certifications in case of minor changes. Our approach gives a framework
that allows the specification and execution of incremental security compliance
checks between an accepted security design and its implementation. For automated
re-certifications, a sufficient set of security requirements and corresponding security
compliance checks have to be defined.

17.2.5 Software Product Lines

Within our approach, we assumed a one to one representation of variability on all
artifacts of a variant-rich software system. However, in practice, there might be the
case that variability is expressed with different abstraction among the different arti-
facts, e.g., more detailed variability specifications on the implementation level than
in the design models. This might lead to side effects not captured by our approach
and limiting the applicability. However, only different variability specifications on
corresponding elements can cause problems, e.g., more detailed variability specifi-
cations at the level of method bodies can be handled by our approach.

In this thesis, we assumed that it is essential to always verify the security of all
products of an SPL. Although there is evidence that security fixes applied to single
products can be exploited for attacking other products [297, 298], the underlying
assumption is that there are products on the market that have not been checked.
In this regard, there might also be product lines that have theoretically very many
variants but only a few are released. In such cases, it might be more cost effective
to check only released variants for security.

17.3 Outlook 437

17.3 Outlook

Although the proposed GRaViTY approach is a significant step towards effective
continuous model-based security engineering, multiple research directions have
potential for further improvements and research. In this section, we discuss potential
future improvements considering three principles for improvement:

Extension: Possible extensions to the approach for improving continuous model-
based security engineering, e.g., by widening the scope of the GRaViTY
approach or providing new levels of automatization.

Combination: Possible combinations with other approaches for providing addi-
tional advantages to continuous model-based security engineering.

Actualization: New approaches or optimizations that overcome parts of the pro-
posed approach for improving the overall GRaViTY approach.

Based on these three principles, in what follows, we discuss possible future research
directions.

17.3.1 AutomatedTrace Creation

As discussed in the limitations of the approach, the creation of trace links is currently
entirely manual among UML models and based on strict rules between UML and
the implementation. Furthermore, these detailed rules require very detailed design-
times models. An automated tracing at model-refinement and between models and
code that is not based on strict rules would be a substantial actualization of the
approach. Monitoring of artifacts touched by developers could be a suitable source
for automatically deriving trace links. This way, tracing would be more flexible and
could cover additional software development artifacts, e.g., textual requirements,
without special treatment.

Also, the used MoDisco parser currently prevents GRaViTY from practically
synchronizing UML models and their implementation in case of implementation-
level changes. To overcome this issue, other parsers that support incremental parsing
should be investigated and our implementation should be actualized accordingly.
Similarly, one can actualize the implementation of our semi-automated mappings
to support UML activity diagrams.

438 17 Conclusion

17.3.2 Continuous Integration

Automated security compliance checks in case of changes are also one main char-
acteristic of popular security approaches such as SecDevOps [127]. If our approach
is deployed within a continuous integration framework, it can be integrated into
SecDevOps, complementary to other vulnerability detection techniques such as
penetration testing or static code analysis. In this case, the combination with our
approach adds a new level of automatization beyond local security checks on single
artifacts. Our approach will be executed together with other automated security tests
that focus onfine-grained local security requirementswhile our approach contributes
the tracing and compliance checks between security requirements.

17.3.3 Multi-Language Software Systems

The key idea of the program model, presented in Chapter 5 of this thesis, is to be
suitable for giving a high-level representation of arbitrary OO program. In this the-
sis, we only demonstrated the suitability for Java programs. The evaluation of the
suitability for representing program written in other languages will be investigated
in future works. However, assuming this suitability, we are not limited to program
models for software systems written in a single programming language but can
represent the whole implementation of multi-language software systems in a single
program model. In such a program model, all dependencies between the different
parts of the software systemwould be explicit which would allowmore comprehen-
sive security analyses and would reduce the reliance on assumptions at the borders
of the single parts. This future research is likely to require an actualization of our
program model’s type graph and an extension to create program models for other
programming languages. Here, one should investigate the combination with other
state of the art parsers, such as Eclipse CDT for C/C++ code1.

17.3.4 Security Requirements and Checks

The most potential for future research is in the area of covered security require-
ments and security checks. In this regard, the approach could be extended to cover
additional security requirements. In this thesis, we mainly focused on data secu-
rity in terms of security levels, data flows, and basic data processing contracts.

1 Eclipse CDT (C/C++ Development Tooling): https://www.eclipse.org/cdt/

https://www.eclipse.org/cdt/

17.3 Outlook 439

Additional security requirements can be research regarding data security but also
regarding other security requirements. Regarding data security, concepts such as
authorization could be considered for improving the approach. Additional security
requirements could comprise availability or authentication. Future works can cover
both the extension in terms of new security profiles and checks or the combination
with existing additional security profiles.

17.3.5 Customization

The ultimate goal is to support security requirements that cover all aspects of secu-
rity. As security is subject to continuous change [426], suitable interfaces for adjust-
ing the supported security requirements are needed. Furthermore, relevant security
requirements and according security checks for verifying the security compliance
of a software system are likely to be system specific. In this regard, CARiSMA
provides an interface for registering new security profiles and model-level checks
and Hulk provides an interface for registering programmodel level analyses that are
inherited by GRaViTY. However, for entirely supporting customization, additional
logic for orchestration of the checks is required. In the best case, all extensions are
centrallymanaged byGRaViTY and can be specified using a simple domain specific
language (DSL).

17.3.6 Expressiveness of Languages

In this thesis, we used multiple languages to express security checks. For expressing
incremental security violation patterns, we used the notation of graph transforma-
tion rules. For applying UMLsec checks to software product lines, we expressed
these as OCL constraints. However, we identified limitations in these languages
in expressing all kinds of security checks. For example, currently, no path expres-
sions are supported. Furthermore, comparable to the customization of the security
checks, a single DSL for specifying all kinds of security checks would be desirable.
Accordingly, in future works, one should explore which concepts are required for
expressing security checks to its full extend and will provide a DSL for specifying
these. The execution of the specified security checks can be realized by extending
used tools or combining GRaViTY with additional tools for execution.

440 17 Conclusion

17.3.7 Distributed System Analysis

For tailoring taint analysis to the security specifics of a software system, we lever-
aged security information captured in design-time models. A case very often cov-
ered in design-time models but never in a software system’s implementation is
information about entities the software system is interacting with. From a security
perspective, this information is among the most valuable security information as it
directly specifies parts of a software system’s attack surface, namely the intended
surface of the software system. In future works, this information can be leveraged
to optimize implementation-level security analysis or to even provide analyses not
possible before. Ultimately, the leveraging of this design-time information can allow
performing holistic security analyses considering all implementations of distributed
systems.

17.3.8 Code Generation

In this thesis, we considered code generation only for generating the foundational
structure of a software system’s implementation. As the design-time models used in
our approach contain detailed security requirements, these requirements could be
leveraged for automatically generating suitable security mechanisms into the imple-
mentation. This way, we could tackle two problems. First, we can reduce the cost of
implementing these security mechanisms. Second, often security mechanisms are
implemented insecurely due to wrong usage of APIs [118]. To avoid such cases,
correct code, e.g., for opening a secure socket, could be generated that is connected
with the manual implementation afterward.

17.3.9 Software Product Lines

Regarding software product lines, the most obvious future work is the application
of all parts of GRaViTY that currently only support single products, e.g., structural
and contract compliance checks. The same applies for all future extensions already
discusses in this section. Of special interest in this regard, are the support of path
expressions on software product lines as these allow to specify an additional category
of security checks.

Entirely out of scope for this thesis are effects on security caused by the specifica-
tion of variability itself. Although we considered variability of design-time security
requirements impacting the run-time security behavior of a software system, e.g.,

17.4 Summary 441

under which run-time circumstances an encrypted communication path is required,
we did not investigate this further on the implementation or run-time level. Here, the
variable parts of a software system immediately interact with the software system’s
security. Inmost cases, unlike the explicit variability specification at themodel level,
such variability is likely to be realized in terms of variables. In future works, this can
be investigated in more detail. Furthermore, GRaViTY can be extended with static
and dynamic support for security compliance analysis targeting on such cases.

17.4 Summary

In this thesis, we discussed continuousmodel-based security engineering. For ensur-
ing the security of contentiously evolving variant-rich software systems it is essen-
tial to support the implementation with continuous automated security compliance
checks. For this purpose, suitable trace links among models and with the implemen-
tation have to be maintained. In the best case, these trace links are automatically
updated and utilized to keep the models structurally consistent with a changing
implementation. Finally, for avoiding insecure products, security compliance checks
should not only cover single variant of a software system, e.g., executed at release of
the product, but always consider the whole software product line. In this regard, the
approaches presented in this thesis, substantially contribute to realizing continuous
model-based security engineering.

Bibliography

[1] R. Eikenberg, “Samsung Galaxy S3 als Merkelphone zugelassen,” heise online, 2013.
[Online]. Available: https://heise.de/-1953029

[2] M. Christakis and C. Bird, “What Developers Want and Need from Program Analysis:
AnEmpirical Study,” inProceedings of the 31st InternationalConference of Automated
Software Engineering (ASE). IEEE Computer Society, 2016, pp. 332–343. https://doi.
org/10.1145/2970276.2970347

[3] R. France and B. Rumpe, “Model-driven Development of Complex Software: A
Research Roadmap,” in Proceedings of the Conference on the Future of Software
Engineering (FOSE). IEEE Computer Society, 2007, pp. 37–54. https://doi.org/10.
1109/FOSE.2007.14

[4] M. Brambilla, J. Cabot, and M. Wimmer, “Model-driven Software Engineering in
Practice,” Synthesis Lectures on Software Engineering, vol. 1, no. 1, pp. 1–182, 2012.

[5] S. Cook, C. Bock, P. Rivett, T. Rutt, E. Seidewitz, B. Selic, and D. Tolbert, “UML
Superstructure Specification,” Object Management Group (OMG), OMG Standard
formal/2017-12-05, 2017, version 2.5.1. [Online]. Available: http://www.omg.org/
spec/UML/

[6] J. Jürjens, Secure Systems Development with UML. Springer, 2005.
[7] International Organization for Standardization (ISO), “Medical Device Software —

Software Life Cycle Processes,” International Standard IEC 62304:2006, 2007.
[8] B. Hailpern and P. Tarr, “Model-driven Development: The Good, the Bad, and the

Ugly,” IBM Systems Journal, vol. 45, no. 3, 2006.
[9] T. Gorschek, E. Tempero, and L. Angelis, “On the Use of Software Design Models in

Software Development Practice: An Empirical Investigation,” Journal of Systems and
Software (JSS), vol. 95, pp. 176–193, 2014. https://doi.org/10.1016/j.jss.2014.03.082

[10] M. H. Hamilton, “The Apollo On-Board Flight Software,” 2019.
[11] V. Rajlich and P. Gosavi, “Incremental Change in Object-Oriented Programming,”

IEEE Software, vol. 21, no. 4, pp. 62–69, 2004.
[12] M.M.Lehman, “Programs,LifeCycles, andLawsofSoftwareEvolution,”Proceedings

of the IEEE, vol. 68, no. 9, pp. 1060–1076, 1980. https://doi.org/10.1109/PROC.1980.
11805

[13] D. L. Parnas, “Software Aging,” in Proceedings of the 16th International Conference
on Software Engineering (ICSE). IEEE Computer Society, 1994, pp. 279–287.

©TheAuthor(s), under exclusive license toSpringer FachmedienWiesbadenGmbH,
part of Springer Nature 2022
S. M. Peldszus, Security Compliance in Model-driven Development of Software
Systems in Presence of Long-Term Evolution and Variants,
https://doi.org/10.1007/978-3-658-37665-9

443

https://heise.de/-1953029
https://doi.org/10.1145/2970276.2970347
https://doi.org/10.1145/2970276.2970347
https://doi.org/10.1109/FOSE.2007.14
https://doi.org/10.1109/FOSE.2007.14
http://www.omg.org/spec/UML/
http://www.omg.org/spec/UML/
https://doi.org/10.1016/j.jss.2014.03.082
https://doi.org/10.1109/PROC.1980.11805
https://doi.org/10.1109/PROC.1980.11805
https://doi.org/10.1007/978-3-658-37665-9

444 Bibliography

[14] “HLASMLanguage Reference – Assembler Language,” IBMCorporation, Tech. Rep.
SC26-4940-06, 1990.

[15] TIOBE Software BV, “TIOBE Programming Community Index,” 2021. [Online].
Available: https://www.tiobe.com/tiobe-index/

[16] E. Gamma, R. Helm, R. Johnson, and J. Vlissides, Design Patterns: Elements of
Reusable Object-oriented Software. Pearson Education, 1994.

[17] W.Opdyke, “RefactoringObject-OrientedFrameworks,” Ph.D. dissertation,University
of Illinois, 1992.

[18] M.Fowler,Refactoring: Improving theDesignofExistingCode, ser.ObjectTechnology
Series, J. C. Shanklin, Ed. Addison-Wesley, 1999.

[19] L.Northrop, “Software Product Lines: Reuse ThatMakesBusiness Sense,” inProceed-
ings of the Australian Software Engineering Conference (ASWEC). IEEE Computer
Society, 2006, p. 1. https://doi.org/10.1109/ASWEC.2006.45

[20] C. Wohlin and P. Runeson, “Certification of Software Components,” Transactions on
Software Engineering (TSE), vol. 20, no. 6, pp. 494–499, 1994. https://doi.org/10.
1109/32.295896

[21] S. Peldszus, G. Kulcsár, M. Lochau, and S. Schulze, “Continuous Detection of Design
Flaws in Evolving Object-Oriented Programs using Incremental Multi-pattern Match-
ing,” in Proceedings of the 31st International Conference on Automated Software
Engineering (ASE), 2016. https://doi.org/10.1145/2970276.2970338

[22] D. Sondhi, “Testing for Implicit Inconsistencies in Documentation and Implemen-
tation,” in Proceedings of the 12th Conference on Software Testing, Validation and
Verification (ICST). IEEE Computer Society, 2019, pp. 483–485. https://doi.org/10.
1109/ICST.2019.00059

[23] S. Peldszus, K. Tuma, D. Strüber, J. Jürjens, and R. Scandariato, “Secure Data-Flow
Compliance Checks between Models and Code based on Automated Mappings,” in
Proceedings of the 22nd International Conference on Model-driven Engineering Lan-
guages and Systems (MODELS). IEEE Computer Society, 2019, pp. 23–33. https://
doi.org/10.1109/MODELS.2019.00-18

[24] T. Mens, S. Demeyer, and D. Janssens, “Formalising Behaviour Preserving Program
Transformations,” in Proceedings of the 1st International Conference on Graph Trans-
formation (ICGT), ser. Lecture Notes in Computer Science (LNCS), A. Corradini,
H. Ehrig, H. J. Kreowski, and G. Rozenberg, Eds., vol. 2505. Springer, 2002, pp.
286–301. https://doi.org/10.1007/3-540-45832-8_22

[25] J. Pleumann, O. Yadan, and E. Wetterberg, “Antenna Preprocessor.” [Online]. Avail-
able: http://antenna.sourceforge.net/

[26] D. Strüber, K. Born, F. Hermann, T. Kehrer, C. Krause, M. Tichy et al., “Henshin,”
2011. [Online]. Available: https://www.eclipse.org/henshin/

[27] eMoflon Developer Team, “eMoflon – A Tool for Building Tools,” 2019. [Online].
Available: http://www.emoflon.org/

[28] J. C. S. Santos, K. Tarrit, and M. Mirakhorli, “A Catalog of Security Architecture
Weaknesses,” inProceedings of the International Conference on Software Architecture
Workshops (ICSAW). IEEE Computer Society, 2017, pp. 220–223. https://doi.org/10.
1109/ICSAW.2017.25

https://www.tiobe.com/tiobe-index/
https://doi.org/10.1109/ASWEC.2006.45
https://doi.org/10.1109/32.295896
https://doi.org/10.1109/32.295896
https://doi.org/10.1145/2970276.2970338
https://doi.org/10.1109/ICST.2019.00059
https://doi.org/10.1109/ICST.2019.00059
https://doi.org/10.1109/MODELS.2019.00-18
https://doi.org/10.1109/MODELS.2019.00-18
https://doi.org/10.1007/3-540-45832-8_22
http://antenna.sourceforge.net/
https://www.eclipse.org/henshin/
http://www.emoflon.org/
https://doi.org/10.1109/ICSAW.2017.25
https://doi.org/10.1109/ICSAW.2017.25

Bibliography 445

[29] W. J. Brown, R. C. Malveau, H. W. McCormick, III, and T. J. Mowbray, AntiPatterns:
Refactoring Software, Architectures, and Projects in Crisis. John Wiley & Sons, Inc.,
1998.

[30] C. Hammer and G. Snelting, “Flow-sensitive, Context-sensitive, and Object-sensitive
Information FlowControl Based on ProgramDependenceGraphs,” International Jour-
nal of Information Security, vol. 8, no. 6, pp. 399–422, 2009. https://doi.org/10.1007/
s10207-009-0086-1

[31] K. Mauyama and T. Omori, “A Security-Aware Refactoring Tool for Java Programs,”
inProceedings of the 4th Workshop on Refactoring Tools (WRT). Association for Com-
putingMachinery (ACM), 2011, pp. 22–28. https://doi.org/10.1145/1984732.1984737

[32] M. Kessentini, W. Kessentini, H. Sahraoui, M. Boukadoum, and A. Ouni, “Design
Defects Detection and Correction by Example,” in Proceedings of the 19th Interna-
tional Conference on ProgramComprehension (ICPC). IEEEComputer Society, 2011,
pp. 81–90. https://doi.org/10.1109/ICPC.2011.22

[33] S. Arzt, S. Rasthofer, C. Fritz, E. Bodden, A. Bartel, J. Klein, Y. Le Traon, D. Octeau,
and P. McDaniel, “FlowDroid: Precise Context, Flow, Field, Object-sensitive and
Lifecycle-aware Taint Analysis for Android Apps,” in Proceedings of the 35th Con-
ference on Programming Language Design and Implementation, ser. ACM SIGPLAN
Notices, vol. 49, no. 6. Association for Computing Machinery (ACM), 2014, pp. 259–
269. https://doi.org/10.1145/2666356.2594299

[34] S. Peldszus, “Graph-based Anti-Pattern Detection for Java Programs,” Master’s thesis,
University of Darmstadt, 2015.

[35] S. Peldszus and J. Jürjens, “Werkzeuggestützte Sicherheitszertifizierung –Anwendung
auf den Industrial Data Space,” in Proceedings of the Software Quality Days. Software
Quality Lab GmbH, 2017, pp. 10–14.

[36] S. Peldszus, J.Cirullies, and J. Jürjens, “Sicherheitszertifizierung für dieDigitaleTrans-
formation – Anwendung auf den Industrial Data Space,” in Software-QS-Tag, 2017.

[37] T. Mens and P. Van Gorp, “A Taxonomy of Model Transformation,” Electronic Notes
in Theoretical Computer Science (ENTCS), vol. 152, pp. 125–142, 2006. https://doi.
org/10.1016/j.entcs.2005.10.021

[38] S. Oster, F. Markert, and P. Ritter, “Automated Incremental Pairwise Testing of Soft-
ware Product Lines,” in Proceedings of the 14th International Conference on Software
Product Lines (SPLC), ser. Lecture Notes in Computer Science (LNCS), J. Bosch and
J. Lee, Eds., vol. 6287. Springer, 2010, pp. 196–210. https://doi.org/10.1007/978-3-
642-15579-6_14

[39] A.R.Hevner, S. T.March, J. Park, andS.Ram, “DesignScience in InformationSystems
Research,”MIS Quaterly, vol. 28, no. 1, pp. 75–105, 2004.

[40] K. Peffers, T. Tuunanen, C. E. Gengler, M. Rossi, W. Hui, V. Virtanen, and J. Bragge,
“The Design Science Research Process: A Model for Producing and Presenting Infor-
mation Systems Research,” in Design Science Research in Information Systems and
Technology, 2006, pp. 83–106.

[41] G. D. Crnkovic, “Constructive Research and Info-computational Knowledge Genera-
tion,” in Proceedings of the International Conference on Model-based Reasoning in
Science and Technology (MBR), ser. Studies in Computational Intelligence, L. Mag-
nani, W. Carnielli, and C. Pizzi, Eds., vol. 314. Springer, 2010, pp. 359–380. https://
doi.org/10.1007/978-3-642-15223-8_20

https://doi.org/10.1007/s10207-009-0086-1
https://doi.org/10.1007/s10207-009-0086-1
https://doi.org/10.1145/1984732.1984737
https://doi.org/10.1109/ICPC.2011.22
https://doi.org/10.1145/2666356.2594299
https://doi.org/10.1016/j.entcs.2005.10.021
https://doi.org/10.1016/j.entcs.2005.10.021
https://doi.org/10.1007/978-3-642-15579-6_14
https://doi.org/10.1007/978-3-642-15579-6_14
https://doi.org/10.1007/978-3-642-15223-8_20
https://doi.org/10.1007/978-3-642-15223-8_20

446 Bibliography

[42] S. Rasthofer, S. Arzt, and E. Bodden, “A Machine-learning Approach for Classifying
and Categorizing Android Sources and Sinks,” in Proceedings of the Network and
Distributed System Security Symposium (NDSS), 2014. https://doi.org/10.14722/ndss.
2014.23039

[43] X. Wang, X. Qin, M. B. Hosseini, R. Slavin, T. D. Breaux, and J. Niu, “GUILeak:
Tracing Privacy Policy Claims on User Input Data for Android Applications,” in Pro-
ceedings of the 40th International Conference on Software Engineering (ICSE). Asso-
ciation for Computing Machinery (ACM), 2018, pp. 37–47. https://doi.org/10.1145/
3180155.3180196

[44] R. Eikenberg, “Warum eine komplette Arztpraxis offen im Netz stand,” c’t, vol. 2019,
no. 25, pp. 16–17, 2019.

[45] R. Eikenberg, “Nachholbedarf bei der IT-Sicherheit deutscher Arztpraxen,” c’t, vol.
2019, no. 26, pp. 38–39, 2019.

