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Abstract: Parkinson’s disease (PD) is a neurodegenerative disorder that is more common in elderly
people and affects motor control, flexibility, and how easily patients adapt to their walking environ-
ments. PD is progressive in nature, and if undetected and untreated, the symptoms grow worse
over time. Fortunately, PD can be detected early using gait features since the loss of motor control
results in gait impairment. In general, techniques for capturing gait can be categorized as computer-
vision-based or sensor-based. Sensor-based techniques are mostly used in clinical gait analysis and
are regarded as the gold standard for PD detection. The main limitation of using sensor-based gait
capture is the associated high cost and the technical expertise required for setup. In addition, the
subjects’ consciousness of worn sensors and being actively monitored may further impact their motor
function. Recent advances in computer vision have enabled the tracking of body parts in videos in a
markerless motion capture scenario via human pose estimation (HPE). Although markerless motion
capture has been studied in comparison with gold-standard motion-capture techniques, it is yet
to be evaluated in the prediction of neurological conditions such as PD. Hence, in this study, we
extract PD-discriminative gait features from raw videos of subjects and demonstrate the potential of
markerless motion capture for PD prediction. First, we perform HPE on the subjects using AlphaPose.
Then, we extract and analyse eight features, from which five features are systematically selected,
achieving up to 93% accuracy, 96% precision, and 92% recall in arbitrary views.

Keywords: gait analysis; markerless motion capture; Parkinson’s disease

1. Introduction

The motor skills required to walk without difficulty in different environments are
vital for good quality of life. As with gait in general, these motor skills take many years to
develop. Parkinson’s disease (PD) is a neurodegenerative disorder that is more common in
elderly people and affects motor control, flexibility, and adaptability [1]. PD is caused by a
decline in the production of dopamine, which negatively affects patients’ speech coherence
and motor control. However, as is the case with most neurodegenerative disorders, the
root cause of PD is unknown [2].

PD is progressive in nature, and if undetected and untreated, symptoms grow worse
over time. PD has a stage in which the symptoms required for correct diagnosis are absent
or difficult to detect [3]. The main visible signs of PD are reduced movement (hypokinesia)
and loss of movement (akinesia) [1]. These symptoms can be observed as reduced range
of motion, tremors in the upper limbs, body rigidity, difficulty in walking, reduced step
length, and slower walking speed [4]. Early prediction could aid in treatment and therapy
to slow down the degenerative process. This could prevent degradation to a clinical stage,
thereby improving quality of life [3].

PD affects the central nervous system by reducing its control of motor neurons. This
results in the condition referred to as dysphonia, which is the inability to form words
coherently. Hence, PD can be detected using voice features. However, speech features
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obtained in unconstrained environments are often noisy [2]. Fortunately, PD can be detected
early using gait features since the loss of motor control results in gait impairment. Early
signs of PD shown in gait include reduced arm swing amplitude and symmetry, reduced
gait speed, reduced step length, and increased time spent in the double-support phase [5].

Predicting PD from gait requires an appropriate gait capture technique. In general,
techniques for capturing gait can be categorized as vision-based or sensor-based [6]. Sensor-
based techniques are mostly used in clinical gait analysis and are regarded as the gold
standard for PD detection. The sensors used can be wearable, such as inertial measurement
units (IMUs) [7]; or non-wearable, such as floor sensors [5]. The main limitation of using
sensor-based gait capture is the associated high cost and the technical expertise required for
setup. In addition, subjects’ consciousness of worn sensors and being actively monitored
may further impact their motor function.

The studies focusing on PD prediction can be grouped into two main categories based
on the features used: studies using non-perceivable features, and those using perceivable
features. Examples of non-perceivable features are those extracted from magnetic resonance
imaging (MRI) scans of the brain. Such features could be analysed by experts, or predic-
tion could be performed using deep neural networks [8,9]. PD prediction has also been
performed using brain electroencephalogram (EEG) signals [10]. The limitations of these
features include the requirement for expert knowledge and the level of interpretability of
results obtained.

