
Wireless Networks

Jun Du
Chunxiao Jiang

Cooperation and 
Integration in 6G 
Heterogeneous 
Networks
Resource Allocation and Networking



Wireless Networks

Series Editor

Xuemin Sherman Shen, University of Waterloo, Waterloo, ON, Canada



The purpose of Springer’s Wireless Networks book series is to establish the state
of the art and set the course for future research and development in wireless
communication networks. The scope of this series includes not only all aspects
of wireless networks (including cellular networks, WiFi, sensor networks, and
vehicular networks), but related areas such as cloud computing and big data.
The series serves as a central source of references for wireless networks research
and development. It aims to publish thorough and cohesive overviews on specific
topics in wireless networks, as well as works that are larger in scope than survey
articles and that contain more detailed background information. The series also
provides coverage of advanced and timely topics worthy of monographs, contributed
volumes, textbooks and handbooks.

** Indexing: Wireless Networks is indexed in EBSCO databases and DPLB **



Jun Du • Chunxiao Jiang

Cooperation and Integration
in 6G Heterogeneous
Networks
Resource Allocation and Networking



Jun Du
Department of Electronic Engineering
Tsinghua University
Beijing, China

Chunxiao Jiang
Information Science and Technology
Tsinghua University
Beijing, China

ISSN 2366-1186 ISSN 2366-1445 (electronic)
Wireless Networks
ISBN 978-981-19-7647-6 ISBN 978-981-19-7648-3 (eBook)
https://doi.org/10.1007/978-981-19-7648-3

© The Editor(s) (if applicable) and The Author(s), under exclusive license to Springer Nature Singapore
Pte Ltd. 2023
This work is subject to copyright. All rights are solely and exclusively licensed by the Publisher, whether
the whole or part of the material is concerned, specifically the rights of translation, reprinting, reuse
of illustrations, recitation, broadcasting, reproduction on microfilms or in any other physical way, and
transmission or information storage and retrieval, electronic adaptation, computer software, or by similar
or dissimilar methodology now known or hereafter developed.
The use of general descriptive names, registered names, trademarks, service marks, etc. in this publication
does not imply, even in the absence of a specific statement, that such names are exempt from the relevant
protective laws and regulations and therefore free for general use.
The publisher, the authors, and the editors are safe to assume that the advice and information in this book
are believed to be true and accurate at the date of publication. Neither the publisher nor the authors or
the editors give a warranty, expressed or implied, with respect to the material contained herein or for any
errors or omissions that may have been made. The publisher remains neutral with regard to jurisdictional
claims in published maps and institutional affiliations.

This Springer imprint is published by the registered company Springer Nature Singapore Pte Ltd.
The registered company address is: 152 Beach Road, #21-01/04 Gateway East, Singapore 189721,
Singapore

https://orcid.org/0000-0002-5213-8808
https://orcid.org/0000-0002-3703-121X

 -151 2878 a -151 2878 a
 
https://doi.org/10.1007/978-981-19-7648-3


Foreword

To provide ubiquitous and various services, 6G networks tend to be more com-
prehensive and multidimensional by integrating current terrestrial networks with
space-/air-based information networks and marine information networks; then,
heterogeneous network resources, as well as different types of users and data, will
be also integrated. Driven by the exponentially growing demands of multimedia data
traffic and computation-heavy applications, 6G heterogenous networks are expected
to achieve a high quality of service (QoS) with ultra-reliability and low latency.
In response, resource allocation has been considered an important factor that can
improve 6G performance directly by configuring heterogeneous communication,
computing, and caching resources effectively and efficiently.

In this book, we deliver a range of technical issues in cooperative resource
allocation and information sharing for the future 6G heterogenous networks, from
the terrestrial ultra-dense networks and space-based networks to the integrated
satellite-terrestrial networks, as well as introducing the effects of cooperative
behavior among mobile users on increasing capacity, trustworthiness, and pri-
vacy. For the cooperative transmission in heterogeneous networks, we commence
with the traffic offloading problems in terrestrial ultra-dense networks, and the
cognitive and cooperative mechanisms in space-based networks. Moreover, for
integrated satellite-terrestrial networks, we present a pair of dynamic and adaptive
resource allocation strategies of traffic offloading, cooperative beamforming, and
traffic prediction-based cooperative transmission. Later, we discuss the cooperative
computation and caching resource allocation in heterogeneous networks, with the
highlight of providing our current studies on the game theory, auction theory,
and deep reinforcement learning-based approaches. Meanwhile, we introduce the
cooperative resource and information sharing among users, in which capacity-
oriented, trustworthiness-oriented, and privacy-oriented cooperative mechanisms
are investigated. Finally, the conclusion is drawn.

Object of This Book This book is aimed at graduate students, researchers,
and engineers who work/study electronic engineering, wireless communications,
and information science, especially in the area of the next-generation wireless
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vi Foreword

networks. This book can educate systems engineers to carve out the critical role that
analytical and experimental engineering play in the research and development of
6G networks. The prerequisite knowledge of the readers is probability and wireless
communications.

This book adopts the total-point-total writing format.
Part I: Introduction
Part I introduces the heterogeneous architecture of 6G networks, and many

challenges and mathematic tools for resource allocation in 6G, so that readers have
a preliminary understanding of knowledge in this field.

Part II: Cooperative Transmission in Heterogeneous Networks
Part II provides an introduction to the cooperative resource allocation mecha-

nisms in heterogeneous cellular networks and heterogeneous space-based networks
to enhance the transmission capability.

Part III: Cooperative Transmission in Integrated Satellite-Terrestrial Networks
Part III includes a description of cooperative transmission mechanism design

in integrated satellite-terrestrial networks from aspects of transmission capability
enhancement, secure transmission with interference control, and adaptivity to traffic
properties.

Part IV: Cooperative Computation and Caching in Heterogeneous Networks
Part IV contains a description of QoS-aware computational resource allocation,

QoS-aware caching resource allocation, priority-aware computational resource allo-
cation, and energy-aware computational resource allocation in 6G heterogeneous
networks.

Part V: Cooperative Resource and Information Sharing Among Users
Part V provides study cases to show how to solve the key challenges in

resource and information sharing among users for data transaction, trustworthiness
evaluation, and privacy protection in mobile networks.

Part VI: Conclusion
Part VI provides a brief summary of the book.

Acknowledgment Dr. Jun Du and Dr. Chunxiao Jiang would like to thank those
who helped to get this book published. Moreover, we would like to acknowledge
the supports of the National Natural Science Foundation of China and the Young
Elite Scientist Sponsorship Program by CAST.
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Chapter 1
Introduction of 6G Heterogeneous
Networks

Keywords 6G · Heterogeneous Networks · Architecture · Resource Allocation ·
Artificial Intelligence (AI) · Game Theory

1.1 Heterogeneous Architecture of 6G Networks

Recently, the fifth-generation (5G) of wireless network is developed to sup-
port enhanced mobile broadband (eMBB), massive machine-type communications
(mMTC) and ultra-reliable and low-latency communications (uRLLC) [1], accord-
ing to the report of International Telecommunication Union (ITU). Benefitting from
such high performance, 5G has opened new doors of opportunity towards emerging
applications, e.g., augmented reality (AR), virtual reality (VR), tactile reality, mixed
reality, etc. However, the new media, such as holographic communications, will
request much higher transmission speeds up to Tera bits per second (Tbit/s) than AR
and VR. Then 5G is far from enough to support the faster, more reliable and larger
scale communication requirements of these services. In response, the investigation
of future generation wireless networks (6G) has been triggered, which promises
more powerful capacities in terms of ultra-broadband, supper massive access, ultra-
reliability and low-latency than 5G does, as listed in Table 1.1 [1].

To provide ubiquitous and various services, 6G networks tend to be more
comprehensive and multi-dimensional by integrating current terrestrial networks
with space/air-based information networks and marine information networks, and
then heterogeneous network resources, as well as different types of users and data,
will be also integrated, as shown in Fig. 1.1. According to such architecture, 6G
networks are conceived to be cell-free, which means that users will move from one
network to another seamlessly and automatically to pursue the most suitable and
qualified communications, without manual managements and configurations [2]. On
the contrary, current 5G networking technologies still mainly focus on a macro-
cell and small-cell based heterogeneous architecture, which will be broken by
the cell-free operation of 6G, and their performance will be deteriorated when
applied to 6G with brand new architectures. In addition, how to manage and
control 6G networks to realize the promising capacities of ultra-broadband, ultra-

© The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd. 2023
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Table 1.1 Comparison of key performance indexes between 4G, 5G and 6G

Performance 4G 5G 6G

Peak data rate 1 Gbit/s 20 Gbit/s ≥1 Tbit/s

User experienced data rate 10 Mbit/s 100 Mbit/s 1 Gbit/s

Spectrum efficiency 1× 3× 15–30×
Mobility 350 km/h 500 km/h ≥1000 km/h

Latency 10 ms 1 ms ≤100µs

Connection density (devices/km2) 105 106 107

Network energy efficiency 1× 100× 100–10,000×
Area traffic capacity 0.1 Mbit/s/m2 10 Mbit/s/m2 ≥1 Gbit/s/m2
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Fig. 1.1 Illustration of heterogeneous resource applications in 6G to support ultra-broadband,
ultra-massive access and ultra-reliability/ low-latency

massive access, ultra-reliability and low-latency also meet great challenges brought
by increasing ultra-dense, heterogeneous and dynamic characteristics. Specifically,
different kinds of satellite internet consisting of a large number of satellites were
proposed and implemented in recent years. For instance, the project of SpaceX,
known as Starlink, initially planned to build a constellation of 12,000 satellites in
the low Earth orbit, which has been expanded to 42,000 recently.
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In addition, mobile network operators are accelerating the dense deployment of
small-cell base stations, in order to reduce the service latency by avoiding backhaul
transmissions. Moreover, future large-scale Internet of Things (IoT) systems in
6G prospect will also bring challenges of spectrum management and massive
or super access control. Furthermore, the integration of high-dynamic satellites,
Unmanned Aerial Vehicle (UAVs) and Internet of Vehicles (IoV) will result in
more frequent handovers, more uncertain user requirements and more unpredictable
wireless communication environments than any previous generation of networks,
which makes it difficult to guarantee the ultra-reliability and low-latency of services.

Therefore, 6G networks are developing into more multi-dimensional, heteroge-
nous, large-scale and high-dynamic systems. All these characteristics make it urgent
to explore new techniques that is adaptive, flexible and intelligent to bring a
revolutionary leap of communications with ultra-broadband, ultra-massive access
supporting, ultra-reliability and low-latency. In addition, enormous amounts of
widely heterogeneous data generated from 6G networks will request advanced
mathematical tools to extract meaningful information from these data, and then
take decisions including resource management and access control pertaining to
the proper functioning of 6G, which are hardly achieved by traditional network
optimization techniques. In recent years, artificial intelligence (AI) is emerging as
a fundamental paradigm to orchestrate the communication and information systems
from bottom to top. For the foreseeable future, AI-enabled networks will open up
new opportunities for the smart and intelligent 6G networking.

As illustrated in Fig. 1.1, network economics based game theory, contact, auction
theory, as well as AI and machine learning (ML) techniques are expected to help
6G networks make more optimized and adaptive data-driven decisions, alleviate
communication challenges, and meet requirements from emerging services. In this
book, we will focus on the scope of applying these advanced technologies to
networking and resource allocation optimization, aiming to bring about significant
innovation of communications on ultra-broadband, ultra-massive access, ultra-
reliability and low-latency.

1.2 Challenges of Heterogeneous Resource Allocation

1.2.1 Heterogeneous Resource Modeling and Performance
Evaluation

Heterogeneous resource modeling and performance evaluation are particularly
important for the 6G network to reveal how the transmission environment, spectrum
interference, resource conflict and transmission delay impact its service’s capacity.
As shown in Fig. 1.1, the 6G heterogenous network tends to be an integration
of traditional cellular network with satellites, high-altitude platforms, UAVs, IoV,
and maritime and underwater networks. These infrastructures and devices present
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obvious heterogeneity characteristics referring to motion characteristics, stability,
transmission capacity, temporal and spatial coverage of services, as well as their
characteristics of wireless propagation environment. For instance, the wireless
propagation environment over the sea is quite different from that of terrestrial
communications, due to its special reflection from ocean surfaces, evaporation duct
property and atmospheric absorption loss [3]. In addition, the dynamic propagation
environment and large transmission delay will further lead to limited and insufficient
channel information acquisition [4, 5]. On the other hand, there is quite a difference
between these platforms in the communication protocols and standards, especially
when they are expected to provide comprehensive services of communications,
detections, navigation and data processing. Such heterogeneous characteristics
reflected both in resource and services bring great challenges to generic and standard
resource modeling and performance evaluation for 6G networks.

1.2.2 Task Adaptation and Resource Efficiency

Driven by the exponentially growing demands of multimedia data traffic and
computation-heavy applications, 6G networks are expected to achieve a high quality
of service (QoS) with efficient transmission, ultra-reliability and low latency. In
response, task-adaptive resource allocation has been considered as an important
factor which can improve the 6G performance directly by configuring heteroge-
nous resources effectively and efficiently. In 6G, the allocated resource can be
divided into communication resource, which includes channels and bandwidth,
and computing resource, such as memory and processing power. In recent years,
various traffic offloading, caching and cloud/fog/edge computing mechanisms are
designed to allocate these communication, storage and computing resources in
heterogenous networks, respectively, which become promising solutions to handle
the increasing data and computational requirements with low-latency and on-
demand services [6, 7].

1.2.3 Interference Control and Secure Communications

6G heterogeneous networks integrate billions of digital sensors, smart nodes,
people, services and other physical objects which are capable of realizing a seamless
information connection, interaction and exchanging with each other [8]. Concerning
more and more human-related data processed in current 6G applications, as well
as the tremendous business value behind the privacy-sensitive and patent-sensitive
data, security issues, such as privacy preserving, secure data storage, exchanging and
analysis, are becoming significant challenges for these applications and designing
resource allocation mechanisms. In 2013, the exposure of NSA’s PRISM program
triggered off vigorous debate on privacy. In addition, InBloom, a company worked at
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student data storage, closed down in 2014 due to the public’s worries of the privacy
security of students’ data, although there was no indication that InBloom used
students’ data illegally. Therefore, it is rather necessary for 6G networks to protect
the private information contained in data against being exposed, meanwhile to fulfill
the functional requirements and ensure the service quality of 6G applications. To
achieve this goal, introducing security measures to processes of data transfer and
analysis among service providers and data owners plays an important role, since that
these processes pose potential threats to the privacy [9–12]. Moreover, mechanisms
with incentive capability should be designed to encourage data owners to provide
their data honestly [13, 14]. Considering these aforementioned problems, this book
will introduce some state-of-the-art technologies of secure resource and information
sharing mechanisms in 6G networks.

1.3 Mathematic Tools for Resource Allocation

1.3.1 Information Economics Theory

As a typical information economics theory, game theory has offered a set of
mathematical tools to establish and analyze the complex interactions among
interdependent and rational players, and then predict their choices of strategies [15–
18]. Therefore, game theory has been considered as an effective and suitable
tool to study the resource allocation and cooperative networking problems for 6G
heterogeneous networks. In addition, game theoretic models can be developed to
obtain solutions for spectrum management, channel assignment and power control
among heterogeneous devices.

Contract theory, as a powerful microeconomics framework of modeling multilat-
eral labor/employment relations, is proposed to essentially deal with the information
asymmetry in the market, regarding the service capability of “employees” which
cannot be observed by “employers” before they are employed [19, 20]. According
to contract theory, an incentive mechanism that encourages every employee to
consciously choose the contract designed for its service capability will be real-
ized by offering a set of contracts that includes a required performance and a
corresponding reward. Due to such property, there is great potential to utilize the
concepts from contract theory to ensure cooperations and incentive mechanisms
in 6G heterogeneous networks, especially for cellular traffic offloading, spectrum
sharing, edge computing and caching [21–24]. To apply contract theory, a set of
contracts for the employee need to be designed delicately, the object of which is
maximizing the employer’s payoff or utility. In most studies, the problem is usually
formulated as maximizing an objective function that represents the employer’s
utility, subject to the following two constraints: (1) the incentive compatibility
constraint, which refers to that the employee’s expected payoff is maximized when
signing the contract; (2) the individual rationality constraint, which requires that the
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employee’s payoff under this contract is larger than or equal to its reservation payoff
when not participating.

Auction theory, as a branch of game theory, can be widely used in trading
if the price of a commodity and service is undetermined, and has also become
an important tool in network economics to model resource supply and demand,
especially for networks with heterogeneous transmission resource [25, 26]. In
addition, auctions can also be used in a network to automatically carry out objectives
which may satisfy either the sellers or the buyers [27], and in resource allocation for
admission control based on resource availability [28–31]. In recent years, any classic
auction models, such as Vickrey-Clarke-Groves (VCG) auction, share auction,
double auction, and combinatorial auction, have been designed and introduced
to resource allocation and cooperative networking in heterogeneous networks. In
the auction-based resource management, efficient mechanism design for a given
auction, equilibrium and optimal bidding strategies, revenue comparison, etc., are
typical issues to meet the resource requirements and achieve efficient resource
utilization at the same time.

1.3.2 Machine Learning and Artificial Intelligence

In recent years, AI is emerging as a fundamental paradigm to orchestrate the
communication and information systems from bottom to top. For the foreseeable
future, AI-enabled networks will open up new opportunities for the smart and
intelligent 6G networking. As a major branch of AI, ML can establish an intelligent
system which operates in the complicated environment [32]. Recently, ML has
mainly developed into many branches such as classical ML, including supervised
learning and unsupervised learning, deep learning (DL) and reinforcement learning
(RL). DL aims to understand the representations of data, and can be modeled in
supervised, unsupervised, and reinforcement learning. Different AI/ML techniques,
such as RL, DRL, Double DRL (DDRL), etc., have been introduced to coop-
erative networking and resource allocation techniques, in order to deal with the
sophisticated optimization of decision making resulting from the multi-dimension,
randomly uncertainty and dynamics of 6G. By applying AI/ML tools, the valuable
information can be extracted through training observed data, and then different
functions for prediction, optimization, and decision making in traffic offloading,
caching and cloud/fog/edge computing can be learned to support ultra-reliable and
low-latency services [33, 34].

However, most current RL or DRL based resource allocation approaches were
modeled in a discrete action space, which restricts the optimization of offloading
decisions in a limited action space [35]. Such model assumption is unreasonable in
practice, where the action space of offloading decision is often continuous-discrete
hybrid. To be specific, in a task offloading enabled 6G network, the strategies
of which node should be selected to implement traffic/computation offloading or
caching constitute a discrete action space. On the other hand, the possible resource
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volume should be provided by the selected node for offloading is a continuous
value usually. Such resource allocation problem with continuous-discrete hybrid
decision spaces tends to be extremely complex, especially when time-varying tasks,
energy harvesting and security issues are also considered. To provide low-latency
computing services, this book will introduce some preliminary work focusing on
the hybrid decision of computation offloading in 6G networks based on DRL.
To be specific, the sever selection problem is modeled in a discrete action space,
and meanwhile the decision spaces of offloading the ratio and local computation
capacity are continuous.
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Chapter 2
Introduction of Cooperative
Transmission in Heterogeneous Networks

Keywords 6G · Heterogeneous Networks · Cooperative Transmission

Both current cellular mobile networks and space-based information networks
(SBINs) presents heterogeneous characteristics. For these heterogeneous networks,
cooperative resource allocation and management are effective manners to enhance
the transmission capability. Aiming at the problem of cooperation-based transmis-
sion capability enhancement, we introduce two cooperative transmission mecha-
nisms in this chapter.

Firstly, traffic offloading for terrestrial heterogeneous networks. We use the
contract-based model to investigate the traffic offloading and resource allocation
mechanisms. For such cooperative transmission mechanism, incentive compatibility
is an important property to deal with the information asymmetry situation, where
the properties of resource providers are not available for the resource requesters.
In addition, we propose a valid and effective definition of resource type for the
contract-based traffic offloading. The closed-form expression of resource type
defined can reflect the offloading service capacity of heterogeneous resource
provided. Meanwhile, this definition can ensure the monotonicity and incentive
compatibility of the designed contracts. Secondly, cognitive multiple access via
conative communications. We investigate the efficient networking and resource
allocation mechanisms to support the cooperative transmissions among satellites.
In space-based networks, the data relay satellites can assist low-earth-orbit (LEO)
satellites in relaying data to other satellites or the ground station and improve
the real-time system throughput. However, the transmission resource of the relay
satellite is limited, so a key issue in cooperative communication through a relay is
the resource allocation for the full use of limited resource. To take full advantage
of transmission resource of the cooperative relays, we propose two multiple access
and resource allocation strategies, in which relays can receive and transmit simul-
taneously according to channel characteristics of space-based systems for both the
geosynchronous orbit (GEO) and LEO relay systems. Moreover, to reveal the impact
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of cooperation on important multi-access performance metrics, we further derive the
mathematical maximum stable throughput region and the delay performance based
on queueing theoretic formulation, which provide the appropriate guidances for the
design of the system.



Chapter 3
Traffic Offloading in Heterogeneous
Networks

Abstract In heterogeneous ultra-dense networks (HetUDNs), the software-defined
wireless network (SDWN) separates resource management from geo-distributed
resources belonging to different service providers. A centralized SDWN controller
can manage the entire network globally. In this work, we focus on mobile traffic
offloading and resource allocation in SDWN-based HetUDNs, constituted of dif-
ferent macro base stations (MBSs) and small-cell base stations (SBSs). We explore
a scenario where SBSs’ capacities are available, but their offloading performance
is unknown to the SDWN controller: this is the information asymmetric case. To
address this asymmetry, incentivized traffic offloading contracts are designed to
encourage each SBS to select the contract that achieves its own maximum utility.
The characteristics of large numbers of SBSs in HetUDNs are aggregated in an
analytical model, allowing us to select the SBS types that provide the off-loading,
based on different contracts which offer rationality and incentive compatibility to
different SBS types. This leads to a closed-form expression for selecting the SBS
types involved, and we prove the monotonicity and incentive compatibility of the
resulting contracts. The effectiveness and efficiency of the proposed contract-based
traffic offloading mechanism, and its overall system performance, are validated
using simulations.

Keywords Traffic Offloading · Software Defined Wireless Networks (SDWNs) ·
Contract Theory · Heterogeneous Ultra-dense Networks (HetUDNs) · Resource
Sharing

3.1 Introduction

Fifth Generation (5G) cellular networks were first proposed to meet the increasing
mobile data traffic, which will expand one thousand times from 2010 to 2020 [1–3].
To meet this increasing data challenge, ultra-densification, i.e., overlaying macro
base stations (MBSs) with a large number of small-cell base stations (SBSs) such as
pico base stations (BSs), femto BSs and WiFi hotspots, etc., which constitute het-
erogeneous networks (HetNets), is one of the “big three” 5G technologies [4]. With
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assistance of these SBSs, mobile traffic offloading technology provides a solution to
address the enormous expansion of mobile data, by moving traffic load from cellular
networks to alternative wireless networks consisting of densely distributed SBSs. To
operate such heterogeneous ultra-dense networks (HetUDNs), an effective and effi-
cient network architecture and resource management mechanisms are indispensable.
In recent years, cloud-based Software-defined Wireless Networks (SDWNs) are
proposed to control and manage HetUDNs in a central manner efficiently. SDWNs
can potentially revolutionize network design and resource management, and enable
the applications to manipulate various services by separating the control plane from
the data plane [5–8]. In SDWNs, mobile traffic offloading can be enabled by the
SDWN at the edge [9], which can exploit knowledge of the data requests and the
network resource status of MBSs and SBSs. With a centralized controller, resources
in HetUDNs can be managed efficiently to meet data requests from mobile users,
and optimize system performance including data rate, load balancing and energy
consumption [10–12].

