ABSTRACT

The use of millimeter wave radar (mm-wave) for various purposes continues

to increase. One of them is the use of radar in detecting vital sign of breathing. Non-

contact respiratory detection can provide benefits in broader fields such as disaster

mitigation in the process of detecting victims behind ruins, the health sector as a more

hygienic patient breathing monitoring and providing comfort for patients, and the

military sector supports the recognition of enemies hiding behind walls.

Radar Frequency Modulated Continuous Wave (FMCW) has advantages such

as the ability to detect multiple targets, better resolution range, simple transmitter

architecture, and resistance to intercept. Efforts to increase the capability of the FMCW

multi-target radar in identifying small displacement respirations continue to be

developed. One of these efforts is to increase the ability of the transceiver device so

that it can produce several antenna beam directions that can reach targets in different

directions. Beamforming is a technique used to direct a beam array in a certain

direction. Thus, all objects in different directions that are the same distance from the

antenna receive nearly the same power level. Butler matrix (BM) is a beamforming

method with advantages such as bandwidth capability, structural simplicity, and very

low current consumption.

The purpose of this proposed research is to design a beamforming system using

the Substrate Integrated Waveguide (SIW) technique for a single sensor-based 24 GHz

FMCW radar that can improve the radar's reception capability in detecting small

displacements (small displacement) breathing of several objects in one room. The use

of SIW on millimeter waves has been proven to provide advantages from the

transmission side.

Keywords: FMCW Radar, Beamforming, Butler Matrix, SIW

iv