Perceivable features for PD prediction include voice, handwriting, face, and gait.
Åström and Koker [2] proposed a neural network approach to predict PD based on voice
features. However, speech features obtained in unconstrained environments are often
noisy. Handwriting features have also been used in PD prediction [11,12]. In recent
research [13,14], the face has been shown to contain PD-related features. Of all perceivable
features, gait can be obtained unobtrusively in videos, and it has also been used for
PD prediction [15–17], including a computer-vision approach to classifying slowness of
movement based on arm motion captured by a smartphone camera [18].

Recent advances in computer vision have enabled the tracking of body parts in a
markerless motion capture scenario via human pose estimation (HPE) algorithms such as
AlphaPose [19] and OpenPose [20]. Although markerless motion capture has been studied
in comparison with gold-standard motion capture techniques [21], it is yet to be used
in the prediction of neurological conditions such as PD. Hence, in this study, we extract
PD-discriminative gait features from raw videos of subjects and demonstrate the potential
of markerless motion capture for PD prediction.

The main contributions of this study are as follows. First, we propose eight features
for the diagnosis of Parkinson’s disease from videos. We explore pose estimation for
markerless motion capture and perform feature extraction from the human pose estimation
time series. Then, through systematic analysis and several experiments, we propose features
that can aid in PD diagnosis from arbitrary views. We note that vision-based approaches
can be based only on the detection of perceivable gait impairments, most of which can also
be found due to ageing or other conditions. Hence, the proposed technique could serve the
purpose of screening. If gait impairment is detected, further clinical investigations may be
required to determine if it is due to PD or other reasons.

2. Methodology

In this section, we describe the approach taken for gait capture, feature extraction, and
Parkinson’s disease prediction (Figure 1).
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Figure 1. Overall methodology, showing the processes from video capture, human pose estimation,
feature extraction, and PD prediction.

2.1. Video Capture and Preprocessing

Data are obtained online from public domain videos of people walking, and each
video is manually labelled with the apparent PD status (Figure 2). Due to the unavailability
of public video datasets for PD prediction, most of the PD videos are obtained from
public domain recordings of PD therapy sessions and subjects walking in unconstrained
environments. The data collected consist of 167 subjects: 93 healthy and 74 with PD. The
videos are segmented to ensure there is only one subject in each video. Videos that feature
multiple subjects walking too closely are discarded.

(a) healthy (indoors) (b) healthy (outdoors) (c) PD gait (outdoors) (d) PD gait (indoors)

Figure 2. Examples of subjects in the dataset with healthy gait and PD in outdoor and indoor environ-
ments.

2.2. Human Pose Estimation

To track participants’ motor performance in videos without using physical markers,
we perform human pose estimation (HPE) using AlphaPose [19]. For a walking sequence
of T seconds in which we track K body keypoints in a video with frame rate f , HPE outputs
a multivariate time series {(xi

t, yi
t, pi

t)|i = 1, . . . , K; t = 1, . . . , f T}, where (xi
t, yi

t) represent
the 2D coordinates, and pi

t is the detection probability of the ith keypoint in frame t. Due to
the noisy nature of HPE data, smoothing is performed using a Savgol filter with a window
size of 5. The motion of two subjects is illustrated in Figure 3.

2.3. Feature Extraction

The early visible symptoms of PD include changes in posture, tremors, reduced
arm swing, arm swing asymmetry, and reduction in step length and gait speed. Hence,
we extract eight features from the body keypoint coordinates obtained as described in
Section 2.2. If we let u = {xi

t, yi
t} and v = {xj

t, yj
t} be the coordinates of two adjacent

keypoints i and j in frame t, the Euclidean distance DE between i and j can be found as:

DE(i, j) = [(xi
t − xj

t)
2 + (yi

t − yj
t)

2](1/2) (1)

Suppose j is a central keypoint, such as the elbow joint, with i and k as its adjacent
nodes; we can form vectors from

#»

ji and
#»

jk in order to obtain the range of motion at j as:

θ(j) = cos−1
(

ji · jk
|ji||jk|

)
(2)
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We obtain a measure of the steadiness of a body keypoint j as the standard deviation
of the moving differences of j:

S(j) = std[{pj
t+1 − pj

t|t = 1, ..., F}], S(j) ∈ RF×2 (3)

where pj
i ∈ RF is a vector representing the 2D positional coordinates of keypoint j in frame

t, and F is the total number of frames. Hence, as shown in Table 1, subject posture, arm
steadiness, arm swing, arm swing symmetry, maximum step height, mean step length,
cadence (steps per minute), and gait speed (cycles per minute) are obtained from the
keypoint coordinates obtained via pose estimation. As illustrated in Figure 4, the number
of steps nsteps taken by the subject in the video is estimated by counting the peaks of the
step length. To compute the peaks, we take the step length values per frame as a time series.
We then find all local maxima by a comparison of neighbouring values.