Recently, mobile traffic offloading in HetNets received significant attention for
its effectiveness on rescuing the heavy traffic load in cellular networks by switching
and exchanging traffic, and using access control and compatibility protocols [13].
Focusing on energy consumption optimization [14, 15], security guarantees [16]
and performance analysis [17], much work has paid attention to mechanism design
for mobile traffic offloading. As in [5], resource management in SDWNs is a
form of competitive market, where resource requesters and providers compete and
cooperate to maximize their own utilities. For traffic offloading in SDWN-based
HetUDNs, competition and cooperation among resource providing and utilizing
entities can be modeled and analyzed through economics theory [18]. Game
theory is used to model the supply and demand relationship of resources for
traffic offloading in HetNets, and many different game theory based offloading
approaches have been applied, including Nash bargaining game [19, 20], coalition
game [21], Stackelberg game [22], etc. In HetNets with densely distributed BSs, the
computational complexity of such approaches grows exponentially, so that mean-
field games can provide low-complexity tractable partial differential equation based
solutions for traffic offloading [23–25].

Auction theory is another important tool in network economics to model the
heterogeneous resource supply and demand [26]. Analytical work in this area
includes the analysis of price and income in single [27] and networked multiple
auctions [28], and for sealed bids can be found in [29]. In [30–32], the authors
focus on the effect of an auction on the success of bidders who wish to make
optimal choices. Auction theory can be also introduced in mobile traffic offloading
for efficient cooperative transmission in HetNets. In SDWN-based HetNets, the
central controller can act as an auction broker, and traffic offloading can be operated
efficiently with appropriate auction mechanisms, such as “double” [33] and reverse
auctions [34].

In SDWN-based HetUDNs, despite the existence of a central controller, SBSs
are selfish and may hide or fabricate the status of their resource. However, the
SBSs’ resource availability can be recognized by the central controller, although
their offloading performance may be unknown. To offer an incentive compatibility,
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contract theory can be introduced to the traffic offloading mechanism designs.
Contract theory, as a powerful microeconomics framework, is proposed to essen-
tially deal with the information asymmetry in the market, regarding the service
capability of “employees” which cannot be observed by “employers” before they
are employed [35]. According to contract theory, an incentive mechanism that
encourages every employee to consciously choose the contract designed for its
service capability will be realized. This approach has already been employed in
resource allocation problems for device-to-device communications [36], heteroge-
neous Long-term Evlution-Advanced (LTE-A) networks [37] and heterogeneous
cloud-based radio access networks [38]. Classic contract theory is based on the
definition of different employee types, which is only considered as an abstract
index without any specific definition in the aforementioned studies. Especially in
HetUDNs with a large number of SBSs, this broad definition of “SBS type” can
cause difficulties when contract models are applied to the real network environment.
Thus in this work, we pay special attention to the SBS types and investigate how they
can affect the performance of a contract-based traffic offloading mechanism.

The remainder of this part is organized as follows. Section 3.2 describes the
SDWN framework for resource sharing in HetUDNs. The contract formulation
and three contract-based traffic offloading mechanisms are designed in Sects. 3.4
and 3.5, respectively. Conditions for contract feasibility are analyzed and derived
in Sect. 3.3. Simulations are presented in Sect. 3.6, and Sect. 3.7 summarizes the
conclusions of this part.

3.2 Architecture of SDWN

SDWN is an emerging network framework which separates the control plane from
the data plane. The architecture of the SDWN-based resource sharing system of
HetUDNs is shown as Fig. 3.1. In the resource and application level, the network
provides data services with distributed MBSs and SBSs. These heterogeneous BSs
are operated by the same or different operators (service providers) and deployed
with a high density, which means that their coverage areas are overlapped seriously.
The MBSs’ mobile user equipments (MUEs) and small cell user equipments (SUEs)
are randomly distributed in the coverage of the BSs. Through traffic offloading, the
throughput and other performance of the system can be improved.

As shown in Fig. 3.1, the SDWN separates resource management from the geo-
distributed resource cloud, which forms a virtual network topology in the control
plane. In the control plane, the centralized SDWN Controller discovers the traffic
demands of MUEs, available transmission resource and the channel status in of the
HetUDN through the Access Network Discovery and Selection Function (ANDSF).
The ANDSF fulfils this mission above by requiring to the MBS and SBSs, the
current LTE/cellular network operators of which are more than willing to share
the status information above to maximize their service capability and resource
utilization. After receiving the supply and demand status of network resource, the
SDWN controller designs a bundle of contracts for different types of SBSs, and
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Fig. 3.1 Traffic offloading and resource allocation for SDWN-based HetUDNs

then broadcasts the contracts to the MBS and all SBSs through the ANDSF. Every
SBS distributed within the coverage of the MBS selects one contract to maximize
its own payoff, and reports its selection to the SDWN controller that it will provide
the certain amount of traffic offloading and get the certain payments from the MBS
specified by the selected contract. According to the SBS’s contract selection, Then
the SDWN controller allocates this SBS’s bandwidth resource for MUEs covered
by this SBS, and requests the MBS to pay the SBS for its offloading service.
During the process above, the ANDSF performs as a medium for the information
interaction between the HetUDN and the SDWN Controller, and an executive of
resource allocation. The ANDSF can interact with the SDWN controller for traffic
offloading and resource allocation by standardized interfaces such as OpenFlow-
enable switches [9, 18], which need some corresponding modifications for the
requested and released information mentioned above. Moreover, in this work, we
focus on the bandwidth resource allocation of the heterogeneous SBSs in the system.

3.3 Contract Formulation for Traffic Offloading

Consider an SDWN-based HetUDN with one MBS and a number of SBSs randomly
distributed in the coverage of the MBS. These SBSs are not owned by the MBS
operator, which means that the MBS cannot obtain the local information, such
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as transmission capacity, load status, operation and offloading cost, etc., of these
SBSs. This model is flexible to be applied into a system with multiple MBSs,
in which all SBSs can be associated to their respective MBS according to a
certain association strategy, and then each subsystem consisting of an MBS and
its associating SBSs can be analyzed by the system model of this work. We denote
with N = {1, 2, · · · , N} as the set of SBSs. Consider a set of M = {1, 2, · · · ,M}
MUEs who are randomly distributed within the coverage of the MBS. In addition,
let Mn be the set of MUEs in the coverage of SBS n ∈ N , then we have⋂
n∈N Mn = M . Let Ni denote the set of SBSs who can cover MUE i ∈ M ,

which means that SBS n ∈ Ni can provide the traffic offloading service for MUE i.
Assume that the time is slotted. During the duration of a time slot, the location of

MUEs, the offloading decision of SBSs and resource allocation are considered to be
fixed. Denote sn = {sni }i∈Mn

as the scheduling vector, where sni = 1 indicates that
the traffic of MUE i is allocated to be offloaded by SBS n, and sni = 0, otherwise.
Assume that each MUE can be associated with at most one SBS, i.e., ∀i ∈ M ,∑
n∈N sni ≤ 1. The case of

∑
n∈N sni = 0 indicates that the traffic requested

by MUE i is not offloaded by any SBS and is delivered by the MBS directly. Let
s0i = 1 denote that MUE i is served by the MBS without any SBS offloading for it.

3.3.1 Transmission Model Formulation

The transmission data rate can be used to evaluate the performance of the HetUDN,
and is related to the signal-to-interference-plus-noise ratio (SINR). In this work,
we model the channel between MUEs and BSs as a Rayleigh fading channel. Then
∀n ∈ N and i ∈M , the SINR from SBS n and the MBS to MUE i is defined as

γni = pn|hni |2∑
n′∈Ni κn′ipn′ |hn′i |2 + κ ′0ip0|h0i |2 + σ 2

, (3.1a)

γ0i = p0|h0i |2∑
n∈N κ ′nipn|hni |2 + σ 2

, (3.1b)

respectively. In (3.1a) and (3.1b), σ 2 is the constant addictive noise power, while
pn and pn′ are the transmission power consumption of SBS n and n′, respectively.
κn′i ∈ [0, 1] is the interference parameter among SBSs, and κ ′0i , κ ′ni ∈ [0, 1] are the
interference parameters between the MBS and SBSs. Considering different licensed
spectrum applied for direct transmission by the MBS and traffic offloading by SBSs,
the interference between the MBS and SBSs can be ignored, i.e., κ ′0i = κ ′ni = 0.
Then considering the channel allocation, the achievable service rate for MUE i can
be presented by

ri = ω0s0i log (1+ γ0i )+ ∑
n∈N

ωnsni log (1+ γni), (3.2)
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where ωn and ω0 are the bandwidths of spectrum used by SBS n and the MBS.
Take LTE-A for instance, the bandwidth for one resource block is ω = 180 kHz.
Considering all SBSs in the network utilize the common spectrum for traffic
offloading, then let ωn = ω, ∀n ∈ N . Let yn denote the traffic offloading accepted
by or allocated to SBS n, i.e., yn =∑

i∈Mn
rnisni .

3.3.2 Economic Models Formulation

The offloading quality provided by heterogeneous SBSs is different. On the other
hand, the benefit for the MBS from different SBSs is different as well. For instance,
the MBS tends to get much more benefit from SBSs those located closed to the edge
of MBS’s coverage. Therefore, it is better for the SDWN controller to design diverse
contracts for the heterogeneous BSs, to improve the performance of the HetUDN.

Utility of MBS Let Tn (yn) be the payment for SBS n when it helps to offload
the amount of yn traffic. Assume Tn (0) = 0, and in addition, Tn (yn) is a strictly
increasing function of yn, ∀n ∈ N . Then we define the utility of MBS as

U (s, y,T (y)) = δ ∑
i∈M

ri − ∑
n∈N

Tn (yn), (3.3)

where s = {s0i , sni}(N+1)×M denotes the association matrix, y = {yn}n∈N is
the traffic offloading vector, T (y) = {Tn (y)}n∈N denotes the vector of payment
bundles for different types of SBSs, and δ is the MBS’s unit monetary gain through
the traffic rate.

Utility of SBSs Let xn (n ∈ N ) denote the SBS n’s own traffic demands. Assume
that traffic requests arrival for different SBSs are independent and identically
distributed (i.i.d.), and follows a probability distribution function fn (x). In this
work, we consider the traffic requests are sequences of Poisson arrivals with arrival
rate λn, ∀n ∈ N .

We define ψn, transmission efficiency of SBS n, as the average amount of data
traffic (bits) can be delivered by one unit of bandwidth resource per time unit, which
is given by

ψn =
∑
i∈Mn

rni

ωn
∥∥{rni}i∈Mn

∥∥
0

, (3.4)

where rni = ωn log (1+ γni) denotes the achievable data rate of MUE i receiving
from SBS n, and ‖·‖0 calculates the number of non-zero elements. Then the average
bandwidth resource consumption for SBS n on delivering one unit traffic is 1/ψn.

Let Ωn denote the resource capacity of SBS n. Then we have yn ≤ Ωnψn, ∀n ∈
N . In addition, denote wn > 0 as SBS n’s average revenue achieved from one unit
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of its bandwidth resource consumption caused by its own traffic demands. Let cn
(0 < cn < wn) represent SBS n’s average cost on one unit of bandwidth utilization.
Then the expected revenue of SBS n resulting from serving its own traffic demands
is given by

Pn (Ωn) = (wn − cn) E
(
xn

ψn

)

= (wn − cn)
[∫ Ωnψn

0

x

ψn
fn (x) dx +

∫ ∞

Ωnψn

Ωnfn (x) dx

]

=an
(

1− e−Ωnψnλn

)
,

(3.5)

where an = λn (wn − cn)/ψn, and fn (x) = λ−1
n e

−λ−1
n x .

Furthermore, given feasible amount of traffic offloading by SBS n, the expected
revenue from the rest bandwidth resource for serving this SBS’s own traffic demands
can be obtained as

Pn

(
Ωn − yn

ψn

)
= an

(
1− e−Ωnψn−ynλn

)
. (3.6)

Then the utility of SBS n from traffic offloading is given by

Vn = Pn
(
Ωn − yn

ψn

)
+ Tn (yn)− cnyn/ψn, ∀n ∈ N . (3.7)

In addition, we define the net utility of SBS n as the SBS utility improvement when
offloading traffic for the MBS:

V ′n = Vn − Pn (Ωn), ∀n ∈ N . (3.8)

In (3.7), we assume that the total revenue of SBS n:

vn (yn) = Pn
(
Ωn − yn

ψn

)
+ Tn (yn) (3.9)

is a strictly increasing concave function of yn, i.e., v′ (yn) > 0, and v′′ (yn) < 0.
This setting is reasonable, due to that as the amount of offloading traffic increasing,
payment T (y) from the MBS increases slowly, and meanwhile the income brought
to the SBSs grows slowly, which also results from less service for SBSs’ own traffic
requests. This property of revenue function will be further analyzed in Sect. 3.5.
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Social Welfare The social welfare of HetUDN is defined as the aggregate utility of
the MBS and SBSs, denoted by

W =
∑
n∈N

Un +
∑
n∈N

Vn

=
∑
n∈N

⎡
⎣δ

∑
i∈Mn

ri − Tn (yn)
⎤
⎦

+
∑
n∈N

[
Pn

(
Ωn − yn

ψn

)
+ Tn (yn)− cnyn

ψn

]

= δ
∑
i∈M

ri

︸ ︷︷ ︸
MBS: Profit from

MUEs’ throughput

+
∑
n∈N

Pn

(
Ωn − yn

ψn

)

︸ ︷︷ ︸
SBS: Profit from serving
its own traffic demands

−
∑
n∈N

cnyn

ψn
︸ ︷︷ ︸

SBS: Cost
of offloading

.

(3.10)

3.4 Contract Design for Traffic Offloading

According to contract theory, a reasonable definition of SBS’s type is very important
to realize the contract-based traffic offloading. So first of all, we propose a new
definition of the SBS type for traffic offloading in the HetUDN as Definition 3.1,
based on the models established previously.

Definition 3.1 SBS Type: In the HetUDN with multiple SBSs, the definition of
SBS n’s type, which is determined by SBS’s transmission efficiency ψn, resource
capability Ωn, average revenue achieved from per unit of its bandwidth resource
consumption caused by SUEs’ traffic demands wn, average cost on one unit of
bandwidth utilization cn and the arrival rate of SUEs’ traffic requests λn = λ, is
given by

θn = ψn

cn + (wn − cn) e−Ωnψnλ
. (3.11)

Remark 3.1 Notice that the definition of the SBS type is reasonable since that (3.11)
gives an index which can reflect the SBS’s capability of providing traffic offloading
service for the MBS. To be specific, Definition 3.1 indicates that a larger value of
SBS type θn, which means a smaller cn/ψn (SBS n’s cost by one unit of traffic
transmission), smaller (wn − cn)/ψn (SBS n’s net benefits from one unit of traffic
transmission for SUEs), largerΩnψn (SBS n’s maximum resource can be provided
for transmission) and lower λ (SBS n’s traffic load from its own users), indicates a
stronger capability of providing the traffic offloading service for the MBS.
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According to Definition 3.1, each of the N SBSs in the HetUDN belongs to one
of theN types. In the SDWN-based HetUDN, the SDWN controller needs to design
a bundle of contracts {T (y) , y} for these N types of SBSs. Consequently, based on
the definitions above, the traffic offloading contract for SBS n with type θn can be
expressed by {Tn (yn) , yn}. Next, we will introduce necessary principles that ensure
a contract to be valid and feasible.

3.4.1 Contract Design with Information Asymmetry

3.4.1.1 Individual Rationality (IR)

No matter whether the MBS and the SDWN controller can identify the types of
SBSs, the designed traffic offloading contract must ensure that every SBS has
an incentive to provide the traffic offloading service for MUEs. Therefore, the
following Individual Rationality (IR) constraint must be satisfied when designing
the contracts.

Definition 3.2 Individual Rationality (IR): Any type of SBSs in the HetUDN
will only select the traffic offloading contract that can guarantee that the utility
received is not less than its utility can be received when it does not provide the
traffic offloading service, i.e., ∀n = 1, 2, · · · , N ,

Vn = Pn
(
Ωn − yn

ψn

)
+ Tn (yn)− cnyn

ψn
> Pn (Ωn) . (3.12)

3.4.1.2 Incentive Compatibility (IC)

Under the situation with information asymmetry, SBSs tends to request high
payment and provide the traffic offloading service as little as possible, according
to (3.7). To ensure that every SBS will select the right contract designed for its type
specially, the designed bundle of contracts must make sure that the maximum utility
can be achieved if and only if the SBS selects the contract for its type specially.
This principle of contract designing is called Incentive Compatibility (IC), which is
defined as Definition 3.3.

Definition 3.3 Incentive Compatibility (IC): Any type of SBSs in the HetUDN
will obtain the maximum utility if and only if it selects the contract for its own
type specially. In other words, selecting the traffic offloading contract designed for
its type will bring to this SBS more utility than any other contracts in the contract
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bundle, i.e., ∀n,m = 1, 2, · · · , N ,

Vn (Tn, yn) = Pn
(
Ωn − yn

ψn

)
+ Tn (yn)− cnyn

ψn

≥ Vn (Tm, ym) = Pn
(
Ωn − ym

ψn

)
+ Tm (ym)− cnym

ψn
.

(3.13)

Due to the case of information asymmetry, the types of SBSs cannot be accessed
by the ANDSF. However, the knowledge of the probability πn, with which an SBS
might belong to type θn, is available for the SDWN controller, and

∑
n∈N πn =

1. Therefore, with the IR and IC constraints, the SDWN controller will formulate
the bundle of traffic offloading contracts which will maximize the MBS’s utility.
Then the contract-based traffic offloading optimization problem in the scenario with
information asymmetry is formulated as

max U∗ (s, y,T (y)) =
∑
n∈N

πn

⎡
⎣δ

∑
i∈Mn

ri − Tn (yn)
⎤
⎦, (3.14a)

s.t. s0i +
∑
n∈N

sni = 1, ∀i = 1, 2, · · · ,M, (3.14b)

yn =
∑
i∈Mn

rnisni ≥ 0, ∀n = 1, 2, · · · , N, (3.14c)

Ωn − yn
ψn
, ∀n = 1, 2, · · · , N, (3.14d)

Tn (yn)− cnyn
ψn

− ane−
Ωnψn
λn

(
e
yn
λn − 1

)
≥ 0,

∀n = 1, 2, · · · , N, (IR)

(3.14e)

Pn

(
Ωn − yn

ψn

)
+ Tn (yn)− cnyn

ψn

≥ Pn
(
Ωn − ym

ψn

)
+ Tm (ym)− cnym

ψn
,

∀n,m = 1, 2, · · · , N, (IC)

(3.14f)

yn ≥ 0, ∀n = 1, 2, · · · , N. (3.14g)

The feasibility conditions of the traffic offloading contacts formulated in (3.14) will
be analyzed and derived in Sect. 3.5.
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3.4.2 Contract Design Without Information Asymmetry

Without information asymmetry, the IC constraint is unnecessary because any SBS
cannot be disguised as other types of SBSs. Then the optimization problem of traffic
offloading processed by the SDWN controller can be formulated as (3.14), with the
IC constraint being removed.

We provide the optimal traffic offloading solution for the HetUDN as Lemma 3.1.

Lemma 3.1 Without information asymmetry, the optimal traffic offloading contract
for type θn (∀n = 1, 2, · · · , N), which is defined by (3.11), is given by

y
upper
n = λn [ln (δψn − cn)− ln (wn − cn)]+Ωnψn, (3.15a)

T
upper
n (yn) = cny

upper
n

ψn
+ ane−

Ωnψn
λn

(
e
y
upper
n
λn − 1

)
. (3.15b)

Proof The objective function (3.14a) can be rewritten as

UM =
∑
n∈N

πn

⎡
⎣δ

∑
i∈Mn,s0i=1

ri + δyn − Tn (yn)
⎤
⎦. (3.16)

Consider that the SBSs are selfish and with the IR constraint same as (3.14e) in the
main text, we have

Tn (yn) = λnϕn
(
e
yn
λn − 1

)
+ cn
yn
ψn. (3.17)

Replace Tn (yn) in (3.16) with (3.17), and take the first derivative:

∂UM

∂yn
= πn

(
δ − ϕne

yn
λn − cn

yn
ψn

)
. (3.18)

Then we get the optimal amount of traffic offloaded by SBS n under the non-
information asymmetry situation as

y
upper
n = λn

[
ln

(
δ − cn

ψn

)
− ln ϕn

]
. (3.19)

The same result can also be obtained through the Lagrange function approach.
This completes the proof of Lemma 3.1.

Remark 3.2 Notice that the value of social welfare in (3.10) is equal to the MBS’s
utility. In addition, all SBSs receive zero net utility due to the selfish property of the
MBS, who tries to extract as much profit from SBSs’ offloading as possible when
satisfying the IR constraint shown as (3.14e). Solutions given in Lemma 3.1 provide
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the first best contract solution for the traffic offloading problem, since both the social
welfare and MBS utility are maximized and achieve the Pareto efficiency.

3.4.3 Contract Design by Linear Pricing

Linear pricing based contracts are designed for the scenario with information
asymmetry. To operate a linear pricing based contract, without the IC constraint
and the discrimination pricing principle, the SDWN controller designs a optimal
payment β∗ to optimize the MBS utility without the IC constraint, and then requests
the MBS to pay β∗ for every SBS equally for one unit of offloaded traffic. In other
words, the SBS requesting more offloading traffic will get more payment linearly.
To maximize the SBS utility, every SBS tends to request an appropriate amount of
offloading traffic ylowern . We provide the optimal traffic offloading contract selected
by the SBS and the optimal unit-price β∗ in Lemma 3.2.

Lemma 3.2 With information asymmetry, the optimal traffic offloading contract for
type θn (∀n = 1, 2, · · · , N) under the linear pricing rule is given by

ylowern = λn
[
ln
(
β∗ψn − cn

)− ln (wn − cn)
]+Ωnψn, (3.20a)

T lowern = β∗ylowern , (3.20b)

where β∗, designed by the SDWN controller to maximize the MBS utility, is the
solution of the following equation:

(δ − β)
(
β − cn

ψn

)−1

= ln

(
ψnβ − cn
wn − cn

)
+ Ωnψn

λn
. (3.21)

Proof Let β denote the payment of one unit of offloaded traffic for every SBS n =
1, 2, . . . , N . Under the linear pricing contract situation, the utility of SBS is

Vn = an
(

1− e−Ωnψn−ynλn

)
+ βyn − cn

yn
ψn. (3.22)

Take the first derivative of Vn and we get

∂Vn

∂yn
= −ϕne

yn
λn + β − cn

ψn
. (3.23)

To maximize the SBS utility under the linear pricing contract, the optimal offloading
requested by SBS n can be obtained as

ylowern = λn
[

ln

(
β − cn

ψn

)
− lnϕn

]
. (3.24)
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Replace yn in (3.16) with (3.24), and the MBS utility is given by

U (β) =
∑
n∈N

πn

⎡
⎣δ

∑
i∈Mn,s0i=1

ri + (δ − β) yn
⎤
⎦. (3.25)

Take the first derivative with respect to β, and then we can get the optimal β∗ as the
solution of the following equation:

(δ − β)
(
β − cn

ψn

)−1

= ln

(
β − cn

ψn

)
− ln (ϕn) . (3.26)

This completes the proof of Lemma 3.2.

Remark 3.3 The contract-based traffic offloading designed above is feasible and
can be realized under the SDWN framework. The required status information in
Definitions 3.1, 3.2 and 3.3 is obtained through the ANDSF, and contracts satisfying
IR and IC are designed by the SDWN controller. However, enough computing
capacity of the SDWN controller and corresponding modifications of the interface
and interaction protocols are still necessary to realize the contract-based traffic
offloading.

3.5 Conditions for Contract Feasibility

First, we propose the following Lemma 3.3 which provides the condition that
ensures the increasing concave property of revenue function vn (yn) defined as (3.9).

Lemma 3.3 In a traffic offloading system with a set N of SBSs indicated by n =
1, 2, · · · , N . The arrival rate of SBS’s own traffic requests is λn = λ, ∀n ∈ N .
Define

ϕn = wn − cn
ψn

e−
Ωnψn
λ . (3.27)

With a bundle of traffic offloading contracts satisfying IR an IC conditions, the traffic
offloading allocated to SBS n is yn, ∀n ∈ N . Given yn ≤ ym, (n,m ∈ N ), if
ϕn ≤ ϕm, then the revenue function shown in (3.9) is a strictly increasing concave
function of the amount of traffic offloading allocated.

