ABSTRACT

The process of coffee bean processing towards the final product of a quality

cup of coffee involves several crucial stages, one of which is the coffee bean drying

process. Optimal drying is crucial in producing the distinctive aroma and flavor

while extending the shelf life of the coffee beans. In Indonesia, traditional sun-

drying methods are often hindered by unpredictable weather, increasing the risk of

contamination by pests, and the uncertainty of drying time. Various drying methods,

such as rotary dryers, convective dryers, and conductive dryers, have been

implemented in Indonesia. However, these conventional approaches often rely on

heat sources and consume significant energy during the drying process.

In addressing these challenges, we have developed a coffee bean drying

device that combines traditional methods with mechanical forced convection,

supported by Internet of Things (IoT)-based monitoring of moisture levels and

temperature control. The focus is on determining the maturity level of coffee beans

based on their moisture content. Monitoring of moisture levels and temperature

control can be performed through a mobile application.

In the application, there are 3 temperatures that can be selected as drying set

points, namely 40°C, 50°C, and 60°C. To maintain the temperature during drying,

the device utilizes PID control. With a hybrid forced convection method to achieve

a moisture content of 12%, the device consumes 0.8 kWh of energy with a drying

time of 3 hours and 10 minutes, and the accuracy level of the coffee bean moisture

sensor is 99%.

Keywords: Coffee beans, Drying, IoT, Convection.

XV