[46] F. Aminpour, F. Sadoughi, and M. Ahamdi, “Utilization of Open Source Electronic
Health Record Around the World: A Systematic Review,” Journal of Research in
Medical Sciences, vol. 19, no. 1, pp. 57–64, 2014. [Online]. Available: http://www.
ncbi.nlm.nih.gov/pmc/articles/pmc3963324/

[47] A. Meneely, B. Smith, and L. Williams, “iTrust Electronic Health Care System Case
Study.” [Online]. Available: https://github.com/ncsu-csc326/iTrust2

[48] International Organization for Standardization (ISO), “Medical Devices – Part 1:
Application of Usability Engineering to Medical Devices,” International Standard IEC
62366-1:2015, 2007.

[49] A. K.Massey, P. N. Otto, L. J. Hayward, andA. I. Antón, “Evaluating Existing Security
and Privacy Requirements for Legal Compliance,” Requirements Engineering Journal
(RE), vol. 15, pp. 119–137, 2010, Special Issue—Security Requirements Engineering.
https://doi.org/10.1007/s00766-009-0089-5

[50] S. Heckman, K. T. Stolee, and C. Parnin, “10+Years of Teaching Software Engineering
with iTrust: the Good, the Bad, and the Ugly,” in Proceedings of the 40th International
Conference on Software Engineering: Software Engineering Education and Training.
Association for ComputingMachinery (ACM), 2018, pp. 1–4. https://doi.org/10.1145/
3183377.3183393

[51] J. Bürger, D. Strüber, S. Gärtner, T. Ruhroth, J. Jürjens, and K. Schneider, “A Frame-
work for Semi-automated Co-evolution of Security Knowledge and System Models,”
Journal of Systems and Software (JSS), vol. 139, pp. 142–160, 2018. https://doi.org/
10.1016/j.jss.2018.02.003

[52] S. S. Heckman and K. Presler-Marshall, “Requirements of the iTrust Electronic
Health Care System.” [Online]. Available: https://github.com/ncsu-csc326/iTrust2/
wiki/requirements

[53] European Parliament andCouncil of the EuropeanUninon, “Regulation (EU) 2016/679
– General Data Protection Regulation (GDPR),” in Official Journal of the European
Union, 2016.

[54] J. Bürger, “Recovering Security in Model-Based Software Engineering by Context-
Driven Co-Evolution,” Ph.D. dissertation, University of Koblenz-Landau, 2019.

[55] J. Bürger, T.Kehrer, and J. Jürjens, “OntologyEvolution in theContext ofModel-Based
Secure Software Engineering,” in Proceedings of the 14th International Conference
on Research Challenges in Information Science (RCIS), ser. Lecture Notes in Busi-

https://doi.org/10.14722/ndss.2014.23039
https://doi.org/10.14722/ndss.2014.23039
https://doi.org/10.1145/3180155.3180196
https://doi.org/10.1145/3180155.3180196
http://www.ncbi.nlm.nih.gov/pmc/articles/pmc3963324/
http://www.ncbi.nlm.nih.gov/pmc/articles/pmc3963324/
https://github.com/ncsu-csc326/iTrust2
https://doi.org/10.1007/s00766-009-0089-5
https://doi.org/10.1145/3183377.3183393
https://doi.org/10.1145/3183377.3183393
https://doi.org/10.1016/j.jss.2018.02.003
https://doi.org/10.1016/j.jss.2018.02.003
https://github.com/ncsu-csc326/iTrust2/wiki/requirements
https://github.com/ncsu-csc326/iTrust2/wiki/requirements

Bibliography 447

ness Information Processing (LNBIP), F. Dalpiaz, J. Zdravkovic, and P. Loucopou-
los, Eds., vol. 385. Springer, 2020, pp. 437–454. https://doi.org/10.1007/978-3-030-
50316-1_26

[56] C. W. Krueger, “Easing the Transition to Software Mass Customization,” in Proceed-
ings of the Workshop on Software Product-family Engineering (PFE), ser. Lecture
Notes in Computer Science (LNCS), F. van der Linden, Ed., vol. 2290. Springer, 2002,
pp. 282–293. https://doi.org/10.1007/3-540-47833-7_25

[57] G. Booch, “Object-oriented Development,” Transactions on Software Engineering
(TSE), no. 2, pp. 211–221, 1986.

[58] A. C. Kay, “The Early History of Smalltalk,” inHistory of Programming Languages—
ii. Association for Computing Machinery (ACM), 1996, pp. 511–598. https://doi.org/
10.1145/234286.1057828

[59] G. McGraw, Software Security: Building Security In, 4th ed., ser. Addison-Wesley
Software Security Series. Addision-Wesley, 2008.

[60] E. Bertino, “DataHiding and Security inObject-orientedDatabases,” inProceedings of
the 8th International Conference on Data Engineering (icde). IEEEComputer Society,
1992. https://doi.org/10.1109/ICDE.1992.213176

[61] J. Gosling, B. Joy, G. Steele, G. Bracha, and A. Buckley, The Java Language Specifi-
cation – Java SE 8 Edition. Addison-Wesley, 2015.

[62] F. Tip, R. M. Fuhrer, A. Kieżun, M. D. Ernst, I. Balaban, and B. D. Sutter, “Refac-
toring Using Type Constraints,” Transactions on Programming Languages and Sys-
tems (TOPLAS), vol. 33, no. 3, pp. 9:1–9:47, 2011. https://doi.org/10.1145/1961204.
1961205

[63] M. Schäfer, M. Verbaere, T. Ekman, and O. de Moor, “Stepping Stones Over the
Refactoring Rubicon,” in Proceedings of the 23rd European Conference on Object-
oriented Programming (ECOOP), S. Drossopoulou, Ed. Springer, 2009, pp. 369–393.
https://doi.org/10.1007/978-3-642-03013-0_17

[64] D. B. Roberts, “Practical Analysis for Refactoring,” Ph.D. dissertation, University of
Illinois, 1999.

[65] A. Garrido and J. Meseguer, “Formal Specification and Verification of Java Refactor-
ings,” in Proceedings of the 6th International Workshop on Source Code Analysis and
Manipulation (SCAM). IEEE Computer Society, 2006, pp. 165–174. https://doi.org/
10.1109/SCAM.2006.16

[66] M. Schäfer, T. Ekman, and O. de Moor, “Sound and Extensible Renaming for Java,” in
Proceedings of the 23rd AnnualConferenceonObject-orientedProgramming, Systems,
Languages, and Applications (OOPSLA), ser. ACMSIGPLANNotices, vol. 43, no. 10.
Association for Computing Machinery (ACM), 2008, pp. 277–294. https://doi.org/10.
1145/1449955.1449787

[67] M. Schäfer and O. de Moor, “Specifying and Implementing Refactorings,” in Pro-
ceedings of the International Conference on Object Oriented Programming Systems
Languages and Applications (OOPSLA), ser. ACMSIGPLANNotices, vol. 45, no. 10.
Association for Computing Machinery (ACM), 2010, pp. 286–301. https://doi.org/10.
1145/1869459.1869485

[68] G. Soares, R. Gheyi, D. Serey, and T. Massoni, “Making Program Refactoring Safer,”
IEEE Software, vol. 27, no. 4, pp. 52–57, 2010. https://doi.org/10.1109/MS.2010.63

https://doi.org/10.1007/978-3-030-50316-1_26
https://doi.org/10.1007/978-3-030-50316-1_26
https://doi.org/10.1007/3-540-47833-7_25
https://doi.org/10.1145/234286.1057828
https://doi.org/10.1145/234286.1057828
https://doi.org/10.1109/ICDE.1992.213176
https://doi.org/10.1145/1961204.1961205
https://doi.org/10.1145/1961204.1961205
https://doi.org/10.1007/978-3-642-03013-0_17
https://doi.org/10.1109/SCAM.2006.16
https://doi.org/10.1109/SCAM.2006.16
https://doi.org/10.1145/1449955.1449787
https://doi.org/10.1145/1449955.1449787
https://doi.org/10.1145/1869459.1869485
https://doi.org/10.1145/1869459.1869485
https://doi.org/10.1109/MS.2010.63

448 Bibliography

[69] F. Steimann and A. Thies, “From Public to Private to Absent: Refactoring Java Pro-
grams under Constrained Accessibility,” in Proceedings of the 23rd European Con-
ference on Object-oriented Programming (ECOOP), ser. Lecture Notes in Computer
Science (LNCS), D. S., Ed., vol. 5653. Springer, 2009, pp. 419–443. https://doi.org/
10.1007/978-3-642-03013-0_19

[70] R. Straeten, V. Jonckers, and T. Mens, “A Formal Approach to Model Refactoring and
Model Refinement,” Software&SystemsModeling (SoSyM), vol. 6, no. 2, pp. 139–162,
2007. https://doi.org/10.1007/s10270-006-0025-9

[71] M. Vittek, “Refactoring Browser with Preprocessor,” in Proceedings of the 7th Euro-
pean Conference Onsoftware Maintenance and Reengineering (CSMR). IEEE Com-
puter Society, 2003, https://doi.org/10.1109/CSMR.2003.1192417

[72] J. A. Estefan et al., “Survey of Model-based Systems Engineering (MBSE) Method-
ologies,” Incose MBSE Focus Group, vol. 25, no. 8, pp. 1–12, 2007.

[73] J. Jürjens, “UMLsec: Extending UML for Secure Systems Development,” in Proceed-
ings of the 5th International Conference on the Unified Modeling Language (UML),
ser. Lecture Notes in Computer Science (LNCS), J.-M. Jézéquel, H. Hussmann, and
S. Cook, Eds., vol. 2460. Springer, 2002, pp. 412–425. https://doi.org/10.1007/3-540-
45800-X_32

[74] A. S. Ahmadian, S. Peldszus, Q. Ramadan, and J. Jürjens, “Model-based Privacy
and Security Analysis with CARiSMA,” in Proceedings of the 11th Joint Meeting on
Foundations of Software Engineering (FSE). Association for Computing Machinery
(ACM), 2017, pp. 989–993. https://doi.org/10.1145/3106237.3122823

[75] Y. Zheng and R. N. Taylor, “A Classification and Rationalization of Model-based
Software Development,” Software & Systems Modeling (SoSyM), vol. 12, pp. 559–
678, 2013. https://doi.org/10.1007/s10270-013-0355-3

[76] T. Stahl, M. Voelter, and K. Czarnecki,Model-driven Software Development: Technol-
ogy, Engineering, Management. John Wiley & Sons, 2006.

[77] G. Wagner, Information Management - An Introduction to Information Modeling and
Databases. web-engineering.info, 2019.

[78] K. Fakhroutdinov, “Hospital Management – UML Class Diagram Example,” UML-
Diagrams Website, last accessed April, 2020. [Online]. Available: https://www.UML-
diagrams.org/examples/hospital-domain-diagram.html

[79] I. Christantoni, C. Biffi, and D. B. A. C. Sanz, “VisiOn Pilots Report,” VisiOn EU
Project, Tech. Rep., 2017.

[80] “VisiOn Project,” 2016. [Online]. Available: http://www.visioneuproject.eu/
[81] W. W. Royce, “Managing the Development of Large Software Systems: Concepts

and Techniques,” in Proceedings of the 9th International Conference on Software
Engineering (ICSE). IEEE Computer Society, 1987, pp. 328–338.

[82] T. E. Bell and T. A. Thayer, “Software Requirements: Are They Really a Problem?”
in Proceedings of the 2nd International Conference on Software Engineering (ICSE).
IEEE Computer Society, 1976, pp. 61–68.

[83] R. S. Pressman and B. R. Maxim, Software Engineering: A Practitioner’s Approach,
8th ed., V. Bradshaw, Ed. McGraw-Hill Education, 2015.

[84] D. Angermeier, C. Bartelt, O. Bauer, G. Beneken, K. Bergner, U. Birowicz, T. Bliß,
C. Breitenstrom, N. Cordes, D. Cruz, P. Dohrmann, J. Friedrich, M. Gnatz, U. Ham-
merschall, I. Hidvegi-Barstorfer, H. Hummel, D. Israel, T. Klingenberg, K. Klugseder,

https://doi.org/10.1007/978-3-642-03013-0_19
https://doi.org/10.1007/978-3-642-03013-0_19
https://doi.org/10.1007/s10270-006-0025-9
https://doi.org/10.1109/CSMR.2003.1192417
https://doi.org/10.1007/3-540-45800-X_32
https://doi.org/10.1007/3-540-45800-X_32
https://doi.org/10.1145/3106237.3122823
https://doi.org/10.1007/s10270-013-0355-3
https://www.UML-diagrams.org/examples/hospital-domain-diagram.html
https://www.UML-diagrams.org/examples/hospital-domain-diagram.html
http://www.visioneuproject.eu/

Bibliography 449

I. Küffer, M. Kuhrmann, M. Kranz, W. Kranz, H.-J. Meinhardt, M. Meisinger, S. Mit-
trach, H.-J. Neußer, D. Niebuhr, K. Plögert, D. Rauh, A. Rausch, T. Rittel, W. Rösch,
E. Saas, J. Schramm,M. Sihling, T. Ternité, S. Vogel, B. Weber, andM.Wittmann, “V-
Modell XT – Das deutsche Referenzmodell für Systementwicklungsprojekte,” Verein
zur Weiterentwicklung des V-Modell XT e.V. c/o 4Soft GmbH, Tech. Rep. 2.3, 2019.

[85] M. McHugh, F. McCaffery, and V. Casey, “Barriers to Adopting Agile Practices When
Developing Medical Device Software,” in Proceedings of the 12th International Con-
ference on Software Process Improvement and Capability Determination (SPICE), ser.
Communications in Computer and Information Science (CCIS), A.Mas, A.Mesquida,
T. Rout, R. V. O’Connor, and A. Dorling, Eds., vol. 290. Springer, 2012, pp. 141–147.
https://doi.org/10.1007/978-3-642-30439-2_13

[86] K. Beck, M. Beedle, A. van Bennekum, A. Cockburn, W. Cunningham, M. Fowler,
J. Grenning, J. Highsmith, A. Hunt, R. Jeffries, J. Kern, B. Marick, R. C. Martin,
S. Mellor, K. Schwaber, J. Sutherland, and D. Thomas, “Manifesto for Agile Software
Development,” 2001. [Online]. Available: https://agilemanifesto.org/

[87] digital.ai, “14th Annual State of Agile Report,” digital.ai, Tech. Rep., 2020.
[88] K. Schwaber andM.Beedle,Agile SoftwareDevelopmentwith Scrum. PearsonPrentice

Hall, 2002.
[89] S. Vaupel, D. Strüber, F. Rieger, and G. Taentzer, “Agile Bottom-Up Development

of Domain-Specific IDEs for Model-Driven Development,” in Proceedings of the
Workshop on Flexible Model Driven Engineering (FlexMDE), ser. CEUR Workshop
Proceedings, D. D. Ruscio, J. de Lara, and A. Pierantonio, Eds., vol. 1470. CEUR-
WS, 2015, pp. 12–21. [Online]. Available: http://ceur-ws.org/Vol-1470/FlexMDE15_
paper_4.pdf

[90] P. Lous, M. Kuhrmann, and P. Tell, “Is Scrum Fit for Global Software Engineering?”
in Proceedings of the 12th International Conference on Global Software Engineering
(ICGSE). IEEE Computer Society, 2017, pp. 1–10. https://doi.org/10.1109/ICGSE.
2017.13

[91] J. Knodel andD. Popescu, “AComparison of StaticArchitectureComplianceChecking
Approaches,” in Proceedings of the 6th Working Conference on Software Architecture
(WICSA). IEEE Computer Society, 2007, pp. 12–12. https://doi.org/10.1109/WICSA.
2007.1

[92] D. Ganesan, T. Keuler, and Y. Nishimura, “Architecture Compliance Checking at Run-
time,” Information and Software Technology (IST), vol. 51, no. 11, pp. 1586–1600,
2009. https://doi.org/10.1016/j.infsof.2009.06.007

[93] L. De Silva and D. Balasubramaniam, “Controlling Software Architecture Erosion: A
Survey,” Journal of Systems and Software (JSS), vol. 85, no. 1, pp. 132–151, 2012.
https://doi.org/10.1016/j.jss.2011.07.036

[94] Software Reviews Working Group and IEEE-SA Standards Board, “Standard for
Software Reviews and Audits,” Institute of Electrical and Electronics Engineers
(IEEE), International Standard IEEE 1028, 2008. https://doi.org/10.1109/IEEESTD.
2008.4601584

[95] S. McIntosh, Y. Kamei, B. Adams, and A. E. Hassan, “The Impact of Code Review
Coverage and Code Review Participation on Software Quality: A Case Study of the
Qt, Vtk, and Itk Projects,” in Proceedings of the 11th Working Conference on Mining

https://doi.org/10.1007/978-3-642-30439-2_13
https://agilemanifesto.org/
http://ceur-ws.org/Vol-1470/FlexMDE15_paper_4.pdf
http://ceur-ws.org/Vol-1470/FlexMDE15_paper_4.pdf
https://doi.org/10.1109/ICGSE.2017.13
https://doi.org/10.1109/ICGSE.2017.13
https://doi.org/10.1109/WICSA.2007.1
https://doi.org/10.1109/WICSA.2007.1
https://doi.org/10.1016/j.infsof.2009.06.007
https://doi.org/10.1016/j.jss.2011.07.036
https://doi.org/10.1109/IEEESTD.2008.4601584
https://doi.org/10.1109/IEEESTD.2008.4601584

450 Bibliography

Software Repositories (MSR). Association for Computing Machinery (ACM), 2014,
pp. 192–201. https://doi.org/10.1145/2597073.2597076

[96] A. Bacchelli and C. Bird, “Expectations, Outcomes, and Challenges of Modern Code
Review,” inProceedings of the 35th International Conference on Software Engineering
(ICSE). IEEE Computer Society, 2013, pp. 712–721. https://doi.org/10.1109/ICSE.
2013.6606617

[97] N. Carroll and I. Richardson, “Software-as-a-Medical Device: Demystifying Con-
nected Health Regulations,” Systems and Information Technology, vol. 18, no. 2, pp.
186–215, 2016. https://doi.org/10.1108/JSIT-07-2015-0061

[98] International Organization for Standardization (ISO), “Systems and Software Engi-
neering – Systems and Software Quality Requirements and Evaluation (SQuaRE) –
Guide to SQuaRE,” International Standard ISO/IEC 25000:2014, 2005.

[99] D. Bertram, A. Voida, S. Greenberg, and R. Walker, “Communication, Collaboration,
and Bugs: The Social Nature of Issue Tracking in Small, Collocated Teams,” in Pro-
ceedings of the Conference on Computer Supported CooperativeWork. Association for
Computing Machinery (ACM), 2010, pp. 291–300. https://doi.org/10.1145/1718918.
1718972

[100] T. F. Bissyandé, D. Lo, L. Jiang, L. Réveillère, J. Klein, and Y. L. Traon, “Got Issues?
Who Cares About It? A Large Scale Investigation of Issue Trackers from GitHub,” in
Proceedings of the 24th International Engineering (ISSRE). IEEE Computer Society,
2013, pp. 188–197. https://doi.org/10.1109/ISSRE.2013.6698918

[101] Common Criteria Implementation Board (CCIB), “Common Criteria for Information
Technology Security Evaluation (CC 3.1),” International Standardization Organization
(ISO), International Standard ISO/IEC 15408, 2017.

[102] W. Jackson, “Under Attack: Common Criteria has Loads of Critics, but is it Getting a
Bum Rap,” Government Computer News, 2007.

[103] S. Türpe, “The Trouble with Security Requirements,” in Proceedings of the 25th Inter-
national Requirements Engineering Conference (RE). IEEE Computer Society, 2017,
pp. 122–133. https://doi.org/10.1109/RE.2017.13

[104] A.Bauer and J. Jürjens, “RuntimeVerification ofCryptographic Protocols,”Computers
& Security (COSE), vol. 29, no. 3, pp. 315–330, 2010. https://doi.org/10.1016/j.cose.
2009.09.003

[105] B. Best, J. Jürjens, andB.Nuseibeh, “Model-based Security Engineering ofDistributed
Information Systems using UMLsec,” in Proceedings of the 29th International Con-
ference on Software Engineering (ICSE). IEEE Computer Society, 2007, pp. 581–590.
https://doi.org/10.1109/ICSE.2007.55

[106] J. Jürjens, J. Schreck, and P. Bartmann, “Model-based Security Analysis for Mobile
Communications,” in Proceedings of the 30th International Conference on Software
Engineering (ICSE). Association for Computing Machinery (ACM), 2008, pp. 683–
692. https://doi.org/10.1145/1368088.1368186

[107] Axway Software, BizAgi Ltd., Bruce Silver Associates, IDS Scheer, International
Business Machinesand MEGA International, Model Driven Solutions, Object Man-
agement Group, Oracle, SAP AG, Software AG Inc., TIBCO, and Unisys, “Business
Process Model And Notation (BPMN),” Object Management Group (OMG), OMG
Standard formal/13-12-09, 2014, version 2.0.2. [Online]. Available: http://www.omg.
org/spec/BPMN

https://doi.org/10.1145/2597073.2597076
https://doi.org/10.1109/ICSE.2013.6606617
https://doi.org/10.1109/ICSE.2013.6606617
https://doi.org/10.1108/JSIT-07-2015-0061
https://doi.org/10.1145/1718918.1718972
https://doi.org/10.1145/1718918.1718972
https://doi.org/10.1109/ISSRE.2013.6698918
https://doi.org/10.1109/RE.2017.13
https://doi.org/10.1016/j.cose.2009.09.003
https://doi.org/10.1016/j.cose.2009.09.003
https://doi.org/10.1109/ICSE.2007.55
https://doi.org/10.1145/1368088.1368186
http://www.omg.org/spec/BPMN
http://www.omg.org/spec/BPMN

Bibliography 451

[108] T. DeMarco, “Structure Analysis and System Specification,” in Pioneers and Their
Contributions to Software Engineering, M. Broy and E. Denert, Eds. Springer, 1979,
pp. 255–288. https://doi.org/10.1007/978-3-642-48354-7_9

[109] G. Macher, E. Armengaud, E. Brenner, and C. Kreiner, “A Review of Threat Analy-
sis and Risk Assessment Methods in the Automotive Context,” in Proceedings of the
35th International Conference on Computer Safety, Reliability, and Security (Safe-
Comp), ser. Lecture Notes in Computer Science (LNCS), A. Skavhaug, J. Guiochet,
and F. Bitsch, Eds., vol. 9922. Springer, 2016, pp. 130–141. https://doi.org/10.1007/
978-3-319-45477-1_11

[110] A. Shostack, Threat Modeling: Designing for Security. John Wiley & Sons, 2014.
[111] K. Tuma, R. Scandariato, and M. Balliu, “Flaws in Flows: Unveiling Design Flaws

via Information Flow Analysis,” in Proceedings of the International Conference on
Software Architecture (ICSA). IEEE Computer Society, 2019, pp. 191–200. https://
doi.org/10.1109/ICSA.2019.00028

[112] K. Tuma, “Efficiency and Automation in Threat Analysis of Software Systems,” Ph.D.
dissertation, University of Gothenburg, 2021.

