
Chapter 1 INTRODUCTION

1.1 Background

The scarcity of spectrum resources is a significant barrier to the advancement of wire-

less communication. Therefore, efforts to enhance spectral efficiency have become a crit-

ical challenge in both academic research and industrial innovation. To address this issue,

many potential technologies have been explored to improve spectrum utilization, with

Non-Orthogonal Multiple Access (NOMA) emerging as a promising solution [1]. Com-

pared to orthogonal multiple access (OMA), NOMA increases overall system throughput

by simultaneously serving multiple users within the same spectrum resources [2]. Addi-

tionally, NOMA shows great potential in supporting massive connectivity with high data

rates, making it a strong candidate for next-generation wireless systems [3].

Despite its considerable advantages, one significant problem to the seamless adoption

of NOMA lies in its complex receiver design [4]. Particularly when it comes to mul-

tiuser detection that plays a crucial role in NOMA to recover transmitted symbols from

multiple users sharing the same resources. Traditional multiuser detection techniques,

which require checking each constellation point one by one, face challenges in handling

the interference caused by overlapping signals from different users. As the number of

users is increase, the computational complexity of these techniques are also exponentially

increase. Addressing the issue of receiver complexity has thus become a key area of

research within the NOMA framework, with the objectivity of fully realizing NOMA’s

capabilities in advanced wireless communication systems for the next generation [5].

Iterative Spatial Demapping (ISM) [6] is a demapping technique designed to enhance

the demodulation process over fading multiple access channels by exploiting the correla-

tion between two sources. ISM is responsible for demapping the superimposed received

signals from two sources on a symbol-by-symbol basis. To achieve this, ISM relies on a

priori information in the form of Log-Likelihood Ratios (LLRs). By employing ISM it is

possible to create a near match between the EXIT curves of the decoder and demapper,

resulting a performance gap within the theoretical Slepian-Wolf/Shannon limit between
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1.83 and 3.01 dB. However, it is important to note that when dealing with more than two

users, the complexity of ISM increases along with the number of user involved, presenting

challenges is scalability.

In recent years, Artificial Intelligence (AI) technology has expanded beyond traditional

applications like pattern recognition, image processing, and edge computing, finding new

roles in the classification of communication signals [7]. Within this domain, deep learn-

ing, a subset of AI, has been widely implemented into NOMA systems. Deep learning is

great for fixing problems in wireless communication systems like synchronization, chan-

nel estimation, iterative decoding, and multiuser decoding [8] because it is very good at

classifying and recognizing things. Deep learning’s ability to learn intricate patterns and

disentangle superimposed signals, along with its capacity to manage nonlinear relation-

ships between transmitted symbols, makes deep learning exceptionally well-suited for

enhancing the performance of NOMA systems.

The deep learning algorithm is implemented using a neural network, which composed

of three main layers: input layer, output layer, and hidden layers. When multiple hidden

layers are placed between the input and output layers, the system is called Deep Neural

Network (DNN) [9]. Each layer within the network layer contains processing units known

as neurons. These neurons work together to interpret input data, allowing the system to

recognize and learn important features an patterns that can be used to solve complex

problems. One of the key advantages of deep learning is its ability to facilitate end-to-

end learning, enabling the system to directly map received signals to demapped symbols

without the need for on intermediate steps. This streamlined approach not only reduces

the need for explicit feature engineering but also simplifies the overall system design,

making it more efficient [10].

In grant-free uplink NOMA networks, researchers [11] propose deep learning-aided

multiuser detection technique known as DeepMuD. Compared to the traditional multiuser

detection schemes, DeepMuD performs well in terms of BER. Additionally, DeepMuD

offers grant-free access by allowing signal detection to be conducted on any number of

IoT devices. A separate channel estimation technique is not required because the Deep-

MuD recognizes signals based on pilot responses. This highlights the effectiveness of

DeepMuD in joint signal detection as well as its potential for application in other ad-

vanced physical layer techniques.
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Another study about the application of deep learning in NOMA systems is [12], which

proposes a DNN multitask framework for NOMA. This framework includes three key

components: (i) channel module, (ii) multiple access signature mapping module (Deep-

MAS) designed to reduce implementation complexity, and (iii) a multiuser detection mod-

ule (DeepMUD), which replaces traditional Interference Cancellation (IC) techniques for

signal detection. The research found that this framework achieved a 50% reduction in

both training loss and message error rate compared to traditional frameworks. Addition-

ally, it showed an average SNR gain of 0.3 dB over traditional end-to-end frameworks,

highlighting the effectiveness of deep learning-based optimization in NOMA systems.