Proof Take the first derivative of vn in (3.9) and we get

∂vn(yn)
∂yn

= wn−cn
ψn

e−
Ωnψn−yn

λ > 0. (3.28)

Therefore, revenue function vn (yn) is a strictly increasing function of yn, ∀n ∈ N .
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Given yn ≤ ym, and according to IC conditions, the revenue margin between
SBS n and SBS m can be calculated by

vm (ym)− vn (yn)

=am
(

1− e−Ωmψm−ymλ

)
+ Tm (ym)− cmym

ψm
+ cmym
ψm

−
[
an

(
1− e−Ωnψn−ynλ

)
+ Tn (yn)

]

≥am
(

1− e−Ωmψm−ynλ

)
+ Tn (yn)− cmyn

ψm
+ cmym
ψm

−
[
an

(
1− e−Ωnψn−ynλ

)
+ Tn (yn)

]

=am
(

1− e−Ωmψm−ynλ

)
− an

(
1− e−Ωnψn−ynλ

)
+ cm

ψm
(ym − yn)

≥am
(

1− e−Ωmψm−ynλ

)
− an

(
1− e−Ωnψn−ynλ

)
� F1 (yn) .

Take the first derivative of F1 (yn), and then we get

∂F1(yn)
∂yn

=
(
wn−cn
ψn

e−
Ωnψn
λ − wm−cm

ψm
e−

Ωmψm
λ

)
e
yn
λ .

When ϕn ≤ ϕm, then we have ∂F1 (yn)/∂yn ≤ 0, which reflects that with yn
and ym increasing, the revenue margin between yn and ym tends to be smaller.
Consequently, the revenue function shown in (3.9) is a strictly increasing concave
function of the amount of traffic offloading provided by SBSs. This completes the
proof of Lemma 3.3.

A feasible traffic offloading contract for the information-asymmetry situation
must ensure that without the knowledge of SBS types, all SBSs can receive
maximum net utility only if they select the right contracts designed for their types.
Based on Lemma 3.3, the following Theorem 3.1 proposes the monotonic property
of SBS’s offload amount, payment, and net utility. Theorem 3.1 demonstrates the
feasibility of the proposed contract based traffic offloading and resource allocation
method in Sect. 3.4.1 for the HetUDN with different types of SBSs.

Theorem 3.1 Monotonicity: In an SDWN-based HetUDN with N heterogeneous
SBSs, the type of each SBS θn (n ∈ N ) is defined by Definition 3.1. Without
the information of SBS types, the SDWN controller designs a bundle of traffic
offloading contracts {T (y) , y} for these N types of SBSs and the MBS, according
to the optimization problem formulated as (3.14). Consider that the arrival rates of
traffic requests from SUEs are equal for every SBS, i.e., λn = λ, ∀n. Then for each
contract {Tn (yn) , yn}, the amount of traffic offload y allocated to each SBS and
payment T (y) obtained by (3.14) have the monotonicity. Specifically, if and only if
θ1 < θ2 < · · · < θN ,

y1 < y2 < · · · < yN, (3.29a)

T1 (y1) < T2 (y2) < · · · < TN (yN) , (3.29b)

V ′1 < V ′2 < · · · < V ′N . (3.29c)
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Proof We first prove that y1 < y2 < · · · < yN if and only if θ1 < θ2 < · · · < θN .
According to the IC constraints in (3.14f), we have ∀n,m = 1, 2, · · · , N ,

an

(
1− e−Ωnψn−ynλ

)
+ Tn (yn)− cnyn

ψn

≥ an
(

1− e−Ωnψn−ymλ

)
+ Tm (ym)− cnym

ψn
,

(3.30a)

am

(
1− e−Ωmψm−ymλ

)
+ Tm (ym)− cmym

ψm

≥ am
(

1− e−Ωmψm−ynλ

)
+ Tn (yn)− cmyn

ψm
.

(3.30b)

Necessity Consider that 0 ≤ yn ≤ ym (∀n,m ∈ N , n 
= m). For the concave
property of the revenue function, the condition of ϕn ≤ ϕm is satisfied according to
Lemma 3.3, and ϕn = ϕm if and only if yn = ym. Then add the two inequalities
above in (3.30) together and then we get the following inequality

0 ≤
(
ame

−Ωmψmλ − ane−Ωnψnλ
) (
e
ym
λ − e ynλ

)

= λ (ϕm − ϕn)
(
e
ym
λ − e ynλ

)
≤
(
cn

ψn
− cm

ψm

)
(ym − yn) .

(3.31)

For 0 ≤ yn ≤ ym, the following inequality is always satisfied:

e
ym
λ − e ynλ ≥ ym − yn

λ
≥ 0. (3.32)

According to (3.32) and (3.31) can be transformed to

1
λ

(
ame

−Ωmψm
λ − ane−Ωnψnλ

)
≤ cn
ψn
− cm
ψm
, (3.33)

which can be further derived as

am

λ
e−

Ωmψm
λ + cm

ψm
≤ an
λ
e−

Ωnψn
λ + cn

ψn

⇒ wm − cm
ψm

e−
Ωmψm
λ + cm

ψm
≤ wn − cn

ψn
e−

Ωnψn
λ + cn

ψn
,

(3.34)

which is equal to

ψn

cn + (wn − cn) e−Ωnψnλ
≤ ψm

cm + (wm − cm) e−Ωmψmλ
. (3.35)
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According to the definition of θ , we can get θn ≤ θm, and θn = θm if and only if
yn = ym.

Sufficiency Consider Definition 3.1, 0 < θn ≤ θm is equal to

cn

ψn
+ wn − cn

ψn
e−

Ωnψn
λ ≥ cm

ψm
+ wm − cm

ψm
e−

Ωmψm
λ , (3.36)

which can be written as
(
wm − cm
ψm

e−
Ωmψm
λ − wn − cn

ψn
e−

Ωnψn
λ

)
+
(
cm

ψm
− cn

ψn

)
≤ 0. (3.37)

Hypothesise yn > ym > 0, then ϕn > ϕm, and inequality

λ
(
e
yn
λ − e ymλ

)
> yn − ym > 0 (3.38)

is always satisfied. Then (3.37) can be further derived as

0 ≤
(
wn − cn
ψn

e−
Ωnψn
λ − wm − cm

ψm
e−

Ωmψm
λ

)
(yn − ym)

+
(
cn

ψn
− cm

ψm

)
(yn − ym)

(3.39)

< λ

(
wn − cn
ψn

e−
Ωnψn
λ − wm − cm

ψm
e−

Ωmψm
λ

)(
e
yn
λ − e ymλ

)

+
(
cn

ψn
− cm

ψm

)
(yn − ym) .

(3.40)

However, according to IC constraints and adding (3.30a) and (3.30b) together, then
we have

(
ame

−Ωmψm
λ − ane−

Ωnψn
λ

) (
e
ym
λ − e ynλ

)
≤
(
cn

ψn
− cm

ψm

)
(ym − yn) . (3.41)

Considering yn > ym > 0, (3.41) can be transformed as

(
ane

−Ωnψn
λ − ame−

Ωmψm
λ

) (
e
yn
λ − e ymλ

)
+
(
cn

ψn
− cm

ψm

)
(yn − ym) ≤ 0.
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As an = λ (wn − cn)/ψn, we can get

λ

(
wn − cn
ψn

e−
Ωnψn
λ − wm − cm

ψm
e−

Ωmψm
λ

)(
e
yn
λ − e ymλ

)

+
(
cn

ψn
− cm

ψm

)
(yn − ym) ≤ 0,

(3.42)

which is a contradiction with (3.39). Therefore, the hypothesis yn > ym is invalid,
which means that yn ≤ ym if θn ≤ θm.

Then we have demonstrated the proposition that yn < ym if and only if θn < θm,
and yn = ym if and only if θn = θm. Next, we will prove that T1 (y1) < T2 (y2) <

· · · < TN (yN) if and only if y1 < y2 < · · · < yN .

Sufficiency ∀n,m = 1, 2, · · · , N, n 
= m, we have (3.30b) according to IC
constraints, which can be transformed to

Tn (yn)− Tm (ym) ≤ ame−Ωmψmλ
(
e
yn
λ − e ymλ

)
+ cm
ψm
(yn − ym) ,

and then we get Tn (yn) ≤ Tm (ym) if yn ≤ ym.

Necessity Inequality (3.30a) obtained by the IC constraints can be transformed to

ane
−Ωnψnλ

(
e
yn
λ − e ymλ

)
+ cn
ψn
(yn − ym) ≤ Tn (yn)− Tm (ym) .

Given Tn (yn) ≤ Tm (ym), the left part of the inequality above can be written by

ane
−Ωnψnλ

(
e
yn
λ − e ymλ

)
+ cn
ψn
(yn − ym) ≤ 0, (3.43)

which can be satisfied only by 0 ≤ yn ≤ ym.

Then we have demonstrated the proposition that Tn (yn) < Tm (ym) if and only if
yn < ym, and Tn (yn) = Tm (ym) if and only if yn = ym. Due to the transferability
of the necessary and sufficient conditions, Tn (yn) < Tm (ym) if and only if θn < θm,
and Tn (yn) = Tm (ym) if and only if θn = θm.

Last, we will prove the monotonicity of SBS’s net utility. According
to (3.7), (3.8) and the IC constraints in Definition 3.3, the net utility difference
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between SBS n and SBS m (∀n,m = 1, 2, · · · , N , n 
= m) can be calculated as

V ′m − V ′n = Vm − Pm (Ωm)− (Vn − Pn (Ωn))
=am

(
1− e−Ωmψm−ymλ

)
+ Tm (ym)− cmym

ψm
− Pm (Ωm)

−
[
an

(
1− e−Ωnψn−ynλ

)
+ Tn (yn)− cnyn

ψn

]
+ Pn (Ωn)

≥am
(

1− e−Ωmψm−ynλ

)
+ Tn (yn)− cmyn

ψm
− Pm (Ωm)

−
[
an

(
1− e−Ωnψn−ynλ

)
+ Tn (yn)− cnyn

ψn

]
+ Pn (Ωn)

(3.44)

=am
(

1− e−Ωmψm−ynλ

)
− an

(
1− e−Ωnψn−ynλ

)

+
(
cn

ψn
− cm

ψm

)
yn − Pm (Ωm)+ Pn (Ωn) � F2 (yn)

(3.45)

Consider that θn < θm, then yn < ym and ϕn < ϕm according to (3.29a) in
Theorem 3.1 proved previously and Lemma 3.3, respectively. Let yn = 0 in F2 (yn),
and according to the results of Pm (Ωm) and Pm (Ωm) calculated by (3.5), we have

F2 (0) =am
(

1− e−Ωmψmλ
)
− an

(
1− e−Ωnψnλ

)
− Pm (Ωm)+ Pn (Ωn)

= 0.
(3.46)

According to the expression of θn defined in Definition 3.1 and considering that
yn > 0, the first derivative of F2 (yn) with respect to yn can be written as

∂F2 (yn)

∂yn
=
(
cn

ψn
− cm

ψm

)
+ (ϕn − ϕm) e ynλ

≥
(
cn

ψn
− cm

ψm

)
+ (ϕn − ϕm)

=
(
cn

ψn
+ ϕn

)
−
(
cm

ψm
+ ϕm

)
= 1

θn
− 1

θm
> 0.

(3.47)

The necessity of (3.29c) can be proved by applying the reduction to absurdity.
Since the proving idea is similar to (3.44)–(3.47), we omit the proof of necessity
for (3.29c). Therefore, we have V ′n < V ′m, if and only if θn < θm, and V ′n = V ′m,
if and only if θn = θm, ∀n,m ∈ N , n 
= m. This completes the proof of
Theorem 3.1.



3.6 Simulation Results 35

Remark 3.4

(1) Valid of SBS type definition: Theorem 3.1 demonstrates that SBS type θn
proposed and defined in Definition 3.1 is reasonable, since it can effectively
reflect the influence of heterogeneous SBSs’ performance and capacity on the
contract designed by a competitive market based economics theory.

(2) Fairness and monotonicity: Theorem 3.1 demonstrate that, for both of the
service requester and service providers, i.e., the MBS and SBSs, respec-
tively, the proposed contract-based traffic offloading and resource allocation
mechanism as (3.14) guarantees the fairness and incentive property of the trans-
mission resource market, in the scenario of information asymmetry and that
service providers are heterogeneous. On the one hand, monotonicity of (3.29a)
and (3.29b) implies that for the SBSs with higher θ , they are more suitable for
offloading traffic, and their best choice to achieve highest payoff is offloading
larger amount of traffic. Meanwhile, they will receive more payment. This
contract principle can ensure the fairness among the heterogeneous SBSs. On
the other hand, monotonicity also provides an incentive for SBSs. Specifically,
if a high type of SBS selects the contract designed for low types of SBSs, even
though a small amount of traffic offloading will be requested by the SDWN
controller, the corresponding low payment will deteriorate this high-type SBS’s
payment.

(3) Incentive Compatibility Monotonicity of (3.29c) also implies that the incentive
for SBSs is compatible, which means that SBSs with high capability will receive
more net utility than low ones. For those SBSs whose types cannot be aware
of the MBS and SDWN controller, the designed contract is self-revealing for
SBSs, since that each type of SBS will receive the maximum net utility, which
reflects the net revenue by offloading, if and only if it selects the right traffic
offloading contract designed exactly for its type.

3.6 Simulation Results

In this part, we will use MATLAB 2016b to evaluate the proposed contract-based
traffic offloading and resource allocation. First of all, we introduce the scenario
setup of the simulations. In the following simulations, we assume a typical 4G/5G
macrocell with a transmission radius of 500 m. The HetUDN consists of one MBS,
N = 100 heterogeneous SBSs with N = 100 different types, and M = 250
MUEs. Both SBSs and MUEs are randomly distributed within the macrocell. The
distribution of network elements in the simulation is shown as Fig. 3.2. In addition,
we set cn = 0.6, wn = 1 and δ = 1. The other main parameters of the HetUDN are
shown in Table 3.1.

To demonstrate monotonicity and incentive compatibility of the contract, the
indexes of SBSs are sorted according to their values of type obtained by Defini-
tion 3.1. By applying the three different contracts designed in Sect. 3.4, we obtain
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Fig. 3.2 Distributions of
MUEs, MBS and SBSs in the
simulation scene (The red
dotted circle is the coverage
of the MBS)
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Table 3.1 Simulation parameters

System parameters Value setting

Transmission power of MBS 46 dBm

Transmission power of SBSs ∼U [15, 35] dBm

Path loss of MBS 28.3 + 22.0log10l, l (km)

Path loss of SBSs 30.5 + 36.7log10l, l (km)

MBS / SBS bandwidth 20 MHz

MBS / SBS operating frequency 2.6 GHz/2.4 GHz

SBSs’ own traffic requests arrival rate λ = 10 Mbps

Power spectral density of thermal noise −174 dBm/Hz

the amount of traffic offloading requested by SBSs and payments required to the
MBS, which are shown as Fig. 3.3a and b, respectively. In Fig. 3.3, results illustrate
that both the amount of traffic offloading and payment increase with the value of
SBS type increasing, for the three different contracts, which reflects the fairness of
the contracts. In addition, among the three contracts, the no information asymmetry
contract requires the highest amount of traffic offloading and the highest payment
for SBSs, followed by the incentive contract proposed in Sect. 3.4.1. The lowest
traffic offloading and payment are requested by the linear pricing contract.

Moreover, the incentive compatibility of the contract designed in Sect. 3.4.1 is
verified by results shown in Fig. 3.3c. Figure 3.3c presents the net utility received
by selecting N = 100 different contracts in the contract bundle for four sample
SBSs n = 1, 10, 50, 90. The pentagram marks in Fig. 3.3c are the maximum net
utility received for the four SBSs, and the corresponding horizontal axes points are
the indexes of SBS types that contracts are designed for. Results indicate that for
each type of SBS, the maximum net utility can be achieved only by selecting the
right contract designed for this type.

By applying three different contracts, the system performance of HetUDN is
shown as Fig. 3.4, which presents that the MBS utility, SBS net utility and social
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Fig. 3.3 The contract
monotonicity and incentive
compatibility versus different
SBS types. (a) Traffic
offloading yn versus SBS
types. (b) Payments Tn (yn)
versus SBS types. (c) Net
utility received by different
contracts
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Fig. 3.4 System
performance of different
types of SBSs when applying
different traffic offloading and
resource allocation
mechanisms. (a) Utility of
MBS Un. (b) Net utility of
SBSs V ′n. (c) Social welfare
Wn



3.6 Simulation Results 39

welfare increase monotonically with the value of SBS type growing. Results in
Fig. 3.4a show that the contract for the scenario without information asymmetry
brings the maximum utility for the MBS. Under the case that the SBS types are
unavailable, the designed IC-based contract can only bring an approximate optimal
utility for the MBS, which is upper bounded by the no information asymmetry
situation. With information asymmetry, the linear pricing based contract does not
treat differently to all types of SBSs. Therefore, without the knowledge of SBS
type, the linear pricing performs worst on the MBS utility.

Since the MBS is selfish, when it is aware of the type of every BSS, the designed
contract only need to satisfy the IR constraints when maximizing the MBS utility.
Then every SBS can only get the utility equal to that of providing no offloading
service, which means that the net utility is zero for every SBS, as shown in Fig. 3.4b.
By applying the contract with IC constraints, only the SBS with the lowest type
value will receive zero-net utility, and SBSs with lower θ will receive less net utility
than that obtained by linear pricing contract. However, for those SBSs with higher
θ , they can receive more net utility than that obtained by linear pricing contract,
which demonstrates the incentive compatibility of the IC based contract. The social
welfare shown in Fig. 3.4c presents a similar result as Fig. 3.4a. In addition, with the
IC based contract for information asymmetry, the SBS with the highest θ brings the
same social welfare as no information asymmetry.

Next, we study that how the contract and system performance change with the
changing density of SBSs. Let the number of SBSs in the macrocell system varies
from 20 to 100, and other parameters are set as before. The average traffic offloaded
and the average payments for each SBS versus the nember of SBSs (types) are
shown in Fig. 3.5. The differences between the effects on the amount of traffic
offloading by three traffic offloading contracts shown in Fig. 3.5a are similar to that
of Fig. 3.3a. In addition, the average amount of traffic offloading for every SBS
decreases when the number of SBSs grows, which results that if the amount of total
traffic request are fixed, distributing more SBSs will lighten the load of every BS.
Figure 3.5b indicates that the average payment for each SBS does not change by
applying the contract for the no information asymmetry case and the linear pricing
contract, no matter how many SBSs in the HetUDN. By applying the IC based
contract for the information asymmetry case, the average payment obtained by per
SBS decreases when the number of SBS increases. These results reflect the high
effectiveness and efficiency of the contract designed in Sect. 3.4.1. Specifically,
when there are more SBSs in the system, which means that more candidates can
provide the traffic offloading service and the competitiveness among these SBSs
tends to be weak, the average payment provided by the MBS for each SBS will be
less than that in a more competitive market.

Due the same reason explained above, the average MBS utility, average SBS
net utility and average social welfare by one SBS will all decrease with increasing
number of SBS, by applying the three contracts, except that the SBS net utility
obtained under the no information asymmetry case is always zero, as shown
in Fig. 3.6. In addition, the social welfare shown in Fig. 3.6c also implies the
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Fig. 3.5 The contract performance versus the number of different SBS types. (a) Average traffic
offloading versus the number of SBS types. (b) Average payments versus the number of SBS types
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Fig. 3.6 System
performance versus the
number of SBSs when
applying different traffic
offloading and resource
allocation mechanisms. (a)
Average MBS utility from
one SBS. (b) Average net
utility of SBSs. (c) Average
social welfare from one SBS
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approximate optimization property of the IC based contract for the information
asymmetry case.

3.7 Conclusion

In this work, we have proposed a contract-based traffic offloading and resource
allocation mechanism for the SDWN-cased HetUDN. In the scenario with informa-
tion asymmetry, the designed IC based traffic offloading contract has the incentive
property to encourage every SBS to select the right contract designed personally
to it, which specifies the amount of traffic offloading and the payment from the
MBS. In addition, the SBS utility, MBS utility and social welfare can achieve an
approximate optimization, comparing the situation without information asymmetry,
and better than that achieved by linear pricing contract with information asymmetry.
Furthermore, the definition of SBS type proposed in this work provides a valid
index to measure the offloading performance of heterogeneous SBSs. Meanwhile,
the SBS type definition also guarantee the monotonicity and incentive compatibility
of contracts. In addition, the defined closed-form expression of SBS type makes
this definition enforceable to be applied in HetNets with densely distributed BSs for
resource management.
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Chapter 4
Cooperative Resource Allocation
in Heterogeneous Space-Based Networks

Abstract Currently, most Landsat satellites are deployed in the low earth orbit
(LEO) to obtain high resolution data of the Earth surface and atmosphere. However,
the return channels of LEO satellites are unstable and discontinuous intrinsically
resulting from the high orbital velocity, long revisit interval and limited ranges
of ground-based radar receivers. Space-based information networks (SBIN), in
which data can be delivered by the cooperative transmission of relay satellites,
can greatly expand the spatial transport connection ranges of LEO satellites. While
different types of these relay satellites deployed in orbits of different altitudes
represent distinctive performances when they are participating in forwarding. In
this chapter, we consider the cooperative mechanism of relay satellites deployed
in the geosynchronous orbit (GEO) and LEO according to their different transport
performances and orbital characteristics. To take full advantage of the transmission
resource of different kinds of cooperative relays, we propose a multiple access and
bandwidth resource allocation strategy for GEO relay, in which the relay can receive
and transmit simultaneously according to channel characteristics of space-based
systems. Moreover, a time slot allocation strategy which is based on the slotted time
division multiple access is introduced for the system with LEO relays. Based on the
queueing theoretic formulation, the stability of the proposed systems and protocols
is analyzed and the maximum stable throughput region is derived as well, which
provide the guidance for the design of the system optimal control. Simulation results
exhibit multiple factors that affect the stable throughput and verify the theoretical
analysis.

Keywords Space-based Information Networks · Cooperative Communication ·
Resource Allocation · Queueing Theory · Stability Analysis

4.1 Introduction

Space exploration has developed for nearly 60 years since October 4th 1957,
when the first artificial satellite launched. So far there have been more than 1100
active satellites all around the world, which are playing an important role of the
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earth observation, positioning and navigation, broadcast communication, military
premising scout, etc. Currently, most Landsat satellites are deployed in the low earth
orbit (LEO), which is around the Earth with an altitude between 300 and 10,000 km.
This low orbit altitude can obtain much higher resolution data of the Earth surface
and atmosphere. However, the return channels of LEO satellites are unstable and
discontinuous intrinsically, which results from extremely high orbital velocity, long
revisit interval and the limited ranges of ground-based radar receivers.

Recently, the space-based information network (SBIN) is proposed to increase
the transmission and detection capabilities of single satellite [1, 2]. In SBIN, the real
time space data acquisition and transmission can be realized through the cooperative
detection and transmission among the different satellites, satellite systems and
other space facilities. These different types of satellites with varying functionalities
perform diverse tasks, or perform the same task but with different capabilities.
Therefore, this diversity of functions and activities leads to the SBIN becoming
a kind of complex networks, which cause difficulties to the cooperation mechanism
design and the detection and transmission resource allocation for the SBIN [3, 4]. In
this work, we focus on the analysis and transmission resource allocation for the data
relay satellite (DRS), and the diversity of functions and activities among the SBIN
is considered, modeled and analyzed in our work.

In the SBIN with the DRS, the problems of the connection between LEO
satellites and ground station mentioned above can be solved potentially. Specifically,
over an inter-satellite link (ISL), data from LEO satellites is transmitted first to a
relay satellite that can establish the connection with the ground station, and then via
the satellite-ground station link forwarded from the relay to the ground stations [5–
7]. So far, many countries have deployed DRS for stable and quick data return. Such
as NASA’s Tracking and Data Relay Satellite (TDRS) [8, 9], DRSs are deployed in
the geosynchronous orbit (GEO), which can expand the spatial transport connection
range of LEO satellites and provide a stable transmission to the ground stations.