[113] B. Potter and G. McGraw, “Software Security Testing,” IEEE Security & Privacy,
vol. 2, no. 5, pp. 81–85, 2004. https://doi.org/10.1109/MSP.2004.84

[114] D. Xu,M. Tu,M. Sanford, L. Thomas, D.Woodraska, andW.Xu, “Automated Security
Test Generation with Formal Threat Models,” Transactions on Dependable and Secure
Computing (TDSC), vol. 9, no. 4, pp. 526–540, 2012. https://doi.org/10.1109/TDSC.
2012.24

[115] G. Costa, F. Martinelli, P. Mori, C. Schaefer, and T. Walter, “Runtime Monitoring for
Next Generation Java ME Platform,” Computers & Security (COSE), vol. 29, no. 1,
pp. 74–87, 2010. https://doi.org/10.1016/j.cose.2009.07.005

[116] M. Kim, S. Kannan, I. Lee, O. Sokolsky, andM.Viswanathan, “Java-MaC: ARun-time
Assurance Tool for Java Programs,”Electronic Notes in Theoretical Computer Science,
vol. 55, no. 2, pp. 218–235, 2001. https://doi.org/10.1016/S1571-0661(04)00254-3

[117] K. Rindell, J. Ruohonen, and S. Hyrynsalmi, “Surveying Secure Software Develop-
ment Practices in Finland,” in Proceedings of the 13th International Conference on
Availability, Reliability and Security (ARES), ser. International Conference Proceed-
ing Series (ICPS). Association for Computing Machinery (ACM), 2018. https://doi.
org/10.1145/3230833.3233274

[118] S. Krüger, S. Nadi, M. Reif, K. Ali, M. Mezini, E. Bodden, F. Göpfert, F. Günther,
C.Weinert,D.Demmler, andR.Kamath, “CogniCrypt: SupportingDevelopers in using
Cryptography,” in Proceedings of the 32nd International Conference of Automated
Software Engineering (ASE), 2017, pp. 931–936. https://doi.org/10.1109/ASE.2017.
8115707

[119] X. Fu, X. Lu, B. Peltsverger, S. Chen, K. Qian, and L. Tao, “A Static Analysis Frame-
work For Detecting SQL Injection Vulnerabilities,” in Proceedings of the 31st Annual
Computer Software and Applications Conference (COMPSAC). IEEE Computer Soci-
ety, 2007, pp. 87–96. https://doi.org/10.1109/COMPSAC.2007.43

[120] E. J. Schwartz, T. Avgerinos, and D. BrUMLey, “All You Ever Wanted to Know about
Dynamic Taint Analysis and Forward Symbolic Execution (But Might Have Been
Afraid to Ask),” in Proceedings of the Symposium on Security and Privacy (SP). IEEE
Computer Society, 2010, pp. 317–331. https://doi.org/10.1109/SP.2010.26

https://doi.org/10.1007/978-3-642-48354-7_9
https://doi.org/10.1007/978-3-319-45477-1_11
https://doi.org/10.1007/978-3-319-45477-1_11
https://doi.org/10.1109/ICSA.2019.00028
https://doi.org/10.1109/ICSA.2019.00028
https://doi.org/10.1109/MSP.2004.84
https://doi.org/10.1109/TDSC.2012.24
https://doi.org/10.1109/TDSC.2012.24
https://doi.org/10.1016/j.cose.2009.07.005
https://doi.org/10.1016/S1571-0661(04)00254-3
https://doi.org/10.1145/3230833.3233274
https://doi.org/10.1145/3230833.3233274
https://doi.org/10.1109/ASE.2017.8115707
https://doi.org/10.1109/ASE.2017.8115707
https://doi.org/10.1109/COMPSAC.2007.43
https://doi.org/10.1109/SP.2010.26

452 Bibliography

[121] J. Lerch, B. Hermann, E. Bodden, and M. Mezini, “FlowTwist: Efficient Context-
sensitive Inside-out Taint Analysis for Large Codebases,” in Proceedings of the 22nd

international Symposium on Foundations of Software Engineering (FSE). Associa-
tion for Computing Machinery (ACM), 2014, pp. 98–108. https://doi.org/10.1145/
2635868.2635878

[122] B. Livshits, J. Whaley, and M. S. Lam, “Reflection Analysis for Java,” in Proceedings
of the 3rd Asian Symposium on Programming Languages and Systems (APLAS), ser.
Lecture Notes in Computer Science (LNCS), K. Yi, Ed., vol. 3780. Springer, 2005, pp.
139–160. https://doi.org/10.1007/11575467_11

[123] E. Bodden, A. Sewe, J. Sinschek, H. Oueslati, and M. Mezini, “ Static Analysis in
the Presence of Reflection and Custom Class Loaders,” in Proceedings of the 33rd

International Conference on Software Engineering (ICSE). Association for Computing
Machinery (ACM), 2011, pp. 241–250. https://doi.org/10.1145/1985793.1985827

[124] J. Williams and A. Dabirsiaghi, “The Unfortunate Reality of Insecure Libraries,” Con-
trast Security, Tech. Rep., 2012.

[125] J. Long et al., “OWASP Dependency Check,” 2016. [Online]. Available: https://www.
owasp.org/index.php/OWASP_Dependency_Check

[126] “GitHub Security Features.” [Online]. Available: https://github.com/features/security
[127] V. Mohan and L. B. Othmane, “SecDevOps: Is It a Marketing Buzzword? - Mapping

Research on Security in DevOps,” in Proceedings of the 11th International Conference
on Availability, Reliability and Security (ARES), J. E. Guerrero, Ed. IEEE Computer
Society, 2016, pp. 542–547. https://doi.org/10.1109/ARES.2016.92

[128] A. Lanusse, Y. Tanguy, H. Espinoza, C. Mraidha, S. Gerard, P. Tessier, R. Schneken-
burger, H. Dubois, and F. Terrier, “Papyrus UML: An Open Source Toolset for MDA,”
in Proceedings of the 5th European Conference on Model-driven Architecture Foun-
dations and Applications (ECMDA-FA), 2009, pp. 1–4.

[129] The Eclipse Foundation, “PapyrusModeling Environment,” 2019. [Online]. Available:
https://www.eclipse.org/papyrus/

[130] S. Peldszus, G.Kulcsár,M. Lochau, and S. Schulze, “Incremental Co-Evolution of Java
Programs based on Bidirectional Graph Transformation,” in Proceedings of the 12th

Principles andPractices of Programming on the JavaPlatform (PPPJ). Association for
Computing Machinery (ACM), 2015, pp. 138–151. https://doi.org/10.1145/2807426.
2807438

[131] G.Kulcsár, S. Peldszus, andM.Lochau, “Object-orientedRefactoringof JavaPrograms
using Graph Transformation,” in Proceedings of the 8th Transformation Tool Contest
(TTC), ser. CEURWorkshop Proceedings, T. Horn, F. Krikava, and L. Rose, Eds., vol.
1524. CEUR-WS, 2015, pp. 53–82. [Online]. Available: http://ceur-ws.org/Vol-1524/
paper3.pdf

[132] A. V. Aho, M. S. Lam, R. Sethi, and J. D. Ullman, Compilers – Principles, Techniques,
& Tools, 2nd ed. Pearson International Education, 2007.

[133] C. Click and K. D. Cooper, “Combining Analyses, Combining Optimizations,” Trans-
actions on Programming Languages and Systems (TOPLAS), vol. 17, no. 2, pp. 181–
196, 1995. https://doi.org/10.1145/201059.201061

[134] F. E. Allen, “Control Flow Analysis,” in Proceedings of a Symposium on Compiler
Optimization. Association for Computing Machinery (ACM), 1970, pp. 1–19. Control
Flow

https://doi.org/10.1145/2635868.2635878
https://doi.org/10.1145/2635868.2635878
https://doi.org/10.1007/11575467_11
https://doi.org/10.1145/1985793.1985827
https://www.owasp.org/index.php/OWASP_Dependency_Check
https://www.owasp.org/index.php/OWASP_Dependency_Check
https://github.com/features/security
https://doi.org/10.1109/ARES.2016.92
https://www.eclipse.org/papyrus/
https://doi.org/10.1145/2807426.2807438
https://doi.org/10.1145/2807426.2807438
http://ceur-ws.org/Vol-1524/paper3.pdf
http://ceur-ws.org/Vol-1524/paper3.pdf
https://doi.org/10.1145/201059.201061

Bibliography 453

[135] N. V. Eetvelde and D. Janssens, “A Hierarchical Program Representation for Refactor-
ing,” Electronic Notes in Theoretical Computer Science (ENTCS), vol. 82, no. 7, pp.
91–104, 2003. https://doi.org/10.1016/S1571-0661(04)80749-7

[136] N. V. Eetvelde and D. Janssens, “Extending Graph Rewriting for Refactoring,” in
Proceedings of the 2nd InternationalConference onGraphTransformation (ICGT), ser.
Lecture Notes in Computer Science (LNCS), H. Ehrig, G. Engels, F. Parisi-Presicce,
and G. Rozenberg, Eds., vol. 3256. Springer, 2004, pp. 399–415. https://doi.org/10.
1007/978-3-540-30203-2_28

[137] A. Corradini, F. L. Dotti, L. Foss, and L. Ribeiro, “Translating Java Code to Graph
Transformation Systems,” in Proceedings of the 2nd International Conference on
Graph Transformation (ICGT), ser. Lecture Notes in Computer Science (LNCS),
H. Ehrig, G. Engels, F. Parisi-Presicce, and G. Rozenberg, Eds., vol. 3256. Springer,
2004, pp. 383–398. https://doi.org/10.1007/978-3-540-30203-2_27

[138] T. Mens, G. Taentzer, and O. Runge, “Analysing Refactoring Dependencies using
Graph Transformation,” Software & Systems Modeling (SoSyM), vol. 6, no. 3, pp.
269–285, 2007. https://doi.org/10.1007/s10270-006-0044-6

[139] R. Ferenc, A. Beszedes, M. Tarkiainen, and T. Gyimothy, “Columbus - Reverse Engi-
neering Tool and Schema for C++,” in Proceedings of the International Conference on
Software Maintenance (ICSM). IEEE Computer Society, 2002, pp. 172–181. https://
doi.org/10.1109/ICSM.2002.1167764

[140] T. Mens, N. Van Eetvelde, S. Demeyer, and D. Janssens, “Formalizing Refactor-
ings with Graph Transformations,” Journal of Software Maintenance and Evolution:
Research and Practice (SME), vol. 17, no. 4, pp. 247–276, 2005. https://doi.org/10.
1002/smr.316

[141] H. Bruneliere, J. Cabot, F. Jouault, and F. Madiot, “MoDisco: A Generic and Exten-
sible Framework for Model Driven Reverse Engineering,” in Proceedings of the 25th

International Conference of Automated Software Engineering (ASE). Association for
Computing Machinery (ACM), 2010, pp. 173–174. https://doi.org/10.1145/1858996.
1859032

[142] The Eclipse Foundation, “MoDiscoWebsite,” 2018. [Online]. Available: https://www.
eclipse.org/MoDisco/

[143] F. Heidenreich, J. Johannes, M. Seifert, and C. Wende, “Closing the Gap between
Modelling and Java,” in Proceedings of the 2nd International Conference on Soft-
ware Language Engineering (SLE), ser. Lecture Notes in Computer Science (LNCS),
M. van den Brand, D. Gašević, and J. Gray, Eds., vol. 5969. Springer, 2010, pp. 374–
383. https://doi.org/10.1007/978-3-642-12107-4_25

[144] H. Ehrig, K. Ehrig, U. Prange, and G. Taentzer, Fundamentals of Algebraic Graph
Transformation, 1st ed., ser.Monographs in Theoretical Computer Science. AnEATCS
Series, W. Brauer, G. Rozenberg, and A. Salomaa, Eds. Springer, 2006.

[145] S. Peldszus, G. Kulcsár, and M. Lochau, “A Solution to the Java Refactoring Case
Study using eMoflon,” in Proceedings of the 8th Transformation Tool Contest (TTC),
ser. CEUR Workshop Proceedings, T. Horn, F. Krikava, and L. Rose, Eds., vol.
1524. CEUR-WS, 2015, pp. 118–122. [Online]. Available: http://ceur-ws.org/Vol-
1524/paper20.pdf

[146] S. Ruland, G. Kulcsár, E. Leblebici, S. Peldszus, and M. Lochau, “Controlling the
Attack Surface of Object-Oriented Refactorings,” in Proceedings of the 21st Interna-

https://doi.org/10.1016/S1571-0661(04)80749-7
https://doi.org/10.1007/978-3-540-30203-2_28
https://doi.org/10.1007/978-3-540-30203-2_28
https://doi.org/10.1007/978-3-540-30203-2_27
https://doi.org/10.1007/s10270-006-0044-6
https://doi.org/10.1109/ICSM.2002.1167764
https://doi.org/10.1109/ICSM.2002.1167764
https://doi.org/10.1002/smr.316
https://doi.org/10.1002/smr.316
https://doi.org/10.1145/1858996.1859032
https://doi.org/10.1145/1858996.1859032
https://www.eclipse.org/MoDisco/
https://www.eclipse.org/MoDisco/
https://doi.org/10.1007/978-3-642-12107-4_25
http://ceur-ws.org/Vol-1524/paper20.pdf
http://ceur-ws.org/Vol-1524/paper20.pdf

454 Bibliography

tional Conference on Fundamental Approaches to Software Engineering (FASE), ser.
Lecture Notes in Computer Science (LNCS), A. Russo andA. Schürr, Eds., vol. 10802.
Springer, 2018, pp. 38–55. https://doi.org/10.1007/978-3-319-89363-1_3

[147] C.Brun andE.Merks, “EcoreTools 2.0,” 2014. [Online].Available: http://www.eclipse.
org/ecoretools/

[148] D. Steinberg, F. Budinsky, M. Patenostro, and E. Merks, EMF: Eclipse Modeling
Framework, 2nd ed., E. Gamma, L. Nackman, and J. Wiegand, Eds. Addison Wesley,
2008. [Online]. Available: http://www.eclipse.org/emf

[149] The Eclipse Foundation, “Sirius,” 2021. [Online]. Available: http://www.eclipse.org/
sirius/

[150] D. Mebus, “Objektorientierte High-Level Datenflussanalyse,” Master’s thesis, Univer-
sity of Koblenz-Landau, 2019.

[151] B.Wiebe, “Eine empirische Studie über die Korrelation zwischen Sicherheitsschwach-
stellen und Qualitätseigenschaften von Software-Designs,” Bachelor’s thesis, Univer-
sity of Koblenz-Landau, 2017.

[152] A. Ivanova, “On Correlations between Vulnerabilities, Quality-, and Design-Metrics,”
Bachelor’s thesis, University of Koblenz-Landau, 2019.

[153] Eclipse Foundation, “Eclipse Java Development Tools (JDT).” [Online]. Available:
https://www.eclipse.org/jdt/

[154] S. Peldszus, “Model-driven Development of Evolving Secure Software Systems,” in
Proceedings of the 7th Collaborative Workshop on Evolution and Maintenance of
Long-living Software Systems (EMLS), ser. CEUR Workshop Proceedings, R. Hebig
and R. Heinrich, Eds., vol. 2581. CEUR-WS, 2020. [Online]. Available: http://ceur-
ws.org/Vol-2581/emls2020paper1.pdf

[155] International Organization for Standardization, International Electrotechnical Com-
mission, and IEEE Standards Association (IEEE-SA) Standards Board, “Systems
and Software Engineering – Vocabulary,” International Standard ISO/IEC/IEEE
2476524765:2017, 2017. https://doi.org/10.1109/IEEESTD.2017.8016712 Systems
and Software Engineering – Vocabulary

[156] G. Spanoudakis and A. Zisman, “Software Traceability: A Roadmap,” inHandbook of
Software Engineering and Knowledge Engineering. World Scientific, 2005, pp. 395–
428. https://doi.org/10.1142/9789812775245_0014

[157] F. A. C. Pinheiro, “Requirements Traceability,” in Perspectives on Software Require-
ments, ser. Springer International Series in Engineering andComputer Science (SECS),
J. C. S. do Prado Leite and J. H. Doorn, Eds. Springer, 2004, vol. 753, pp. 91–
113.https://doi.org/10.1007/978-1-4615-0465-8_5

[158] H. Schwarz, J. Ebert, and A. Winter, “Graph-based Traceability: A Comprehensive
Approach,” Software & Systems Modeling (SoSyM), vol. 9, pp. 473–492, 2010. https://
doi.org/10.1007/s10270-009-0141-4

[159] A. Espinoza, P. P. Alarcon, and J. Garbajosa, “Analyzing and Systematizing Current
Traceability Schemas,” inProceedings of the 30th AnnualWorkshop on Software Engi-
neering. IEEEComputer Society, 2006, pp. 21–32. https://doi.org/10.1109/SEW.2006.
12

[160] A. Schürr, “Specification of Graph Translators with Triple Graph Grammars,” in Pro-
ceedings of the International Workshop on Graph-theoretic Concepts in Computer

https://doi.org/10.1007/978-3-319-89363-1_3
http://www.eclipse.org/ecoretools/
http://www.eclipse.org/ecoretools/
http://www.eclipse.org/emf
http://www.eclipse.org/sirius/
http://www.eclipse.org/sirius/
https://www.eclipse.org/jdt/
http://ceur-ws.org/Vol-2581/emls2020paper1.pdf
http://ceur-ws.org/Vol-2581/emls2020paper1.pdf
https://doi.org/10.1109/IEEESTD.2017.8016712
https://doi.org/10.1142/9789812775245_0014
https://doi.org/10.1007/978-1-4615-0465-8_5
https://doi.org/10.1007/s10270-009-0141-4
https://doi.org/10.1007/s10270-009-0141-4
https://doi.org/10.1109/SEW.2006.12
https://doi.org/10.1109/SEW.2006.12

Bibliography 455

Science (WG), ser. Lecture Notes in Computer Science (LNCS), vol. 903. Springer,
1995, pp. 151–163. https://doi.org/10.1007/3-540-59071-4_45

[161] H. Brunelière, J. Cabot, G. Dupé, and F. Madiot, “MoDisco: A Model Driven Reverse
Engineering Framework,” Information and Software Technology (IST), vol. 56, no. 8,
pp. 1012–1032, 2014. https://doi.org/10.1016/j.infsof.2014.04.007

[162] E. Leblebici, A. Anjorin, and A. Schürr, “Developing eMoflon with eMoflon,” in Pro-
ceedings of the 7th International Conference on Theory and Practice of Model Trans-
formations (ICMT), ser. Lecture Notes in Computer Science (LNCS), D. D. Ruscio
and D. Varró, Eds., vol. 8568. Springer, 2014, pp. 138–145. https://doi.org/10.1007/
978-3-319-08789-4_10

[163] E. Leblebici, A. Anjorin, and A. Schürr, “Inter-model Consistency Checking Using
Triple Graph Grammars and Linear Optimization Techniques,” in Proceedings of the
20th International Conference on Fundamental Approaches to Software Engineering
(FASE), ser. Lecture Notes in Computer Science (LNCS), M. Huisman and J. Rubin,
Eds., vol. 10202. Springer, 2017, pp. 191–207. https://doi.org/10.1007/978-3-662-
54494-5_11

[164] N. Moha, Y.-G. Guéhéneuc, L. Duchien, and A.-F. Le Meur, “DECOR: A Method for
the Specification and Detection of Code and Design Smells,” Transactions on Software
Engineering (TSE), vol. 36, no. 1, pp. 20–36, 2010. https://doi.org/10.1109/TSE.2009.
50

[165] F. Khomh, S. Vaucher, Y.-G. Guéhéneuc, and H. Sahraoui, “BDTEX: A GQM-based
BayesianApproach for theDetection ofAntipatterns,” Journal of Systems and Software
(JSS), vol. 84, no. 4, pp. 559–572, 2011. https://doi.org/10.1016/j.jss.2010.11.921

[166] Z. Ujhelyi, A. Horváth, D. Varró, N. I. Csiszár, G. Szőke, L. Vidács, and R. Ferenc,
“Anti-pattern Detection with Model Queries: A Comparison of Approaches,” in Pro-
ceedings of the Conference on Software Maintenance, Reengineering, and Reverse
Engineering and Working Conference on Reverse Engineering (CSMR-WCRE). IEEE
Computer Society, 2014, pp. 293–302. https://doi.org/10.1109/CSMR-WCRE.2014.
6747181

[167] E. Tempero, C. Anslow, J. Dietrich, T. Han, J. Li, M. Lumpe, H. Melton, and J. Noble,
“The Qualitas Corpus: A Curated Collection of Java Code for Empirical Studies,” in
Proceedings of the 17th Asia Pacific Software Engineering Conference (APSEC). IEEE
Computer Society, 2010, pp. 336–345. https://doi.org/10.1109/APSEC.2010.46

[168] C. Alphonce and P. Ventura, “QuickUML:ATool to Support IterativeDesign andCode
Development,” in Companion of the 18th Annual Acm Sigplan Conference on Object-
orientedProgramming, Systems, Languages, andApplications (OOPSLA).Association
for Computing Machinery (ACM), 2003, pp. 80–81. https://doi.org/10.1145/949344.
949359

[169] G. Johnson, “QuickUML.” [Online]. Available: https://quj.sourceforge.io/
[170] J. D. Lamb, “Java Scientific Calculator (JSciCalc).” [Online]. Available: http://jscicalc.

sourceforge.net/
[171] E. Gamma, K. Beck et al., “JUnit.” [Online]. Available: https://junit.org/
[172] A. Thomas, D. Barashev et al., “GanttProject.” [Online]. Available: https://www.