This thesis introduces a novel approach for multiuser detection in NOMA systems, by

utilizing deep learning as an alternative to traditional demapping techniques. By integrat-

ing deep learning into the demapping process, this thesis aims to simplify the receiver’s

process, making the system more efficient and less resource-demanding. The proposed

deep learning model is trained to separate and predict the transmitted symbols of two users

from superimposed received signals. This is achieved through a comprehensive training

dataset that simulates various signal conditions, enabling the model to learn the intricate

patterns and correlations inherent in NOMA signals. This approach not only simplifies

the receiver’s complexity but also enhances the overall performance of NOMA systems.

1.2 Problem Definition

NOMA is required to serve a communication network where the number of users is

more larger than the number of resources. This condition causes a serious interference

problem due to the limited resources. One of the main problem is the computational

process required in the NOMA system that consume time and power. It is because the

NOMA uses demapper, where the Euclidean distance of the all constellation point should

be measured one-by-one to the received symbol for possible demapping or decoding.

The calculation complexity is exponentially increasing when the number of users also

increasing and higher order modulation are involved.
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1.3 Research Objectives

To overcome the problem described in Section 1.2, the focus of this research is on the

design of a deep learning-based demapper for NOMA system. The objectives of this study

are as follows:

1. Develop a deep learning-based demapper for NOMA to eliminate the need to check

each constellation point individually.

2. Evaluating the demapping results of two users of NOMA using the minimum com-

plexity of feed forward neural network.

3. Prepare the minimum number of the required training dataset.

4. Design the minimum number of hidden layers and neurons.

1.4 Scope of Work

To narrow down the focus of this research, the scope of the problems addressed in-

cludes:

1. The NOMA dataset used in this thesis is generated through computer simulation

involving two user over an Additive White Gaussian Noise (AWGN) channel.

2. Both uncoded and coded NOMA schemes are explored in this research.

3. The coded NOMA scheme employs Binary Phase Shift Keying (BPSK) modula-

tion, repetition coding, and interleaver, while the uncoded scheme utilizes only

BPSK modulation.

4. Iterative Spatial Demapping is used as the source data for generating the deep learn-

ing training dataset.

5. The deep learning dataset is collected with a SNR range of 0 − 20 dB for both the

uncoded scheme and the coded scheme.

6. Neural network algorithm is used as deep learning-based demapper for NOMA.

7. This thesis evaluates all the performances of the proposed system using a series of

computer simulation.
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1.5 Research Design

This thesis is divided into 4 work packages (WPs), each focusing on a specific aspect

of this research. These WPs form a comprehensive study to produce high-quality results.

1. WP1: Study on non-orthogonal multiple access.

This thesis studies the non-orthogonal multiple access system from academic pub-

lications, textbooks, and other thesis or dissertation books. This literature study

involves an understanding of the fundamental principles of NOMA, its advantages

and challenges.

2. WP2: Study on Iterative Spatial Demapper (ISM).

This thesis also studies ISM as the traditional demapping technique for NOMA.

Studying how ISM works, its current applications, and limitations, particularly in

the context of multiuser detection.

3. WP3: The design of deep learning-based demapper.

This thesis aims to develop a deep learning model that can efficiently decode super-

imposed received signals in NOMA system by leveraging the pattern recognition

capabilities of deep learning.

4. WP4: Performance evaluations of the proposed deep learning model.

This thesis compared the performance of the proposed deep learning-based demap-

per with the traditional ISM demapper under various scenarios through computer

simulations.

1.6 Thesis Structure

This sub-chapter presents an overview structure of this thesis, highlighting the key

sections and its respective contents. This thesis is organized as follows:

• CHAPTER 2: BASIC THEORY

This chapter describe the fundamental concepts related to NOMA, ISM, and Deep

Learning.

• CHAPTER 3: THE PROPOSED DEEP LEARNING-BASED DEMAPPER

This chapter describes the specific systems of this research. It covers the simula-
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tion scenario, NOMA system model, deep learning training dataset, deep learning

training and testing process, and details about the proposed deep learning.

• CHAPTER 4: PERFORMANCE EVALUATION OF DEEP LEARNING-BASED

DEMAPPER

This chapter presents the simulation results and provides a thorough analysis of the

proposed deep learning-based demapper.

• CHAPTER 5: CONCLUSION AND FUTURE WORK

The final chapter summarizes the research findings, draws conclusions, and sug-

gests potential directions for future studies.
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