LIST OF FIGURES

Figure 1.1 Definition of Blind Spot	2
Figure 2.1 Traffic Components	5
Figure 2.2 Illustration of General Radar Working Concepts	7
Figure 2.3 Block Diagram of the Radar System	9
Figure 2.4 FMCW Radar System Block Diagram	10
Figure 2.5 FMCW Radar Baseband Signal	11
Figure 2.6 LFM waves, up-chirp (left) down-chirp (right)	13
Figure 3.1 FMCW Radar System Simulation Block Diagram	22
Figure 3.2 The architectural design of the SDR 31-based FMCW radar syst	em
	27
Figure 3.3. Schematic for the simulation on GNU Radio Companion	28
Figure 3.4. Simulation schematic on GNU Radio Companion 1 object	28
Figure 3.4. Simulation schematic on GNU Radio Companion 3 object	29
Figure 4.1 Blind spot area with a frequency of 24 GHz	32
Figure 4.2 Blind spot area with a frequency of 77 GHz	33
Figure 4.3 Blind spot area with a frequency of 80 GHz	34
Figure 4.4 Blind spot area with a frequency of 85 GHz	35
Figure 4.5 Blind spot area with a frequency of 88 GHz	36
Figure 4.6 Matlab Simulation Results of a 24GHz chirp signal	38
Figure 4.7 Response object signal	39
Figure 4.8 Simulation of Array Response	39
Figure 4.9 Received signal in time and frequency domain	40
Figure 4.10 Signal with SNR=5db at a frequency of 24 GHz	40
Figure 4.11 Received signal at SNR = 5 db at a frequency of 24 GHz	41
Figure 4.12 Matlab Simulation Results of 77GHz chirp signal	41
Figure 4.13 Response object signal	42
Figure 4.14 Response Array Simulation	42.

Figure 4.15 Received signal in time and frequency domain	
Figure 4.16 Signal with SNR = 5db at 77GHz	
Figure 4.17 Signal received at SNR = 5 db at a frequency of 77	GHz
Figure 4.18 Matlab Simulation Results of a 77GHz chirp signal	
Figure 4.19 Signal object response	
Figure 4.20 Response Array Simulation	
Figure 4.21 Received signal in time and frequency domain	
Figure 4.22 Signal with SNR = 5db at 88GHz 50 frequency	
Figure 4.23 Signal received at SNR = 5 db at a frequency of 88	GHz
Figure 4.24 Beat Signal Frequency 24 GHz	
Figure 4.25 Received Signal Frequency 24 GHz	
Figure 4.26 Received Signal with SNR=5db at 24 GHz Frequer	ncy
Figure 4.27 Beat Signal Frequency 77 GHz	
Figure 4.28 Received Signal Frequency 77 GHz	
Figure 4.29 Received Signal with SNR=5 db at a Frequency of	77 GHz
Figure 4.30 88 GHz Frequency Signal Beat	•••••
Figure 4.31 Received Signal Frequency 88 GHz	
Figure 4.32 Received Signal with SNR=5db at 88 GHz Frequen	ncy
Figure 4.33 Beat signal from Antenna GNU radio	
Figure 4.34 Frequency of object beat signal	
Figure 4.35 Signal received by receiving antenna	
Figure 4.36 Signal after going through LPF	
Figure 4.37 Generated beat signal	
Figure 4.38 Beat signal from 3 objects	
Figure 4.39 Beat frequency spectrum of 3 objects	
Figure 4.40 Beat frequency spectrum of 3 objects	
Figure 4.41 Beat frequency spectrum of 3 objects	
Figure 4.42 Beat frequency spectrum of 3 objects	
Figure 4.43 Beat frequency spectrum of 3 objects	
Figure 4.44 Beat frequency spectrum of 3 objectsvii	

Figure 4.45 Beat frequency spectrum of 3 objects	54
Figure 4.46 Beat frequency spectrum of 3 objects	54