ganttproject.biz/
[173] Apache Foundation, “Nutch.” [Online]. Available: http://nutch.apache.org/
[174] Apache Foundation, “Lucene.” [Online]. Available: https://lucene.apache.org/

https://doi.org/10.1007/3-540-59071-4_45
https://doi.org/10.1016/j.infsof.2014.04.007
https://doi.org/10.1007/978-3-319-08789-4_10
https://doi.org/10.1007/978-3-319-08789-4_10
https://doi.org/10.1007/978-3-662-54494-5_11
https://doi.org/10.1007/978-3-662-54494-5_11
https://doi.org/10.1109/TSE.2009.50
https://doi.org/10.1109/TSE.2009.50
https://doi.org/10.1016/j.jss.2010.11.921
https://doi.org/10.1109/CSMR-WCRE.2014.6747181
https://doi.org/10.1109/CSMR-WCRE.2014.6747181
https://doi.org/10.1109/APSEC.2010.46
https://doi.org/10.1145/949344.949359
https://doi.org/10.1145/949344.949359
https://quj.sourceforge.io/
http://jscicalc.sourceforge.net/
http://jscicalc.sourceforge.net/
https://junit.org/
https://www.ganttproject.biz/
https://www.ganttproject.biz/
http://nutch.apache.org/
https://lucene.apache.org/

456 Bibliography

[175] Apache Foundation, “Log4j.” [Online]. Available: https://logging.apache.org/log4j/
[176] IFA Informatik and E. Gamma, “JHotDraw.” [Online]. Available: https://sourceforge.

net/projects/jhotdraw/
[177] A. Dangel, J. Sotuyo et al., “PMDSource Code Analyzer.” [Online]. Available: https://

sourceforge.net/projects/pmd/
[178] S. Pestov et al., “JEdit.” [Online]. Available: http://www.jedit.org/
[179] P. Wendykier, “JTransforms.” [Online]. Available: https://sites.google.com/site/

piotrwendykier/software/jtransforms
[180] Apache Foundation, “Xerces.” [Online]. Available: http://xerces.apache.org/
[181] Azureus Software Inc., “Azureus/Vuze.” [Online]. Available: http://www.vuze.com/
[182] F. Büttner and M. Gogolla, “On Generalization and Overriding in UML 2.0,” in Pro-

ceedings of the Workshop on OCL and Model Driven Engineering, 2004, pp. 1–15.
[183] M. Fockel, J. Holtmann, and J. Meyer, “Semi-automatic Establishment and Mainte-

nance of Valid Traceability in Automotive Development Processes,” in Proceedings
of the 2nd International Workshop on Software Engineering for Embedded Systems
(sees). IEEE Computer Society, 2012, pp. 37–43. https://doi.org/10.1109/SEES.2012.
6225489

[184] P. Tonella, “Reverse Engineering of Object Oriented Code,” in Proceedings of the 27th

International Conference on Software Engineering (ICSE). IEEE Computer Society,
2005, pp. 724–725. https://doi.org/10.1109/ICSE.2005.1553682

[185] H. Störrle, “How are Conceptual Models Used in Industrial Software Development?:
A Descriptive Survey,” in Proceedings of the 21st International Conference on Evalu-
ation and Assessment in Software Engineering (EASE), ser. International Conference
Proceeding Series (ICPS), E. Mendes, S. J. Counsell, and K. Petersen, Eds. Associ-
ation for Computing Machinery (ACM), 2017, pp. 160–169. https://doi.org/10.1145/
3084226.3084256

[186] J. T. Lallchandani and R. Mall, “A Dynamic Slicing Technique for UML Architectural
Models,” Transactions on Software Engineering (TSE), vol. 37, no. 6, pp. 737–771,
2011. https://doi.org/10.1109/TSE.2010.112

[187] G. Taentzer, T.Kehrer, C. Pietsch, andU.Kelter, “AFormal Framework for Incremental
Model Slicing,” in Proceedings of the 21st International Conference on Fundamental
Approaches to Software Engineering (FASE), ser. Lecture Notes in Computer Science
(LNCS), A. Russo and A. Schürr, Eds., vol. 10802. Springer, 2018, pp. 3–20. https://
doi.org/10.1007/978-3-319-89363-1_1

[188] R. Xu, D. Wunsch et al., “Survey of Clustering Algorithms,” IEEE Transactions on
Neural Networks, vol. 16, no. 3, pp. 645–678, 2005. https://doi.org/10.1109/TNN.
2005.845141

[189] A. Elkamel, M. Gzara, and H. Ben-Abdallah, “An UML Class Recommender System
for SoftwareDesign,” inProceedings of the 13th InternationalConference of Computer
Systems and Applications (AICCSA). IEEE Computer Society, 2016, pp. 1–8. https://
doi.org/10.1109/AICCSA.2016.7945659

[190] C. Dougherty, K. Sayre, R. C. Seacord, D. Svoboda, and K. Togashi, “Secure Design
Patterns,” Carnegie-Mellon University Pittsburgh, Software Engineering Institute,
Tech. Rep., 2009.

[191] V. Saini, Q. Duan, and V. Paruchuri, “Threat Modeling Using Attack Trees,” Journal
of Computing Sciences in Colleges (CCSC), vol. 23, no. 4, pp. 124–131, 2008.

https://logging.apache.org/log4j/
https://sourceforge.net/projects/jhotdraw/
https://sourceforge.net/projects/jhotdraw/
https://sourceforge.net/projects/pmd/
https://sourceforge.net/projects/pmd/
http://www.jedit.org/
https://sites.google.com/site/piotrwendykier/software/jtransforms
https://sites.google.com/site/piotrwendykier/software/jtransforms
http://xerces.apache.org/
http://www.vuze.com/
https://doi.org/10.1109/SEES.2012.6225489
https://doi.org/10.1109/SEES.2012.6225489
https://doi.org/10.1109/ICSE.2005.1553682
https://doi.org/10.1145/3084226.3084256
https://doi.org/10.1145/3084226.3084256
https://doi.org/10.1109/TSE.2010.112
https://doi.org/10.1007/978-3-319-89363-1_1
https://doi.org/10.1007/978-3-319-89363-1_1
https://doi.org/10.1109/TNN.2005.845141
https://doi.org/10.1109/TNN.2005.845141
https://doi.org/10.1109/AICCSA.2016.7945659
https://doi.org/10.1109/AICCSA.2016.7945659

Bibliography 457

[192] M. S. Lund, B. Solhaug, and K. Stølen, Model-driven Risk Analysis: The CORAS
Approach, 1st ed. Springer, 2011. https://doi.org/10.1007/978-3-642-12323-8

[193] T. Abe, S. Hayashi, and M. Saeki, “Modeling Security Threat Patterns to Derive Neg-
ative Scenarios,” in Proceedings of the 20th Asia-pacific Software Engineering Con-
ference (APSEC), R. Bilof, Ed. IEEE Computer Society, 2013, pp. 58–66. https://doi.
org/10.1109/APSEC.2013.19

[194] R. Scandariato, K. Wuyts, and W. Joosen, “A Descriptive Study of Microsoft’s Threat
Modeling Technique,” Requirements Engineering Journal (RE), vol. 20, no. 2, pp.
163–180, 2015. https://doi.org/10.1007/s00766-013-0195-2

[195] K. Tuma, G. Calikli, and R. Scandariato, “Threat Analysis of Software Systems: A
Systematic Literature Review,” Journal of Systems and Software (JSS), vol. 144, pp.
275–294, 2018. https://doi.org/10.1016/j.jss.2018.06.073

[196] M. Deng, K. Wuyts, R. Scandariato, B. Preneel, and W. Joosen, “A Privacy Threat
Analysis Framework: Supporting the Elicitation and Fulfillment of Privacy Require-
ments,”Requirements Engineering Journal (RE), vol. 16, no. 1, pp. 3–32, 2011. https://
doi.org/10.1007/s00766-010-0115-7

[197] L. Sion, K. Yskout, D. Van Landuyt, and W. Joosen, “Solution-aware Data Flow Dia-
grams for Security Threat Modeling,” in Proceedings of the 33rd Annual Symposium
on Applied Computing (SAC). Association for Computing Machinery (ACM), 2018,
pp. 1425–1432. https://doi.org/10.1145/3167132.3167285

[198] B. J. Berger, K. Sohr, and R. Koschke, “Extracting and Analyzing the Implemented
Security Architecture of Business Applications,” in Proceedings of the 17th European
Conference on Software Maintenance and Reengineering (CSMR). IEEE Computer
Society, 2013, pp. 285–294. https://doi.org/10.1109/CSMR.2013.37

[199] H. Ehrig, G. Rozenberg, and H.-J. Kreowski, Handbook of Graph Grammars and
Computing by Graph Transformation. World Scientific, 1999, vol. 3.

[200] V. I. Levenshtein, “Binary Codes Capable of Correcting Deletions, Insertions, and
Reversals,” Soviet Physics Doklady, vol. 10, pp. 707–710, 1966.

[201] “JPetStore.” [Online]. Available: http://www.mybatis.org/jpetstore-6/
[202] “ATMExample.” [Online]. Available: http://www.math-cs.gordon.edu/local/courses/

cs211/ATMExample/
[203] Eclipse contributors, “Workbench User Guide – Secure Storage – How

secure storage works,” The Eclipse Foundation, Tech. Rep., 2013. [Online].
Available: https://help.eclipse.org/oxygen/index.jsp?topic=%2Forg.eclipse.platform.
doc.user%2Freference%2Fref-43.htm

[204] “CoCoME.” [Online]. Available: https://github.com/cocome-community-case-study
[205] R. Heinrich, K. Rostami, and R. Reussner, The Cocome Platform for Collaborative

Empirical Research on Information SystemEvolution. KIT Scientific Publishing, 2016.
[206] S. Peldszus, J. Bürger, T. Kehrer, and J. Jürjens, “Ontology-Driven Evolution of Soft-

ware Security,” Data & Knowledge Engineering (DKE), vol. 134, 2021. https://doi.
org/10.1016/j.datak.2021.101907

[207] K. Tuma, S. Peldszus, D. Strüber, R. Scandariato, and J. Jürjens, “Checking Secu-
rity Compliance between Models and Code,” International Journal on Software and
Systems Modeling (SoSyM), 2022. https://doi.org/10.1007/s10270-022-00991-5

https://doi.org/10.1007/978-3-642-12323-8
https://doi.org/10.1109/APSEC.2013.19
https://doi.org/10.1109/APSEC.2013.19
https://doi.org/10.1007/s00766-013-0195-2
https://doi.org/10.1016/j.jss.2018.06.073
https://doi.org/10.1007/s00766-010-0115-7
https://doi.org/10.1007/s00766-010-0115-7
https://doi.org/10.1145/3167132.3167285
https://doi.org/10.1109/CSMR.2013.37
http://www.mybatis.org/jpetstore-6/
http://www.math-cs.gordon.edu/local/courses/cs211/ATMExample/
http://www.math-cs.gordon.edu/local/courses/cs211/ATMExample/
https://help.eclipse.org/oxygen/index.jsp?topic=%2Forg.eclipse.platform.doc.user%2Freference%2Fref-43.htm
https://help.eclipse.org/oxygen/index.jsp?topic=%2Forg.eclipse.platform.doc.user%2Freference%2Fref-43.htm
https://github.com/cocome-community-case-study
https://doi.org/10.1016/j.datak.2021.101907
https://doi.org/10.1016/j.datak.2021.101907
https://doi.org/10.1007/s10270-022-00991-5

458 Bibliography

[208] P. H.Meland and J. Jensen, “Secure SoftwareDesign in Practice,” inProceedings of the
3rd International Conference on Availability, Reliability and Security (ARES). IEEE
Computer Society, 2008, pp. 1164–1171. https://doi.org/10.1109/ARES.2008.48

[209] S. R. Chidamber and C. F. Kemerer, “A Metrics Suite for Object Oriented Design,”
Transactions on Software Engineering (TSE), vol. 20, no. 6, pp. 476–493, 1994. https://
doi.org/10.1109/32.295895

[210] K. Sultan, A. En-Nouaary, and A. Hamou-Lhadj, “Catalog of Metrics for Assessing
Security Risks of Software Throughout the Software Development Life Cycle,” in
Proceedings of the International Conference on Information Security and Assurance
(ISA), B. Werner, Ed. IEEE Computer Society, 2008, pp. 461–465. https://doi.org/10.
1109/ISA.2008.104

[211] J. A. Wang, H. Wang, M. Guo, and M. Xia, “Security Metrics for Software Systems,”
in Proceedings of the 47th Annual Southeast Regional Conference. New York, NY,
USA: Association for Computing Machinery (ACM), 2009. https://doi.org/10.1145/
1566445.1566509

[212] B. Alshammari, C. Fidge, and D. Corney, “Assessing the Impact of Refactoring on
Security-critical Object-oriented Designs,” in Proceedings of the Asia Pacific Soft-
ware Engineering Conference (APSEC). IEEE Computer Society, 2010, pp. 186–195.
https://doi.org/10.1109/APSEC.2010.30

[213] NIST, “Common Vulnerability Scoring System (CVSS).” [Online]. Available: https://
nvd.nist.gov/vuln-metrics/cvss

[214] P.K.Manadhata and J.M.Wing, “AnAttack SurfaceMetric,”Transactions on Software
Engineering (TSE), vol. 37, no. 3, pp. 371–386, 2011.https://doi.org/10.1109/TSE.
2010.60

[215] C. Zoller andA. Schmolitzky, “Measuring Inappropriate Generosity with AccessMod-
ifiers in Java Systems,” inProceedings of the Joint Conference of the 22nd International
Workshop on Software Measurement and the 7th International Conference on Soft-
ware Process andProductMeasurement (IWSM/MENSURA). IEEEComputer Society,
2012, pp. 43–52. https://doi.org/10.1109/IWSM-MENSURA.2012.15

[216] B. Alshammari, C. Fidge, and D. Corney, “Security Metrics for Object-oriented Class
Designs,” in Proceedings of the 9th International Conference on Quality Software
(ICSQ). IEEEComputer Society, 2009, pp. 11–20. https://doi.org/10.1109/QSIC.2009.
11

[217] I. Chowdhury, B. Chan, and M. Zulkernine, “Security Metrics for Source Code Struc-
tures,” in Proceedings of the 4th International Workshop on Software Engineering
for Secure Systems (SESS). Association for Computing Machinery (ACM), 2008, pp.
57–64. https://doi.org/10.1145/1370905.1370913

[218] T. Arendt, E. Biermann, S. Jurack, C. Krause, and G. Taentzer, “Henshin: Advanced
Concepts and Tools for In-place Emf Model Transformations,” in Proceedings of
the International Conference on Model-driven Engineering Languages and Systems
(MODELS), ser. Lecture Notes in Computer Science (LNCS), D. C. Petriu, N. Rou-
quette, and Ø. Haugen, Eds., vol. 6394. Springer, 2010, pp. 121–135. https://doi.org/
10.1007/978-3-642-16145-2_9

[219] A. Sabelfeld and A. C. Myers, “Language-based Information-flow Security,” Journal
on Selected Areas in Communications (JSAC), vol. 21, no. 1, pp. 5–19, 2003. https://
doi.org/10.1109/JSAC.2002.806121

https://doi.org/10.1109/ARES.2008.48
https://doi.org/10.1109/32.295895
https://doi.org/10.1109/32.295895
https://doi.org/10.1109/ISA.2008.104
https://doi.org/10.1109/ISA.2008.104
https://doi.org/10.1145/1566445.1566509
https://doi.org/10.1145/1566445.1566509
https://doi.org/10.1109/APSEC.2010.30
https://nvd.nist.gov/vuln-metrics/cvss
https://nvd.nist.gov/vuln-metrics/cvss
https://doi.org/10.1109/TSE.2010.60
https://doi.org/10.1109/TSE.2010.60
https://doi.org/10.1109/IWSM-MENSURA.2012.15
https://doi.org/10.1109/QSIC.2009.11
https://doi.org/10.1109/QSIC.2009.11
https://doi.org/10.1145/1370905.1370913
https://doi.org/10.1007/978-3-642-16145-2_9
https://doi.org/10.1007/978-3-642-16145-2_9
https://doi.org/10.1109/JSAC.2002.806121
https://doi.org/10.1109/JSAC.2002.806121

Bibliography 459

[220] J. Bacon, D. Eyers, T. F.-M. Pasquier, J. Singh, I. Papagiannis, and P. Pietzuch, “Infor-
mation Flow Control for Secure Cloud Computing,” Transactions on Network and
Service Management (TNSM), vol. 11, no. 1, pp. 76–89, 2014. https://doi.org/10.1109/
TNSM.2013.122313.130423

[221] L. Li, T. F. Bissyandé, M. Papadakis, S. Rasthofer, A. Bartel, D. Octeau, J. Klein,
and L. Traon, “Static Analysis of Android Apps: A Systematic Literature Review,”
Information and Software Technology (IST), vol. 88, pp. 67–95, 2017. https://doi.org/
10.1016/j.infsof.2017.04.001

[222] Perl::DOC, “Perl LanguageReference,” 2020. [Online].Available: https://perldoc.perl.
org/index-language.html

[223] S. Arzt, S. Rasthofer, and E. Bodden, “SuSi: A Tool for the Fully Automated Classi-
fication and Categorization of Android Sources and Sinks,” University of Darmstadt,
Tech. Rep. TUDCS-2013-0114, 2013.

[224] W. Klieber, L. Flynn, A. Bhosale, L. Jia, and L. Bauer, “Android Taint Flow Analysis
for App Sets,” in Proceedings of the 3rd International Workshop on the State of the
Art in Java Program Analysis (soap). Association for Computing Machinery (ACM),
2014, pp. 1–6. https://doi.org/10.1145/2614628.2614633

[225] R. Vallee-Rai and L. J. Hendren, “Jimple: Simplifying Java Bytecode for Analyses and
Transformations,” McGill University, Tech. Rep., 1998.

[226] P. Ferrara, L.Olivieri, andF. Spoto, “TailoringTaintAnalysis toGDPR,” inProceedings
of the 6th Annual Privacy Forum (APF), ser. Lecture Notes in Computer Science
(LNCS),M.Medina,A.Mitrakas,K.Rannenberg, E. Schweighofer, andN.Tsouroulas,
Eds., vol. 11079, Springer. Springer, 2018, pp. 63–76. https://doi.org/10.1007/978-3-
030-02547-2_4

[227] S. Arzt, “Static Data Flow Analysis for Android Applications,” Ph.D. dissertation,
Technische Universität Darmstadt, 2017.

[228] D. Strüber, K. Born, K. D. Gill, R. Groner, T. Kehrer, M. Ohrndorf, and M. Tichy,
“Henshin: A Usability-Focused Framework for EMFModel Transformation Develop-
ment,” in Proceedings of the 10th International Conference on Graph Transformation
(ICGT), ser. Lecture Notes in Computer Science (LNCS), J. de Lara and D. Plump,
Eds., vol. 10373. Springer, 2017, pp. 196–208. https://doi.org/10.1007/978-3-319-
61470-0_12

[229] J. Jürjens et al., “CARiSMA,” 2018. [Online]. Available: http://carisma.UMLsec.de/
[230] M. Gegick and L. Williams, “On the Design of More Secure Software-intensive Sys-

tems by Use of Attack Patterns,” Information and Software Technology (IST), vol. 49,
no. 4, pp. 381–397, 2007. https://doi.org/10.1016/j.infsof.2006.06.002

[231] J. P. Near and D. Jackson, “Derailer: Interactive Security Analysis for Web Applica-
tions,” in Proceedings of the 29th International Conference on Automated Software
Engineering (ASE). Association forComputingMachinery (ACM), 2014, pp. 587–598.
https://doi.org/10.1145/2642937.2643012

[232] V. B. Livshits and M. S. Lam, “Finding Security Vulnerabilities in Java Applications
with Static Analysis,” inProceedings of the 14th Usenix Security Symposium (USENIX
Security), vol. 14, 2005.