Figure 3. A 50-frame subsequence illustrating the raw and smoothened nose motion coordinates for
a healthy and a Parkinsonian gait sequence. Nose X and Nose Y refer to the coordinates of the nose
in the 2D plane.

Figure 4. Estimating number of steps based on the peaks of step length. The peaks correspond to
heel strikes, and counting them gives the number of steps nsteps taken by the subject in the video.
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Table 1. Description of features extracted from HPE.

Feature Related PD Symptom Visual Perception Computation

posture hunched posture nose-to-foot distance mean DE(nose, toe) *
arm steadiness arm tremors wrist steadiness mean S(wrist) *
arm swing reduced arm swing nose-to-wrist distance mean DE(nose, wrist) *
arm swing symmetry arm swing asymmetry uneven arm swings mean DE(nose, LWrist)/DE(nose, RWrist)
step height reduced step height ankle-to-ground distance max(ankle) *
step reduced step length left-to-right ankle distance mean DE(LAnkle, RAnkle)
cadence reduced cadence lower step frequency nsteps/F (see Figure 4)
speed reduced gait speed slower movement step× cadence

Mean values are taken across F frames. *The side (left or right) closest to the camera is selected for each frame. All
values are normalized with the total body height of the subject.

3. Experiments and Results
3.1. Experiment Setup

Data augmentation was performed in two ways. First, we flipped the original motion
time series obtained via pose estimation to simulate the backward movement of the subjects.
The flipped motion time series was then appended to the original, thereby doubling the
length of the time series. Then, each sequence was divided into subsequences with a
uniform length of 180 frames, which is equivalent to 6 s each (assuming a frame rate of 30
frames per second) (Table 2). Classification was performed using a Random Forest classifier
with 250 trees on the front view, side view, and all views. Each view was represented by a
feature matrix X ∈ RN× f and a label vector y ∈ {0, 1}N , where N is the number of samples
and f is the number of features. Apart from accuracy, the precision, recall, and F1 score are
also reported. Analysis of the features extracted in Table 1 is presented in Appendix A.

Table 2. Subject distribution in the dataset.

Total
Front View Side View

Healthy Parkinsonian Healthy Parkinsonian

Number of subjects 167 67 48 26 26
After augmentation 974 314 360 92 208

3.2. Feature Selection

For each view, experiments were performed to select the best features based on feature
importance. We use a stratified 5-fold cross-validation. In each run, the least important
feature was recursively removed until the optimum number of features were selected based
on cross-validation scores (Figure 5). For each view, the number of features was selected
from all eight features such that there was no significant reduction in overall accuracy,
thereby determining the important features for each view.
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(a) Feature selection on the front view.
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(b) Feature selection on the side view.
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(c) Feature selection on all views.

Figure 5. Feature selection based on 5-fold cross-validation scores. Each line represents a single run.
The vertical dotted line indicates the number of features selected.



Algorithms 2022, 15, 474 6 of 9

Table 3 shows the feature rankings and selection for each view. For the front view,
a total of five features were selected, excluding the posture, arm swing symmetry, and
cadence. This is expected, as these features are not easily obtained in the front view. On
the other hand, all features except the arm swing symmetry were selected in the side view.
The arm swing symmetry, which is the ratio of the swing of the left arm to the swing of
the right arm, was not selected in any view. This could be because of its high correlation
with the arm swing. Lastly, we found that the five features common to the front and side
views were selected as important for all views, namely, arm steadiness, arm swing, step
height, step length, and gait speed. Across all views, the step length and arm swing ranked
highest, while posture and cadence ranked lowest among the features.

Table 3. Feature selection.

