LIST OF FIGURES

1.1	UAV technology has become one of the key technologies for 6G commu-	
	nications	2
1.2	The illustration of the affected area after a natural disaster	2
2.1	Block diagram of general classical communication system consisting of	
	channel coding and modulation	9
2.2	Traditional QC-LDPC codes consist of LDPC and Accumulator codes as	
	MC and EP check, respectively.	11
2.3	Tanner graph for encoder and decoder of Accumulator codes with $P=1$	12
2.4	Tanner graph from parity check matrix LPDC codes	14
2.5	Tanner graph representation of LDPC encoder	15
2.6	Tanner graph representation of LDPC decoder	16
2.7	The usage scenarios of IMT 2030 of possible use case in 6G	18
2.8	The classification of artificial intelligence (AI)	19
2.9	Overview diagram of learning design framework	20
2.10	Illustration of reinforcement learning using MDP framework including	
	agent and environment	25
2.11	The backpropagation in graph for forward pass	25
2.12	Neural network consists of input, hidden, and output layers	27
2.13	An example of simple NN with three layer	28
2.14	Forward pass for backpropagation round 1	29
2.15	Backward pass for backpropagation round 1	29
2.16	The performance of three neurons of neural network	30
2.17	Box-plus operation using LLR value with difference equation	31
3.1	The proposed RL-based rateless coding scheme, where RL is for the rate	
	determination and TL-based QC-LDPC decoding process	35
3.2	TL framework for rateless decoding scheme	36
3.3	The Tanner graph representation of QC-LDPC decoder	37