[233] L. Li, A. Bartel, T. F. Bissyandé, J. Klein, Y. Le Traon, S. Arzt, S. Rasthofer, E. Bodden,
D. Octeau, and P. McDaniel, “IccTA: Detecting Inter-component Privacy Leaks in
Android Apps,” in Proceedings of the 37th International Conference on Software

https://doi.org/10.1109/TNSM.2013.122313.130423
https://doi.org/10.1109/TNSM.2013.122313.130423
https://doi.org/10.1016/j.infsof.2017.04.001
https://doi.org/10.1016/j.infsof.2017.04.001
https://perldoc.perl.org/index-language.html
https://perldoc.perl.org/index-language.html
https://doi.org/10.1145/2614628.2614633
https://doi.org/10.1007/978-3-030-02547-2_4
https://doi.org/10.1007/978-3-030-02547-2_4
https://doi.org/10.1007/978-3-319-61470-0_12
https://doi.org/10.1007/978-3-319-61470-0_12
http://carisma.UMLsec.de/
https://doi.org/10.1016/j.infsof.2006.06.002
https://doi.org/10.1145/2642937.2643012

460 Bibliography

Engineering (ICSE). IEEE Computer Society, 2015, pp. 280–291. https://doi.org/10.
1109/ICSE.2015.48

[234] B.Morin, T.Mouelhi, F. Fleurey, Y. Le Traon, O. Barais, and J.-M. Jézéquel, “Security-
driven Model-based Dynamic Adaptation,” in Proceedings of the 25th International
Conference on Automated Software Engineering (ASE). Association for Computing
Machinery (ACM), 2010, pp. 205–214. https://doi.org/10.1145/1858996.1859040

[235] L. Xiao, “An Adaptive Security Model Using Agent-oriented MDA,” Information and
Software Technology (IST), vol. 51, no. 5, pp. 933–955, 2009. https://doi.org/10.1016/
j.infsof.2008.05.005

[236] M. Almorsy, J. Grundy, and A. S. Ibrahim, “MDSE@R: Model-driven Security Engi-
neering at Runtime,” inProceedings of the 4th International SymposiumonCyberspace
Safety and Security (CSS), ser. Lecture Notes in Computer Science (LNCS), Y. Xiang,
J. Lopez, C.-C. J. Kuo, and W. Zhou, Eds., vol. 7672, 2012, pp. 279–295. https://doi.
org/10.1007/978-3-642-35362-8_22

[237] Y.-W. Huang, F. Yu, C. Hang, C.-H. Tsai, D.-T. Lee, and S.-Y. Kuo, “Securing Web
Application Code by Static Analysis and Runtime Protection,” in Proceedings of the
13th InternationalConference onWorldWideWeb (WWW). Association forComputing
Machinery (ACM), 2004, pp. 40–52. https://doi.org/10.1145/988672.988679

[238] T. Hettel, M. Lawley, and K. Raymond, “Model Synchronisation: Definitions for
Round-Trip Engineering,” in Proceedings of the 1st International Conference on The-
ory and Practice of Model Transformations (ICMT), ser. Lecture Notes in Computer
Science (LNCS), A. Vallecillo, J. Gray, and A. Pierantonio, Eds., vol. 5063. Springer,
2008, pp. 31–45. https://doi.org/10.1007/978-3-540-69927-9_3

[239] L. Ben Othmane, G. Chehrazi, E. Bodden, P. Tsalovski, and A. D. Brucker, “Time for
Addressing Software Security Issues: PredictionModels and Impacting Factors,”Data
Science and Engineering (DSE), vol. 2, no. 2, pp. 107–124, 2017. https://doi.org/10.
1007/s41019-016-0019-8

[240] G. C. Murphy, D. Notkin, W. G. Griswold, and E. S. Lan, “An Empirical Study of
Static Call Graph Extractors,” Transactions on Software Engineering andMethodology
(TOSEM), vol. 7, no. 2, pp. 158–191, 1998. https://doi.org/10.1145/279310.279314

[241] D. Evans and D. Larochelle, “Improving Security using Extensible Lightweight Static
Analysis,” IEEE Software, vol. 19, no. 1, pp. 42–51, 2002. https://doi.org/10.1109/52.
976940

[242] B. Chess and G. McGraw, “Static Analysis for Security,” IEEE Security & Privacy,
vol. 2, no. 6, pp. 76–79, 2004. https://doi.org/10.1109/MSP.2004.111

[243] G. Hiet, V. V. T. Tong, L. Me, and B. Morin, “Policy-based Intrusion Detection in
Web Applications by Monitoring Java Information Flows,” in Proceedings of the 3rd

InternationalConference onRisks and Security of Internet and Systems (CRISIS). IEEE
Computer Society, 2008, pp. 53–60. https://doi.org/10.1109/CRISIS.2008.4757463

[244] S. Chiba, “Javassist,” 2019. [Online]. Available: http://www.javassist.org
[245] S. Chiba, “Load-time Structural Reflection in Java,” in Proceedings of the 14th Euro-

pean Conference on Object-oriented Programming (ECOOP), ser. Lecture Notes in
Computer Science (LNCS), E. Bertino, Ed., vol. 1850. Springer, 2000, pp. 313–336.
https://doi.org/10.1007/3-540-45102-1_16

[246] T. Lindholm, F. Yellin, G. Bracha, and A. Buckley, “The Java® Virtual Machine Spec-
ification,” Oracle, Tech. Rep., 2015.

https://doi.org/10.1109/ICSE.2015.48
https://doi.org/10.1109/ICSE.2015.48
https://doi.org/10.1145/1858996.1859040
https://doi.org/10.1016/j.infsof.2008.05.005
https://doi.org/10.1016/j.infsof.2008.05.005
https://doi.org/10.1007/978-3-642-35362-8_22
https://doi.org/10.1007/978-3-642-35362-8_22
https://doi.org/10.1145/988672.988679
https://doi.org/10.1007/978-3-540-69927-9_3
https://doi.org/10.1007/s41019-016-0019-8
https://doi.org/10.1007/s41019-016-0019-8
https://doi.org/10.1145/279310.279314
https://doi.org/10.1109/52.976940
https://doi.org/10.1109/52.976940
https://doi.org/10.1109/MSP.2004.111
https://doi.org/10.1109/CRISIS.2008.4757463
http://www.javassist.org
https://doi.org/10.1007/3-540-45102-1_16

Bibliography 461

[247] M. Eddy and N. Perlroth, “Cyber Attack Suspected in German Woman’s Death,” The
New York Times, Sep. 2020. [Online]. Available: https://www.nytimes.com/2020/09/
18/world/europe/cyber-attack-germany-ransomeware-death.html

[248] Oracle, “Java Agent API,” 2019. [Online]. Available: https://docs.oracle.com/javase/
8/docs/api/java/lang/instrument/package-summary.html

[249] MITRE Corporation, “Common Weakness Enumeration,” 2019. [Online]. Available:
https://cwe.mitre.org

[250] Center for Assured Software, “Juliet Test Suite v1.2 for Java – User Guide,” National
Security Agency, Tech. Rep., 2012.

[251] P. E. Black, “Juliet 1.3 Test Suite: Changes From 1.2,” National Institute of Standards
and Technology (NIST), Tech. Rep., 2018.

[252] S. Peldszus, J. Bürger, and J. Jürjens, “UMLsecRT Repository.” [Online]. Available:
https://github.com/carisma-tool/UMLsecrt

[253] S. M. Blackburn, R. Garner, C. Hoffmann, A. M. Khang, K. S. McKinley, R. Bentzur,
A. Diwan, D. Feinberg, D. Frampton, S. Z. Guyer et al., “The DaCapo Bench-
marks: Java Benchmarking Development and Analysis,” in Proceedings of the 21st

Annual Conference on Object-oriented Programming Systems, Languages, and Appli-
cations (OOPSLA), ser. SIGPLANNotices, vol. 41, no. 10. Association for Computing
Machinery (ACM), 2006, pp. 169–190. https://doi.org/10.1145/1167515.1167488

[254] Webbug Group, “OpenJDK Issue 8155588,” 2016. [Online]. Available: https://bugs.
openjdk.java.net/browse/JDK-8155588

[255] DaCapo Project, “DaCapo Website,” 2018. [Online]. Available: http://dacapobench.
sourceforge.net/

[256] Pivotal Software, “Spring Framework,” 2019. [Online]. Available: http://spring.io
[257] FasterXML, “Jackson,” 2019. [Online]. Available: https://github.com/FasterXML/

jackson
[258] P. Dewitte, K. Wuyts, L. Sion, D. V. Landuyt, I. Emanuilov, P. Valcke, and W. Joosen,

“A Comparison of System Description Models for Data Protection by Design,” in
Proceedings of the 34th Symposium on Applied Computing (SAC), C.-C. Hung and
G. A. Papadopoulos, Eds. Association for Computing Machinery (ACM), 2019, pp.
1512–1515. https://doi.org/10.1145/3297280.3297595

[259] E. Bodden, L. Hendren, P. Lam, O. Lhoták, and N. A. Naeem, “Collaborative Runtime
Verification with Tracematches,” in Proceedings of the 7th International Workshop on
Runtime Verification (RV), ser. Lecture Notes in Computer Science (LNCS), O. Sokol-
sky and S. Taşıran, Eds. Springer, 2007, pp. 22–37. https://doi.org/10.1007/978-3-
540-77395-5_3

[260] G. Kiczales, J. Lamping, A. Mendhekar, C. Maeda, C. Lopes, J. M. Loingtier, and
J. Irwin, “Aspect-Oriented Programming,” in Proceedings of the 11th European Con-
ference on Object-oriented Programming (ECOOP), ser. Lecture Notes in Computer
Science (LNCS), S. Demeyer, Ed., vol. 1743. Springer, 1997, pp. 220–242. https://doi.
org/10.1007/3-540-46589-8_17

[261] M. Y. Liu and I. Traore, “Empirical Relation between Coupling and Attackability
in Software Systems: A Case Study on DOS,” in Proceedings of the Workshop on
Programming Languages and Snalysis for Security (PLAS), V. C. Shreedhar and
S. Zdancewic, Eds. Association for Computing Machinery (ACM), 2006, pp. 57–64.
https://doi.org/10.1145/1134744.1134756

https://www.nytimes.com/2020/09/18/world/europe/cyber-attack-germany-ransomeware-death.html
https://www.nytimes.com/2020/09/18/world/europe/cyber-attack-germany-ransomeware-death.html
https://docs.oracle.com/javase/8/docs/api/java/lang/instrument/package-summary.html
https://docs.oracle.com/javase/8/docs/api/java/lang/instrument/package-summary.html
https://cwe.mitre.org
https://github.com/carisma-tool/UMLsecrt
https://doi.org/10.1145/1167515.1167488
https://bugs.openjdk.java.net/browse/JDK-8155588
https://bugs.openjdk.java.net/browse/JDK-8155588
http://dacapobench.sourceforge.net/
http://dacapobench.sourceforge.net/
http://spring.io
https://github.com/FasterXML/jackson
https://github.com/FasterXML/jackson
https://doi.org/10.1145/3297280.3297595
https://doi.org/10.1007/978-3-540-77395-5_3
https://doi.org/10.1007/978-3-540-77395-5_3
https://doi.org/10.1007/3-540-46589-8_17
https://doi.org/10.1007/3-540-46589-8_17
https://doi.org/10.1145/1134744.1134756

462 Bibliography

[262] D. Strüber, J. Rubin, M. Chechik, and G. Taentzer, “A Variability-Based Approach to
Reusable and Efficient Model Transformations,” in Proceedings of the International
Conference on Fundamental Approaches to Software Engineering (FASE), ser. Lec-
ture Notes in Computer Science (LNCS), A. Egyed and I. Schaefer, Eds., vol. 9033.
Springer, 2015, pp. 283–298. https://doi.org/10.1007/978-3-662-46675-9_19

[263] M. Bowman, L. C. Briand, and Y. Labiche, “Solving the Class Responsibility Assign-
ment Problem in ObjectOriented Analysis with Multi-Objective Genetic Algorithms,”
Transactions on Software Engineering (TSE), vol. 36, no. 6, pp. 817–837, 2010. https://
doi.org/10.1109/TSE.2010.70

[264] O. Seng, J. Stammel, and D. Burkhart, “Search-based Determination of Refactor-
ings for Improving the Class Structure of Object-oriented Systems,” in Proceedings
of the 8th Annual Conference on Genetic and Evolutionary Computation (GECCO),
M.Cattolico, Ed.Association forComputingMachinery (ACM), 2006, pp. 1909–1916.
https://doi.org/10.1145/1143997.1144315

[265] T. Parr, The Definitive ANTLR Reference: Building Domain-specific Languages. Prag-
matic Bookshelf Raleigh, 2007.

[266] R. Pawlak, C. Noguera et al., “Spoon: Program Analysis and Transformation in Java,”
Inria, Tech. Rep., 2006.

[267] M. Aeschlimann, D. Baumer, and J. Lanneluc, “Java Tool Smithing Extending the
Eclipse Java Development Tools,” Proceedings of the 2nd EclipseCon, 2005.

[268] U. Norbisrath, R. Jubeh, and A. Zündorf, Story Driven Modeling. CreateSpace Inde-
pendent Publishing Platform, 2013.

[269] K. Born, S. Schulz, D. Strüber, and S. John, “Solving the Class Responsibility Assign-
ment Case with Henshin and a Genetic Algorithm,” in Proceedings of the 9th Transfor-
mation Tool Contest (TTC), ser. CEURWorkshop Proceedings, A. Garcia-Dominguez,
F. Křikava, and L. M. Rose, Eds., vol. 1758. CEUR-WS, 2018, pp. 45–54. [Online].
Available: http://WWW.ceur-ws.org/Vol-1758/paper8.pdf

[270] K. Maruyama and T. Omori, “Security-aware Refactoring Alerting Its Impact on Code
Vulnerabilities,” in Proceedings of the 15th Asia-pacific Software Engineering Confer-
ence (APSEC). IEEE Computer Society, 2008, pp. 445–451. https://doi.org/10.1109/
APSEC.2008.57

[271] S. F. Smith and M. Thober, “Refactoring Programs to Secure Information Flows,” in
Proceedings of the Workshop on Programming Languages and Analysis for Security
(PLAS). Association for Computing Machinery (ACM), 2006, pp. 75–83. https://doi.
org/10.1145/1134744.1134758

[272] F. Long, D. Mohindra, R. C. Seacord, D. F. Sutherland, and D. Svoboda, The CERT
Oracle Secure Coding Standard for Java, 1st ed., ser. SEI Series in Software Engineer-
ing. Addison-Wesley Professional, 2011.

[273] Y. Shin and L. Williams, “Is Complexity Really the Enemy of Software Security?”
in Proceedings of the 4th Workshop on Quality of Protection (QOP). Association
for ComputingMachinery (ACM), 2008, pp. 47–50. https://doi.org/10.1145/1456362.
1456372

[274] M. Fleck, J. Troya, and M. Wimmer, “Search-Based Model Transformations with
MOMoT,” in Proceedings of the 9th International Conference on Theory and Practice
of Model Transformations (ICMT), ser. Lecture Notes in Computer Science (LNCS),

https://doi.org/10.1007/978-3-662-46675-9_19
https://doi.org/10.1109/TSE.2010.70
https://doi.org/10.1109/TSE.2010.70
https://doi.org/10.1145/1143997.1144315
http://WWW.ceur-ws.org/Vol-1758/paper8.pdf
https://doi.org/10.1109/APSEC.2008.57
https://doi.org/10.1109/APSEC.2008.57
https://doi.org/10.1145/1134744.1134758
https://doi.org/10.1145/1134744.1134758
https://doi.org/10.1145/1456362.1456372
https://doi.org/10.1145/1456362.1456372

Bibliography 463

P. V. Gorp and G. Engels, Eds., vol. 9765. Springer, 2016, pp. 79–87. https://doi.org/
10.1007/978-3-319-42064-6_6

[275] L. C. Briand, J. W. Daly, and J. Wüst, “A Unified Framework for Cohesion Measure-
ment in Object-Oriented Systems,” Empirical Software Engineering (EMSE), vol. 3,
no. 1, pp. 65–117, 1998. https://doi.org/10.1023/A:1009783721306

[276] L. C. Briand, J. W. Daly, and J. K. Wust, “A Unified Framework for Coupling Mea-
surement in Object-Oriented Systems,” Transaction on Software Engineering (TSE),
vol. 25, no. 1, pp. 91–121, 1999. https://doi.org/10.1109/32.748920

[277] S. Peldszus, D. Strüber, and J. Jürjens, “Model-Based Security Analysis of Feature-
Oriented Software Product Lines,” inProceedings of the 17th International Conference
on Generative Programming: Concepts and Experiences (GPCE). Association for
Computing Machinery (ACM), 2018, pp. 93–106. https://doi.org/10.1145/3278122.
3278126

[278] K. Pohl, G. Boeckle, and F. van der Linden, Software Product Line Engineering:
Foundations, Principles, and Techniques. Springer, 2005. https://doi.org/10.1007/3-
540-28901-1

[279] S. Apel, D. S. Batory, C. Kästner, and G. Saake, Feature-Oriented Software Product
Lines—Concepts and Implementation. Springer, 2013. https://doi.org/10.1007/978-3-
642-37521-7

[280] P. Clements and L. Northrop, Software Product Lines: Practices and Patterns, ser. SEI
Series in Software Engineering. Addison-Wesley, 2001.

[281] K.C.Kang, S.G.Cohen, J. A.Hess,W.E.Novak, andA. S. Peterson, “Feature-oriented
Domain Analysis (FODA) Feasibility Study,” CMU/SEI-90TR-21, Tech. Rep., 1990.

[282] K. Czarnecki, S. Helsen, and U. Eisenecker, “Staged Configuration Using Feature
Models,” in Proceedings of the 3rd International Conference on Software Product
Lines (SPLC), ser. Lecture Notes in Computer Science (LNCS), R. L. Nord, Ed., vol.
3154. Springer, 2004, pp. 266–283. https://doi.org/10.1007/978-3-540-28630-1_17

[283] D. Benavides, P. Trinidad, and A. Ruiz-Cortés, “Automated Reasoning on Feature
Models,” in Proceedings of the 17th International Conference on Advanced Informa-
tion Systems Engineering (CAiSE), ser. Lecture Notes in Computer Science (LNCS),
O. Pastor and J. F. e Cunha, Eds., vol. 3520. Springer, 2005, pp. 491–503. https://doi.
org/10.1007/11431855_34

[284] C. Kastner, T. Thum, G. Saake, J. Feigenspan, T. Leich, F. Wielgorz, and S. Apel,
“FeatureIDE:ATool Framework for Feature-Oriented SoftwareDevelopment,” inPro-
ceedings of the 31st International Conference on Software Engineering (ICSE). IEEE
Computer Society, 2009, pp. 611–614. https://doi.org/10.1109/ICSE.2009.5070568

[285] METOP GmbH, “FeatureIDE Website,” 2020. [Online]. Available: http://www.
featureide.com/

[286] K.Czarnecki andM.Antkiewicz, “Mapping Features toModels: ATemplateApproach
Based on Superimposed Variants,” in Proceedings of the 4th International Conference
on Generative Programming and Component Engineering (GPCE), ser. Lecture Notes
in Computer Science (LNCS), R. Glück andM. Lowry, Eds., vol. 3676. Springer, 2005,
pp. 422–437. https://doi.org/10.1007/11561347_28

[287] H. Cichos, S. Oster, M. Lochau, and A. Schürr, “Model-Based Coverage-Driven Test
Suite Generation for Software Product Lines,” in Proceedings of the 14th International
Conference on Model-driven Engineering Languages and Systems (MODELS), ser.

https://doi.org/10.1007/978-3-319-42064-6_6
https://doi.org/10.1007/978-3-319-42064-6_6
https://doi.org/10.1023/A:1009783721306
https://doi.org/10.1109/32.748920
https://doi.org/10.1145/3278122.3278126
https://doi.org/10.1145/3278122.3278126
https://doi.org/10.1007/3-540-28901-1
https://doi.org/10.1007/3-540-28901-1
https://doi.org/10.1007/978-3-642-37521-7
https://doi.org/10.1007/978-3-642-37521-7
https://doi.org/10.1007/978-3-540-28630-1_17
https://doi.org/10.1007/11431855_34
https://doi.org/10.1007/11431855_34
https://doi.org/10.1109/ICSE.2009.5070568
http://www.featureide.com/
http://www.featureide.com/
https://doi.org/10.1007/11561347_28

464 Bibliography

Lecture Notes in Computer Science (LNCS), J. Whittle, T. Clark, and T. Kühne, Eds.
6981: Springer, 2011, pp. 425–439. https://doi.org/10.1007/978-3-642-24485-8_31

[288] C. Kästner and S. Apel, “Virtual Separation of Concerns – A Second Chance for
Preprocessors,” Journal of Object Technology (JOT), vol. 8, no. 6, pp. 59–78, 2009.
https://doi.org/10.5381/jot.2009.8.6.c5

[289] P. T. Devanbu and S. Stubblebine, “Software Engineering for Security: ARoadmap,” in
Proceedings of the Conference on the Future of Software Engineering. Association for
Computing Machinery (ACM), 2000, pp. 227–239. https://doi.org/10.1145/336512.
336559

[290] H. S. de Andrade, E. S. de Almeida, and I. Crnkovic, “Architectural Bad Smells in Soft-
ware Product Lines: An Exploratory Study,” in Companion Volume of the Proceeding
of the 11th Working Conference on Software Architecture (WICSA), ser. International
Conference Proceeding Series (ICPS). Association for Computing Machinery (ACM),
2014, pp. 12:1–12:6. https://doi.org/10.1145/2578128.2578237

[291] C.Kästner, S.Apel, T. Thüm, andG. Saake, “TypeCheckingAnnotation-based Product
Lines,” Transactions on Software Engineering and Methodology (TOSEM), vol. 21,
no. 3, pp. 14:1–14:39, 2012. https://doi.org/10.1145/2211616.2211617

[292] “Mobilephoto.” [Online]. Available: http://homepages.dcc.ufmg.br/~figueiredo/spl/
icse08/

[293] “Lampiro.” [Online]. Available: https://github.com/pinturic/lampiro/tree/master/
lampiro

[294] L. Wozniak and P. Clements, “How Automotive Engineering is Taking Product Line
Engineering to the Extreme,” in Proceedings of the 19th International Conference
on Software Product Line (SPLC), ser. International Conference Proceeding Series
(ICPS). Association for Computing Machinery (ACM), 2015, pp. 327–336. https://
doi.org/10.1145/2791060.2791071

[295] D. Reuling, J. Bürdek, S. Rotärmel, M. Lochau, and U. Kelter, “Fault-Based Product-
Line Testing: Effective Sample Generation Based on Feature-Diagram Mutation,” in
Proceedings of the 19th International Conference on Software Product Line (SPLC).
Association for Computing Machinery (ACM), 2015, pp. 131–140. https://doi.org/10.
1145/2791060.2791074

[296] S. Ruland, L. Luthmann, J. Bürdek, S. Lity, T. Thüm, M. Lochau, and M. Ribeiro,
“Measuring Effectiveness of Sample-Based Product-Line Testing,” in Proceedings of
the 17th International Conference on Generative Programming: Concepts and Expe-
riences (GPCE), vol. 53, no. 9. Association for Computing Machinery (ACM), 2018,
pp. 119–133. https://doi.org/10.1145/3278122.3278130

[297] D. BrUMLey, P. Poosankam, D. Song, and J. Zheng, “Automatic Patch-based Exploit
Generation is Possible: Techniques and Implications,” inProceedings of the Symposium
on Security and Privacy (SP), B. Werner, Ed. IEEE Computer Society, 2008, pp. 143–
157. https://doi.org/10.1109/SP.2008.17

[298] A. Nappa, R. Johnson, L. Bilge, J. Caballero, and T. Dumitras, “The Attack of the
Clones: A Study of the Impact of Shared Code on Vulnerability Patching,” in Proceed-
ings of the Symposium on Security and Privacy (SP). IEEE Computer Society, 2015,
pp. 692–708. https://doi.org/10.1109/SP.2015.48

[299] Adaptive Ltd., BoldSoft, Borland Software Corporation, Compuware Corporation,
Dresden University of Technology, France Telecom, International Business Machines,

https://doi.org/10.1007/978-3-642-24485-8_31
https://doi.org/10.5381/jot.2009.8.6.c5
https://doi.org/10.1145/336512.336559
https://doi.org/10.1145/336512.336559
https://doi.org/10.1145/2578128.2578237
https://doi.org/10.1145/2211616.2211617
http://homepages.dcc.ufmg.br/~figueiredo/spl/icse08/
http://homepages.dcc.ufmg.br/~figueiredo/spl/icse08/
https://github.com/pinturic/lampiro/tree/master/lampiro
https://github.com/pinturic/lampiro/tree/master/lampiro
https://doi.org/10.1145/2791060.2791071
https://doi.org/10.1145/2791060.2791071
https://doi.org/10.1145/2791060.2791074
https://doi.org/10.1145/2791060.2791074
https://doi.org/10.1145/3278122.3278130
https://doi.org/10.1109/SP.2008.17
https://doi.org/10.1109/SP.2015.48

Bibliography 465

IONA, Kabira Technologies Inc., Kings College, Klasse Objecten, Open Canarias, SL,
Oracle, Project Technology Inc., Rational Software Corporation, SAP AG, Softeam,
Syntropy Ltd., Telelogic, Thales, University of Bremen, University of Kent, Univer-
sity of York, Willink Transformations Ltd, and Zeligsoft, Inc., “Object Constraint
Language (OCL),” Object Management Group (OMG), OMG Standard formal/2014-
02-03, 2014, version 2.4. [Online]. Available: http://www.omg.org/spec/OCL/2.4/

[300] K. Czarnecki and K. Pietroszek, “Verifying Feature-based Model Templates Against
Well-formedness OCL Constraints,” in Proceedings of the 5th International Confer-
ence on Generative Programming and Component Engineering (GPCE), S. Jarzabek,
D. Schmidt, and T. Veldhuizen, Eds. Association for Computing Machinery (ACM),
2006, pp. 211–220. https://doi.org/10.1145/1173706.1173738

[301] American Systems Corporation, PTC Inc., BAE SYSTEMS, The Boeing Company,
Ceira Technologies, Deere & Company, Airbus, EmbeddedPlus Engineering, Euro-
pean Aeronautic Defence and Space Company N.V., Eurostep Group AB, Gentleware
AG, I-Logix, Inc., International Business Machines, International Council on Sys-
tems Engineering, Israel Aircraft Industries, Lockheed Martin Corporation, Mentor
Graphics, Motorola, Inc., National Aeronautics and Space Administration, No Magic,
Inc., Northrop Grumman, Object Management Group, oose Innovative Informatik
eG, PivotPoint Technology Corporation, Raytheon Company, Sparx Systems, Tele-
logic AB, and THALES, “System Modeling Language (SysML),” Object Manage-
ment Group (OMG), OMG Standard formal/19-11-01, 2019, version 1.6. [Online].
Available: https://www.omg.org/spec/SysML

[302] C. P. Gomes, H. Kautz, A. Sabharwal, and B. Selman, “Satisfiability Solvers,” Foun-
dations of Artificial Intelligence, vol. 3, pp. 89–134, 2008.