Most of current DRSs are deployed in the GEO to greatly improve the space
range that supports data return for LEO satellites and provide stable satellite-to-
ground downlink, so the DRS always refers specifically to the GEO relay satellite.
However, in case of that there are no available DRS or the DRS performing high
priority tasks and leaving no extra transmission resource, the LEO satellite carrying
urgent data needs to connect with the ground by finding other space transmission
resource when it does not in the capture range of the ground radar [10]. In this case,
those satellites passing over the ground station and with no data to send back or
lower priority tasks can contribute their transmission resource and perform as relays.
In this article, this kind of satellites is abbreviated as the LEO relay. In contrast,
DRSs specifically refer to the GEO relays in this article.

Main contributions of this part are summarized as follows.

• We establish two cooperative transmission systems for different types of relay
satellites. In each model, we formulate the classical queueing models to describe
the arrivals and service process in the systems. Then we propose an ON/OFF
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based probability model, which can describe the link connection status for the
LEO satellite, relay satellite and ground station,

• We propose two cooperative multi-access resource allocation strategies based on
employing different orbit types of relay satellites in the space-based multi-access
systems, to improve resource utilization and satisfy the constraints of different
kinds of relays. According to the protocols, the idle bandwidth resource of GEO
relay satellite and the time slot resource of LEO relay satellite can be allocated
efficiently in the multi-access systems.

• Based on the two resource allocation strategies, we discuss and provide the stable
throughput region of the two proposed cooperative protocols for the case with
two source nodes in the system. To deal with the interaction between the two
queues of the source nodes, a system decomposition method is introduced in our
work for the analysis of the interacting queues. According to the dominant system
analysis, we obtain the maximum stable throughput regions for both proposed
multi-access systems, which can play an important role for the design of the
system optimal control.

The remainder of this part is organized as follows. In Sect. 4.2, we review the
related works. In Sect. 4.3 the system models is described. Two cooperative multi-
access resource allocation protocols are proposed in Sect. 4.4. Then we analyze
the stability characteristics in Sect. 4.5. Simulations are shown in Sect. 4.6, and
conclusions are drawn in Sect. 4.7.

4.2 Related Works

The transmission resource of the both kinds of relay satellites above is limited in
different aspects, so a key issue in cooperative communication through a relay is
the resource allocation for full utilization of the limited resource. Researches on
the resource allocation have been addressed in many kinds of wireless networks.
A bandwidth allocation strategy of scalable video multicast in a WiMAX relay
system was proposed in [11] to maximize the network throughput and the number of
satisfied users. An optimal resource allocation scheme to maximize the achievable
rate and enhance the resource allocation efficiency was proposed through joint-
ing exploitation of multi-user diversity and multi-hop diversity in [12]. In [13],
researchers summarized many recent channel-aware resource allocation techniques
proposed for downlink multicast services in OFDMA systems. Most of the studies
above on resource allocation concentrate on the homogeneous wireless network.
Yet, data transmission in SBINs with DRSs depends on heterogeneous transport
medium, such as ISLs and SGLs. Moreover, the SBIN is a kind of opportunistic
networks, of which the above two kinds of links disrupted much more frequently.
Hence, the current models for resource allocation are no longer applicable for
SBINs. Concerning this issue, this part establishes an ON/OFF model to describe
the connection status of ISLs and satellite-ground links.

Meanwhile, the DRSs providing the relay service play an important role for the
cooperative communication in the SBIN. So the design of cooperation strategy is
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an essential part of the operation and performance optimization of the SBIN with
DRSs. Currently, many works have started to studied the cooperative strategies for
the satellite networks. To improve the energy efficiency, a real-time adaptive cooper-
ative transmission strategy for dynamic selection between the direct and cooperative
links based on the channel conditions was designed and evaluated in [14, 15].
In [16, 17], some cooperative relaying strategies which rely on the exploitation of
the Delay Diversity technique and the Maximal Ratio Combining (MRC) receive
diversity algorithm are proposed for a DVB-SH compliant hybrid satellite/terrestrial
network. Fractionated Satellite Networks discussed in [18] allow the satellites to
cooperate by exchanging resources to improve the network capability significantly.
In [19], the coordination between two coexisting transmitters and a cognitive
beamhopping technique were introduced into the cooperative and cognitive satellite
systems, respectively. Moreover, for the cooperative communication of the SBIN,
many inter-satellite routings were proposed to improve transmission efficiency [20–
22], reliability [23], security [24] and the quality of service [25]. However, most of
the current researches did not consider or analyze that the uplink and downlink of the
DRS use different types of wireless channels. Then DRSs can receive and forward
data simultaneously and current cooperation strategies are no longer applicable. In
this part, the powerful store-and-forward capability and massive bandwidth resource
of DRSs (GEO relay) are considered. On the other hand, the LEO relay subjects
to the constraints of bandwidth and connect time with the ground station, and its
transmission capacity is not as powerful as GEO relay’s. Hence, it is necessary to
design different resource allocation protocols to improve resource utilization and
satisfy the constraints of different kinds of relays.

4.3 System Model

We consider two types of resource allocation mechanisms for space-based informa-
tion networks in different scenarios. In particular, transmission resource allocation
and cooperation protocols are designed for the SBIN with the GEO relay satellite
and the LEO relay satellite, respectively. Motivations of the above two aspects
are that the proposed space resource allocation methods can be applied to the
main network deployment modes: when the transmission resource of GEO relay
satellites is available, the protocol proposed for the GEO relay scene can be applied,
otherwise, the LEO relay protocol can be the alternate. As shown in Fig. 4.1a,
the relay satellite operating in the geosynchronous orbit can establish a consistent
and reliable connection with the ground station. Generally, the GEO relay satellite
has more powerful storage-and-forwarding capabilities and higher transmission
bandwidth. As a result, in the SBIN with a GEO relay, we assume that the relay can
forward all the data received from different source nodes simultaneously. Moreover,
uplinks and downlinks through the DRS go through different types of channels (ISLs
and satellite-ground station links), so relays can receive and forward data at the same
time slot. In addition, the number of the accessible satellites for the relay is limited,
which results from the limited number of satellites and their orbit constraints. On
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Fig. 4.1 Network model. (a) Network model with GEO relay. (b) Network model with LEO relay

the other hand, due to its transmission and access capabilities, the relay satellite
also restricts the number of satellites allowed to access. Consequently, we consider
that simultaneous transmission can be always successful. These assumptions above
are feasible because of the powerful transmission capability of current DRSs.
So when there are more than one source satellites have transmission missions
through the GEO relay, the bandwidth resource of the relay needs to be allocated
appropriately to these sources to improve the transmission efficiency and resource
utilization of the relay. In another situation, there is no available GEO data relay
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satellite, such as when the relay is executing the high priority task and has no
extra bandwidth resource for other satellites. Then if the LEO satellite has the
urgent data transmission demand when it does not enter the reception range of
ground stations, the transmission has to depend on the cooperation with those
LEO satellites that meet the transmission condition and have no or low priority
transmission missions. This cooperation model is shown as Fig. 4.1b. Different from
the GEO relay satellite, the LEO satellite performing as the relay is not deployed
for the data relay mission, so the transmission bandwidth is quite limited and the
bandwidth allocation mechanism to the GEO relay do not fit for the LEO relay
any more. Therefore, we introduce a transmission time allocation mechanism based
on the slotted time division multiple access (TDMA) system for the cooperative
transmission with a LEO relay satellite.

The two scenes mentioned above are modeled as follows. As shown in Fig. 4.1,
the network consists of a finite number N <∞ of source nodes, a relay node r and
a destination node d . The N source nodes indicate LEO satellites and are numbered
by 1, 2, · · · , N . The relay node r indicates the data relay satellite, which can be
deployed in GEO or LEO as Fig. 4.1a and b. The destination node d has different
reception channels allowed to receive LEO and GEO satellites simultaneously.
When there are more than one source nodes sending data to the relay node, the
transmission resource can be allocated through different appropriate strategies in
these two scenes.

Then we describe the queueing model for the multiple access-based transmission
resource allocation system. Each of the N source nodes has a finite buffer. The
channel is slotted. The arrival process to each source node is independent and
identically distributed (i.i.d.) at different time slots, and λi (i = 1, 2, · · · , N)
denotes the arrival rates at the ith queue. Arrival processes to different nodes are
independent with each other. Let Ω = [ω1, ω2, · · · , ωN ] denote the resource
sharing vector, where ωi (i = 1, 2, · · · , N) represents the proportion of the relay’s
total bandwidth resource allocated to the ith source node, or it can represent the
probility that the ith source node is allocated the total time slot. The set of all feasible
resource sharing vectors is expressed as:

W =
{
Ω = [ω1, ω2, · · · , ωN ] ∈ RN+

∣∣∣∣∣
N∑
i=1

ωi ≤ 1

}
. (4.1)

The stability region of the queue is an important and fundamental performance
for the communication network. In this part, we consider the stability as the
finiteness of the queue size. Let the vector Q(t) = [Qi (t)] (i = 1, 2, · · · , N)
be queue sizes of the source nodes at time slot t . We use the definition of stability
in [26] and [27] as follows. Each queue i (i = 1, 2, · · · , N) of the network is stable,
if

lim
t→∞ Pr {Qi (t) < x} = F (x) and lim

x→∞F (x) = 1. (4.2)
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For a weaker condition:

lim
x→∞ lim

t→∞ inf Pr {Qi (t) < x} = 1, (4.3)

then the process is called substable [26].
As for the stability, Loynes provided the theory to judge the stability condi-

tion [28]. The theory indicates that when the arrival and service processes are strictly
stationary in a queueing system, and the average arrival rate is less than the average
service rate, the queue is stable. If the average arrival rate is greater than the average
service rate, the queue is unstable.

4.3.1 ON/OFF Model

Next, we introduce the ON/OFF probability model to describe the link connection
status for the LEO satellite, relay satellite and ground station. Specifically, when
the connection can be established, we call the link status is ON, otherwise is OFF.
In this part, we assume that the link connection status is a stochastic process as in
a long time horizon. In addition, to be general, for a particular source node (LEO
satellite), the connection status with the relay and the destination is i.i.d. with an
ON/OFF probability, respectively, from one slot to another. Define a binary function
to describe the link connection status as (4.4).

Ljk =
{

1, link between j and k is ON,
0, link between j and k is OFF.

(4.4)

In this part, we focus on the SBIN with a GEO relay satellite, as shown in Fig. 4.2.

4.3.1.1 ISL Connection Status

Consider that source nodes can transmits data to the relay as long as they are visible
to each other. Therefore, the blue part of the LEO satellite orbit determined by
the tangent from the relay to the Earth denotes the linkable range, and we call
the link status is ON, as shown in Fig. 4.2a. Due to the Earth rotation and satellite
orbit modes such as polar orbits and Walker Delta Pattern constellation orbits, the
movement of a LEO Landsat satellite forms a sphere within a radius of the satellite’s
orbit radius. Therefore on this sphere, the linkable range is the spherical cap formed
from the blue arc in Fig. 4.2a.

According to the analysis above, we set the area ratio of the spherical cap to the
entire sphere as the probability that the connection status between LEO satellite i
and the relay r is ON:

p1(i) � Pr {Lir = 1} = 0.5
(
1+ cosα1(i)

)
, (4.5)
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Fig. 4.2 ON/OFF Model. (a) The blue arc (ON) of the LEO satellite orbit denotes the linkable
range between the relay and the LEO satellite limited by the shade of the Earth. (b) The blue arc
(ON) scopes the range that the LEO satellite can directly connect with the ground station, which is
determined by the maximum capture range of the ground-based radar α2

where α1(i) can be calculated through

sin α1(i) =
(√
R2
i − R2

E +
√
R2
r − R2

E

)
RE/RiRr . (4.6)

In (4.6), RE , Ri and Rr are the radius of the Earth, the LEO satellite orbit and
the geosynchronous orbit, respectively. In the later sections, let p1(i) denote the
probability of the connection between the ith LEO satellite and the relay.

4.3.1.2 Satellite-Ground Station Link Connection Status

For the data transmission directly from the LEO satellite to the ground station
(destination), we assume that the transmission opportunity is determined by the
maximum capture range of the ground-based radar. This range can be described
with the maximum elevation angle, as α2 (0 < α2 ≤ π

2 ) shown in Fig. 4.2b. The
blue arc in Fig. 4.2b scopes the range that the LEO satellite can directly connect
with the ground station. Similar to the analysis in the previous part, let the area ratio
of the spherical cap to the entire sphere denote the probability that the connection
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status between LEO satellite i and the destination d is ON:

p2(i) � Pr {Lid = 1}

= 0.5

(
1− ρisin2α2 − cosα2

√
1− (ρi sinα2)

2
)
,

(4.7)

where ρi = Ri/RE . We use p2(i) to denote the probability of the connection
between the ith LEO satellite and the ground station.

Then we get the corresponding conditional probabilities which are defined as

p3(i) � Pr {Lid = 1 |Lir = 1 }

= Pr {Lid = 1 ∩ Lir = 1}
Pr {Lir = 1}

= Pr {Lid = 1}
Pr {Lir = 1} =

p2(i)

p1(i)
,

(4.8)

Pr {Lid = 0 |Lir = 1 } = 1− p3(i). (4.9)

We use p3(i) to denote the probability of the connection between the ith LEO
satellite and the relay node, under the condition that this satellite can connect with
the ground station.

The situation that with a LEO relay is similar, and the only difference is that the
DRS in Fig. 4.2 is deployed in the LEO, with Rr representing the radius of the LEO
relay satellite, rather than the GEO.

4.3.2 Physical Channel Model

In the transmission of the SBIN, the line of sight (LOS) signal is much stronger than
the others, which is different from ground networks. Therefore, the wireless channel
for the LEO satellites, relay satellite and ground stations is considered as a Rician
fading channel model with additive Gaussian noise. The signal received at the relay
or the destination at the time slot t is modeled as

ytij =
√
Gd

−γ
ij h

t
ij x
t
i + ntij , (4.10)

where i is the source node or the relay node when it transmits data to the destination
node, and j is the destination or the relay when it receives data from source nodes,
xi is the data transmitted from i, G is the transmitting power, dij is the distance
between i and j , γ denotes the path loss exponent, and ntij is i.i.d. additive Gaussian
noise between i and j at the time slot t with zero-mean and variance N0 [29, 30].
In (4.10), hij = X1 + jX2 is the channel fading coefficient modeled as a circularly
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symmetric complex Gaussian random variable, in which X1 ∼ N
(
μ1,

σ 2

2

)
and

X2 ∼N
(
μ2,

σ 2

2

)
are modeled as Gaussian random variable. Then the distribution

of
∣∣hij

∣∣ is given by the Rician probability density function (PDF)

f|hij | (h) =
2h

σ 2 exp

{
− (h2 + s2

)

σ 2

}
I0

(
2sh

σ 2

)
, (4.11)

where s2 = μ2
1 + μ2

2 is the power due to the Line of Sight (LOS) signal, and I0 (·)
is the 0th order modified Bessel function of the first kind [31, 32]. Then SNRij , the
Signal-to-Noise Ratio (SNR) between two nodes i and j , can be specified as

SNRij =
∣∣hij

∣∣2d−γij G
N0

, (4.12)

where
∣∣hij

∣∣2 follows the non-central chi-squares (X 2) distribution with the PDF as

f|hij |2 (h) =
K + 1

Ω
exp

{
−K − (K + 1) h

Ω

}
I0

(
2

√
K (K + 1) h

Ω

)
. (4.13)

In (4.13), Ω = s2 + σ 2 is the total power of the LOS and scattering signal, K =
s2

σ 2 is the ratio between the power in the direct path and the power in the other
scattered paths [32, 33]. Next, we introduce the outage event and outage probability
to characterize the success and failure of the packet transmission and reception. The
condition of outrage is defined as that the SNR is less than the given SNR threshold
β [29, 34, 35]. Then outage event can be expressed as (4.14).

{
hij : SNRij < β

} =
{
hij :

∣∣hij
∣∣2 < βN0d

γ

ij

G

}
. (4.14)

Then the success probability of the packet between i and j at SNR threshold β is

fij � Pr
{
Cij

} = Pr

{∣∣hij
∣∣2 ≥ βN0d

γ

ij

G

}

=
∫ +∞
βN0d

γ
ij

G

K + 1

Ω
exp

{
−K − (K + 1) h

Ω

}
I0

(
2

√
K (K + 1) h

Ω

)
dh,

(4.15)

where Cij denotes the success transmission between nodes i and j .
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4.4 Cooperative Resource Allocation Protocol

In a LEO satellite detection system without relays, satellites cannot establish stable
and continuous data transmission as mentioned in previous sections. With the
cooperative transmission through the relay satellite deployed in the geosynchronous
or low orbit, LEO satellites can distribute the data back to the Earth even if the
direct transmission link between this satellite and ground stations does not exist,
especially when with the GEO relay that can connect to the Earth all weather
and all time. On the other hand, for the relay satellite, the transmission resource
(bandwidth or transmission opportunity) is limited and the opportunity that the data
relay satellite can be accessed by LEO satellites (Lir = 1) is also limited according
to (4.5), particularly for the LEO relay. Therefore, LEO satellites tend to utilize the
transmission resource as fully as possible. Without the cognition mechanism, the
transmission resource of the relay is allocated for accessible LEO satellites based
on some allocation strategies, such as according to the number of accessing LEO
satellites. This means that when a source node accesses the relay satellite but does
not have a packet to transmit, the transmission resource allocated to this node is
wasted.

To solve the problems above, we propose two cooperative multi-access resource
allocation strategies based on employing different orbit types of relay satellites in
the space-based network, respectively. We assume that the relay satellite can sense
the communication channel to detect the idle bandwidth resource or empty time
slot. In addition, the errors and delay in packet ACK feedback is neglected in
our work.1 We use the similar transmission failure handling approach in [29], in
which source nodes and the relay can confirm whether the packet is transmitted to
destination correctly, and if not, both of the source nodes and the relay will store
this packet in their queues and resend it at the next time slot. Then we propose
different cooperative resource allocation protocols for the cooperative transmission
in space-based networks, in which the GEO relay satellite and LEO landsat satellite
are performing as the relay, respectively. In the following protocols, the relative
variables defined previously are summarized as Table 4.1.

1 In this work, the errors and delay in packet ACK feedback is neglected. However, when these
errors and delay happen, the transmission of the relevant packets are considered to be unsuccessful.
Then according to the two protocols designed above, these packets considered unsuccessfully
transmitted will be resent. This situation will bring packet errors or repetitions to the receivers
at the relays and ground stations, but has no effect on the operation of the system. In addition, the
stability analysis in the next section is still valid, by considering equally that the success probability
fij decreases resulting from the errors and delay of ACK feedback.



56 4 Cooperative Resource Allocation in Heterogeneous Space-Based Networks

Table 4.1 Variable definitions in cooperative resource allocation protocols

Variables Definitions

N Number of total satellites

M Number of satellites considered in the resource allocation

Lid Link between satellite i and the destination (ground station)

Lir Link between satellite i and the relay satellite

Lrd Link between relay satellite and the destination (ground station)

Ω Resource sharing vector

ωi resource allocated to source node i

Table 4.2 Bandwidth resource allocation (BA) protocol for the GEO relay system

Protocol 1: BA protocol for the GEO relay system

• Each source node transmits the packet at the head of its queue with entire satellite-to-ground
transmission resource if it satisfies Lid = 1. Meanwhile, it does not transmit data to the relay,
although it satisfies Lir = 1.

• When there are multiple source satellites i = 1, 2, · · · ,M satisfying Lir = 1∩Lid = 0, the
resource of the relay will be allocated with Ω = [ω1, ω2, · · · , ωM ]. The relay detects idle
transmission resource resulting from two situations:

– At the time slot when some of these nodes change the link status from Lid = 0 toLid = 1,
resource allocated to them is reallocated to the rest whose Lid = 0.

– At the time slot when some of accessed source nodes have no packet to send, resource
allocated to them is also reallocated to the rest nodes.

• When there is only one source satellite i satisfies Lir = 1 ∩ Lid = 0, resource ω0 (ωi <
ω0 ≤ 1) is allocated to satellite i.

4.4.1 GEO Relay

As discussed above, the DRSs deployed in GEO always have much powerful
transmission capability and bandwidth resource. Then we assume that the DRS
can receive and forward data received from source satellites simultaneously through
ISLs and SGLs, respectively. Moreover, we consider that if the LEO satellites can
directly connect to the Earth (Lid = 1), they can use entire satellite-to-ground
transmission resource to download data. This assumption is reasonable for current
earth resource satellites, as they belong to different departments and have their own
ground stations and satellite-to-ground transport channels. So the resource allocated
is of relay satellites in this part. We consider that among total N satellites, there
areM satellites can connect to the relay but not to the Earth, so we need to allocate
resource for theseM satellites.Ω = [ω1, ω2, · · · , ωM ] denotes the resource sharing
vector, where ωi (i = 1, 2, · · · ,M) represents the proportion of the relay’s total
bandwidth resource to source node i. The proposed cooperative resource allocation
protocol is described in Table 4.2.
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4.4.2 LEO Relay

In the space-based network without the GEO relay, when LEO satellites have the
urgent transmission tasks but their links with the stations are not available, other
LEO satellites that arrive into the capture range of the ground stations can provide
temporary data relay services, if they have no or low priority data transmission
of their own to the ground station. However, compared with the DRSs, these
LEO satellites temporarily performed as relays do not have enough transmission
resource such as bandwidth. Moreover, they cannot establish stable and continuous
connection with the ground. Therefore, we introduce the time resource allocated
protocol based on a slotted TDMA framework. In contrast with the resource
allocation for the GEO relay, this protocol rules that each time slot is assigned to
only one source satellite. Under the circumstances, we consider that among total N
satellites, there are M satellites satisfying Lir = 1. Then Ω = [ω1, ω2, · · · , ωM ]
denotes the time sharing vector, where ωi (i = 1, 2, · · · ,M) represents the
probability that the ith source node is allocated the whole time slot. The proposed
cooperative resource allocation protocol is described in Table 4.3.

Table 4.3 Timeslot Resource Allocation (TA) protocol for the LEO relay system

Protocol 2: TA protocol for the LEO relay system

• Each source node transmits the packet at the head of its queue with entire satellite-to-ground
transmission resource if it satisfies Lid = 1. Under this circumstances, the source does not
transmit data to the relay, although it satisfies Lir = 1.

• When there are more than one source satellite i = 1, 2, · · · ,M all satisfing Lir = 1, the
transmission time of the relay will be allocated asΩ = [ω1, ω2, · · · , ωM ].

– When the ground stations receives a packet correctly, it sends an ACK packet which can
be received by both the relay and the corresponding source node, and this packet at the
head of the relay and the source is deleted. If the ground stations does not receives a packet
correctly but the relay does, then the relay and the corresponding source node store this
packet at the end and the head of their queues, respectively.

– At the time slot when some of these nodes change the link status from Lid = 0 to Lid =
1, which means that they turn to connect with ground stations, the relay can sense this
situation and uses the time slot allocated to these sources to send the packet at the head of
its queue.

– At the time slot when some of accessed source nodes have no packet to send, the relay
can sense this situation and uses the time slot allocated to these sources to send the packet
at the head of its queue.

• If the packet from the source node is not successfully delivered by the relay in the following
N−1 time slot, then the corresponding source i node delivers the packet to the ground station
if it satisfies Lid = 1, otherwise the packet will be dropped from the queue of the source.
The relay drops the packet from its queue.



58 4 Cooperative Resource Allocation in Heterogeneous Space-Based Networks

4.5 Stability Analysis

In this section, we mainly discuss and provide the stable throughput region of
the two proposed cooperative protocols for the case with two source nodes in the
system.

4.5.1 GEO Relay

In our work, we consider the relay buffer is sufficiently large and can forward entire
received data immediately according to DRS’s powerful storage and transmission
capacity. Based on this assumption, we consider that the queue of the relay is always
stable. Next, we will focus on the analysis of the source satellites’ queues.

In the network, there are two LEO satellites (source nodes) with the data arrival
process λ1 and λ2, a relay satellite (DRS) deployed in the GEO and a group of
ground stations (destinations) which can receive data transmitted from both source
nodes and the relay. Let Lir (i = 1, 2) denote the link status of source node i and
the relay, and there exist following three access cases for the relay according to
the ON/OFF model of our system. According to the bandwidth allocation protocol,
Lemma 4.1 states the stability region of the cooperative satellite system with a GEO
relay satellite when ω0 and the resource sharing vector [ω1, ω2] are fixed.