Feature Feature Ranks by View Selected Features by View
Front Side All Average Front Side All

posture 7 6 7 7 × X ×
arm steadiness 4 7 6 6 X X X
arm swing 1 3 1 2 X X X
arm swing symmetry 5 8 5 6 × × ×
step height 3 4 3 3 X X X
step length 2 2 2 2 X X X
cadence 8 5 8 7 × X ×
gait speed 6 1 4 4 X X X

number of selected features 5 7 5

3.3. Experimental Results

This section shows the results of experiments performed to evaluate the selected
features and the effect of smoothing on the pose estimation output. For each of the views,
the dataset was split into a training set (75%) and a testing set (25%) and fitted on a Random
Forest classifier with 250 trees. The summary of the results is shown in Table 4.

Table 4. Results summary of PD prediction.

View Train/Test Features Smooth Acc Healthy Parkinsonian
Precision Recall F1-Score Precision Recall F1-Score

Front 505/169
8 × 95% 0.95 0.95 0.95 0.95 0.95 0.95
8 X 95% 0.95 0.95 0.95 0.95 0.95 0.95
5 × 95% 0.95 0.95 0.95 0.95 0.95 0.95

Side 225/75
8 × 97% 1.00 0.92 0.96 0.96 1.00 0.98
8 X 97% 1.00 0.92 0.96 0.96 1.00 0.98
7 × 97% 1.00 0.92 0.96 0.96 1.00 0.98

All 730/244
8 × 92% 0.88 0.92 0.90 0.94 0.92 0.93
8 X 93% 0.90 0.94 0.92 0.96 0.93 0.94
5 × 93% 0.88 0.94 0.91 0.96 0.92 0.94

As shown in Table 4, smoothing shows no effect on the accuracy achieved in the front
and side views. However, it results in a slight improvement in the accuracy and F1-scores
achieved for all views. We observe that conventional filters such as the Savgol filter used in
this study may not be suitable for smoothing human motion time series obtained via pose
estimation, since important motion data may be distorted. In addition, using five features
(arm steadiness, arm swing, step height, step length, and gait speed) on the front view
yields the same results as using all features with smoothing. Similarly, excluding the arm
swing symmetry feature on the side view still yields results similar to using all features
with smoothing. Lastly, when all views are considered, the arm steadiness, arm swing,
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step height, step length, and gait speed prove sufficient for differentiating a healthy from a
Parkinsonian gait.

4. Conclusions and Future Work

In this study, we proposed gait features extracted from videos using markerless
motion capture techniques for PD detection. First, we performed HPE on the subjects using
AlphaPose. The results of the experiments performed in this study suggest that PD can
be predicted in videos using markerless motion capture with up to 93% accuracy from
arbitrary views, 95% in the front view, and 97% accuracy in the side view. This is most
likely because most PD-related gait features can be more easily observed in the side view
of gait. Most of the extracted features show more discriminative ability in the side view,
especially gait speed, step length, and arm swing. As expected, the five features common
to the front and side views are selected as important for all views, namely, arm steadiness,
arm swing, step height, step length, and gait speed. We propose that these five features can
be used for PD prediction in arbitrary views.

Although this study has used a modest-sized self-collected dataset, the results show
the potential of using markerless motion capture for the early detection of Parkinson’s
disease. We note that vision-based approaches can be based only on the detection of
perceivable gait impairments. Hence, further clinical investigations may be required to
determine if a patient suffers from PD or gait impairment due to ageing or other conditions.
Notwithstanding, the main advantage of this approach is its ease of use, potential reduction
of cost, reduction of waiting times, and reduction of burden on trained clinicians. Future
research will focus on investigating more features to detect different phases of Parkinson’s
disease progression.
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Abbreviations
The following abbreviations are used in this manuscript:

2D 2-dimensional
PD Parkinson’s disease
HPE Human pose estimation

Appendix A. Features Analysis

A preliminary analysis shows marked differences in the front and side views. As
shown in Figures A1 and A2, extracted features are more discriminative in the side view
since most spatiotemporal features of gait can be more easily observed in the side view.
As expected, healthy subjects seem to possess a more upright posture, as shown by the
higher average distance of the nose to the feet. There is wider variation in arm steadiness
of healthy subjects, most likely due to their greater arm swings. PD subject arm swings are
shown to be smaller. Other features that show clear differences in the side view include the
step length, cadence, and gait speed, which are greater for healthy subjects, as expected.
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Figure A1. Features analysis by class (side view).
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Figure A2. Features analysis by class (front view).
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