[303] J. Jürjens and R. Rumm, “Model-based Security Analysis of the German Health Card
Architecture,”Methods of Information in Medicine, vol. 47, no. 5, pp. 409–416, 2008.
https://doi.org/10.3414/ME9122

[304] J. Lloyd and J. Jürjens, “Security Analysis of a Biometric Authentication System
using UMLsec and JML,” in Proceedings of the 12th International Conference on
Model Driven Engineering Languages and Systems (MODELS), ser. Lecture Notes in
Computer Science (LNCS), A. Schürr and B. Selic, Eds., vol. 5795. Springer, 2009,
pp. 77–91. https://doi.org/10.1007/978-3-8348-9788-6/_9

[305] S. Peldszus, A. S. Ahmadian, M. Salnitri, J. Jürjens, M. Pavlidis, and H. Mouratidis,
Visual Privacy Management. Springer, 2020, ch. Visual Privacy Management, pp. 77–
108. https://doi.org/10.1007/978-3-030-59944-7_4

[306] M. Reininger, “End-to-End Security in a Reinsurance Company, Remote Access to the
Company Network,” Master’s thesis, TU Munich, 2006.

[307] A. Capozucca, B. Cheng, G. Georg, N. Guelfi, P. Istoan, G. Mussbacher, A. Jensen,
J.-M. Jézéquel, J. Kienzle, J. Klein et al., “Requirements Definition Document for a
Software Product Line of Car Crash Management Systems,” Colorado State Univer-
sity, Tech. Rep. CS-11-105, 2011. [Online]. Available: https://www.cs.colostate.edu/
TechReports/Reports/2011/tr11-105.pdf

[308] D. Strüber, T. Kehrer, T. Arendt, C. Pietsch, and D. Reuling, “Scalability of Model
Transformations: Position Paper and Benchmark Set,” in Proceedings of the 4rd Work-
shop on Scalable Model Driven Engineering (BigMDE), ser. CEUR Workshop Pro-
ceedings, D. Kolovos, D. D. Ruscio, N.Matragkas, J. S. Cuadrado, I. Rath, andM. Tisi,

http://www.omg.org/spec/OCL/2.4/
https://doi.org/10.1145/1173706.1173738
https://www.omg.org/spec/SysML
https://doi.org/10.3414/ME9122
https://doi.org/10.1007/978-3-8348-9788-6/_9
https://doi.org/10.1007/978-3-030-59944-7_4
https://www.cs.colostate.edu/TechReports/Reports/2011/tr11-105.pdf
https://www.cs.colostate.edu/TechReports/Reports/2011/tr11-105.pdf

466 Bibliography

Eds., vol. 1652, 2016, pp. 21–30. [Online]. Available: http://ceur-ws.org/Vol-1652/
paper3.pdf

[309] A. Hern and agencies, “Apple Removes Malicious Programs After First Major
Attack on App Store,” The Guardian online, 2015. [Online]. Available: https://www.
theguardian.com/technology/2015/sep/21/apple-removes-malicious-programs-after-
first-major-attack-on-app-store?CMP=share_btn_link

[310] D. Spaar and F. A. Scherschel, “Beemer, Open Thyself! – Security Vulnerabilities in
BMW’s ConnectedDrive,” c’t –Magazin für Computertechnik, vol. 5, pp. 86–89, 2015.
[Online]. Available: https://heise.de/-2540957

[311] H. Bruneliere, E. Burger, J. Cabot, andM.Wimmer, “A Feature-based Survey ofModel
View Approaches,” Software & Systems Modeling (SoSyM), pp. 1–22, 2017. https://
doi.org/10.1007/s10270-017-0622-9

[312] C. Kästner, S. Apel, and M. Kuhlemann, “Granularity in Software Product Lines,” in
Proceedings of the 30th International Conference on Software Engineering (ICSE).
Association for Computing Machinery (ACM), 2008, pp. 311–320. https://doi.org/10.
1145/1368088.1368131

[313] D. Strüber, S. Peldszus, and J. Jürjens, “Taming Multi-Variability of Software Product
Line Transformations,” inProceedings of the 21st International Conference on Funda-
mental Approaches in Software Engineering (FASE), ser. Lecture Notes in Computer
Science (LNCS), A. Russo and A. Schürr, Eds., vol. 10802. Springer, 2018, pp. 337–
355. https://doi.org/10.1007/978-3-319-89363-1_19

[314] S. Schulze, T. Thüm, M. Kuhlemann, and G. Saake, “Variant-preserving Refactoring
in Feature-oriented Software Product Lines,” in Proceedings of the 6th International
Workshop on Variability Modeling of Software-intensive Systems (VAMOS), ser. Inter-
national Conference Proceeding Series (ICPS). Association for ComputingMachinery
(ACM), 2012, pp. 73–81. https://doi.org/10.1145/2110147.2110156

[315] P. Borba, L. Teixeira, and R. Gheyi, “A Theory of Software Product Line Refinement,”
Theoretical Computer Science, vol. 455, pp. 2–30, 2012. https://doi.org/10.1016/j.tcs.
2012.01.031

[316] S. Lity,M. Kowal, and I. Schaefer, “Higher-order DeltaModeling for Software Product
Line Evolution,” inProceedings of the 7th InternationalWorkshop onFeature-oriented
Software (FOSD). Association for Computing Machinery (ACM), 2016, pp. 39–48.
https://doi.org/10.1145/3001867.3001872

[317] R. Salay, M. Famelis, J. Rubin, A. D. Sandro, and M. Chechik, “Lifting Model Trans-
formations to Product Lines,” in Proceedings of the 36th International Conference on
Software Engineering (ICSE). Association for Computing Machinery (ACM), 2014,
pp. 117–128. https://doi.org/10.1145/2568225.2568267

[318] D. Kolovos, L. Rose, N. Matragkas, R. Paige, E. Guerra, J. S. Cuadrado, J. De Lara,
I. Ráth, D. Varró, M. Tisi, and J. Cabot, “A Research Roadmap towards Achieving
Scalability in Model Driven Engineering,” in Proceedings of the Workshop on Scal-
ability in Model Driven Engineering (BigMDE), D. D. Ruscio, D. S. Kolovos, and
N. Matragkas, Eds. Association for Computing Machinery (ACM), 2013, pp. 1–10.
https://doi.org/10.1145/2487766.2487768

[319] M. Sijtema, “Introducing Variability Rules in ATL for Managing Variability in MDE-
based Product Lines,” in Proceedings of the 2nd Workshop on Model Transformation
with ATL (MTATL), ser. CEUR Workshop Proceedings, M. D. D. Fabro, F. Jouault,

http://ceur-ws.org/Vol-1652/paper3.pdf
http://ceur-ws.org/Vol-1652/paper3.pdf
https://www.theguardian.com/technology/2015/sep/21/apple-removes-malicious-programs-after-first-major-attack-on-app-store?CMP=share_btn_link
https://www.theguardian.com/technology/2015/sep/21/apple-removes-malicious-programs-after-first-major-attack-on-app-store?CMP=share_btn_link
https://www.theguardian.com/technology/2015/sep/21/apple-removes-malicious-programs-after-first-major-attack-on-app-store?CMP=share_btn_link
https://heise.de/-2540957
https://doi.org/10.1007/s10270-017-0622-9
https://doi.org/10.1007/s10270-017-0622-9
https://doi.org/10.1145/1368088.1368131
https://doi.org/10.1145/1368088.1368131
https://doi.org/10.1007/978-3-319-89363-1_19
https://doi.org/10.1145/2110147.2110156
https://doi.org/10.1016/j.tcs.2012.01.031
https://doi.org/10.1016/j.tcs.2012.01.031
https://doi.org/10.1145/3001867.3001872
https://doi.org/10.1145/2568225.2568267
https://doi.org/10.1145/2487766.2487768

Bibliography 467

and I. Kurtev, Eds., vol. 711. CEUR-WS, 2010, pp. 39–49. [Online]. Available: http://
ceur-ws.org/Vol-711/paper5.pdf

[320] A. Anjorin, K. Saller, M. Lochau, and A. Schürr, “Modularizing Triple Graph Gram-
mars Using Rule Refinement,” in Proceedings of the 17th International Conference
on Fundamental Approaches to Software Engineering (FASE), ser. Lecture Notes in
Computer Science (LNCS), S. Gnesi and A. Rensink, Eds., vol. 8411. Springer, 2014,
pp. 340–355. https://doi.org/10.1007/978-3-642-54804-8_24

[321] J. Hussein, L. Moreau et al., “A Template-based Graph Transformation System for
the PROV Data Model,” in Proceedings of the 7th International Workshop on Graph
Computation Models (GCM), 2016.

[322] D. Strüber, “Model-Driven Engineering in the Large: Refactoring Techniques forMod-
els andModel Transformation Systems,” Ph.D. dissertation, Philipps-Universität Mar-
burg, 2016.

[323] D. Strüber, J. Rubin, T. Arendt, M. Chechik, G. Taentzer, and J. Plöger, “Variability-
basedModel Transformation: Formal Foundation and Application,” Formal Aspects of
Computing (FAOC), vol. 30, no. 1, pp. 133–162, 2018. https://doi.org/10.1007/s00165-
017-0441-3

[324] C.Kästner, S. Apel, S. Trujillo,M.Kuhlemann, andD.Batory, “Language-independent
Safe Decomposition of Legacy Applications into Features,” University of Magdeburg,
Tech. Rep., 2008.

[325] A.Di Sandro, R. Salay,M. Famelis, S. Kokaly, andM.Chechik, “MMINT:AGraphical
Tool for Interactive Model Management,” in Proceedings of the Posters & Demonstra-
tions at the Models Conference, ser. CEUR Workshop Proceedings, V. Kulkarni and
O.Badreddin, Eds., vol. 1554. CEUR-WS, 2015, pp. 16–19. [Online]. Available: http://
ceur-ws.org/Vol-1554/PD_MoDELS_2015_paper_6.pdf

[326] D. Strüber and S. Schulz, “ATool Environment forManaging Families ofModel Trans-
formation Rules,” in Proceedings of the International Conference on Graph Transfor-
mation (ICGT), ser. Lecture Notes in Computer Science (LNCS), R. Echahed and
M. Minas, Eds., vol. 9761. Springer, 2016, pp. 89–101. https://doi.org/10.1007/978-
3-319-40530-8_6

[327] J. Rubin and M. Chechik, “Combining Related Products into Product Lines,” in Pro-
ceedings of the International Conference on Fundamental Approaches to Software
Engineering (FASE), ser. Lecture Notes in Computer Science (LNCS), J. de Lara and
A. Zisman, Eds., vol. 7212. Springer, 2012, pp. 285–300. https://doi.org/10.1007/978-
3-642-28872-2_20

[328] D. Strüber, J. Rubin, T. Arendt, M. Chechik, G. Taentzer, and J. Plöger, “RuleMerger:
Automatic Construction of Variability-Based Model Transformation Rules,” in Pro-
ceedings of the 19th International Conference onFundamental Approaches to Software
Engineering (FASE), ser. Lecture Notes in Computer Science (LNCS), P. Stevens and
A. Wąsowski, Eds., vol. 9633. Springer, 2016, pp. 122–140. https://doi.org/10.1007/
978-3-662-49665-7_8

[329] K. Czarnecki and S. Helsen, “Feature-Based Survey of Model Transformation
Approaches,” IBM Systems Journal, vol. 45, no. 3, pp. 621–645, 2006. https://doi.
org/10.1147/sj.453.0621

http://ceur-ws.org/Vol-711/paper5.pdf
http://ceur-ws.org/Vol-711/paper5.pdf
https://doi.org/10.1007/978-3-642-54804-8_24
https://doi.org/10.1007/s00165-017-0441-3
https://doi.org/10.1007/s00165-017-0441-3
http://ceur-ws.org/Vol-1554/PD_MoDELS_2015_paper_6.pdf
http://ceur-ws.org/Vol-1554/PD_MoDELS_2015_paper_6.pdf
https://doi.org/10.1007/978-3-319-40530-8_6
https://doi.org/10.1007/978-3-319-40530-8_6
https://doi.org/10.1007/978-3-642-28872-2_20
https://doi.org/10.1007/978-3-642-28872-2_20
https://doi.org/10.1007/978-3-662-49665-7_8
https://doi.org/10.1007/978-3-662-49665-7_8
https://doi.org/10.1147/sj.453.0621
https://doi.org/10.1147/sj.453.0621

468 Bibliography

[330] E. Richa, E. Borde, and L. Pautet, “Translation of ATL to AGT and Application to a
Code Generator for Simulink,” Software & Systems Modeling (SoSyM), vol. 18, pp.
321–344, 2017. https://doi.org/10.1007/s10270-017-0607-8

[331] I. Rychkova, M. Kirsch-Pinheiro, and B. L. Grand, “Context-Aware Agile Business
Process Engine: Foundations and Architecture,” in Proceedings of the 14th Working
Conference on Business Process Modeling, Development, and Support (BPMDS), ser.
Lecture Notes in Business Information Processing (LNBIP), S. Nurcan, H. A. Proper,
P. Soffer, J. Krogstie, R. Schmidt, and T. H. Bider, Eds., vol. 147. Springer, 2013, pp.
31–47. https://doi.org/10.1007/978-3-642-38484-4_4

[332] M. Chechik, M. Famelis, R. Salay, and D. Strüber, “Perspectives of Model Trans-
formation Reuse,” in Proceedings of the 12th International Conference on Integrated
Formal Methods (IFM), ser. Lecture Notes in Computer Science (LNCS), E. Ábrahám
and M. Huisman, Eds., vol. 9681. Springer, 2016, pp. 28–44. https://doi.org/10.1007/
978-3-319-33693-0_3

[333] A. Habel, R. Heckel, and G. Taentzer, “Graph Grammars with Negative Application
Conditions,” Fundamenta Informaticae, vol. 26, no. 3/4, pp. 287–313, 1996.

[334] T. Kehrer, U. Kelter, and G. Taentzer, “A Rule-based Approach to the Semantic Lifting
of Model Differences in the Context of Model Versioning,” in Proceedings of the 26th

International Conference of Automated Software Engineering (ASE). IEEE Computer
Society, 2011, pp. 163–172. https://doi.org/10.1109/ASE.2011.6100050

[335] D. Strüber, J. Plöger, and V. Acretoaie, “Clone Detection for Graph-Based Model
Transformation Languages,” in Proceedings of the 9th International Conference on
Theory andPractice ofModel Transformations (ICMT), ser. LectureNotes inComputer
Science (LNCS), P. V. Gorp and G. Engels, Eds., vol. 9765. Springer, 2016, pp. 191–
206. https://doi.org/10.1007/978-3-319-42064-6_13

[336] E. Biermann, C. Ermel, and G. Taentzer, “Lifting Parallel Graph Transformation Con-
cepts toModel TransformationBased on the EclipseModeling Framework,”Electronic
Communications of the EASST, vol. 26, 2010. https://doi.org/10.14279/tuj.eceasst.26.
353

[337] D. Strüber, A.Anjorin, and T. Berger, “Variability Representations inClassModels: An
Empirical Assessment,” inProceedings of the 23rd International Conference onModel
Driven Engineering Languages and Systems (MODELS). Association for Computing
Machinery (ACM), 2020, pp. 240–251. https://doi.org/10.1145/3365438.3410935

[338] G. Perrouin, M. Amrani, M. Acher, B. Combemale, A. Legay, and P.-Y. Schobbens,
“Featured Model Types: Towards Systematic Reuse in Modelling Language Engi-
neering,” in Proceedings of the 8th International Workshop on Modeling in Software
Engineering (MISE). Association for Computing Machinery (ACM), 2016, pp. 1–7.
https://doi.org/10.1145/2896982.2896987

[339] D. Batory, “Feature-oriented Programming and the AHEAD Tool Suite,” in Proceed-
ings of the International Conference on Software Engineering (ICSE). IEEE Computer
Science, 2004, pp. 702–703. https://doi.org/10.1109/ICSE.2004.1317496

[340] S. Trujillo, D. Batory, and O. Diaz, “Feature Oriented Model Driven Development: A
Case Study for Portlets,” in Proceedings of the International Conference on Software
Engineering (ICSE). IEEE Computer Society, 2007, pp. 44–53. https://doi.org/10.
1109/ICSE.2007.36

https://doi.org/10.1007/s10270-017-0607-8
https://doi.org/10.1007/978-3-642-38484-4_4
https://doi.org/10.1007/978-3-319-33693-0_3
https://doi.org/10.1007/978-3-319-33693-0_3
https://doi.org/10.1109/ASE.2011.6100050
https://doi.org/10.1007/978-3-319-42064-6_13
https://doi.org/10.14279/tuj.eceasst.26.353
https://doi.org/10.14279/tuj.eceasst.26.353
https://doi.org/10.1145/3365438.3410935
https://doi.org/10.1145/2896982.2896987
https://doi.org/10.1109/ICSE.2004.1317496
https://doi.org/10.1109/ICSE.2007.36
https://doi.org/10.1109/ICSE.2007.36

Bibliography 469

[341] L. Lambers, D. Strüber, G. Taentzer, K. Born, and J. Huebert, “Multi-granular Conflict
and Dependency Analysis in Software Engineering Based on Graph Transformation,”
in Proceedings of the 40th International Conference on Software Engineering (ICSE).
Association for Computing Machinery (ACM), 2018, pp. 716–727. https://doi.org/10.
1145/3180155.3180258

[342] P. Runeson and M. Höst, “Guidelines for Conducting and Reporting Case Study
Research in Software Engineering,” Empirical Software Engineering (EMSE), vol. 14,
no. 131, 2009. https://doi.org/10.1007/s10664-008-9102-8

[343] J. Bürger, S. Gärtner, T. Ruhroth, J. Zweihoff, J. Jürjens, and K. Schneider, “Restoring
Security of Long-living Systems by Co-evolution,” in Proceedings of the 39th Annual
Computer Software and Applications Conference (COMPSAC), vol. 2, 2015, pp. 153–
158.

[344] T. A.Wagner and S. L. Graham, “Efficient and Flexible Incremental Parsing,” Transac-
tions onProgrammingLanguages and Systems (TOPLAS), vol. 20, no. 5, pp. 980–1013,
1998. https://doi.org/10.1145/293677.293678

[345] S. Winkler and J. von Pilgrim, “A Survey of Traceability in Requirements Engineering
and Model-driven Development,” Software & Systems Modeling (SoSyM), vol. 9, pp.
529–565, 2010. https://doi.org/10.1007/s10270-009-0145-0

[346] C. Atkinson, D. Stoll, and P. Bostan, “Orthographic Software Modeling: A Practical
Approach to View-based Development,” in Proceedings of the International Confer-
ence on Evaluation of Novel Approaches to Software Engineering (ENASE), ser. Com-
munications inComputer and InformationScience (CCIS), L.Maciaszek,C.González-
Pérez, and S. Jablonski, Eds., vol. 69. Springer, 2009, pp. 206–219. https://doi.org/10.
1007/978-3-642-14819-4_15

[347] M. E. Kramer, E. Burger, and M. Langhammer, “View-centric Engineering with Syn-
chronized HeterogeneousModels,” inProceedings of the 1st Workshop on View-based,
Aspect-oriented and Orthographic Software Modelling (VAO). Association for Com-
puting Machinery (ACM), 2013. https://doi.org/10.1145/2489861.2489864

[348] M. Konersmann, “Explicitly Integrated Architecture-an Approach for Integrating Soft-
ware Architecture Model Information with Program Code,” Ph.D. dissertation, Uni-
versity of Duisburg-Essen, 2018.

[349] J. Bezivin, F. Jouault, and P. Valduriez, “On the Need forMegamodels,” inProceedings
of the OOPSLA & GPCE Workshop Workshopon Best Practices for Model-driven
Software Development, 2004.