Lemma 4.1 In different link status, given ω0 and the resource sharing vector
[ω1, ω2], the stability region R (S) of two LEO satellites and a GEO relay satellite
system with the bandwidth allocation protocol protocol is given by

1. L1r = L2r = 0:

R (S) = {[λ1, λ2] = [0, 0]} ; (4.16)

2. Lir = 1 ∩ Ljr = 0, {i, j ∈ {1, 2} : i 
= j }:

R (S) =
{[
λi, λj

] ∈ R2+
∣∣λi < ω0

(
1− p3(i)

)
fir + p3(i)fid , λj = 0

}
; (4.17)

3. L1r = L2r = 1:

R (S) = R (S1) ∪R (S2) , (4.18)



4.5 Stability Analysis 59

where

R (S1) =
{

[λ1, λ2] ∈ R2+
∣∣∣ λ2 < ω0

(
1− p3(2)

)
f2r + p3(2)f2d

− (ω0 − ω2)
(
1− p3(1)

) (
1− p3(2)

)
f2r(

1− p3(1)
) [
ω0p3(2)f1r + ω1

(
1− p3(2)

)
f1r

]+ p3(1)f1d
λ1,

for λ1 <
(
1− p3(1)

) [
ω0p3(2)f1r + ω1

(
1− p3(2)

)
f1r

]+ p3(1)f1d
}
,

R (S2) =
{

[λ1, λ2] ∈ R2+
∣∣∣ λ1 < ω0

(
1− p3(1)

)
f1r + p3(1)f1d

− (ω0 − ω1)
(
1− p3(1)

) (
1− p3(2)

)
f1r(

1− p3(2)
) [
ω0p3(1)f2r + ω2

(
1− p3(1)

)
f2r

]+ p3(2)f2d
λ2,

for λ2 <
(
1− p3(2)

) [
ω0p3(1)f2r + ω2

(
1− p3(1)

)
f2r

]+ p3(2)f2d
}
.

In Lemma 4.1, S1 and S2 are obtained through system decomposition.

Proof of Lemma 4.1 See Sect. 4.8.

The region R (S1) ∪ R (S2), as shown in Fig. 4.3, is the stability region of the
original system when the fixed sharing vector [ω1, ω2] is given. Taking the entire
feasible resource sharing vectors W in (3.10), the stability of the system with the
proposed cooperative resource allocation protocol can be formulated as follows:

R (S) = ∪
Ω∈W {RΩ (S1) ∪RΩ (S2)} , (4.19)

where RΩ (Si) (i = 1, 2) is the stability region of dominant system Si with a given
sharing vectorΩ .

Fig. 4.3 Stability region of two-user and geo-relay system for a fixed [ω1, ω2] given by R (S1) ∪
R (S2)
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Next, we analyze the complete characterization of the stability region of the two-
user system when L1r = L2r = 1. The stabile throughput of the system for a
given [ω1, ω2] by R (S1) and R (S2) through (4.79), (4.82), (4.83) and (4.84). The
stability region is given by Theorem 4.1.

Theorem 4.1 With the bandwidth allocation protocol, the stability region of the
whole system with two-use and an GEO relay is given by

R (S) =
{

[λ1, λ2] ∈ R2+|λ2 < Φ1 (λ1)
}
, (4.20)

where Φ1 (λ1) is determined by (4.21).

Φ1 (λ1) =
{(

1− p3(2)
)
f2r + p3(2)f2d, λ1 < λm,

− f2r
f1r
λ1 + ψ, λm ≤ λ1 ≤ λM. (4.21)

In (4.21), λm = (
1− p3(1)

)
p3(2)f1r + p3(1)f1d , and λM = (

1− p3(1)
)
f1r +

p3(1)f1d .

Proof To find the whole stability region for entire feasible resource sharing vector
set W , a constrained optimization problem to find the maximum feasible λ2
corresponding to each feasible λ1 can be introduced [29].

Firstly, for the system R (S1), the maximum of the arrival rate λ2 can be
formulated as the following optimization problem according to (4.79) and (4.82)
when λ1 is fixed (let ω0 = 1).

maxλ2 =
(
1− p3(2)

)
f2r + p3(2)f2d

− (1− ω2)
(
1− p3(1)

) (
1− p3(2)

)
f2rλ1

ω1
(
1− p3(1)

) (
1− p3(2)

)
f1r +

(
1− p3(1)

)
p3(2)f1r + p3(1)f1d

,
(4.22)

s.t. ω1 + ω2 ≤ 1, (4.23a)

λ1 <
(
1− p3(1)

) [
p3(2) + ω1

(
1− p3(1)

)]
f1r + p3(1)f1d . (4.23b)

Substituting ω1 + ω2 = 1 in the objective in (4.22), then we get

maxλ2 =
(
1− p3(2)

)
f2r + p3(2)f2d

− ω1
(
1− p3(1)

) (
1− p3(2)

)
f2rλ1

ω1
(
1− p3(1)

) (
1− p3(2)

)
f1r +

(
1− p3(1)

)
p3(2)f1r + p3(1)f1d

,
(4.24)

Take the first derivative of (4.24) with respect to ω1, we get

∂λ2

∂ω1
= −

(
1− p3(1)

) (
1− p3(2)

)
f2r

[(
1− p3(1)

)
p3(2)f1r + p3(1)f1d

]

Φ2
,
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whereΦ = ω1
(
1− p3(1)

) (
1− p3(2)

)
f1r+

(
1− p3(1)

)
p3(2)f1r+p3(1)f1d . Notice

that ∂λ2/∂ω1 < 0, so λ2 is a monotony decrease function of ω1. According
to (4.23b), we get

ω1 >
λ1 − p3(1)f1d −

(
1− p3(1)

)
p3(2)f1r(

1− p3(1)
) (

1− p3(2)
)
f1r

. (4.25)

So we get the optimal value of ω in different cases:

(1) 0 < λ1−p3(1)f1d−(1−p3(1))p3(2)f1r

(1−p3(1))(1−p3(2))f1r
≤ 1

In this case, we get

p3(1)f1d +
(
1− p3(1)

)
p3(2)f1r < λ1 ≤ p3(1)f1d +

(
1− p3(1)

)
f1r ,

then

ω∗1 =
λ1 − p3(1)f1d −

(
1− p3(1)

)
p3(2)f1r(

1− p3(1)
) (

1− p3(2)
)
f1r

. (4.26)

(2) λ1−p3(1)f1d−(1−p3(1))p3(2)f1r

(1−p3(1))(1−p3(2))f1r
≤ 0

In this case, we get

λ1 ≤ p3(1)f1d +
(
1− p3(1)

)
p3(2)f1r ,

then

ω∗1 = 0. (4.27)

Hence the optimal solution for the optimization problem in (4.22)–(4.23b) is
given by (4.28).

ω∗1 =
{

0, λ1 < λm,
λ1−p3(1)f1d−(1−p3(1))p3(2)f1r

(1−p3(1))(1−p3(2))f1r
, λm < λ1 ≤ λM,. (4.28)

where λm == p3(1)f1d +
(
1− p3(1)

)
p3(2)f1r , and λM = p3(1)f1d +(

1− p3(1)
)
f1r .

Next, we solve the other stability region of the system S2. Substituting ω1+ω2 =
1 and ω0 = 1 in (4.83), the maximum λ1 can be written as

maxλ1 =
(
1− p3(1)

)
f1r + p3(1)f1d . (4.29)
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Then for a fixed λ1, we solve the optimal λ2 in S2. According to (4.83), λ2 can
be written as

λ2 <

(
1− p3(2)

)
f2r + p3(2)f2d − ω1

(
1− p3(1)

) (
1− p3(2)

)
f2r(

1− p3(1)
) (

1− p3(2)
)
f1r − ω1

(
1− p3(1)

) (
1− p3(2)

)
f1r

�
[(

1− p3(1)
)
f1r + p3(1)f1d − λ1

]
.

(4.30)

And take the first derivative of (4.30) with respect to ω1, we can calculate to get

∂λ2

∂ω1
=
(
1− p3(1)

) (
1− p3(2)

)
f1r

[
p3(1)

(
1− p3(2)

)
f2r + p3(2)f2d

]
[(

1− p3(1)
) (

1− p3(2)
)
f1r (1− ω1)

]2 .

Notice that ∂λ2/∂ω1 > 0, so λ2 is a monotonous increasing function of ω1.
According to (4.84) and (4.30), we get

ω1 ≤ λ1 − p3(1)f1d −
(
1− p3(1)

)
p3(2)f1r(

1− p3(1)
) (

1− p3(2)
)
f1r

. (4.31)

Then we discuss and calculate the optimal value of ω in different cases:

(1) 0 < λ1−p3(1)f1d−(1−p3(1))p3(2)f1r

(1−p3(1))(1−p3(2))f1r
≤ 1

In this case,

p3(1)f1d +
(
1− p3(1)

)
p3(2)f1r < λ1 ≤

(
1− p3(1)

)
f1r + p3(1)f1d,

then

ω∗1 =
λ1 − p3(1)f1d −

(
1− p3(1)

)
p3(2)f1r(

1− p3(1)
) (

1− p3(2)
)
f1r

. (4.32)

(2) λ1−p3(1)f1d−(1−p3(1))p3(2)f1r

(1−p3(1))(1−p3(2))f1r
≤ 0

In this case,

λ1 ≤ p3(1)f1d +
(
1− p3(1)

)
p3(2)f1r ,

then

ω∗1 = 0. (4.33)

So we can get the same optimal solution of ω∗1 as (4.28).
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Fig. 4.4 The envelope for the
stability region of two-user
and geo-relay system

We summarize equation (4.28), (4.24) and (4.30) to describe the envelopes of the
system S1 and S2. To these two systems, we get the same branch given by (4.34),

Φ (λ1) =
{(

1− p3(2)
)
f2r + p3(2)f2d, λ1 < λm,

− f2r
f1r
λ1 + ψ, λm ≤ λ1 ≤ λM,, (4.34)

where ψ = f2r + f2r
f1r
f1dp3(1) + f2dp3(2) − f2rp3(1)p3(2), λm = (

1− p3(1)
)

p3(2)f1r + p3(1)f1d , and λM =
(
1− p3(1)

)
f1r + p3(1)f1d .

This proves the Theorem 4.1.

The envelope for the stability region of the proposed system is shown as Fig. 4.4.
The analysis above is based on the assumption that the buffer of GEO relay

is sufficiently large and can forward entire received data immediately, which can
ensure that the queue of the relay is always stable. This assumption is reasonable for
current DRSs deployed in the GEO, such as TDRSS [36, 37] and Tianlian [38, 39],
which are high-performance data relay satellites equipped with powerful store-and-
forward facilities. When the storage and transmission capacity of relay is limited,
the data overflow and loss may happen for the relay. Then the source satellites need
to stop sending data to the relay and wait for new storage space and transmission
resource. Consequently, the stability analysis of the system will be different, and the
cooperation protocol needs to be designed for the situation of data overflow and loss,
which will be studied in our future work. On the other hand, the protocol designed
for the systems with LEO relay can be also applied into the GEO relay systems,
when the storage and transmission capacity of the GEO relay is not powerful enough
to keep the queue of the relay stable.
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4.5.2 LEO Relay

In the network, λ1 and λ2 indicate the data arrival process to the queues of two LEO
satellites (source nodes). Another LEO satellite performs as the relay node which
can receive the packet from only one satellite at a single time slot. In addition, we
assume that the relay satellite does not receive packet from the source or send to
the ground at the same time slot due to the limited transmission capability of the
LEO landsat satellite. According to above assumptions, the classified analysis of
Lir (i = 1, 2) in the GEO relay system can be simplified. That is the last two
situations: Lir = 1∩Ljr = 0, {i, j ∈ {1, 2} : i 
= j } and L1r = 1∩L2r = 1 can be
discussed as one situation that there is at least one satellite can establish connection
with the relay. In this condition, the time slot allocated to the satellite i is used for
the relay to send the packet at its queue head received from the satellite j (i 
= j ),
when the satellite i satisfies Lir = 0. According to the time slot allocation protocol,
the Lemma 4.2 states the stability region of the cooperative satellite system with an
LEO relay satellite when ω0 and the resource sharing vector [ω1, ω2] are fixed.

Lemma 4.2 In different link status, given ω0 and the resource sharing vector
[ω1, ω2], the stability region R (S) of two LEO satellites and a LEO relay satellite
system with the time slot allocation protocol protocol is given by

1. L1r = L2r = 0:

R (S) = {[λ1, λ2] = [0, 0]} ; (4.35)

2. L1r = 1 ∪ L2r = 1:

R (S) = R (S1) ∪R (S2) , (4.36)

where

R (S1) =
{

[λ1, λ2] ∈ R2+
∣∣∣ λ2 < ω2p3(2)f2d

+ ω1ω2

(
1− λ1

ω1p3(1)f1d

) (
1− p3(2)f2d

)
frd,

for λ2 < ω2p3(2)f2d
}
,

(4.37)

R (S1) =
{

[λ1, λ2] ∈ R2+
∣∣∣ λ1 < ω1p3(1)f1d

+ ω1ω2

(
1− λ2

ω2p3(2)f2d

) (
1− p3(1)f1d

)
frd,

for λ1 < ω1p3(1)f1d
}
.

(4.38)
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Fig. 4.5 Stability region of
the leo-relay system for a
fixed [ω1, ω2] given by
R (S1) ∪R (S2)

Proof See Sect. 4.9.

Similar to the system with a GEO relay satellite, (λ1, λ2) in the stability region
R (S1) and R (S2) assures the stability of the original system. Therefore, we get the
stability region R (S1)∪R (S2) of the original system when the time sharing vector
[ω1, ω2] is given, as shown in Fig. 4.5.

Then we will find the whole stability region R (S) formulated by (4.19) for all
feasibleW as (3.10) when there are two users and a LEO relay satellite in the system.
We get the complete characterization of the stability region of the LEO relay system
with the time slot allocation protocol in Theorem 4.2.

Theorem 4.2 With the time slot allocation protocol, the stability region of the
whole system with two-use and an LEO relay is given by:

R (S) =
{

[λ1, λ2] ∈ R2+ |λ2 < max {Φ1 (λ1) ,Φ2 (λ1)}
}
, (4.39)

where Φ1 (λ1) and Φ2 (λ1) are defined as (4.40) and (4.41).

Φ1 (λ1) =
⎧⎨
⎩

(
1
2+ λ1

2p3(1)f1d
− p3(2)f2d

2ψ2

)
2ψ2− ψ2λ1

p3(1)f1d
+p3(2)f2d , 0 ≤ λ1≤λm1,

−p3(2)f2d
p3(1)f1d

λ1 + p3(2)f2d, λm1 ≤ λ1≤λM,
(4.40)

Φ2 (λ1) =
⎧
⎨
⎩

−p3(2)f2d
p3(1)f1d

λ1 + p3(2)f2d, 0 ≤ λ1 ≤ λm2,

−2p3(2)f2d

√
λ1
ψ1
+ p3(2)f2d + p3(1)p3(2)f1df2d

ψ1
, λm2 ≤ λ1 ≤ λ∗1,

(4.41)
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In (4.40) and (4.41), ψi =
(
1− p3(i)fid

)
frd (i = 1, 2), λm1 = p3(1)f1d −

p3(1)p3(2)f1df2d
ψ2

, λM = p3(1)f1d , λm2 = p2
3(1)f

2
1d

(1−p3(1)f1d)frd
, and λ∗1 in (4.41) is defined as

λ∗1 =
{

p3(1)f1d , p3(1)f1d ≥ ψ1,
1

4ψ1

(
p3(1)f1d + ψ1

)2
, 0 ≤ p3(1)f1d ≤ ψ1.

(4.42)

Proof First, for the system S1, we establish the following optimization problem
through (4.88) and (4.90) to maximize the arrival rate λ2:

max λ2 = ω2p3(2)f2d + ω1ω2

(
1− λ1

ω1p3(1)f1d

) (
1− p3(2)f2d

)
frd , (4.43a)

s.t. ω1 + ω2 ≤ 1, (4.43b)

λ1 ≤ ω1p3(1)f1d . (4.43c)

Let ψi =
(
1− p3(i)fid

)
frd (i = 1, 2), then the maximization problem is simplified

into

maxλ2 = (1− ω1) p3(2)f2d + ω1 (1− ω1)

(
1− λ1

ω1p3(1)f1d

)
ψ2. (4.44)

Take the first derivative of (4.44) with respect to ω1:

∂λ2

∂ω1
= −p3(2)f2d + ψ2 − 2ω1ψ2 + λ1ψ2

p3(1)f1d
. (4.45)

Then the solution is given by

ω
′
1 =

1

2ψ2

(
ψ2 − p3(2)f2d + λ1ψ2

p3(1)f1d

)
. (4.46)

According to (4.43c), ω1 ≥ λ1
p3(1)f1d

. Then we discuss the optimal value of ω in
difference cases.

(1) ω
′
1 ≥ λ1

p3(1)f1d
we get

λ1 ≤ p3(1)f1d − p3(1)p3(2)f1df2d

ψ2
,

and the optimal solution ω∗1 is

ω∗1 =
1

2ψ2

(
ψ2 − p3(2)f2d + λ1ψ2

p3(1)f1d

)
. (4.47)
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Fig. 4.6 The first envelope for the stability region of the leo-relay system

(2) ω
′
1 ≤ λ1

p3(1)f1d
≤ 1

we get

p3(1)f1d − p3(1)p3(2)f1df2d

ψ2
≤ λ1 ≤ p3(1)f1d,

and the optimal solution ω∗1 is

ω∗1 =
λ1

p3(1)f1d
. (4.48)

Then we get the optimal solution of ω for the optimization problem formulated
by (4.43a)–(4.43c) as (4.49). Substituting (4.49) in (4.43a) as shown in Fig. 4.6, we
get (4.50), which indicates the stability region of system R (S1). In (4.50), ψ2 =(
1− p3(2)f2d

)
frd .

ω∗1 =
⎧⎨
⎩

1
2ψ2

(
ψ2 − p3(2)f2d + λ1ψ2

p3(1)f1d

)
, λ1 ≤ λm,

λ1
p3(1)f1d

, λm ≤ λ1 ≤ λM.
(4.49)

Φ1 (λ1) =
⎧
⎨
⎩

(
1
2+ λ1

2p3(1)f1d
− p3(2)f2d

2ψ2

)
2ψ2− ψ2λ1

p3(1)f1d
+p3(2)f2d, λ1≤λm,

−p3(2)f2d
p3(1)f1d

λ1 + p3(2)f2d , λm ≤ λ1 ≤ λM.
(4.50)
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In (4.49) and (4.50), λm = p3(1)f1d − p3(1)p3(2)f1df2d
ψ2

, and λM = p3(1)f1d −
p3(1)p3(2)f1df2d

ψ2
.

Next, we consider the stability region R (S2). Similar to the stability region
branch of system S1, let ω1 + ω2 = 1. According to (4.91), the maximum stabile
rate of λ1 can be achieved if λ2 = 0. Then the arrival rate λ1 can be given by

maxλ1 = ω1p3(1)f1d + ω1 (1− ω1) ψ1. (4.51)

Take the first derivative of (4.51) with respect to ω1, and the extreme point is given
by

ω∗1
∣∣
λ2=0 = 1

2ψ1

(
p3(1)f1d + ψ1

)
. (4.52)

Considering that ω1 ≤ 1, we get p3(1)f1d ≤ ψ1. So the maximum of λ1 under the
condition that λ2 = 0 is

λ∗1
∣∣
λ2=0 =

{
p3(1)f1d , p3(1)f1d ≥ ψ1,

1
4ψ1

(
p3(1)f1d + ψ1

)2
, 0 ≤ p3(1)f1d ≤ ψ1.

(4.53)

Next, we solve the maximum achievable tare λ2 when λ1 is fixed. According
to (4.91), λ2 can be write in terms of a function of λ1 as

λ2 = (1− ω1) p3(2)f2d + p3(1)p3(2)f1df2d

ψ1
− p3(2)f2d

ω1ψ1
λ1. (4.54)

The second derivative of (4.54) with respect to ω1 is negative, which results that
the extreme value calculated through the first derivative gets the maximum of λ2
in (4.54), and the extreme value of ω is

ω
′
1 =

√
λ1
ψ1
=
√

λ1

(1−p3(1)f1d)frd
. (4.55)

On the other hand, ω1 = 1 − ω2 ≤ 1− λ2
p3(2)f2d

, i.e., λ2 ≤ p3(2)f2d (1− ω1). Then
substitute λ2 in (4.54) and after some manipulations, we get

ω1 ≤ λ1

p3(1)f1d
. (4.56)

According to (4.55) and (4.56), the optimum ω∗ can be summarized as

ω∗1 =

⎧⎪⎨
⎪⎩

λ1
p3(1)f1d

, λ1 ≤ p2
3(1)f

2
1d

(1−p3(1)f1d)frd
,

√
λ1

(1−p3(1)f1d)frd
, λ1 ≥ p2

3(1)f
2
1d

(1−p3(1)f1d)frd
.

(4.57)
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Fig. 4.7 The second
envelope for the stability
region of the leo-relay system

Similar to (4.50), we substitute (4.57) in (4.54), the branch of the stability region
R (S2) can be specified as (4.58), which is shown in Fig. 4.7.

Φ2 (λ1) =
⎧⎨
⎩

−p3(2)f2d
p3(1)f1d

λ1 + p3(2)f2d, 0 ≤ λ1 ≤ λm,
−2p3(2)f2d

√
λ1
ψ1
+ p3(2)f2d + p3(1)p3(2)f1df2d

ψ1
, λm ≤ λ1 ≤ λ∗1.

(4.58)

In (4.58), ψ1 =
(
1− p3(1)f1d

)
frd , λm = p2

3(1)f
2
1d

(1−p3(1)f1d)frd
, and

λ∗1 =
{

p3(1)f1d , p3(1)f1d ≥ ψ1,
1

4ψ1

(
p3(1)f1d + ψ1

)2
, 0 ≤ p3(1)f1d ≤ ψ1.

Then we can get the stability region R of the system with a LEO relay as

R = {
(λ1, λ2) ∈ R+2 |λ2 < max {Φ1 (λ1) ,Φ2 (λ1)}

}
. (4.59)

This completes the proof of the Theorem 4.2.

Delay Performance Analysis In the LEO relay system, a data packet is not
removed from the source satellite’s queue until it is successfully transmitted to the
destination. Then without regret to the transmission delay, the packet delay is the
delay it waits in the source satellite’s queue. Next, we analyze the delay performance
of the symmetric two-user scenario with an LEO relay. The moment generating
function of the joint queues’ size processes

(
Qt1,Q

t
2

)
can be defined as [29]

Γ (x, y) = lim
t→∞E

[
xQ

t
1yQ

t
2

]
. (4.60)
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Assume that arrival processes are independent at different time slots. Then accord-
ing to (4.73), we can get

E
[
xQ

t+1
1 yQ

t+1
2

]
= E

[
xX

t
1yX

t
2

]
E
[
x(Q

t
1−Y t1)+y(Q

t
2−Y t2)+

]
. (4.61)

As assumed previously, the arrival processes follow Bernoulli random process. Then
the first part of (4.61) can be written as

E
[
xX

t
1yX

t
2

]
= (xλ+ 1− λ) (yλ+ 1− λ) , (4.62)

where λ is the arrival rate for the two symmetric source satellites. According
to (4.88), the second part of (4.61) can be given by

E
[
x(Q

t
1−Y t1)+y(Qt2−Y t2)

+]

= E [I (Qt1 = 0,Qt2 = 0
)]

+ g1 (x)E
[
I
(
Qt1 > 0,Qt2 = 0

)
xQ

t
1

]

+ g1 (y)E
[
I
(
Qt1 = 0,Qt2 > 0

)
yQ

t
2

]

+ g2 (x, y)E
[
I
(
Qt1 > 0,Qt2 > 0

)
xQ

t
1yQ

t
2

]
,

(4.63)

where

g1 (z) = 1+
(

1

z
− 1

)[
ωp3(1)f1d + ω2 (1− p3(1)f1d

)
frd

]
, (4.64a)

g2 (x, y) = ωp3(1)f1d

(
1

x
+ 1

y

)
+ 2ω

(
1− p3(1)f1d

)
, (4.64b)

where ω is the symmetric resource sharing portion of each source satellite.
Then (4.60) can be expressed as

Γ (x, y) = (xλ+ 1− λ) (yλ+ 1− λ) {Γ (0, 0)
+ g1 (x) [Γ (x, 0)− Γ (0, 0)]+ g1 (y) [Γ (0, y)− Γ (0, 0)]
+g2 (x, y) [Γ (x, y)− Γ (x, 0)− Γ (0, y)+ Γ (0, 0)]} .

