1 Verification of Graph Programs

Graphs are (discrete) mathematical structures used to represent relationships
between objects [I]. They are often used to model structures and relationships
so that they are related to many real problems. In computer science, graphs have
been implemented in many areas of expertise. Graph theory can be applied in
solving real problems by studying the rules that apply to graphs, including graph
transformations. Graph transformation is an approach that modifies the graph
structure by applying transformation rules. Perceptively, graph transformation
is the process of changing a graph into a new shape by running a series of
algorithms [2].

Many programming languages have been improved to facilitate the imple-
mentation of graph transformations, including the GP2 programming language.
It is a rule-based, non-deterministic graph programming language that frees pro-
grammers from dealing with low-level graph data structures. The GP2 program
algorithmically transforms the input graph into an output graph by sequentially
applying the graph transformation rules. The results on the graph program can
be formally verified using Hoare’s logic [3]. There have been several manual
proofs of the GP2 program by Poskitt and Wulandari [2456]. Poskitt [4] uses
a so-called E- and M-conditions as assertions to prove a graph program, while
Wulandari [2] uses the monadic second-order logic (MSOL) for the proving. The
E- and M-conditions use nested conditions as introduced in [7] where graphs
isomorphism are considered in the assertions. Meanwhile, in MSOL introduced
by Wulandari [2], the assertion used standard-like logic. Since the two types of
proof methods are still done manually, human errors likely occur in the verifica-
tion process.

On the other hand, Isabelle is a general proof assistant that enables mathe-
matical formulas to be expressed in formal language and provides tools to prove
those formulas in logical calculus. Isabelle’s main application is the formaliza-
tion of mathematical proof, especially formal verification which includes proving
the validity of computer hardware or software as well as verifying the nature of
personal computer languages and protocols [8]. Many studies use Isabelle/HOL,
which is Isabelle’s specialization for Higher-Order Logic. Isabelle/HOL was used
for the extensive formalization of quantum algorithms and produced quantum
information theory [4]. Isabelle/HOL can show how to prove the properties of
functional programs by induction [9]. Previous exploration of HOL for formal-
izing graph theory has been conducted successfully [I0]. The exploration in [10]
considers twenty-one important definitions, six general definitions, twenty-eight
auxiliary definitions, three pseudo definitions, and one theorem. The study also
highlights the use of tactic in deriving a formal proof.

As mentioned previously, GP2 verification performed by Wulandari [2] uses
standard logic, which can be defined in Isabelle. In this study, we present the use
of Isabelle as a proof assistant to verify programming of graphs using the GP2
language. We chose Hoare Logic, Monadic Second Order Logic, and First Order
Logic to help the verification of graph programming. To see how far Isabelle can
be used as a proof assistant, we apply several case studies of graph programming



using the GP2 programming language used in Wulandari’s thesis. Several of these
case studies were validated using Isabelle’s proof assistant.