[350] J. McKinna and P. Stevens, “How to Regain Equilibrium without Losing your Bal-
ance? Scenarios for BX Deployment (Discussion Paper),” in Proceedings of the 5th

International Workshop on Bidirectional Transformations (BX), ser. CEURWorkshop
Proceedings, A. Anjorin and J. Gibbons, Eds., vol. 1571. CEUR-WS, 2016, pp. 32–34.
[Online]. Available: http://ceur-ws.org/Vol-1571/paper_12.pdf

[351] P. Stevens, “Connecting Software Build with Maintaining Consistency between Mod-
els: Towards Sound, Optimal, and Flexible Building from Megamodels,” Software
and Systems Modeling (SoSyM), vol. 19, pp. 935–958, 2020. https://doi.org/10.1007/
s10270-020-00788-4

[352] “Enterprise Architect.” [Online]. Available: http://www.sparxsystems.de
[353] W. Fang, B. P. Miller, and J. A. Kupsch, “Automated Tracing and Visualization of

Software Security Structure and Properties,” in Proceedings of the 9th International

https://doi.org/10.1145/3180155.3180258
https://doi.org/10.1145/3180155.3180258
https://doi.org/10.1007/s10664-008-9102-8
https://doi.org/10.1145/293677.293678
https://doi.org/10.1007/s10270-009-0145-0
https://doi.org/10.1007/978-3-642-14819-4_15
https://doi.org/10.1007/978-3-642-14819-4_15
https://doi.org/10.1145/2489861.2489864
http://ceur-ws.org/Vol-1571/paper_12.pdf
https://doi.org/10.1007/s10270-020-00788-4
https://doi.org/10.1007/s10270-020-00788-4
http://www.sparxsystems.de

470 Bibliography

Symposium on Visualization for Cyber Security (VIZSEC), ser. International Confer-
ence Proceeding Series (ICPS). Association for Computing Machinery (ACM), 2012,
pp. 9–16. https://doi.org/10.1145/2379690.2379692

[354] A. Nhlabatsi, Y. Yu, A. Zisman, T. Tun, N. Khan, A. Bandara, and B. Nuseibeh,
“Managing Security Control Assumptions using Causal Traceability,” in Proceedings
of the 8th International Symposium on Software and Systems Traceability (SST). IEEE
Computer Society, 2015. https://doi.org/10.1109/SST.2015.14

[355] B. Dit,M. Revelle,M. Gethers, andD. Poshyvanyk, “Feature Location in Source Code:
A Taxonomy and Survey,” Journal of Software: Evolution and Process, vol. 25, no. 1,
pp. 53–95, 2013. https://doi.org/10.1002/smr.567

[356] J. Rubin and M. Chechik, “A Survey of Feature Location Techniques,” in Domain
Engineering: Product Lines, Conceptual Models, and Languages, I. Reinhartz-Berger,
A. Sturm, T. Clark, S. Cohen, and J. Bettin, Eds. Springer, 2013, pp. 29–58. https://
doi.org/10.1007/978-3-642-36654-3_2

[357] W. Zhao, L. Zhang, Y. Liu, J. Sun, and F. Yang, “SNIAFL: Towards a Static Nonin-
teractive Approach to Feature Location,” Transactions on Software Engineering and
Methodology (TOSEM), vol. 15, no. 2, pp. 195–226, 2006. https://doi.org/10.1145/
1131421.1131424

[358] D. Strüber, J. Rubin,G.Taentzer, andM.Chechik, “SplittingModelsUsing Information
Retrieval and Model Crawling Techniques,” in Proceedings of the 17th International
Conference on Fundamental Approaches to Software Engineering (FASE), ser. Lecture
Notes inComputer Science (LNCS), S.Gnesi andA.Rensink,Eds., vol. 8411. Springer,
2014, pp. 47–62. https://doi.org/10.1007/978-3-642-54804-8_4

[359] J. Font, L. Arcega, Ø. Haugen, and C. Cetina, “Feature Location in Models through
a Genetic Algorithm Driven by Information Retrieval Techniques,” in Proceedings
of the 19th International Conference on Model-driven Engineering Languages and
Systems (MODELS). Association for Computing Machinery (ACM), 2016, pp. 272–
282. https://doi.org/10.1145/2976767.2976789

[360] K. Lano, D. Clark, and K. Androutsopoulos, “Safety and Security Analysis of Object-
Oriented Models,” in Proceedings of the 21st International Conference on Computer
Safety, Reliability and Security (SafeComp), ser. Lecture Notes in Computer Science
(LNCS), S. Anderson, M. Felici, and S. Bologna, Eds., vol. 2434. Springer, 2002, pp.
82–93. https://doi.org/10.1007/3-540-45732-1_10

[361] P. H. Nguyen, M. Kramer, J. Klein, and Y. L. Traon, “An Extensive Systematic Review
on the Model-Driven Development of Secure Systems,” Information and Software
Technology (IST), vol. 68, pp. 62–81, 2015. https://doi.org/10.1016/j.infsof.2015.08.
006

[362] J. Jürjens, “Secure Information Flow for Concurrent Processes,” in Proceedings of
the 11th International Conference on Concurrency Theory (CONCUR), ser. Lecture
Notes in Computer Science (LNCS), C. Palamidessi, Ed., vol. 1877. Springer, 2000,
pp. 395–409. https://doi.org/10.1007/3-540-44618-4_29

[363] J. Jürjens, “Modelling Audit Security for Smart-Card Payment Schemes with UML-
Sec,” in Proceedings on the International Conference on Ict Systems Security and
Privacy Protection – Trusted Information: The NewDecade Challenge, ser. IFIP Inter-
national Federation for Information Processing (IFIPAICT), M. Dupuy and P. Paradi-

https://doi.org/10.1145/2379690.2379692
https://doi.org/10.1109/SST.2015.14
https://doi.org/10.1002/smr.567
https://doi.org/10.1007/978-3-642-36654-3_2
https://doi.org/10.1007/978-3-642-36654-3_2
https://doi.org/10.1145/1131421.1131424
https://doi.org/10.1145/1131421.1131424
https://doi.org/10.1007/978-3-642-54804-8_4
https://doi.org/10.1145/2976767.2976789
https://doi.org/10.1007/3-540-45732-1_10
https://doi.org/10.1016/j.infsof.2015.08.006
https://doi.org/10.1016/j.infsof.2015.08.006
https://doi.org/10.1007/3-540-44618-4_29

Bibliography 471

nas, Eds., vol. 65. Springer, 2001, pp. 93–107. https://doi.org/10.1007/0-306-46998-
7_7

[364] A. S. Ahmadian, F. Coerschulte, and J. Jürjens, “Supporting the Security Certification
and Privacy Level Agreements in the Context of Clouds,” in Proceedings of the 5th

International Symposium on Business Modeling and Software Design (BMSD), ser.
Lecture Notes in Business Information Processing (LNBIP), B. Shishkov, Ed., vol.
257. Springer, 2016, pp. 80–95. https://doi.org/10.1007/978-3-319-40512-4_5

[365] S. Ahmadian and J. Jürjens, “Supporting Model-based Privacy Analysis by Exploit-
ing Privacy Level Agreements,” in Proceedings of the International Conference on
Cloud Computing Technology and Science (CloudCom), R. Bilof, Ed. IEEE Computer
Society, 2016, pp. 360–365. https://doi.org/10.1109/CloudCom.2016.0063

[366] A. S. Ahmadian, D. Strüber, V. Riediger, and J. Jürjens, “Model-based Privacy Anal-
ysis in Industrial Ecosystems,” in Proceedings of the 13th European Conference on
Modelling Foundations and Applications (ECMFA), ser. Lecture Notes in Computer
Science (LNCS), A. Anjorin and H. Espinoza, Eds., vol. 10376. Springer, 2017, pp.
215–231. https://doi.org/10.1007/978-3-319-61482-3_13

[367] A. S. Ahmadian, “Model-Based Privacy by Design,” Ph.D. dissertation, University of
Koblenz-Landau, 2020.

[368] Q. Ramadan, “Data protection assurance by design: Support for conflict detection,
requirements traceability and fairness analysis,” Ph.D. dissertation, University of
Koblenz and Landau, 2020.

[369] Q. Ramadan, A. S. Ahmadian, J. Jürjens, S. Staab, and D. Strüber, “Explaining Algo-
rithmic Decisions with respect to Fairness,” in Proceedings of the Multi-Conference
on Software Engineering and Software Management (SE/SWM), S. Becker, I. Bogice-
vic, G. Herzwurm, and S. Wagner, Eds. Gesellschaft für Informatik e.V., 2019, pp.
161–162. https://doi.org/10.18420/se2019-50

[370] Q. Ramadan, A. S. Ahmadian, D. Strüber, J. Jürjens, and S. Staab, “Model-Based Dis-
crimination Analysis: A Position Paper,” in Proceedings of the International Workshop
on Software Fairness. Association for Computing Machinery (ACM), 2018, p. 22–28.
https://doi.org/10.1145/3194770.3194775

[371] I. Siveroni, A. Zisman, and G. Spanoudakis, “A UML-based Static Verification Frame-
work for Security,”Requirements Engineering Journal (RE), vol. 15, no. 1, pp. 95–118,
2010. https://doi.org/10.1007/s00766-009-0091-y

[372] B. Katt, M. Gander, R. Breu, and M. Felderer, “Enhancing Model Driven Security
through Pattern Refinement Techniques,” in Proceedings of the 10th International
Symposium on Formal Methods for Components and Objects (FMCO), ser. Lecture
Notes in Computer Science (LNCS), B. Beckert, F. Damiani, F. S. de Boer, and M. M.
Bonsangue, Eds., vol. 7542. Springer, 2011, pp. 169–183. https://doi.org/10.1007/978-
3-642-35887-6_9

[373] P.H.Nguyen,K.Yskout, T.Heyman, J. Klein, R. Scandariato, andY. L. Traon, “SoSPa:
ASystemof SecurityDesign Patterns for Systematically Engineering Secure Systems,”
in Proceedings of the 18th International Conference on Model-driven Engineering
Languages and Systems (MODELS). IEEE Computer Society, 2015, pp. 246–255.
https://doi.org/10.1109/MODELS.2015.7338255

[374] K. Yskout, R. Scandariato, and W. Joosen, “Do Security Patterns Really Help Design-
ers?” in Proceedings of the 37th International Conference on Software Engineering

https://doi.org/10.1007/0-306-46998-7_7
https://doi.org/10.1007/0-306-46998-7_7
https://doi.org/10.1007/978-3-319-40512-4_5
https://doi.org/10.1109/CloudCom.2016.0063
https://doi.org/10.1007/978-3-319-61482-3_13
https://doi.org/10.18420/se2019-50
https://doi.org/10.1145/3194770.3194775
https://doi.org/10.1007/s00766-009-0091-y
https://doi.org/10.1007/978-3-642-35887-6_9
https://doi.org/10.1007/978-3-642-35887-6_9
https://doi.org/10.1109/MODELS.2015.7338255

472 Bibliography

(ICSE). IEEE Computer Society, 2015, pp. 292–302. https://doi.org/10.1109/ICSE.
2015.49

[375] G. Georg, I. Ray, K. Anastasakis, B. Bordbar, M. Toahchoodee, and S. H. Houmb, “An
Aspect-oriented Methodology for Designing Secure Applications,” Information and
Software Technology (IST), vol. 51, no. 5, pp. 846–864, 2009. https://doi.org/10.1016/
j.infsof.2008.05.004

[376] C. L. Heitmeyer, M. Archer, E. I. Leonard, and J. McLean, “Applying Formal Methods
to aCertifiablySecure Software System,”Transactions on SoftwareEngineering (TSE),
vol. 34, no. 1, pp. 82–98, 2008. https://doi.org/10.1109/TSE.2007.70772

[377] Q. Ramadan, M. Salnitri, D. Strüber, J. Jürjens, and P. Giorgini, “From Secure Busi-
ness Process Modeling to Design-Level Security Verification,” in Proceedings of the
20th International Conference on Model-driven Engineering Languages and Systems
(MODELS). IEEE Computer Society, 2017, pp. 123–133. https://doi.org/10.1109/
MODELS.2017.10

[378] M. Salnitri, F. Dalpiaz, and P. Giorgini, “Designing Secure Business Processes with
SecBPMN,” Software& SystemsModeling (SoSyM), vol. 16, no. 3, pp. 737–757, 2017.
https://doi.org/10.1007/s10270-015-0499-4

[379] P. H. Nguyen, G. Nain, J. Klein, T. Mouelhi, and Y. L. Traon, “Modularity and
Dynamic Adaptation of Flexibly Secure Systems: Model-Driven Adaptive Delegation
in Access Control Management,” Transactions on Aspect-Oriented Software Develop-
ment (AOSD), vol. XI, pp. 109–144, 2014. https://doi.org/10.1007/978-3-642-55099-
7_4

[380] P. H. Nguyen, “Model-Driven SecurityWithModularity and Reusability for Engineer-
ing Secure Software Systems,” Ph.D. dissertation, Université du Luxembourg, 2015.

[381] I. Schieferdecker, J. Grossmann, and M. Schneider, “Model-Based Security Testing,”
in Proceedings of the 7th Workshop on Model-Based Testing (MBT), ser. Electronic
Proceedings in Theoretical Computer Science (EPTCS), vol. 80. Open Publishing
Association, 2012, pp. 1–12. https://doi.org/10.4204/EPTCS.80.1

[382] M. Abi-Antoun, D. Wang, and P. Torr, “Checking Threat Modeling Data Flow Dia-
grams for Implementation Conformance and Security,” in Proceedings of the 22nd

International Conference of Automated Software Engineering (ASE). Association for
Computing Machinery (ACM), 2007, pp. 393–396. https://doi.org/10.1145/1321631.
1321692

[383] S.M. Perez, J. García-Alfaro, F. Cuppens,N. Cuppens-Boulahia, and J. Cabot, “Model-
Driven Extraction and Analysis of Network Security Policies,” in Proceedings of
the International Conference on Model-driven Engineering Languages and Systems
(MODELS), ser. Lecture Notes in Computer Science (LNCS), A. Moreira, B. Schätz,
J. Gray, A. Vallecillo, and P. Clarke, Eds., vol. 8107. Springer, 2013, pp. 52–68. https://
doi.org/10.1007/978-3-642-41533-3_4

[384] S. Martínez, V. Cosentino, and J. Cabot, “Model-based Analysis of Java EEWeb Secu-
rity Configurations,” in Proceedings of the 8th International Workshop on Modeling in
Software Engineering (MISE). Association for Computing Machinery (ACM), 2016,
pp. 55–61. https://doi.org/10.1145/2896982.2896986

[385] M. Anisetti, C. A. Ardagna, and E. Damiani, “A Low-Cost Security Certification
Scheme for Evolving Services,” in Proceedings of the 19th International Conference

https://doi.org/10.1109/ICSE.2015.49
https://doi.org/10.1109/ICSE.2015.49
https://doi.org/10.1016/j.infsof.2008.05.004
https://doi.org/10.1016/j.infsof.2008.05.004
https://doi.org/10.1109/TSE.2007.70772
https://doi.org/10.1109/MODELS.2017.10
https://doi.org/10.1109/MODELS.2017.10
https://doi.org/10.1007/s10270-015-0499-4
https://doi.org/10.1007/978-3-642-55099-7_4
https://doi.org/10.1007/978-3-642-55099-7_4
https://doi.org/10.4204/EPTCS.80.1
https://doi.org/10.1145/1321631.1321692
https://doi.org/10.1145/1321631.1321692
https://doi.org/10.1007/978-3-642-41533-3_4
https://doi.org/10.1007/978-3-642-41533-3_4
https://doi.org/10.1145/2896982.2896986

Bibliography 473

on Web Services (ICWS), R. Bilof, Ed. IEEE Computer Society, 2012, pp. 122–129.
https://doi.org/10.1109/ICWS.2012.53

[386] R. F. Paige, P. J. Brooke, and J. S. Ostroff, “Metamodel-based Model Conformance
and Multiview Consistency Checking,” Transactions on Software Engineering and
Methodology (TOSEM), vol. 16, no. 3, p. 11, 2007. https://doi.org/10.1145/1243987.
1243989

[387] Z.Diskin, Y.Xiong, andK.Czarnecki, “SpecifyingOverlaps ofHeterogeneousModels
for Global Consistency Checking,” in Proceedings of the International Conference on
Model-driven Engineering Languages and Systems (MODELS), ser. Lecture Notes in
Computer Science (LNCS), J. Dingel and A. Solberg, Eds., vol. 6627. Springer, 2010,
pp. 165–179. https://doi.org/10.1007/978-3-642-21210-9_16

[388] H. König and Z. Diskin, “Efficient Consistency Checking of Interrelated Models,” in
Proceedings of the 13th European Conference on Modelling Foundations and Appli-
cations (ECMFA), ser. Lecture Notes in Computer Science (LNCS), A. Anjorin and
H. Espinoza, Eds., vol. 10376, 2017, pp. 161–178. https://doi.org/10.1007/978-3-319-
61482-3_10

[389] A. Reder and A. Egyed, “Incremental Consistency Checking for Complex Design
Rules and Larger Model Changes,” in Proceedings of the International Conference on
Model-driven Engineering Languages and Systems (MODELS), 2012, pp. 202–218.

[390] F. Simon, F. Steinbruckner, and C. Lewerentz, “Metrics Based Refactoring,” in Pro-
ceedings 5th European Conference on Software Maintenance and Reengineering
(CSMR). IEEE Computer Society, 2001, pp. 30–38. https://doi.org/10.1109/CSMR.
2001.914965

[391] M.Mäntylä, “BadSmells in Software –ATaxonomy and anEmpirical Study,”Master’s
thesis, Helsinki University of Technology, 2003.

[392] M. J. Munro, “Product Metrics for Automatic Identification of Bad Smell Design
Problems in Java Source-Code,” in Proceedings of the 11th International Software
Metrics Symposium (METRICS). IEEE Computer Society, 2005, pp. 15–15. https://
doi.org/10.1109/METRICS.2005.38

[393] S. Lee, S. Hwang, and S. Ryu, “All about Activity Injection: Threats, Semantics,
and Detection,” in Proceedings of the 32nd International Conference on Automated
Software Engineering (ASE). IEEE Computer Society, 2017, pp. 252–262. https://doi.
org/10.1109/ASE.2017.8115638

[394] I. Ion, B. Dragovic, and B. Crispo, “Extending the Java Virtual Machine to Enforce
Fine-Grained Security Policies in Mobile Devices,” in Proceedings of the 23rd Annual
Computer Security Applications Conference (ACSAC). IEEE Computer Society, 2007,
pp. 233–242. https://doi.org/10.1109/ACSAC.2007.36

[395] C.-A. Staicu, M. Pradel, and B. Livshits, “SYNODE Understanding and Automat-
ically Preventing Injection Attacks on NODE.JS,” Proceedings of the Network and
Distributed System Security Symposium (NDSS), 2018. https://doi.org/10.14722/ndss.
2018.23071

[396] S. Ognawala, M. Ochoa, A. Pretschner, and T. Limmer, “Macke: Compositional Anal-
ysis of Low-level Vulnerabilities with Symbolic Execution,” in Proceedings of the 31st

International Conference on Automated Software Engineering (ASE). Association for
Computing Machinery (ACM), 2016, pp. 780–785. https://doi.org/10.1145/2970276.
2970281

https://doi.org/10.1109/ICWS.2012.53
https://doi.org/10.1145/1243987.1243989
https://doi.org/10.1145/1243987.1243989
https://doi.org/10.1007/978-3-642-21210-9_16
https://doi.org/10.1007/978-3-319-61482-3_10
https://doi.org/10.1007/978-3-319-61482-3_10
https://doi.org/10.1109/CSMR.2001.914965
https://doi.org/10.1109/CSMR.2001.914965
https://doi.org/10.1109/METRICS.2005.38
https://doi.org/10.1109/METRICS.2005.38
https://doi.org/10.1109/ASE.2017.8115638
https://doi.org/10.1109/ASE.2017.8115638
https://doi.org/10.1109/ACSAC.2007.36
https://doi.org/10.14722/ndss.2018.23071
https://doi.org/10.14722/ndss.2018.23071
https://doi.org/10.1145/2970276.2970281
https://doi.org/10.1145/2970276.2970281

474 Bibliography

[397] T. W. Pratt, “A Hierarchical Graph Model of the Semantics of Programs,” in Proceed-
ings of the American Federation of Information Processing Societies (AFIPS) Spring
Joint Computer Conference (SJCC). Association for Computing Machinery (ACM),
1969, pp. 813–825. https://doi.org/10.1145/1476793.1476930

[398] B.Hoffmann,D. Janssens, andN.VanEetvelde, “Cloning andExpandingGraphTrans-
formation Rules for Refactoring,” Electronic Notes in Theoretical Computer Science
(ENTCS), vol. 152, pp. 53–67, 2006. https://doi.org/10.1016/j.entcs.2006.01.014

[399] MelinaMongiovi, R. Gheyi, G. Soares, L. Teixeira, and P. Borba, “Making Refactoring
Safer Through Impact Analysis,” Science of Computer Programming, vol. 93, no. A,
pp. 39–64, 2014. https://doi.org/10.1016/j.scico.2013.11.001

[400] S.Ghaith andM.ÓCinnéide, “ImprovingSoftware Security usingSearch-basedRefac-
toring,” in Proceedings of the 4th International Symposium Onsearch Based Software
Engineering (SSBSE), ser. Lecture Notes in Computer Science (LNCS), G. Fraser and
J. T. de Souza, Eds., vol. 7515. Springer, 2012, pp. 121–135. https://doi.org/10.1007/
978-3-642-33119-0_10

[401] C. Abid, V. Alizadeh, M. Kessentini, M. Dhaouadi, and R. Kazman, “Prioritizing
Refactorings for Security-critical Code,” Automated Software Engineering, vol. 28,
no. 4, 2021. https://doi.org/10.1007/s10515-021-00281-2

[402] T. Thüm, D. Batory, and C. Kästner, “Reasoning About Edits to Feature Mod-
els,” in Proceedings of the 31st International Conference on Software Engineering
(ICSE). IEEE Computer Society, 2009, pp. 254–264. https://doi.org/10.1109/ICSE.
2009.5070526

[403] J. Bürdek, T. Kehrer, M. Lochau, D. Reuling, U. Kelter, and A. Schürr, “Reason-
ing About Product-Line Evolution using Complex Feature Model Differences,” Auto-
mated Software Engineering, vol. 23, no. 4, pp. 687–733, 2016. https://doi.org/10.
1007/s10515-015-0185-3

[404] G. Taentzer, R. Salay, D. Strüber, and M. Chechik, “Transformations of Software
Product Lines: A Generalizing Framework based on Category Theory,” in Proceedings
of the 20th International Conference on Model-driven Engineering Languages and
Systems (MODELS). IEEE Computer Society, 2017, pp. 101–111. https://doi.org/10.
1109/MODELS.2017.22