(4.65)

Due to the symmetry, the average queue size can be given by Γ1 (1, 1). To
calculate Γ1 (1, 1), the symmetry needs to be used. Applying L’Hopital limit
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theorem and through some straightforward calculations, we can get

Γ1 (1, 1) = − [2ωp3(1)f1d + ω2
(
1− p3(1)f1d

)
frd

]
λ2 + 2ωp3(1)f1dλ

2
[
ωp3(1)f1d + ω2

(
1− p3(1)f1d

)
frd

] (
ωp3(1)f1d − λ

) .

(4.66)

Then the average queueing delay of the symmetric two-users system with an LEO
relay is

D = 1

λ
Γ1 (1, 1)

= − [2ωp3(1)f1d + ω2
(
1− p3(1)f1d

)
frd

]
λ+ 2ωp3(1)f1d

2
[
ωp3(1)f1d + ω2

(
1− p3(1)f1d

)
frd

] (
ωp3(1)f1d − λ

) .
(4.67)

4.5.3 Multiple Users Case

The analytical method in this part can be extended to the general multi-user case.
However, in such a case, the interactions between different users are much more
complex, and the analysis tends to be very complicated. In [40], only the bounds
on the stability region are given for ALOHA. In our work, we provide a feasible
method for the symmetric scenario briefly. Consider there areM user satellites can
connect with the relay satellite (GEO/LEO). The dominant system, SM , operates
identically to the original M-user system, except that it does not help any of the
LEO source satellites. Then the queue length in SM will never be shorter than that
in the original system. In the symmetric scenario, all source satellites have the same
success probability of transmission:

P
[{
Ltid = 1

∣∣Ltir = 1
} ∩ Ctid

] = p3(1)f1d . (4.68)

So the service rate per source satellite in the GEO relay system and LEO relay
system are given by μ

(
SGEO
M

) = p3(1)f1d , μ
(
SLEO
M

) = p3(1)f1d/M , respectively,
when the systems are symmetric. Applying Loynes theorem, the stability conditions
for systems SGEO

M and SLEO
M are given by λGEO < Mp3(1)f1d and λLEO < p3(1)f1d ,

respectively, where λGEO and λLEO are the aggregate arrival rates of the systems.
As discussed in Sect. 4.8, the stability condition of the dominant system can ensure
the stability of original M-user system. Therefore, for the M-user symmetric
systems applying cooperation protocols proposed, we can get the maximum stabile
throughput as:

λGEO
MST =Mp3(1)f1d, λLEO

MST = p3(1)f1d . (4.69)
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4.6 Simulation Results

In this part, we perform simulation experiments to analyze performances of the
two-user cooperative multiple access system with the proposed resource allocation
protocol. In the bandwidth resource allocation system, the relay satellite is deployed
in the geosynchronous orbit with the orbit radius of 42,164 km. In the time slot
resource allocation system based on TDMA, the relay satellite is deployed in the
low earth orbit with the height of 812 km. In both of the two systems above, the
two users specifically indicate the two LEO satellites deployed in orbits with the
height of 645 km and 785 km, respectively. The propagation path loss of ISL is
given by γ1 = 2.1, and the propagation path loss of the satellite-ground station link
is given by γ2 = 2.8, the transmit power G = 10 watt, and the average power
of the Gaussian noise in ISL and the satellite-ground station link is N0 = 10−11

and N0 = 10−10, respectively. The ratio K between the power in the LOS and
the power in the other scattered paths of ISL and SGL is set as K = 7.78 dB and
K = 6.99 dB [41], respectively, and the corresponding total power of the LOS and
other scattered paths in ISL and SGL is set asΩ = 1+K .

First, we simulate the performance of the two proposed protocols under different
settings of the SNR threshold β and the maximum elevation angle of the ground-
based radar α2. β increases from 0 to 50 and α2 is selected as 30◦, 60◦ and 80◦. The
inter-satellite link and the satellite-ground link connection status depends on the
ON/OFF model and the physical channel model. Applying the bandwidth resource
allocation protocol to the system of which the relay is a DRS on GEO, the aggregate
maximum stable throughput of the two users is shown in Fig. 4.8. In this work,
the aggregate throughput is defined as the ratio of the service to arrival in unit
time. The corresponding results of the time resource allocation protocol are shown
in Fig. 4.9, which indicates the aggregate maximum stable throughput of the two
leo satellites in the cooperative transmission system, and in this system another
LEO satellite operates as the relay. Numerical results indicate that the aggregate
maximum stable throughput of source satellites decreases with the increase of β and
decrease of α2, and the effect of α2 is relatively weak, as shown in both Figs. 4.8
and 4.9. In both Figs. 4.8 and 4.9, the purple dotted lines indicate that under the
ideal physical channel without noise (fid = 1, fir = 1, frd = 1, i = 1, 2),
the maximum aggregate throughput the GEO relay and the LEO relay systems
can achieve according to the two resource allocation protocols, respectively. These
two upper bounds are not much closed to 1, which results from discontinuous
links between the source and the relay satellite and discontinuous links between
the source satellite and the ground essentially according to (4.8)–(4.9). In addition,
considering that the bandwidth allocation protocols allow both of the two source
satellites to connect with the GEO relay in the same time slot, the upper bound of
the GEO relay system is higher than the LEO relay system. Both of the bandwidth
allocation protocol and the time slot allocation protocol perform well for low values
of β.
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Fig. 4.8 Aggregate maximum stable throughput of geo-relay system versus SNR threshold β and
the maximum elevation angle α2 of the ground receiver
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Fig. 4.10 Average queueing delay per source satellite versus the arrival rate for different SNR
threshold β and the maximum elevation angle α2 of the ground receiver

For LEO relay time slot allocation protocol, the average queueing delay per
LEO source satellite versus the arrival rate for different SNR threshold β and the
maximum elevation angle α2 is shown in Fig. 4.10. Results indicate that the delay
increases with increasing β and reducing α2. According to the premise that LEO
source satellites can access the GEO relay, which can successfully forward all packet
received, queueing delay of the GEO relay system is not discussed in this part.

Then we analyze the effects of the satellite orbit height on the aggregate
throughput. We increase the two of the LEO satellite orbit height from 300 to
10,000 km, which is the typical range of the low earth orbit. Set the SNR threshold
as β = 10, and other parameters are set as before. In Figs. 4.11 and 4.12, we get the
aggregate maximum stable throughput of source satellites changed with different
orbit height in the GEO relay system and LEO relay system, in which we use the
bandwidth resource and time resource allocation protocols respectively. In the GEO
relay system, the maximum throughput can be achieved when both of the satellites
are deployed at the orbit height of about 2200 km. In the LEO relay system, when
the orbit height is about 2800 km, the maximum throughput can be achieved.

Comparisons of the aggregate maximum stable throughput with existing coop-
eration protocols and no relay scene are shown in Fig. 4.13, in the case that both
of the LEO source satellites can connect with the relay (GEO/LEO), and the link
connection status depends on the ON/OFF model and the physical channel model.
In the system without relays, we introduce the GEO relay to get the p3(i) (i = 1, 2)
according to the previous premise. In the LEO relay system with the same parameter
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Fig. 4.11 Aggregate maximum stable throughput of geo-relay system versus the orbit height of
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Fig. 4.13 Aggregate maximum stable throughput versus different SNR threshold β

setting as the previous simulation, we compare the time slot allocation (TA) of
this part with the selection decode-and-forward (SDF) protocol [42], the stability
analysis of which are provided in [29] and the stability condition is specified as:

λ1

Pr1,SDF {C} +
λ2

Pr2,SDF {C} <
1

2
, (4.70)

where Pri,SDF (i = 1, 2) represents the success transmission probability in the
cooperative system with SDF, and Pri,SDF can be calculated as:

Pri,SDF {C} =
(

1− p2
3(i)f

2
id

)2 (
1− (

1− p3(i)
)2
f 2
ir

)

+
(

1− p2
3(i)f

2
id

) (
1− p3(i)

)2
f 2
ir

(
1− f 2

rd

)
.

(4.71)

In addition, the proposed bandwidth allocation (BA) protocol is used in the system
with a GEO relay. Set α2 = 80◦. The influence of the SNR threshold β on the
throughput is shown in Fig. 4.13. Without the relay, LEO can transmit data only
when they are in the capture region of the ground station, and then the aggregate
maximum stable throughput is rather low because of the low ratio of the connection.
The maximum attained throughput for SDF is rather closed to the results of the LEO
relay TA protocol because of the time slot repetition [29, 42], especially for the low
values of β. But for high values of β, the performance of SDF is worse than the LEO
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Fig. 4.14 Aggregate maximum stable throughput versus the maximum elevation angle α2 of the
ground receiver (β = 10)

relay TA protocol. GEO relay system with the BA protocol performs best, which
results from the widespread cover of the GEO satellite for LEO source satellites and
the time multiplex of the protocol.

Next, we test the effect of the ground receiver’s capture region, which depends
on α2, on the throughput for existing and proposed resource allocation protocols.
As in previous simulation, α is selected as 30◦, 60◦ and 80◦, then we set β = 10
and leave the other arguments intact. Results are shown in Fig. 4.14, which indicates
that the throughput increases with increasing α for the four testing scenes, although
the effect is very weak. Moreover, the GEO relay system applied the BA protocol
performs best, and the system without relay gets the worst result. The TA protocol
and SDF for LEO relay system get similar results, and the former performs better.
The comparatione results of these four scenes are same as the last simulation of β
influence.

4.7 Conclusion

In this part, we proposed two new multiple access communication systems with a
GEO and a LEO satellite as the relay, respectively, to achieve cooperative transmis-
sion for space-based networks. According to the different network structures and
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the diversities of the transmission and store-and-forward capabilities of GEO and
LEO relay satellites, two types of the resource allocation protocols were proposed
for better resource utilization. By applying the proposed cooperation protocols, the
idle bandwidth resource of GEO relay satellite and the time slot resource of LEO
relay satellite can be allocated efficiently to improve the utilization of transmission
resource. Considering the bandwidth and time resource allocation for GEO and
LEO relay satellites, respectively, we analyzed the stability region for the two-user
systems in detail and gave the stability region of the two types of cooperation sys-
tems. The system decomposition method introduced provides an efficient solution
for the analytical difficulties of interacting queues. Simulation results indicate the
performance of the proposed systems and corresponding protocols, and demonstrate
that the cooperation protocols proposed can improve the utilization of transmission
resource and increase the throughput of the multi-access systems effectively.

4.8 Proof of Lemma 4.1

(1) L1r = L2r = 0:
In this case, neither of the LEO satellites can link with the relay to transmit

data because of the Earth background. Therefore, the two arrival rates must
satisfy

λ1 = 0 and λ2 = 0. (4.72)

(2) Lir = 1 ∩ Ljr = 0, {i, j ∈ {1, 2} : i 
= j }:
In this case, LEO satellite i can access the relay though it will switch the link

to the ground station when Lid = 1 with the probability p3(i) according to (4.8)
and the proposed protocol. Let ω0 (0 < ω0 ≤ 1) denote the relay transmission
resource allocated to i when Lir = 1 ∩ Lid = 0. We assume that the satellite-
ground transmission resource is equal to the entire relay’s, so when Lid = 1,
the allocated resource is 1. Then according to the Loynes’ theory, the arrival and
service processes for each queue need to meet the queue stability condition. Let
Qti (S) (i = 1, 2) denote the queue size at the source node i of the system S at
the time slot t . Then we can get

Qt+1
i (S) = max

{
Qti (S)− Y ti (S) , 0

}+Xti (S) , (4.73)

where Xti (S) is the number of arrivals to the source node i of the system S

at the time slot t and is a Poisson random arrival process with the finite mean
E
[
Xti (S)

] = λi <∞, Y ti (S) is the possible departure from node i at time slot
t . For source node i, Y ti (S) can be modeled as

P
[
Y ti (S) = ω0

] = P [{Ltid = 0
∣∣Ltir = 1

} ∩ Ctir
]
, (4.74a)

P
[
Y ti (S) = 1

] = P [{Ltid = 1
∣∣Ltir = 1

} ∩ Ctid
]
. (4.74b)
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So the statistical expectation of Y ti (S) is

λi < ω0
(
1− p3(i)

)
fir + p3(i)fid . (4.75)

According to the Loynes’ theory, stability of queues i and j in the system is
achieved if the following conditions hold, respectively:

λi < ω0
(
1− p3(i)

)
fir + p3(i)fid , (4.76)

λj = 0. (4.77)

(3) L1r = L2r = 1:
In this case, both of the LEO satellites have the opportunity of establishing

the connection with ground stations with the probability p3(i) (i = 1, 2). Let
[ω1, ω2] (0 < ω1, ω2 < ω0, ω1 + ω2 ≤ 1) denote the relay transmission
resource allocated to the two accessed. We assume that the relay can sense the
communication channel to detect the idle transmission resource as discussed
in Sect. 4.4. As a result, there are interactions between the two queues of the
source nodes. However, stability analysis of the interacting queues is a difficult
problem. To solve this problem, we introduce the system decomposition method
in [29] as follows.

We define Si (i = 1, 2) as a system that relay can only sense the arrival process of
source node i but cannot achieve the same sense for the other source node. Then we
decompose the system into S1 and S2, of which the stability regions are R (S1) and
R (S2), respectively. We notice that in system S1, the length of queue 1 is always
not shorter than the original system. This holds because satellite 1 can not send data
when there is no data to be sent in the queue of satellite 2, as the defined rules in
system S1. So the stability conditions for system S1 is sufficient for the original
system. Similarly, the stability conditions for system S2 can also ensure the stability
of the original system. Consequently, we can get the stability region of our two-user
system as R (S1) ∪R (S2).

Firstly, we study the stability region of S1. For the source node 1, Y t1 (S1) can be
modeled with the similar method in (4.74) as follows:

P
[
Y t1 (S1) = ω1

] = P [{Lt2d = 0
∣∣Lt2r = 1

} ∩ {Lt1d = 0
∣∣Lt1r = 1

} ∩ Ct1r
]
,

(4.78a)

P
[
Y t1 (S1) = ω0

] = P [{Lt2d = 1
∣∣Lt2r = 1

} ∩ {Lt1d = 0
∣∣Lt1r = 1

} ∩ Ct1r
]
,

(4.78b)

P
[
Y t1 (S1) = 1

] = P [{Lt1d = 1
∣∣Lt1r = 1

} ∩ Ct1d
]
. (4.78c)
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Then according to Loynes’ theory, the condition that promises the stability of the
queue in source node 1 in the system S1 can be achieved is formulated as

λ1 <
(
1− p3(1)

) [
ω0p3(2)f1r + ω1

(
1− p3(2)

)
f1r

]+ p3(1)f1d . (4.79)

Now we consider the queue 2 in system S1. In S1, the relay can also sense the
arrival process of the source node 1, and when queue 1 has no packet to transmit
at the time slot t , ω0 is allocated to the queue 2. When

{
Lt2d = 0

} ∩ {Lt1d = 0
}

and there exists packets at the queue 1, ω2 is allocated to the queue 2. Moreover,
when the node 2 can directly connect with the ground station, transmission resource
allocated to it is 1. The above allocation strategies can be modeled as follows:

P
[
Y t2 (S1) = ω0

]

=P [{Lt2d=0
∣∣Lt2r=1

}

∩{{Lt1d=1
∣∣Lt1r=1

}∪{Qt1 (S1)=0
}} ∩ Ct2r

]
,

(4.80a)

P
[
Y t2 (S1) = ω2

]

=P [{Lt2d=0
∣∣Lt2r=1

}∩{Lt1d=0
∣∣Lt1r=1

}

∩{Qt1 (S1) 
=0
}∩Ct2r

]
,

(4.80b)

P
[
Y t2 (S1)=1

]=P [{Lt2d=1
∣∣Lt2r=1

}∩Ct2d
]
, (4.80c)

where
{
Qt1 (S1) = 0

}
denotes that the queue 1 has no packet to send at t .

Under (4.79), we can get the probability of queue 1 empty as

Pr
{
Qt1 (S1) = 0

}

= 1− λ1(
1− p3(1)

) [
ω0p3(2) + ω1

(
1− p3(2)

)]
f1r + p3(1)f1d

.
(4.81)

Using the Loynes stability theory and given (4.15) and (4.81), the stability condition
of queue 2 in system S1 is given by

λ2 <ω0
(
1− p3(2)

)
f2r + p3(2)f2d

− (ω0 − ω2)
(
1− p3(1)

) (
1− p3(2)

)
f2rλ1(

1− p3(1)
) [
ω0p3(2) + ω1

(
1− p3(2)

)]
f1r + p3(1)f1d

.
(4.82)

Both (4.79) and (4.82) constitute the conditions for the stability of system S1 for
a special sharing vector [ω1, ω2]. R (S1) is exactly ranged by (4.79) and (4.82).
Then we can get the stability region R (S2) of dominant system S2 by the parallel
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arguments, and R (S2) can be specified as (4.83) and (4.84). We have

λ1 <ω0
(
1− p3(1)

)
f1r + p3(1)f1d

− (ω0 − ω1)
(
1− p3(1)

) (
1− p3(2)

)
f1rλ2(

1− p3(2)
) [
ω0p3(1) + ω2

(
1− p3(1)

)]
f2r + p3(2)f2d

.
(4.83)

λ2 <
(
1− p3(2)

) [
ω0p3(1) + ω2

(
1− p3(1)

)]
f2r + p3(2)f2d . (4.84)

According to above analysis, any point in region R (S1) and R (S2) can be
achieved to the original system and the stability condition of R (S1) and R (S2)

is sufficient for the stability of the system. This completes the proof of Lemma 4.1.

4.9 Proof of Lemma 4.2

According to the cooperation protocol discussed in the last section, when both of
the two satellite can neither link with the ground station nor link with the available
relay satellite, then the two arrival rates must satisfy

λ1 = 0 and λ2 = 0. (4.85)

Next, we focus on the situation that there are at least one LEO satellite can
link with the relay that satisfying Lrd = 1. According to the time slot allocation
protocol designed for the LEO relay system, the queues of the two source LEO
source satellites are interactive in this case. Specifically, whether the packet sent by
one source can be delivered to the ground successfully by the relay depends on the
other source satellite has the idle time slot or not. To due with this interaction, we
introduce the similar analysis as the last part of this section. The whole system
is separated into two dominant systems S1 and S2. Different with the time slot
allocation protocol for the LEO relay system, we define that in the system S1,
the queue 1 do not delete the packet even this packet is transmitted by the relay
successfully, which means that the relay transmits the data sent from the queue 2,
and the queue 1 acts as a node in TDMA systems. Then in the dominant system
S1, the length of the queue 1 will be never shorter than the original system, so the
stability conditions of the queues 1 and 2 are sufficient for the original system [29].
The system S2 is defined as well. As a result, the stability region of the LEO relay
system is also formulated as R (S1)∪R (S2). Then, we analyze the station of queues
in queues 1 and 2 through the Loynes’ theorem. We define Y ti (S1) (i = 1, 2) as the
possible data send from the queue i at the time slot t . Specifically, for source node
1, Y t1 (S1) happens only under the circumstance that the time slot allocation and the
ISL/SGL station due to the visibility and SNR support the data transmission at the
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same time t , which can be modeled as

Y t1 (S1) = I
[
At1 ∩

{
Lt1d = 1

∣∣Lt1r = 1
} ∩ Ct1d

]
, (4.86)

whereAt1 indicates that the time slot t is allocated to the queue 1, I [·] is the indicator
function. According to Loynes, the condition that promises the stability of the queue
in source 1 in system S1 can be achieved is

λ1 < ω1p3(1)f1d . (4.87)

Then we analyze the queue 2 in the system S1. When either of the following two
events is set up, the packet from the queue 2 would be delivered to the ground from
the satellite 2 or the relay:

(1) At the time slot allocated to the queue 2: the satellite 2 can link with the ground
station directly, and the physical channel support the successful transmission;

(2) At the time slot allocated to the queue 1: the satellite cannot link with the relay
or the queue 2 is empty. Meanwhile, the last time slot is assigned to the queue
2, which sends packet successfully to the relay and in the current time slot,
the physical channel supports the successful transmission from the relay to the
ground station.

The situation above can be modeled as

Y t2 (S1) = I
[
At2 ∩

{
Lt2d = 1

∣∣Lt2r = 1
} ∩ Ct2d

]

+ I

[
At1 ∩

{
Qt1 (S1) = 0

} ∩At−1
2 ∩

{
Lt−1

2d = 1
∣∣∣Lt−1

2r = 1
}
∩ Ct−1

2d ∩ Ctrd
]
,

(4.88)

where Qt1 (S1) = 0 denotes that the queue 1 has no packet to send at t . According
to (4.88), the probability of queue 1 empty is

Pr
{
Qt1 (S1) = 0

} = 1− λ1

ω1p3(1)f1d
. (4.89)

Introducing the Loynes stability and given (4.15) and (4.89), the stability condition
of queue 2 in system S1 is given by

λ2 < ω2p3(2)f2d + ω1ω2

(
1− λ1

ω1p3(1)f1d

) (
1− p3(2)f2d

)
frd . (4.90)

Then (4.88) and (4.90) constitute the stability conditions of system S1 for a
special time sharing vector [ω1, ω2]. Similarly, we can get the stability region
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R (S2) of the system S2, which can be ranged by (4.91) and (4.92). This proves
the Lemma 4.2.

λ1 < ω1p3(1)f1d + ω1ω2

(
1− λ2

ω2p3(2)f2d

) (
1− p3(1)f1d

)
frd , (4.91)

λ2 < ω2p3(2)f2d . (4.92)

This completes the proof of Lemma 4.2.
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Cooperative Transmission in Integrated

Satellite-Terrestrial Networks



Chapter 5
Introduction of Cooperative
Transmission in Integrated
Satellite-Terrestrial Networks

Keywords 6G · Integrated Satellite-terrestrial Networks · Cooperative
Transmission

Cooperative networking of high, medium and low orbit satellites can achieve wide
area or even global coverage, which can provide undifferentiated communication
services for global users. At the same time, the current terrestrial fifth generation
mobile communications (5G) will have a perfect industrial chain, a huge user
group, flexible and efficient application service mode, etc. The integration of the
satellite communication system and 5G, drawing on each other’s strengths and
complementing each other’s weaknesses, together constitutes a comprehensive
communication network with seamless global coverage of sea, land, air and space,
which can meet the various service requirements of users everywhere. It is an
important basis for the realization of the future 6G network integrating sea and
space, and an important direction of future communication development. Focusing
on the main problems of the dynamic optimal allocation of resources in the network
integrating the satellite and the earth, this chapter studies the following three aspects
of cooperative transmission problems in integrated satellite-terrestrial networks.

