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CHAPTER I 

INTRODUCTION 
 
1.1 Background 

The development of wireless technology, particularly for the Internet of 

Things (IoT) ecosystem with remotely connected devices, has been unprecedented 

over the past few years. By 2027, it is estimated that 30.2 billion IoT devices 

(including short-range IoT, cellular, and other long-range IoT segments) will be 

active worldwide [1]. One of the key aspects in facilitating efficient and reliable 

connectivity for IoT is advanced radio modulation techniques, which include the 

spreading factor [2], [3]. The spreading factor plays a crucial role in determining 

spectrum efficiency, battery life, and communication range for various types of IoT 

devices, ranging from small sensors to sophisticated mobile devices [4], [5]. The 

low power wide area networks (LPWAN) paradigm is gaining a lot of momentum 

in the field of massive Internet of Things (IoT) for its peculiarity of providing wide-

area coverage while having low power requirements for transmission [6]. In this 

context, the use of machine learning-based classification techniques is increasingly 

important to dynamically optimize the setting of spreading factors according to 

changing networks and environmental conditions. Recent research and 

development highlight how machine learning algorithms can predict and adjust 

spreading factors with high precision, enhancing network efficiency, and providing 

better connectivity experiences for all IoT devices in this increasingly connected 

digital era [7], [8]. 

Research conducted by Christos John Bouras et al. [9] investigates the use 

of Low Power Wide Area Network (LPWAN) technology, specifically Long Range 

(LoRa) communication, in their study. Their research focuses on improving the 

determination of the spreading factor (SF) in LoRa networks using machine 

learning (ML) models to enhance energy consumption and data delivery ratios. The 

authors examine three methods of SF assignment: Random SF Assignment, 

Adaptive Data Rate (ADR), and ML-based SF Selection. They develop a simulation 

environment using OMNeT++ and ML libraries, training and evaluating various 

ML models such as k-Nearest Neighbors (k-NN), Naïve Bayes, Support Vector 

Machines (SVM), and Decision Trees. The dataset is balanced using SMOTE-NC. 
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The results show that ML-based methods generally outperform random SF 

assignment but are slightly less effective than ADR. The k-NN model achieves the 

highest performance metrics. Although ADR's dynamic power adjustment provides 

better performance in some cases, ML methods are promising but require 

optimization to fully match ADR. Integrating ML into LoRa networks is 

challenging, thus presenting a promising area for future research. 

Toni Perkovic et al. [10] conducted research on the application of machine 

learning (ML) techniques to improve indoor localization in LoRaWAN networks. 

Their research focuses on utilizing signal strength variations, particularly RSSI 

(Received Signal Strength Indicator) and SNR (Signal-to-Noise Ratio), to 

determine the position of devices in indoor environments. The methodology 

involves collecting data from several LoRaWAN gateways, with RSSI and SNR 

values as the primary inputs to the ML model. The researchers chose neural network 

(NN) models for the localization task and experimented with various 

hyperparameters to optimize the model configuration. The results show that the 

best-configured model achieves an accuracy of 98.8% on the test set with a learning 

rate of 0.01 over 100 epochs. SF7 is identified as the optimal spreading factor for 

high localization accuracy, highlighting the importance of appropriate SF 

placement to reduce data overlap and improve precision. Evaluation metrics, 

including confusion matrices and accuracy plots, confirm the model's effectiveness 

in distinguishing indoor locations based on signal strength variations. However, the 

research has limitations, such as requiring too many gateways and needing to be 

applied in more realistic areas with more varied distances. In [11] also researched 

LoRa localization using machine learning; however, the research was conducted 

only in an outdoor area (a sports oval with an area coverage of 30,000 square 

meters) using RSSI, SNR, and SF as features, and achieved 50% better accuracy 

with a fingerprint-based direct location estimation approach. 

Christos Bouras et al. [12] conducted research on the application of 

supervised machine learning (ML) techniques to optimize the allocation of 

spreading factors (SF) in LoRa networks. The goal is to enhance energy efficiency 

and connectivity by using ML algorithms for SF assignment, thereby improving the 

performance and reliability of IoT communications. Simulations were conducted 
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using the FLoRa simulator, which accurately represents various aspects of actual 

LoRa networks. Data were collected by running simulations with various network 

configurations. The main features used to train the ML models were transmission 

power (TP), total energy consumed, and total packets sent. Three supervised 

learning algorithms were evaluated: k-Nearest Neighbors (k-NN), Naïve Bayes, and 

Support Vector Machines (SVM). The classification problem was set to predict the 

optimal SF (ranging from 7 to 12) for data transmission in a LoRa network. The k-

NN model achieved high accuracy (95% with k=3) and performed well in urban 

and suburban scenarios. Naïve Bayes showed adequate performance with an 

accuracy of around 80% but was less effective than k-NN and SVM. SVM showed 

the highest accuracy, especially in urban scenarios (96.79%). The study concludes 

that supervised learning techniques, particularly k-NN and SVM, are effective in 

optimizing SF allocation in LoRa networks. These ML models significantly 

improve energy efficiency and connectivity, making them suitable for low-cost and 

low-power IoT applications. However, the research did not vary power input and 

has not yet attempted real-life application scenarios. 