[405] I. Schaefer, L. Bettini, V. Bono, F. Damiani, and N. Tanzarella, “Delta-oriented Pro-
gramming of Software Product Lines,” in Proceedings of the International Conference
on Software Product Lines (SPLC), ser. Lecture Notes in Computer Science (LNCS),
J. Bosch and J. Lee, Eds., vol. 6287. Springer, 2010, pp. 77–91. https://doi.org/10.
1007/978-3-642-15579-6_6

[406] F. Damiani, R. Hähnle, E. Kamburjan, and M. Lienhardt, “A Unified and Formal
Programming Model for Deltas and Traits,” in Proceedings of the 20th Interna-
tional Conference on Fundamental Approaches to Software Engineering (FASE), ser.
Lecture Notes in Computer Science (LNCS), M. Huisman and J. Rubin, Eds., vol.
10202, Springer. Springer, 2017, pp. 424–441. https://doi.org/10.1007/978-3-662-
54494-5_25

[407] X. He, Z. Hu, and Y. Liu, “Towards Variability Management in Bidirectional Model
Transformation,” in Proceedings of the 41st Annual Computer Software and Applica-
tions Conference (COMPSAC), vol. 1. IEEE Computer Society, 2017, pp. 224–233.
https://doi.org/10.1109/COMPSAC.2017.252

https://doi.org/10.1145/1476793.1476930
https://doi.org/10.1016/j.entcs.2006.01.014
https://doi.org/10.1016/j.scico.2013.11.001
https://doi.org/10.1007/978-3-642-33119-0_10
https://doi.org/10.1007/978-3-642-33119-0_10
https://doi.org/10.1007/s10515-021-00281-2
https://doi.org/10.1109/ICSE.2009.5070526
https://doi.org/10.1109/ICSE.2009.5070526
https://doi.org/10.1007/s10515-015-0185-3
https://doi.org/10.1007/s10515-015-0185-3
https://doi.org/10.1109/MODELS.2017.22
https://doi.org/10.1109/MODELS.2017.22
https://doi.org/10.1007/978-3-642-15579-6_6
https://doi.org/10.1007/978-3-642-15579-6_6
https://doi.org/10.1007/978-3-662-54494-5_25
https://doi.org/10.1007/978-3-662-54494-5_25
https://doi.org/10.1109/COMPSAC.2017.252

Bibliography 475

[408] A. Rensink, “Compositionality in Graph Transformation,” in Proceedings of the Inter-
nationalColloquiumonAutomata, Languages andProgramming (ICALP), ser. Lecture
Notes in Computer Science (LNCS), S. Abramsky, C. Gavoille, C. Kirchner, F. Meyer
auf der Heide, and P. G. Spirakis, Eds., vol. 6199. Springer, 2010, pp. 309–320. https://
doi.org/10.1007/978-3-642-14162-1_26

[409] L. Sion, D. V. Landuyt, K. Yskout, and W. Joosen, “Towards Systematically Address-
ing Security Variability in Software Product Lines,” in Proceedings of the 20th Inter-
national Systems and Software Product Line Conference (SPLC), ser. International
Conference Proceeding Series (ICPS), H. Mei, R. Rabiser, B. Xie, C. Elsner, Y. Xie,
J. Andersson, A. R. Cortés, K. Czarnecki, B. Selic, A. Wąsowski, X. Peng, J. Sim-
monds, J. Wei, T. Berger, N. Siegmund, L. Zhang, E. Bagheri, and Y. Xiong, Eds.
Association for Computing Machinery (ACM), 2016, pp. 342–343. https://doi.org/10.
1145/2934466.2966353

[410] V. Myllärniemi, M. Raatikainen, and T. Männistö, “Representing and Configuring
Security Variability in Software Product Lines,” in Proceedings of the 11th Interna-
tional Conference on Quality of Software Architectures (QOSA). Association for Com-
puting Machinery (ACM), 2015, pp. 1–10. https://doi.org/10.1145/2737182.2737183

[411] S. Nadi and S. Krüger, “Variability Modeling of Cryptographic Components: Clafer
Experience Report,” in Proceedings of the 10th International Workshop on Variabil-
ity Modelling of Software-intensive (VAMOS), ser. International Conference Proceed-
ing Series (ICPS), I. Schaefer, V. Alves, and E. S. de Almeida, Eds. Association for
Computing Machinery (ACM), 2016, pp. 105–112. https://doi.org/10.1145/2866614.
2866629

[412] D. Mellado, E. Fernández-Medina, and M. Piattini, “Towards Security Requirements
Management for Software Product Lines: A Security Domain Requirements Engineer-
ing Process,” Computer Standards & Interfaces, vol. 30, no. 6, pp. 361–371, 2008.
https://doi.org/10.1016/j.csi.2008.03.004

[413] D. Mellado, H. Mouratidis, and E. Fernández-Medina, “Secure Tropos Framework
for Software Product Lines Requirements Engineering,” Computer Standards & Inter-
faces, vol. 36, no. 4, pp. 711–722, 2014. https://doi.org/10.1016/j.csi.2013.12.006

[414] T. E. Fægri and S. O. Hallsteinsen, “A Software Product Line Reference Architecture
for Security,” in Software Product Lines, T. Käköla and J. C. Duenas, Eds. Springer,
2006, ch. Product LineArchitecture, pp. 275–326. https://doi.org/10.1007/978-3-540-
33253-4_8

[415] T. Thüm, S. Apel, C. Kästner, I. Schaefer, and G. Saake, “A Classification and Survey
of Analysis Strategies for Software Product Lines,” ACM Computing Surveys, vol. 47,
no. 1, pp. 6:1–6:45, 2014. https://doi.org/10.1145/2580950

[416] M. F. Johansen, Ø. Haugen, F. Fleurey, A. G. Eldegard, and T. Syversen, “Generat-
ing Better Partial Covering Arrays by Modeling Weights on Sub-product Lines,” in
Proceedings of the 15th International Conference on Model-driven Engineering Lan-
guages and Systems (MODELS), ser. Lecture Notes in Computer Science (LNCS),
R. B. France, J. Kazmeier, R. Breu, and C. Atkinson, Eds., vol. 7590. Springer, 2012,
pp. 269–284. https://doi.org/10.1007/978-3-642-33666-9_18

[417] S. Ali, T. Yue, L. C. Briand, and S. Walawege, “A Product Line Modeling and Con-
figuration Methodology to Support Model-Based Testing: An Industrial Case Study,”
in Proceedings of the 15th International Conference on Model-driven Engineering

https://doi.org/10.1007/978-3-642-14162-1_26
https://doi.org/10.1007/978-3-642-14162-1_26
https://doi.org/10.1145/2934466.2966353
https://doi.org/10.1145/2934466.2966353
https://doi.org/10.1145/2737182.2737183
https://doi.org/10.1145/2866614.2866629
https://doi.org/10.1145/2866614.2866629
https://doi.org/10.1016/j.csi.2008.03.004
https://doi.org/10.1016/j.csi.2013.12.006
https://doi.org/10.1007/978-3-540-33253-4_8
https://doi.org/10.1007/978-3-540-33253-4_8
https://doi.org/10.1145/2580950
https://doi.org/10.1007/978-3-642-33666-9_18

476 Bibliography

Languages and Systems (MODELS), ser. Lecture Notes in Computer Science (LNCS),
R. B. France, J. Kazmeier, R. Breu, and C. Atkinson, Eds., vol. 7590, 2012, pp. 726–
742. https://doi.org/10.1007/978-3-642-33666-9_46

[418] M. Lochau, S. Peldszus, M. Kowal, and I. Schaefer, “Model-based Testing,” in For-
mal Methods for Executable Software Models (SFM), ser. Lecture Notes in Computer
Science (LNCS), M. Bernardo, F. Damiani, R. Hähnle, E. B. Johnsen, and I. Schae-
fer, Eds. Springer, 2014, vol. 8483, pp. 310–342. https://doi.org/10.1007/978-3-319-
07317-0_8

[419] R. Lachmann, S. Beddig, S. Lity, S. Schulze, and I. Schaefer, “Risk-based Integration
Testing of Software Product Lines,” inProceedings of the 11th International Workshop
on Variability Modelling of Software-intensive Systems (VAMOS), ser. International
Conference Proceeding Series (ICPS). Association for Computing Machinery (ACM),
2017, pp. 52–59. https://doi.org/10.1145/3023956.3023958

[420] C. Kästner, P. G. Giarrusso, T. Rendel, S. Erdweg, K. Ostermann, and T. Berger,
“Variability-aware Parsing in the Presence of Lexical Macros and Conditional Com-
pilation,” in Proceedings of International Conference on Object Oriented Program-
ming Systems Languages and Applications (OOPSLA), ser. SIGPLANNotices, vol. 46,
no. 10. Association for Computing Machinery (ACM), 2011, pp. 805–824. https://doi.
org/10.1145/2048066.2048128

[421] A.Gruler,M. Leucker, andK. Scheidemann, “Modeling andModel Checking Software
Product Lines,” in Proceedings of the International Conference on FormalMethods for
Open Object-based Distributed Systems (FMOODS), ser. Lecture Notes in Computer
Science (LNCS), G. Barthe and F. S. de Boer, Eds., vol. 5051. Springer, 2008, pp.
113–131. https://doi.org/10.1007/978-3-540-68863-1_8

[422] D. C. Schmidt, “Guest Editor’s Introduction: Model-driven Engineering,” IEEE Com-
puter, vol. 39, no. 2, pp. 0025–31, 2006.

[423] B. Rumpe, Agile Modeling with UML: Code Generation, Testing, Refactoring.
Springer, 2017.

[424] D. Bildhauer and J. Ebert, “Querying Software Abstraction Graphs,” in Working Ses-
sion on Query Technologies and Applications for Program Comprehension (QTAPC),
2008.

[425] J. Ebert and D. Bildhauer, “Reverse Engineering Using Graph Queries,” in Graph
Transformations and Model-driven Engineering: Essays Dedicated to Manfred Nagl
on the Occasion of his 65th Birthday, ser. Lecture Notes in Computer Science (LNCS),
G. Engels, C. Lewerentz, W. Schäfer, A. Schürr, and B. Westfechtel, Eds. Springer,
2010, vol. 5765, ch. Software Architectures and Reengineering, pp. 335–362.

[426] S. Gärtner, T. Ruhroth, J. Bürger, K. Schneider, and J. Jürjens, “Maintaining Require-
ments for Long-living Software Systems by Incorporating Security Knowledge,”
in Proceedings of the 22nd International Requirements Engineering Conference
(RE). IEEE Computer Society, 2014, pp. 103–112. https://doi.org/10.1109/RE.2014.
6912252

https://doi.org/10.1007/978-3-642-33666-9_46
https://doi.org/10.1007/978-3-319-07317-0_8
https://doi.org/10.1007/978-3-319-07317-0_8
https://doi.org/10.1145/3023956.3023958
https://doi.org/10.1145/2048066.2048128
https://doi.org/10.1145/2048066.2048128
https://doi.org/10.1007/978-3-540-68863-1_8
https://doi.org/10.1109/RE.2014.6912252
https://doi.org/10.1109/RE.2014.6912252

	Acknowledgements
	Abstract
	Zusammenfassung
	Contents
	Abbreviations
	List of Figures
	List of Tables
	Listings
	Part I Opening Chapters
	1 Introduction
	1.1 Problem Identification
	1.2 Outline of the Approach
	1.3 Research Questions
	1.4 Research Methodology
	1.5 Outline

	2 Running Example: iTrust
	2.1 Development of a Medical Management System
	2.2 The iTrust Electronics Health Records System
	2.3 Suitability of iTrust Concerning the Research Questions

	3 State of the Art in Secure Software Systems Development
	3.1 Object-Oriented Programming
	3.2 Restructuring and Adaption
	3.3 Model-driven Software Development
	3.3.1 Domain Model
	3.3.2 Design Model
	3.3.3 Implementation Model

	3.4 Development Processes
	3.4.1 Sequential Software Development
	3.4.2 Agile Software Development

	3.5 (Security-)Compliance & Certifications
	3.5.1 Architecture Compliance Checking
	3.5.2 Software Reviews and Audits
	3.5.3 Standards and Certifications

	3.6 Security Checks
	3.6.1 UMLsec Security Checks
	3.6.2 SecDFD Security Checks
	3.6.3 Implementation-Level Security Checks

	3.7 Conclusion on the State of the Art

	4 A Walkthrough of the Proposed Development Approach
	4.1 Key Ideas of the GRaViTY Approach
	4.2 The GRaViTY Development Approach
	4.3 Developer Perspective on Using GRaViTY

	Part II Tracing
	5 Program Model for Object-oriented Languages
	5.1 Background on Program Representations
	5.2 Program Model for Object-oriented Programs
	5.2.1 Namespaces
	5.2.2 Types
	5.2.3 Inheritance
	5.2.4 Methods & Fields
	5.2.5 Member Access
	5.2.6 Overloading, Overwriting and Hiding
	5.2.7 Modifiers & Visibilities
	5.2.8 Annotation Mechanism

	5.3 Tool Support
	5.4 Evaluation of the Program Model
	5.5 Threats to Validity
	5.6 Conclusion on the proposed Program Representation

	6 Model-Synchronization and Tracing
	6.1 Background on Tracing
	6.2 Inter-Artifact Tracing and Model-Synchronization
	6.2.1 Background on Bidirectional Graph Transformations
	6.2.2 Model-Synchronization with Triple Graph Grammars
	6.2.3 Tool Support for the Model Synchronization
	6.2.4 Evaluation of the Model Synchronization
	6.2.5 Threats to Validity
	6.2.6 Conclusion on the Inter Artifact Model-Synchronization

	6.3 Tracing within UML Models of Different Abstraction
	6.3.1 Background on Refinements in UML Models
	6.3.2 Refinement Relationship Types
	6.3.3 Polymorphism in UML
	6.3.4 UMLsec Secure Dependency in the Context of Inheritance
	6.3.5 Refinements of UML Models
	6.3.6 Tool Support for Model Refinements
	6.3.7 Conclusion on Tracing within UML Models

	6.4 Tracing and Propagation of Security Requirements
	6.4.1 Persistence of Security Requirements in the Implementation
	6.4.2 Dynamic Tracing between UML Models and the Implementation
	6.4.3 Conclusion on the Propagation of Security Requirements

	7 Application to Legacy Projects using Reverse-Engineering
	7.1 Reverse-Engineering UML Models Using TGGs
	7.2 Mapping Early Design-Models to Code
	7.2.1 Background on Early Design Models
	7.2.2 Semi-Automated Mapping Approach
	7.2.3 Tool Support for Semi-Automated Mappings
	7.2.4 Evaluation
	7.2.5 Threats to Validity
	7.2.6 Conclusion on the Semi-Automated Mappings

	7.3 Conclusion on the Application to Legacy Projects

	Part III Security
	8 Static Security Compliance Checks
	8.1 Background on Static Security Analysis
	8.1.1 Design Model-based Security Checks
	8.1.2 Static Code Analysis

	8.2 Structural Compliance between Models and Code
	8.2.1 Automation of Structural Compliance Checks
	8.2.2 Tool Support for Structural Compliance Checks
	8.2.3 Conclusion on the Structural Compliance Checks

	8.3 Leveraging Correspondence Models for the Calculation of Security Metrics
	8.3.1 Background on Security Metrics
	8.3.2 Leveraging Traces for Security Metric Calculation
	8.3.3 Tool Support for the Calculation of Security Metrics
	8.3.4 Conclusion on Security Metrics

	8.4 Security Compliance Checks between Models & Code
	8.4.1 Verification of SecDFD Contracts
	8.4.2 Tool Support for the Verification of Contract Implementations
	8.4.3 Evaluation of the Contract Verification
	8.4.4 Threats to Validity
	8.4.5 Conclusion on the SecDFD Contract Verification

	8.5 Optimized Data Flow Analysis
	8.5.1 Optimizing Data Flow Analysis based on Security Requirements
	8.5.2 Tool Support for Optimized Data Flow Analysis
	8.5.3 Evaluation of the Optimized Data Flow Analysis
	8.5.4 Threats to Validity
	8.5.5 Conclusion on the Optimized Data Flow Analysis

	8.6 Specification of Incremental Security Checks
	8.6.1 Background on Henshin Model Transformations
	8.6.2 Incremental Security Violation Patterns
	8.6.3 Tool Support for Security Violation Patterns
	8.6.4 Evaluation of Incremental Security Violation Patterns
	8.6.5 Threats to Validity
	8.6.6 Conclusion on Security Violation Patterns

	9 Verification and Enforcement of Security at Run-time
	9.1 Background on Security Compliance at Run-time
	9.2 Example Security Violation
	9.3 Verification at Run-time and Model Adoption
	9.3.1 Security Monitoring at Run-time
	9.3.2 Countermeasures
	9.3.3 Automated Software System Evolution

	9.4 Tool Support for Monitoring and Adaption
	9.4.1 Java Annotations and IDE Support
	9.4.2 Validation at Run-time and Countermeasures
	9.4.3 Automated Adaption of Design-Time Models

	9.5 Evaluation of the Security Monitor
	9.5.1 O1–Effectiveness of the Run-time Monitoring
	9.5.2 O2–Applicability of the Run-time Monitoring
	9.5.3 O3–Usability

	9.6 Threats to Validity
	9.6.1 Internal Validity
	9.6.2 External Validity

	9.7 Conclusion on the Run-time Security Monitoring

	Part IV Maintenance
	10 Security-aware Refactoring of Software Systems
	10.1 Background on Object-Oriented Refactorings
	10.2 Formalization of Object-Oriented Refactorings
	10.2.1 Refactoring of Java Programs
	10.2.2 Program Refactoring based on Graph Transformation
	10.2.3 Co-Evolution due to Refactoring Application
	10.2.4 Tool Support for the Application of Formalized Refactorings
	10.2.5 Evaluation of the Refactoring Technique
	10.2.6 Threats to Validity
	10.2.7 Conclusion on Formalizing Refactorings

	10.3 Security-aware Refactorings
	10.3.1 Controlling the Attack Surface of Object-Oriented Refactorings
	10.3.2 Security Preserving Refactorings
	10.3.3 Conclusion on the Security Preserving Refactorings

	10.4 Conclusion on the Refactoring of Security-Critical Software Systems

	Part V Variants
	11 Specification of Variability throughout Variant-rich Software Systems
	11.1 Background on Variability Engineering
	11.1.1 Feature Identification and Specification
	11.1.2 Implementation of Variability
	11.1.3 Product Deployment

	11.2 UML and PM Variability Extension
	11.2.1 Variability Notations in GRaViTY
	11.2.2 Parsing of Antenna Annotations and Mapping to Models

	11.3 Tool Support for the Synchronization of Variability Annotations
	11.4 Evaluation of the Variability Extension
	11.5 Threats to Validity
	11.5.1 Construct Validity
	11.5.2 Internal Validity
	11.5.3 External Validity

	11.6 Conclusion on GRaViTY's Variability Extension

	12 Security in UML Product Lines
	12.1 Security and Variability Profile
	12.1.1 «ConditionalCritical»
	12.1.2 «ConditionalSecrecy», «ConditionalIntegrity», etc.
	12.1.3 «ConditionalEncrypted», «ConditionalLAN», etc.

	12.2 Deriving Products
	12.3 Family-based Security Analysis
	12.3.1 UMLsec Checks as OCL Constraints
	12.3.2 Template Interpretation
	12.3.3 Discussion of Correctness and Performance
	12.3.4 Extensibility of the Approach

	12.4 Tool Support for Family-based Security Checks of UML Product Lines
	12.5 Evaluation of SecPL
	12.5.1 O1–Efficiency of the Security Checks
	12.5.2 O3–Usefulness of the Tool Support and Security Checks

	12.6 Threats to Validity
	12.6.1 External Validity
	12.6.2 Internal Validity
	12.6.3 Conclusion Validity
	12.6.4 Construct Validity

	12.7 Conclusion on Security in UML Product Lines

	13 Security Compliance and Restructuring in Variant-rich Software Systems
	13.1 Application Scenario
	13.1.1 iTrust example SPL
	13.1.2 Rule Variants
	13.1.3 Variability-based Model Transformation

	13.2 Multi-Variant Model Transformation
	13.2.1 Solution Overview
	13.2.2 Multi-Variant Transformation Algorithm

	13.3 Tool Support for Multi-Variant Model Transformation
	13.4 Evaluation of the Multi-Variant Model Transformation
	13.4.1 Detection of Edit Operations
	13.4.2 Move Method Refactorings

	13.5 Threats to Validity
	13.5.1 External Validity
	13.5.2 Construct Validity

	13.6 Conclusion on Multi-Variant Model Transformation

	Part VI Tool Support and Application
	14 The GRaViTY Framework
	14.1 Structuring into Eclipse Plugins
	14.2 GRaViTY as Software Product Line
	14.3 Conclusion on the Implementation of GRaViTY

	15 Case Studies
	15.1 Case Study 1: iTrust
	15.1.1 Description of the Case Study Execution
	15.1.2 Discussion of the Observations

	15.2 Case Study 2: Eclipse Secure Storage
	15.2.1 Discussion of the Case Study Execution
	15.2.2 Discussion of the Observations

	15.3 Threats to Validity
	15.4 Conclusion on the Case Studies

	Part VII Closing Chapters
	16 Related Work
	16.1 Tracing between Models and Code
	16.2 Security Compliance of Models and Code
	16.2.1 Model-Based Security Analysis
	16.2.2 Security Compliance
	16.2.3 Run-time Security Monitoring

	16.3 (Security-aware) Refactorings
	16.4 Software Product Lines
	16.4.1 Product Line Transformations
	16.4.2 Security of Software Product Lines

	17 Conclusion
	17.1 Research Outcomes
	17.2 Assumptions and Limitations
	17.2.1 Required Artifacts
	17.2.2 Tracing and Synchronization
	17.2.3 Security Requirements and Checks
	17.2.4 Security Preservation and Re-Certification
	17.2.5 Software Product Lines

	17.3 Outlook
	17.3.1 Automated Trace Creation
	17.3.2 Continuous Integration
	17.3.3 Multi-Language Software Systems
	17.3.4 Security Requirements and Checks
	17.3.5 Customization
	17.3.6 Expressiveness of Languages
	17.3.7 Distributed System Analysis
	17.3.8 Code Generation
	17.3.9 Software Product Lines

	17.4 Summary

	A Bibliography