The first part proposes the auction-based traffic offloading scheme in integrated
satellite-terrestrial networks. Aiming at the problem of important allocative exter-
nalities, i.e., other uncooperative transmission resource of satellites can benefit from
the cooperation between terrestrial base stations and the transmission resource of
satellites performing offloading, we design a second-priced auction-based traffic
offloading and spectrum sharing mechanism. According to the alternative coopera-
tive and competitive modes, high capacity transmission and co-channel interference
control in the integrated satellite-terrestrial networks can be achieved. To solve the
problem of secure transmission with interference control, the second part proposes a
cooperative secure transmission beamforming and artificial noise designing scheme,
which realizes the secure transmission and co-channel interference control in a
coexistence system of the satellite-terrestrial network and cellular network, which is
also referred to as the integrated satellite-terrestrial network. To solve the nonconvex
optimization problems established, an iteration and convex quadratic approximation

© The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd. 2023
J. Du, C. Jiang, Cooperation and Integration in 6G Heterogeneous Networks,
Wireless Networks, https://doi.org/10.1007/978-981-19-7648-3_5

89

http://crossmark.crossref.org/dialog/?doi=10.1007/978-981-19-7648-3_5&domain=pdf

 420 4612 a 420 4612 a
 
https://doi.org/10.1007/978-981-19-7648-3_5


90 5 Introduction of Cooperative Transmission in Integrated Satellite-Terrestrial. . .

based genetic algorithm is designed in this part. By applying the designed scheme,
the secrecy rate of the eavesdropped fixed satellite service terminal can be doubled,
comparing with the beamforming scheme without cooperation. For the problem of
adaptivity to traffic properties, the third part proposes a traffic prediction-based
resource allocation mechanism for the transmission and service resource of the
ground station when receiving data from multiple satellites. In this mechanism, a
predictive Backpressure (PBP) based service mechanism is designed to minimize
the time average cost of the multiple access system as well as the waiting time
of packets after they enter the queue. Results validate that the delay of the
SBIN queueing system can be reduced by the resource allocation mechanism that
coordinates with traffic properties, and more than half packets in the queues do not
need to wait for service, which means that they are pre-served before arriving to the
system.



Chapter 6
Traffic Offloading in Satellite-Terrestrial
Networks

Abstract Recently, hybrid satellite-terrestrial networks (H-STN) are expected to
support extremely high data rates and exponentially increasing demands of data,
which require new spectrum sharing and interference control technology paradigms.
By achieving an efficient spectrum sharing among H-STN, traffic offloading is
a promising solution for boosting the capacity of traditional cellular networks.
In this chapter, a software-defined network (SDN) based spectrum sharing and
traffic offloading mechanism is proposed to realize the cooperation and competition
between the ground base stations (BSs) of the cellular network and beam groups
of the satellite-terrestrial communication (STCom) system. Assume all BSs are
operated by the same mobile network operator (MNO). Under the cooperation
mode, all the BSs stop occupying a corresponding channel, and a selected beam
group of the satellite helps offload the traffic from the BSs by exclusively using
this channel. To facilitate the offloading negotiation between the MNO and satellite,
we design a second-price auction mechanism, which presents positive allocative
externalities, i.e., other uncooperative beam groups of the satellite can benefit
from the cooperation between BSs and the beam group performing offloading.
Meanwhile, the unique optimal biding strategies for different beam groups of the
satellite to achieve the symmetric Bayesian equilibrium, as well as the expected
utility of the MNO are derived and obtained in this part. The performance of the
proposed traffic offloading mechanism is validated in the simulations, which also
reveal that there exists the unique optimal offloading threshold for the MNO to
achieve the maximum expected utility.

Keywords Integrated Satellite-terrestrial Networks · Software-defined Network
(SDN) · Traffic Offloading · Spectrum Sharing · Auction

6.1 Introduction

Lately, driven by the exponentially increasing demands of multimedia data traffic,
the Sixth generation (6G) network architecture, combining wireless mobile commu-
nications with satellite systems (telecommunication satellite, navigational satellite
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and Earth observing satellite) [1–4], is expected to realize an ubiquitous information
perception, and to increase the network capacity effectively by offloading the traffic
from base stations (BSs) of cellular networks to satellite-terrestrial communication
(STCom) systems. However, with more licensed and unlicensed spectrum shared
by both ground cellular networks and STCom systems [5–7], the two systems
will suffer more serious co-channel interference. In addition, implementing traffic
offloading for BSs of cellular networks brings no capacity increase for STCom
systems without cooperative and incentive spectrum management. Therefore, spec-
trum management is crucial in supporting of traffic offloading between cellular and
satellite communications, and cooperative and efficient spectrum sharing has been
confirmed as a promising technology that combats the co-interference and increases
the capacity of the hybrid satellite-terrestrial network (H-STN). In this part, we will
consider the scenario of multimedia multicast services in the H-STN [8, 9], and
focus on the spectrum sharing and traffic offloading mechanism design in the H-
STN to realize the cooperation between traditional cellular networks and STCom
systems.

As space-based communication infrastructure, STCom systems are costly and
time-consuming to be deployed and updated. To overcome the slow configuration,
inflexible traffic engineering and other disadvantages resulting from the traditional
design of STCom systems, software-defined network (SDN) has been considered
as an effective and efficient network architecture to realize flexible resource
management and system performance control [10, 11]. Leveraging the concept
of SDN, the transmission resource and common spectrum occupied in traditional
cellular networks and STCom systems can be controlled and managed in a central
manner efficiently. In addition, by separating the control plane from the data plane
of the system, the SDN promises a potential to revolutionize the H-STN design
and transmission resource management to realize various applications and services.
Therefore, in this work, an SDN-based architecture will be established for spectrum
management and traffic offloading in the H-STN. With a centralized controller, the
common spectrum used by the cellular network and STCom system simultaneously
will be managed efficiently, and then an auction-based traffic offloading mechanism
can be implemented to meet data requests as well as to control the co-channel
interference in the H-STN.

We highlight the main contributions and our main ideas as follows:

• We establish an SDN framework for traffic offloading and spectrum sharing in the
H-STN. With the aid of the SDN controller, the traffic requests and some public
resource status can be obtained. According to the SDN architecture, the spectrum
management and geo-distributed transmission resource can be separated.

• We design a second-priced auction based traffic offloading and spectrum sharing
mechanism for the SDN-based H-STN. By applying the designed mechanism,
the MNO operates its BSs to work in cooperative and competitive modes
according to bids given by the satellite’s beam groups. Then the common
channels and spectrums shared in the H-STN can be managed efficiently to
support the high capacity transmission and co-channel interference control.
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• We analyze the performance of the designed auction based traffic offloading
mechanism. Specifically, the optimal bidding strategy of the satellite is derived in
this part, which demonstrates that the proposed auction-based traffic offloading
presents positive allocative externalities. In addition, the expected utility of the
MNO is also analyzed in this part. Moreover, simulation results validate the
performance of the designed mechanism, and reveal that there exists a unique
optimal offloading threshold for the MNO to achieve the maximum utility.

The remainder of this part is organized as follows. In Sect. 6.2, we discuss some
related works. The architecture of SDN-based traffic offloading system for the H-
STN is established in Sect. 6.3. Section 6.4 presents the system model. The second-
price auction mechanism for traffic offloading in the H-STN is designed in Sect. 6.5.
We provide satellite’s equilibrium bidding strategies in Sect. 6.6 and utility of the
MNO in Sect. 6.7. Simulations are shown in Sect. 6.8, and conclusions of this part
are drawn in Sect. 6.9.

6.2 Related Works

The traffic offloading mechanism design for a better radio resource management
has attracted researchers’ great attention, especially in heterogeneous networks
(HetNets) [12, 13]. However, research on traffic offloading between cellular and
satellite communications is rather little. In addition, even in most of current studies
for HetNets, interference management issues have not been taken into account [14–
16]. Some recent work has started trying to introduce spectrum management
to optimize the performance of traffic offloading. In [17], load balancing and
interference management in HetNets were jointly optimized in the traffic offloading
mechanism design to mitigate the inter-cell interference. Traffic management for
an M-tier HetNet was investigated in [18], in which APs accessing the licensed
spectrum opportunistically shared the unlicensed spectrum according to the Carrier
Sense multiple Access/Collision Avoidance (CSMA/CA) protocol. Nevertheless,
very little research has focused on the traffic offloading mechanism in the H-
STN systems. In addition, incentive mechanisms that encourage BSs sharing the
spectrum to participate in the offloading operation efficiently are little concerned
in these studies above. To solve this problem, the cooperative and competitive
modes based spectrum sharing proposed in this part can motivate the satellite to
implement offloading for BSs of the MNO, and meanwhile motivate the MNO to
attract satellite’s offloading.

Consider that the beam groups of the satellite, which occupy different channels
sharing with BSs of the MNO, provide multimedia multicast services with different
transmission rates. These beam groups can provide traffic offloading for the MNO’s
users with the same service requests. For such different capabilities of transmission
resource, auction theory becomes a feasible and effective tool in network economics
to model and analyze the resource supply and demand. Therefore, to facilitate



94 6 Traffic Offloading in Satellite-Terrestrial Networks

the traffic offloading negotiation between the MNO and satellite, auction-based
mechanisms can be introduced in the H-STN. Recently, many research efforts have
been devoted to the auction modeling for traffic offloading to improve the capacity
and resource utilization of the system [19–22]. Double auction models were applied
in HetNets for data offloading [23] and spectrum management [24], which improved
the throughput and decreased the interference of the system. In [25] and [26], reverse
auction was introduced to describe and model the traffic offloading mechanism in
heterogeneous cellular networks. In the previous research above, double auction was
utilized thanks to its ability of eliciting the hidden information between the resource
provider and demanders, and the reverse auction model was applied to the scenario
where there were multiple potential sellers (resource providers) and a single buyer
(resource demander). However, important allocative externalities [27], i.e., other
uncooperative beam groups of the satellite can benefit from the cooperation between
BSs of the MNO and the beam group performing offloading, did not involve in
the studies above. To solve this problem, a second-price auction mechanism will
be proposed in this work. Different from traditional auction models, second-price
auction specifies that the bidder submitting the highest (or lowest) bid will win the
auction, and the auction item will be sold at the price determined by the second
highest (or lowest) bid. Nevertheless, the analysis for such allocative externalities
involved mechanism is difficult since that bidding truthfully is a weakly dominant
strategy in the second-price auction [28, 29]. To reveal and confirm the performance
of the designed mechanism by overcoming this difficulty, this work will analyze the
optimal bidding strategy for beam groups of the satellite with different transmission
rates, and provide their unique equilibrium bids.

The H-STN is expected to be integrated, heterogenous, efficient and intelligent,
which will bring more difficulties to implement complicated resource management
and system control. A novel architecture of satellite-terrestrial networks was
initiatively proposed in [30], and a number of key technical challenges associated
with such architecture were presented systematically and comprehensively. In
addition, authors of [30] indicated that the SDN can be considered as a potential
architecture which promises an increasing efficiency of resource management
thanks to the separation of control and data transmission. Currently, different
SDN-based architectures have been designed and proposed in many studies for
H-STNs and other HetNets [19, 31]. In [32], a flexible network architecture was
proposed for efficient integration of heterogeneous satellite-terrestrial networks.
By synthesizing Locator/ID split and Information-Centric Networking, it is able to
achieve routing scalability alleviation, mobility support, efficient content delivery,
etc. To optimize the coverage probability, spectral and energy efficiency and other
performance, an end-to-end H-STN with SDN was proposed in [33]. Leveraging the
architecture of SDN, flexible resource management and system performance control
can be achieved to support various applications and services. Therefore, this work
will design an SDN-based architecture to realize an efficient and effective traffic
offloading and spectrum sharing in the H-STN.
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6.3 Architecture of SDN

The SDN is established as a network framework which separates the control plane
from the data plane. The architecture of an SDN-based spectrum sharing and
traffic offloading system in the hybrid satellite-terrestrial network (H-STN) is shown
as Fig. 6.1, which consists of three parts: the service plane, control plane and
management plane, the functions and operations of which will be introduced in
detailed as follows.

6.3.1 Service Plane

In the service plane, the H-STN provides multimedia multicast services with the
satellite and distributed BSs, and BSs’ mobile users (MUs) and satellite’s users
(SUs) are randomly distributed in the coverage of the satellite and BSs. All the
BSs are operated by the same mobile network operator (MNO) who manages the
spectrum and operating modes of these BSs to serve its MUs. Meanwhile, one
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satellite can cooperatively provide services for its own SUs and BSs’ MUs. In
addition, the STCom system and the cellular network provide their multimedia
multicast services by occupying the common spectrum, and their coverage areas are
overlapped seriously. Through cooperative spectrum sharing and traffic offloading
among the satellite and BSs, the throughput and other performance of the H-STN
can be improved effectively.

6.3.2 Control Plane

As shown in Fig. 6.1, the SDN architecture separates spectrum resource man-
agement from the geo-distributed resource, which forms an auction-based market
of spectrum and channel in the control plane. The control plane implements
information collection and strategy distribution.

6.3.2.1 Information Collection

The centralized H-STN Controller receives the traffic offloading requests from the
MNO and potential supplies of the traffic offloading service from the satellite, and
then sends such received information to the management plane of the H-STN. To
be specific, the MNO submits its required threshold of offloading rate Rthr which
denotes the minimum data rate that it is willing to be served by the satellite through
the winning spectrum band. In addition, threshold Rthr will be observed by the
satellite by accessing to the H-STN Controller. In response, the satellite submits
a bid vector denoted by b = [b1, b2, · · · , bN ], which expresses a willingness to
provide the traffic offloading service for the MNO.

6.3.2.2 Strategy Distribution

The H-STN controller receives the strategies of traffic offloading and spectrum
sharing made by the management plane, and then distributes the corresponding
strategies to the satellite and MNO to complete cooperative transmission.

6.3.3 Management Plane

After receiving the bidding and threshold information submitted by the satellite and
MNO, respectively, the H-STN Management allocates the common spectrum and
makes the traffic offloading decision for the satellite and MNO. Specifically, the H-
STN Management will determine that which channel among the common channels
will be occupied by the satellite exclusively and how much traffic of MNO’s MUs
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to be onloaded to the satellite, according to the information obtained. Then these
decisions will be returned back to the H-STN Controller in the control plane to
guide the cooperative transmission between the satellite and MNO’s BSs.

6.4 System Model of Traffic Offloading in H-STN

Consider the H-STN consists of one satellite and a set of BSs, and these BSs
are operated by an MNO and distributed within the coverage of the satellite.
Both the satellite and multiple BSs provide multimedia multicast services through
the common spectrum bands occupying a set of channels, denoted by N =
{1, 2, · · · , N} (N ≥ 2). Moreover, beams of the satellite are separated into N
groups according to transmission channels. Therefore, the beams transmitted from
the satellite to SUs will cause co-channel interference to the corresponding MUs
served by the BSs through the same channels, vice versa. In addition, consider that
beams are transmitted from the satellite or BSs through different channels, so that
there is no interference between them. Meanwhile, the interference between BSs
are also ignored considering the architecture of cellular network. Before proceeding
further, we summarize the main notations used throughout the following sections in
Table 6.1 for convenience.

Table 6.1 List of main notations in H-STN

Parameter Definition

N Set of channels occupied

M Set of beam groups with the maximum bid

Rthr MNO’s required threshold of offloading rate

R0 BS’s original transmission rate

b Satellite’s bid vector

bn Bid of beam group n

μn Throughput offered by beam group n

μcost Offloading rate of the winning beam group

m Index of the winning beam group

α Gain-ratio of beam group’s transmission rate

β Discounting factor of beam group’s transmission rate

γ BS’s increasing factor of transmission rate

π1/π2 BS’s benefit/discount
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6.4.1 Fully-Loaded Transmission

We assume that the traffic offloading system in the H-STN is time-slotted and quasi-
static. To be specific, in each time slot, the system status remains constant, but
changes over time slots. Assume that the satellite and all BSs work under a fully-
loaded situation. In a real STCom system or cellular network, a single time slot is
not enough to complete data transmission for the satellite or each BS because there
is a lot of traffic to be served [34–36]. Thus the assumption of “fully-loaded” is
reasonable as well as it can simplify system analysis.

6.4.2 Satellite’s Transmission Rate Through Each Channel

We assume that N groups of beams, occupying the number of N channels and
transmitted from the satellite, serve SUs with two rates, i.e., the rate achieved under
the co-channel interference caused by BSs and the rate achieved without co-channel
interference. In each time slot, the satellite senses the occupancy status of every
channel, and selects the appropriate transmission rate through each of these channels
determined by whether there exists co-channel interference.

6.4.2.1 Transmission Rates Under Interference

In the interference system consisting of a satellite and multiple BSs, we use μn
to denote the throughput that beam group n of the satellite can achieve to serve
SUs when this beam group shares channel n with BSs within the coverage of the
satellite. In this work, we assume thatμn (∀n ∈ N ) is a continuous random variable
changing over interval [μmin, μmax], and 0 ≤ μmin < μmax, and all μn (∀n ∈
N ) obey the same probability distribution function (PDF) f (μ) and cumulative
distribution function (CDF) F (μ). Then we notice that both f (μ) and F (μ) are
independent of n. Moreover, the value of μn (∀n ∈ N ) is considered as the local
and private information of beam group n of the satellite, so that BSs of the MNO
and satellite’s beams using other channels cannot obtain this information. However,
we assume that the probability distribution of μn can be known by all BSs and the
other N − 1 beam groups of the satellite.1

1 This assumption is reasonable for BSs since that they are operated by the MNO. On the other
hand, the value ofμn is a random variable changing over time, cognising its probability distribution
is more feasible and efficient than its real-time value for other beam groups of the satellite. In
addition, SUs served by different channels may belong to different third-party customers; in other
words, these customers may rent different channels of the satellite to provide multicast services for
their users. Therefore, the satellite may hide the information of transmission rate in each channel,
and then consumers renting other channels cannot obtain the value of μn.
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6.4.2.2 Transmission Rates Under Non-Interference

When beam group n of the satellite has sensed that there is no other ground BS
using channel n, this beam group will turn its transmission rate up to a higher value
as much as α times of the rate under the interference, i.e., αμn (α > 1).

6.4.3 BSs’ Cooperative and Competitive Modes

We consider that the MNO can operate all the BSs to work in one of the following
modes:

6.4.3.1 Cooperative Mode

The BSs can make a deal with one for the satellite’s beam group, denoted by
m ∈ N , where all BSs turn off their channel m, stop transmitting in this channel,
and then beam group m of the satellite occupies this channel exclusively. In this
case, there is no co-channel interference for beam groupm, whose transmission rate
is turned up to αμm correspondingly, and remaining N − 1 beam groups of the
satellite still work with their lower rates μn (n ∈ N , n 
= m) due to the co-channel
interference. As a compensation, the satellite will serve MUs of the MNO through
channelm with guaranteed offloading rate μcost.

6.4.3.2 Competitive Mode

In this mode, the satellite does not provide the traffic offloading service for the
MNO through any of its beam groups, and each beam group still occupies its own
channel to serve SUs. Therefore, all data requests from MUs have to be served by
BSs. To ensure the total transmission rate under interference brought by the satellite
and satisfy MUs’ data requests, all BSs turn its competition mode on by selecting
randomly from one of the N channels and increasing the transmission power in this
channel. As a result, the relative beam group of the satellite using this channel will
suffer more serious interference, which decreases the transmission rate of this beam
group. Let β ∈ (0, 1) denote the transmission rate discounting factor.
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6.5 Second-Price Auction Based Traffic Offloading
Mechanism Design

6.5.1 Second-Price Auction

Next, we consider a second-price auction, where the MNO operating multiple BSs
is the auctioneer (channel seller) and all beam groups of the satellite are performing
as bidders (potential channel buyers) who can offload for BSs to get a probable
better communication quality. The auction is operated at the beginning of each
time slot. The “good” of the MNO to sell is the transmission channel occupied
simultaneously by its BSs and the satellite. In addition, successful beam group
m will get a higher communication rate (bandwidth) by obtaining the channel,
some parts of which will be contributed to the offloading service for MNO’s BSs
nevertheless. This transmission rate of traffic offloading for BSs is considered as
the payment of beam group m of the satellite for the transmission channel. When
beam group m makes a successful deal with the MNO, the MNO will operate all
its BSs to work in the cooperative mode, stop using channel m, and onload its
traffic to beam group m of the satellite, which will transmit this traffic through
channelm. Furthermore, different from traditional auctions, where the winner pays
the auctioneer the winning price, the second-price auction introduced here requires
the winning beam group to serve MUs with offloading rate μcost as the payment
according to the second highest bid.

6.5.2 Auction Operation

The auction operation for traffic offloading in the H-STN can be decomposed into
two steps, as shown in Fig. 6.1.

(1) Stage I: The MNO announces its required threshold of offloading rate Rthr ∈
[0,+∞), which denotes the minimum data rate that it is willing to be served by
the satellite through the winning beam group.

(2) Stage II: After observing offloading rate threshold Rthr required by the MNO,
each beam group n (∀n) of the satellite submits its bid bn ∈ [Rthr,+∞) ∪ {∅},
where bn ∈ [Rthr,+∞) indicates that beam group n of the satellite expresses a
willingness to provide the traffic offloading service for the MNO, and bn = ∅

denotes the situation that beam group n has no willingness to buy transmission
channel n from the MNO. In addition, the case of bn < Rthr is considered as
bn = ∅. Then denote the vector of satellite’s bids as b = [b1, b2, · · · , bN ].
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6.5.3 Outcomes of Auction-Based Traffic Offloading

Next, we analyze the auction outcome of the traffic offloading system for different
values of bid vector b and rate thresholdRthr. First, we define the set of beam groups
with the maximum bid in a given time slot as

M �
{
m ∈ N : m = arg max

n∈N
bn

}
. (6.1)

Denote the number of beam groups with the maximum bid by |M |. Then the
following three possible situations will happen:

• Case I: |M | = 1.

In the case of |M | = 1 after a successful auction, which means that among
the bid vector of the satellite, only one beam group provides the highest bid for
the channel, we consider beam group m = arg maxn∈N bn as the winner. Then the
MNO adjusts all its BSs to work in the cooperative mode and leaves channel m to
beam groupm of the satellite. Thus, winning beam groupm will exclusively use this
channel to serve SUs, and meanwhile serve some of MUs with offloading rate μcost.
Based on the rule of second-price auction, when there is only one bid giving the
highest price among the satellite’s bid vector, the offloading rate for MUs provided
by this winning beam group is given by

μcost = max {Rthr, b1, · · · , bm−1, bm+1, · · · , bN } , (6.2)

i.e., the highest bid among the rate threshold and all rate bids from other beam
groups. One can notice that the transaction price (offloading rate) is smaller than the
highest price of the satellite’s bid vector b.

• Case II: |M | ≥ 2.

In the case where |M | ≥ 2 and maxn∈N bn ∈ [Rthr,+∞), the MNO adjusts all
its BSs to work in the cooperative mode, selects one beam group m randomly with
the probability 1/|M | from set M , and then leaves channelm to this winning beam
group of the satellite. Then beam groupm exclusively occupies this channel to serve
its own SUs and some parts of MUs. In this case, the offloading rate of beam group
m for the MNO is required to be the maximum bid:

μcost = max
n∈N

bn, (6.3)

which is equal to the winning beam group m’s bid.

• Case III: |M | = 0.

The case of |M | = 0 indicates that the satellite is not willing to buy MNO’s
transmission channel or provide traffic offloading service for BSs of the MNO
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through any of its beam group, and gives up bidding, i.e., bn = ∅, ∀n ∈ N . In
this case, the MNO will work in the competitive mode, select one of N channels
randomly, increase its transmission power in this channel, and serve its users on its
own. Then SUs of the satellite served by the beam group using this channel will
suffer more serious co-channel interference.

Based on the analysis of three cases above, the offloading rate of the satellite
through its selected beam group can be given by

μcost (b, Rthr) =

⎧
⎪⎪⎪⎨
⎪⎪⎪⎩

max
{
Rthr, max

n∈N \{m}
bn

}
, |M | = 1,m = arg max

n∈N
bn;

max {Rthr, bn} , |M | ≥ 2,max
n∈N

bn ∈ [Rthr,+∞) ;
0, M = ∅.

(6.4)

Then define the utility of MNO obtained from offloading as

πMNO (b, Rthr) =
{
μcost (b, Rthr)+ π1, if |M | ≥ 1;
γR0 − π2, if M = ∅,

(6.5)

where R0 is the original transmission rate of each BS when sharing with the
satellite’s beams to use the same channel, γ > 1 captures the increasing rate of
each BS when it works competitively, π1 and π2 reflect the rate benefit and discount
for every BS resulting from the energy saving and cost under the cooperative and
competitive modes, respectively.

Then the expected utility of the satellite obtained by beam group n can be written
by

πn (b, Rthr) =

⎧
⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

2μn − max
i∈N \{n}

{Rthr, bi} , bn > max
i∈N \{n}

bi;
1
|M |

[
2μn −max

i∈N
{Rthr, bi}

]
+ |M |−1

|M | μn, bn = max
i∈N \{n}

bi;
μn, bn < max

i∈N
bi;

1
N
βμn + N−1

N
μn, max

i∈N
bi = ∅.