Several machine learning methodologies have been investigated and 

implemented to enhance LoRa performance [13]. However, there are some issues 

in the implementation of the research. As mentioned, experiments on real field data 

have not been conducted and are limited to simulation tools. The observation area 

in the research was limited to only 480 meters [14]. Furthermore, studies on LoRa 

performance have predominantly been carried out in sub-tropical areas [15], [16], 

[17]. Then in the study [12], no research has been conducted on classification to 

determine the power value and in the classification process the SF value only gets 

the highest accuracy of 96.79% without explaining the testing time and training 

time. So, building an accurate classification model and having a short testing time 

is very important in developing LoRa communication to obtain the most appropriate 

settings for the SF value and power value in LoRa communication, which affect 

network performance, coverage, data rate, and energy consumption. 

This research provides a detailed comparison of several machine learning 

models, evaluating their performance in terms of prediction accuracy, 

computational complexity, and scalability. This comparative study utilizes a 
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comprehensive dataset of LoRa network parameters and real-world scenarios to 

validate the effectiveness of these models. The dataset was collected from rice field 

areas in Banyumas, Central Java, Indonesia, which has a tropical climate. The area 

is open and near residential neighborhoods. The area contains trees and there are 

activities of living things that can be obstacles and can also affect the quality of 

signals or data sent by the transmitter to the receiver. The average data collection 

time is in the morning from 7-10 am and in the afternoon from 3-5 pm with the 

distance from the receiving antenna to the transmitting antenna varying from 100 

meters to 800 meters with an increase of 50 meters at each point. By systematically 

analyzing the strengths and weaknesses of each machine learning model, this study 

aims to offer valuable insights for researchers and practitioners in the fields of IoT 

and LPWAN. The findings can guide the development of more efficient model of 

classification SF and power selection algorithms, ultimately enhancing the 

performance and reliability of LoRa networks. 

1.2 Problem Statement 
Based on the background presented, the research problem statements in this 

study are: 

1) How is the proper classification process of the spreading factor and power in 

node-to-node LoRa communication? 

2) How is the performance comparison of the machine learning algorithms used 

in spreading factor and power classification? 

1.3 Research Objectives 
Based on the problem statement above, the objectives of this research are as 

follows: 

1) To understand the process of classifying the spreading factor and power in 

node-to-node LoRa communication. 

2) To determine the machine learning algorithm's performance in carrying out 

spreading factor and power classification. 
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1.4 Scope Of Work 

To narrow the scope of discussion in this research, the problems formulated 

are as follows: 

1) The dataset used for this study is node-to-node LoRa data taken in a rice field 

area in Banyumas, Central Java, Indonesia. 

2) Data collection time is in the morning around 7 - 9 am and in the afternoon 

around 3 - 5 pm. 

3) SF values on dataset from 7-12. 

4) Observation distances of 100 m - 800 m. 

5) Power setting 0 dBm – 20 dBm. 

6) The size of the packets sent varies, namely 100 bytes, 175 bytes, and 250 

bytes. 

7) The number of packets sent for each distance with variations in device setting 

parameters is 100 packets. 

8) The LoRa module used is Mappi32. 

9) The bandwidth used is only 125 kHz. 

10) The default coding rate setting is at 5. 

11) The classification process uses the KNN, Random Forest, and Decision Tree 

machine learning methods. 

12) The parameters used to measure the performance of the classification system 

are accuracy, training time, and testing time. 

1.5 Hypothesis 

The use of machine learning to determine the spreading factor and power in 

LoRa communication can enhance network efficiency by achieving an optimal 

balance between signal range, data transfer speed, and energy consumption. By 

classifying the spreading factor values and power values, the performance of LoRa 

can be optimized as the spreading factor and power used will match the specific 

needs. 
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1.6 Research Timeline 

The research timeline helps organize, set deadlines, and progress 

monitoring. Table 1.1 shows the research project, from the initial idea to the final 

report. 

Table 1. 1 Research Timeline 
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1.7 Structure of Thesis 

This research is divided into five different parts which will be explained as 

follows. 

• CHAPTER 1: INTRODUCTION 

This chapter discusses the background of the research, problems in the 

field, related research, problem statement, research objectives, and scope 

of the research. 

• CHAPTER 2: BASIC CONCEPTS 

This chapter provides basic information for this thesis, including an 

explanation of LoRa and spreading factor, the LoRa module used, the 

dataset balancing process, and the machine learning method that will be 

applied in this research. 

• CHAPTER 3: SYSTEM DESIGN 

This chapter explains the system model starting from the dataset 

collection process, research flow, and how the simulation works in the 

algorithm, including the parameters and variables used in the thesis. 

• CHAPTER 4: SIMULATION RESULT AND ANALYSIS 

This chapter discusses the results of the final simulation task consisting 

of classification metrics, confusion matrices, and learning process time. 

• CHAPTER 5: CONCLUSION AND FUTURE WORKS 

This chapter provides the conclusion of this thesis and the 

recommendations for future works. 

  