(6.6)

According to (6.6), one can notice that beam group n of the satellite fails to win
the auction in the following three cases: (a) beam group n submits the same highest
bid bn = maxi∈N ,i 
=nbi with some other beam groups but is not selected by the
MNO to provide the offloading service; (b) bn < maxi∈N bi , which indicates that
there exists one beam group other than bn winning the auction; (c) maxi∈N bi = ∅,
which indicates that all beam groups fall to win the auction and the MNO adjusts
all its BSs to work in the competitive mode. However, the utilities obtained by the
failing beam groups are different in these three cases above: beam group n will
achieve a utility of μn when either of the first two cases above happens, and will
obtain a small utility of βμn when maxi∈N bi = ∅. In other words, rather than
losing the auction, i.e., maxi∈N bi = ∅, beam group n is more willing to see other
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beam groups winning the auction even though it fails to win. This shows that the
designed auction mechanism has the ability to motivate bidders (beam groups of the
satellite) to participate in the offloading service and compete the channel resource
actively.

In this work, we assume that all beam groups are rational to submit bidding strate-
gies which may lead to potential maximum expected utilities for them, respectively.
Based on the second-price auction designed above, the beam group n’s bidding
strategy is affected by the distribution of other beam groups’ communication quality
under the interference. In other words, when beam group n evaluates its utility when
it fails to win the auction, it needs to consider that whether the other beam groups
win or not. This characteristic reflects the positive allocative externalities [28],
which lead to a delicate beam group bidding strategy to achieve the equilibrium.
Next section will focus on finding satellite’s equilibrium bidding strategies.

6.6 Satellite’s Equilibrium Bidding Strategies

We first give the definition of Symmetric Bayesian Equilibrium in Definition 6.1.

Definition 6.1 Given a offloading threshold Rthr, a bidding strategy function
b∗ (μ,Rthr), μ ∈ [μmin, μmax], constitutes a Symmetric Bayesian Nash Equilibrium
(SBNE) if ∀sn ∈ [Rthr,+∞) ∪ {∅}, ∀μn ∈ [μmin, μmax] and ∀n ∈ N , it holds

Eμ−n
{
πn
(
b∗, Rthr

) |μn
} ≥ Eμ−n

{
πn
(
b∗sn , Rthr

) |μn
}
, (6.7)

where vector μ−n � {μi : ∀i ∈ N , i 
= n} denotes all beam groups’ communica-
tion quality except n, and is unknown to beam group n of the satellite,

b∗ = (
b∗ (μ1, Rthr) , · · · , b∗ (μn−1, Rthr) , b

∗ (μn,Rthr) ,

b∗ (μn+1, Rthr) , · · · , b∗ (μN,Rthr)
)
,

(6.8a)

b∗sn =
(
b∗ (μ1, Rthr) , · · · , b∗ (μn−1, Rthr) , sn,

b∗ (μn+1, Rthr) , · · · , b∗ (μN,Rthr)
)
.

(6.8b)

Definition 6.1 implies that beam group n cannot get a better expected utility if it
changes its strategy from b∗ (μn,Rthr) to any sn ∈ [Rthr,+∞) ∪ {∅}.

Next, we analyze the optimal bidding strategy for all beam groups of the satellite
considering differentμn ∈ [μmin, μmax], ∀n. According to definitions in Sect. 6.5.3,
the cost and benefit for beam group m who wins the traffic offloading auction
are denoted by μcost (b, Rthr) in (6.4) and (α − 1) μm, respectively. In addition,
μcost (b, Rthr) ≤ μm always holds. Consider that equilibrium bidding strategies will
exist when the balance between the expected cost and benefit for beam groups can
be achieved, i.e., α = 2. In other words, the unique equilibrium bidding strategy can
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not be achieved when α is larger or small than 2. Therefore, in this work, we analyze
the optimal equilibrium bidding strategies for beam groups in the case where α = 2.

6.6.1 Bidding Strategy for Rthr ∈ (μmin, μmax]

We first analyze the beam groups’ equilibrium bidding strategies when Rthr ∈
(μmin, μmax] holds, which is the most complicated situation than the later ones.
We first introduce Lemma 6.1 to provide the beam group n’s equilibrium strategy
b∗ (μn,Rthr).

Lemma 6.1 There is at least one solution μ ∈ (μmin, Rthr) holding the following
equation:

N−1∑
n=1

(
N − 1
n

)
[F (Rthr)− F (μ)]nF (μ)N−1−n (α − 1)μ− Rthr

n+ 1

+ F(μ)N−1
[(
α − 1+ 1− β

N

)
μ− Rthr

]
= 0,

(6.9)

when α = 2, where F (μ) is the CFD of random variableμ ∈ (μmin, μmax). Denote
the solutions μ ∈ (μmin, Rthr) of function (6.9) by μ̃1 (Rthr) , μ̃2 (Rthr) , · · · , μ̃K
(Rthr), where K ∈ N

+ is the number of function (6.9)’s solutions in interval
(μmin, Rthr).

The proof of Lemma 6.1 is provided in Sect. 6.10. In addition, such uniqueness
of the solution claimed in Lemma 6.1 will be validated by the simulation of this
work.

Based on Lemma 6.1, we provide the SBNE bidding strategies in Theorem 6.1:

Theorem 6.1 Consider a μ̃a (Rthr) ∈ (μmin, Rthr) belonging to set
{μ̃1 (Rthr) , μ̃2 (Rthr) , · · · , μ̃K (Rthr)} defined in Lemma 6.1. For a given Rthr ∈
(μmin, μmax], then the following bidding strategy b∗ (μn,Rthr) constitutes the
unique form to achieve an SBNE for beam group n, ∀n ∈ N :

b∗ (μn,Rthr) =

⎧
⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

∅, μn ∈
[
μmin, μ̃a (Rthr)) ;

Rthr or ∅, μn = μ̃a (Rthr) ;
Rthr, μn ∈ (μ̃a (Rthr) , Rthr) ;
μn, μn ∈ [Rthr, μmax) ;
any value ∈ [μmax,+∞) , μn = μmax.

(6.10)

The proof of Theorem 6.1 is provided in Sect. 6.11. In addition, the structure of
bidding strategy at SBNE summarized in Theorem 6.1 is shown in Fig. 6.2.
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Fig. 6.2 Bidding strategy at
SBNE when
Rthr ∈ (μmin, μmax]

6.6.2 Bidding Strategy for Rthr ∈
(
μmax,

(
1 + 1−β

N

)
μmax

)

Similar to the analysis of bidding strategy above, we first introduce Lemma 6.2 as
follows.

Lemma 6.2 There is at least one solution μ ∈ (μmin, μmax) holding the following
equation:

N−1∑
n=1

(
N − 1
n

)
(1− F (μ))nF (μ)N−1−n (α − 1)μ− Rthr

n+ 1

+ F(μ)N−1
[(
α − 1+ 1− β

N

)
μ− Rthr

]
= 0,

(6.11)

when α = 2, where F (μ) is the CFD of random variableμ ∈ (μmin, μmax). Denote
the solutions μ ∈ (μmin, μmax) of function (6.11) by μ̃1 (Rthr) , μ̃2 (Rthr) , · · · ,
μ̃K (Rthr), where K ∈ N

+ is the number of function (6.11)’s solutions in interval
(μmin, μmax).

Such uniqueness of the solution claimed in Lemma 6.2 will be validated by
the simulation of this work. Based on Lemma 6.2, we provide the SBNE bidding
strategies of the satellite in Theorem 6.2:

Theorem 6.2 Consider a μ̃b (Rthr) ∈ (μmin, μmax) belonging to set
{μ̃1 (Rthr) , μ̃2 (Rthr) , · · · , μ̃K (Rthr)} defined in Lemma 6.2, then the following
bidding strategy b∗ (μn,Rthr) constitutes the unique form of an SBNE for beam
group n, ∀n ∈ N :

b∗ (μn,Rthr) =
⎧
⎨
⎩
∅, μn ∈

[
μmin, μ̃b (Rthr)) ;

Rthr or ∅, μn = μ̃b (Rthr) ;
Rthr, μn ∈ (μ̃b (Rthr) , μmax

]
.

(6.12)

In addition, in the case where there is no beam group with μn ∈
[
μ̃b (Rthr) , μmax),

then the optimal bid constituting an SBNE for the beam group or groups with μn =
μmax is selecting any value ∈ [Rthr,+∞),
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Fig. 6.3 Bidding strategy at
SBNE when Rthr ∈(
μmax,

(
1+ 1−β

N

)
μmax

)

The proofs of Lemma 6.2 and Theorem 6.2 are similar to those of Lemma 6.1 and
Theorem 6.1, respectively. Therefore, we omit the details of these proofs. In addi-

tion, the structure of bidding strategy at SBNE for Rthr ∈
(
μmax,

(
1+ 1−β

N

)
μmax

)

is shown in Fig. 6.3.

Remark 6.1 According to Theorems 6.1 and 6.2, one can notice that the SBNE
bidding strategies of the satellite are determined by Rthr and μ̃a (μ̃b) obtained
through Lemmas 6.1 and 6.2. In addition, the uniqueness of solutions of (6.9)
and (6.11) is important for the feasibility and reasonability of Theorems 6.1 and
6.2. In Sect. 6.8.2, simulation results validates that there exists only one solution
μ̃a (Rthr) ∈ (μmin, Rthr) and μ̃b (Rthr) ∈ (μmin, μmax) holding (6.9) and (6.11),
respectively, when beam group’s transmission rate μn (∀n ∈ N ) follows the
truncated normal distribution (TND) NT

(
μT, σ

2
T

)
to interval [μmin, μmax] or the

uniform distribution (UD) U (μmin, μmax), where μT and σ 2
T are the expectation

and variance of the TND, respectively.

6.6.3 Bidding Strategy for Rthr ∈
[(

1 + 1−β
N

)
μmax,+∞

)

We assume that offloading rate threshold Rthr ∈
((

1+ 1−β
N

)
μmax,+∞

)
is given.

Then Theorem 6.3 provides the bidding strategy constituting an SBNE.

Theorem 6.3 For a given Rthr ∈
((

1+ 1−β
N

)
μmax,+∞

)
, bidding strategy

b∗ (μn,Rthr) = ∅ constitutes an SBNE strategy for all μn ∈ [μmin, μmax],

∀n ∈ N . Specifically, when Rthr =
(

1+ 1−β
N

)
μmax, the unique form of SBNE

bidding strategy for every beam group is given by

b∗ (μn,Rthr) =
{
Rthr ∪∅, μn = μmax;
∅, μn = [μmin, μmax) .

(6.13)

The proof of Theorem 6.3 is provided in Sect. 6.12.
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Fig. 6.4 Bidding strategy at
SBNE when Rthr ∈[(

1+ 1−β
N

)
μmax,+∞

)

Remarks Strategy function (6.13) describes the situation where the MNO requires a
large offloading rate but only promises a very limited improvement of transmission
quality to the winning beam group of the satellite. Therefore, all beam groups submit
the value of bid as ∅ with probability one. We show the structure of bidding strategy
at SBNE in Fig. 6.4.

6.6.4 Bidding Strategy for Rthr ∈ [0, μmin]

Considering the situation where the MNO announces a small value of offloading
rate threshold satisfying Rthr ∈ [0, μmin], we provide the unique form of SBNE
bidding strategy in Theorem 6.4.

Theorem 6.4 For a given Rthr ∈ [0, μmin], the SBNE bidding strategy of every
beam group is given by a unique form as

b∗ (μn,Rthr) =
⎧⎨
⎩

any value ∈ [Rthr, μmin] , μn = μmin;
μn, μn ∈ (μmin, μmax) ;
any value ∈ [μmax,+∞) , μn = μmax.

(6.14)

We omit the proof of Theorem 6.4 due to its similarity with Theorem 6.1. In
addition, the structure of bidding strategy at SBNE is shown in Fig. 6.5.

Fig. 6.5 Bidding strategy at
SBNE when Rthr ∈ [0, μmin]
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So far we have provided optimal bidding strategy b∗ (μn,Rthr) which constitutes
the SBNE for every beam group of the satellite with μn ∈ [μmin, μmax], ∀n ∈ N ,
when the MNO announces different values of offloading rate threshold Rthr ≥ 0.

We notice that some beam groups select bidding rate threshold Rthr conserva-

tively for Rthr ∈
(
μmin,

(
1+ 1−β

N

)
μmax

)
as their optimal strategy. Specifically,

if there is at least one beam group bids rate from [Rthr,+∞) (situation analyzed
in Sect. 6.6.1), then these beam groups prefer to not provide the offloading service
to the MNO, which results from their relatively low μn and low increasing rates
brought by the cooperation with MNO’s BSs. This reason motivates satellite’s beam
groups with low transmission rates to reduce their chances of winning the auction.
On the other hand, if none of the other beam groups of the satellite bids rate from
[Rthr,+∞) (situation analyzed in Sect. 6.6.2), then these beam groups need to bid
conservative rate Rthr to facilitate the cooperation with the MNO, which can avoid
the severe deterioration of transmission rate resulting from the competitive mode
of the MNO. This reason can be considered as the motivation that encourages
beam groups to bid from [Rthr,+∞). Therefore, bidding conservative rate Rthr
conservatively is the SBNE strategy for these beam groups of the satellite.

6.7 Expected Utility Analysis for MNO

In this section, we investigate the expected utility obtained by the MNO when it
reports differentRthr, based on the bidding strategy analysis in Sect. 6.6. In addition,
assume that transmission rate μn (∀n ∈ N ) follows the TND NT

(
μT, σ

2
T

)
to

interval [μmin, μmax] or the uniform distribution (UD) U (μmin, μmax). Therefore,
there exists unique solution μ̃a (Rthr) ∈ (μmin, Rthr) and μ̃b (Rthr) ∈ (μmin, μmax)

for equality (6.9) and equality (6.11), respectively, which will be validated by
simulation results in Sect. 6.8.2.

6.7.1 Utility Analysis for Rthr ∈ (μmin, μmax]

We first provide the expected utility of the MNO when Rthr ∈ (μmin, μmax] in
Theorem 6.5.

Theorem 6.5 Consider that the distribution of satellite’s transmission rate can be
known by the MNO, and the MNO announces threshold of traffic offloading rate
Rthr ∈ (μmin, μmax]. Assume that all beam groups of the satellite provide the
offloading bids according to (6.10). In addition, the utility of the MNO is defined
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as (6.5). Then the expected utility of the MNO is given by:

E (πMNO (Rthr))

=F(μ̃a (Rthr))
N (γR0 − π2)+

(
1− F(μ̃a (Rthr))

N
)
π1 + μ̄cost,

(6.15)

where μ̃a (Rthr) ∈ (μmin, Rthr) is obtained according to Lemma 6.1, μ̄cost = Nμ̄0,
and

μ̄0 = (N − 1)
∫ μmax

Rthr

μf (μ)F(μ)N−2 (1− F (μ)) dμ

+ Rthr (1− F (Rthr)) F (μ)
N−1 + Rthr

N

[
F(Rthr)

N − F(μ̃a (Rthr))
N
]
.

(6.16)

Proof Denote the CDF of b−nmax as H (μ), which is given by

H (μ) = F(μ)N−1, (6.17)

where F (μ) is the CDF of each beam group’s transmission rate of the satellite.
Then the PDF of b−nmax, denoted by h (μ), can be calculated as

h (μ) = (N − 1) F (μ)N−2f (μ) , (6.18)

where f (μ) is the PDF of μn, ∀n ∈ N . Consider μm = maxn∈N μn. Based
on (6.4) and (6.5), and given Rthr ∈ (μmin, μmax], the utility obtained by the MNO
can be analyzed under three cases:

1. μm ∈ (Rthr, μmax] and b−mmax ∈ (Rthr, μm], then the MNO can receive offloading
rate b−mmax from the satellite, and the corresponding utility received is b−mmax + π1;

2. μm ∈ (Rthr, μmax] and b−mmax = Rthr or ∅, then the MNO can receive offloading
rate Rthr from the satellite, then the corresponding utility received is Rthr + π1;

3. μm ∈ [
μ̃ (Rthr) , Rthr

]
and b−nmax = Rthr or ∅, then the MNO might work in

the cooperative mode and receive offloading rate Rthr if there exists at least one
of beam groups of the satellite giving the conservative bid Rthr; otherwise, the
competitive mode will turned on if all beam groups of the satellite give bid as
∅. Therefore, in this case, the expected utility of the MNO is determined by the
number of beam groups with bid Rthr.

In conclusion, if there exists at least on beam group of the satellite giving a bid no
less than conservative bid Rthr, then the expected offloading rate received by the
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MNO is given by

μ̄0 =
∫ μmax

Rthr

μh (μ) (1− F (μ)) dμ+ Rthr (1− F (Rthr))H (Rthr)

+ [
F (Rthr)− F (μ̃ (Rthr))

] N−1∑
n=1

(
N − 1
n

)

· [F (Rthr)− F (μ̃ (Rthr))
]n
F (μ̃ (Rthr))

N−1−n · Rthr

n+ 1

= (N − 1)
∫ μmax

Rthr

μf (μ)F(μ)N−2 (1− F (μ)) dμ

+ Rthr (1− F (Rthr)) F (μ)
N−1 + Rthr

N

[
F(Rthr)

N − F(μ̃ (Rthr))
N
]
.

Considering that there are N beam groups generated by the satellite, then the
expected offloading rate received by the MNO is μ̄cost = Nμ̄0, and MNO’s expected
utility received can be given by

E (πMNO (Rthr))

=F(μ̃ (Rthr))
N (γR0 − π2)+

(
1− F(μ̃ (Rthr))

N
)
π1 + μ̄cost.

(6.19)

This completes the proof of Theorem 6.5.

6.7.2 Utility Analysis for Rthr ∈
(
μmax,

(
1 + 1−β

N

)
μmax

)

According to Theorem 6.2, one can notice that the MNO will obtain the conservative
offloading rate Rthr if and only if there exists at least one beam group of the
satellite with μn ∈ (μ̃b (Rthr) , μmax

]
. In addition, Rthr is the maximum and

the only possible offloading rate provided by the satellite. Otherwise, the MNO
will work in the competitive mode. Therefore, when the MNO announces Rthr ∈(
μmax,

(
1+ 1−β

N

)
μmax

)
and all beam groups of the satellite give bids according

to (6.12), the expected utility of the MNO can be computed by

E (πMNO (Rthr))

=F(μ̃b (Rthr))
N (γR0 − π2)+

[
1− F(μ̃b (Rthr))

N
]
(Rthr + π1) ,

(6.20)

where μ̃b (Rthr) ∈ (μmin, μmax) is a solution of (6.11).
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6.7.3 Utility Analysis for Rthr ∈
[(

1 + 1−β
N

)
μmax,+∞

)

Consider that the probability for a beam group of the satellite to have the
maximum transmission rate μmax is zero due to the continuous distribution of
μn. Therefore, as formulated in Theorem 6.3, all beam groups of the satellite
will give up bidding for channels, i.e., bn = ∅, ∀n ∈ N . Thus, when the

MNO announces Rthr ∈
[(

1+ 1−β
N

)
μmax,+∞

)
, its expected utility obtained is

E (πMNO (Rthr)) = γR0 − π2.

6.7.4 Utility Analysis for Rthr ∈ [0, μmin]

Similar to the analysis in the proof of Theorem 6.5, when the MNO announces
Rthr ∈ [0, μmin] and all beam groups of the satellite give bids according to (6.14),
then the expected offloading rate obtained by the MNO can be given by

μ̄cost = N
∫ μmax

μmin

μg (μ) (1− F (μ)) dμ

= N (N − 1)
∫ μmax

μmin

μf (μ) F(μ)N−2 (1− F (μ)) dμ.
(6.21)

and then the corresponding expected utility of the MNO is E (πMNO (Rthr)) =
μ̄cost + π1.

For now, we have provided the expected utility of the MNO, as well as the
optimal bidding strategies at SBNE for every beam group, when applying the
designed auction based traffic offloading mechanism. These proposed mechanism,
optimized bidding strategies and performance analysis for the SDN-based hybrid
STCom network can be extended flexibly and will still stand in the further H-
STN systems with more channels occupied by common spectrum bands, increasing
throughput achieved by beam groups and other different system parameters.

6.8 Simulation Results

We simulate the auction-based traffic offloading system with one MNO and one
satellite. In addition, the multiple beams of the satellite are divided into seven groups
occupying seven channels separately, i.e., N = 7. Such number of channels using
by the STCom system is in compliance with the actual satellite system [37–39].
Consider μn ∈ [50, 200] Mbps (∀n ∈ N ) follows the TND NT

(
125, 502) to

interval [50, 200] Mbps, or the UD U (50, 200).
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6.8.1 Beam Group’s Strategy of the Satellite

First, we investigate the impact of some system settings, i.e., the offloading
threshold, transmission rate discounting factor and the distribution of beam groups’
transmission rates, on the beam group’ strategies. Consider that the probability for a
beam group to have a transmission rateμmin orμmax is zero due to the distribution of
μn, ∀n ∈ N . Then all beam groups of the satellite select the same bidding strategy,

i.e.,∅ andμn for the situationRthr ∈
[(

1+ 1−β
N

)
μmax,+∞

)
andRthr ∈ [0, μmin],

respectively. Therefore, in this section, we only test the beam groups’ strategies
for the first two situations analyzed in Sect. 6.6, specifically, Rthr ∈ (μmin, μmax]

and Rthr ∈
(
μmax,

(
1+ 1−β

N

)
μmax

)
. Set β ∈ {0.01, 0.3, 0.7} to denote different

degeneration degrees of beam group’s transmission rate due to MNO’s competitive
mode, and the small value of β implies a serious degeneration.

For different distributions of μn, TDN NT
(
125, 502) and UD U (50, 200), the

probabilities for a beam group to give up bidding, i.e., bidding ∅, when the MNO

announces different Rthr ∈ (μmin, μmax] and Rthr ∈
(
μmax,

(
1+ 1−β

N

)
μmax

)

are shown in Figs. 6.6a, b, respectively. As shown in these two figures, more
beam groups give up bidding with the increase of Rthr, which indicates that both
μ̃a (Rthr) and μ̃b (Rthr) increase with increasing Rthr. In addition, the number of
beam groups those give up bidding decreases with decreasing β, which means
that the more serious degeneration for beam groups’ transmission rates brought
by the MNO’s competitive mode, the more beam groups prefer to give bids in
[Rthr,+∞) to facilitate the cooperation with the MNO. Moreover, results shown
in Fig. 6.6b reveal that less beam groups bid ∅ when μn (∀n ∈ N ) follows
U (50, 200) than NT

(
125, 502) for the same Rthr reported by the MNO, before all

beam groups bidding ∅. Such phenomenon reflects that there are less beam groups
with transmission rates closed to μmax whenμn follows the TDN than UD, and then
according to the optimal bidding strategies formulated in Theorem 6.2, less beam
groups will bid conservative offloading rate Rthr and more beam groups bid ∅.

6.8.2 Expected Utility of the MNO

Next, we investigate the expected utility obtained by the MNO when it reports
different Rthr. Sections 6.6.1 and 6.6.2 indicates that the bidding strategies of
satellite’s beam groups are determined by μ̃a (Rthr) and μ̃b (Rthr), the uniqueness
of which is important for the feasibility and reasonability of Theorems 6.1 and
6.2, respectively. Therefore, we first validate that there exists the unique solution
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Fig. 6.6 Probability of each beam group giving up bidding versus Rthr and β with different

distributions of μn. (a) Rthr ∈ (μmin, μmax). (b) Rthr ∈
(
μmax,

(
1+ 1−β

N

)
μmax

)
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for (6.9) and (6.11). Let R0 = 250 Mbps [40], γ = 1.2, β ∈ {0.01, 0.3, 0.7}, and

Γ1 (μ) = F(μ)N−1
[(

1+ 1− β
N

)
μ− Rthr

]

+
N−1∑
n=1

(
N − 1
n

)
[F (Rthr)− F (μ)]nF (μ)N−1−n μ− Rthr

n+ 1
,

(6.22a)

Γ2 (μ) = F(μ)N−1
[(

1+ 1− β
N

)
μ− Rthr

]

+
N−1∑
n=1

(
N − 1
n

)
(1− F (μ))nF (μ)N−1−n μ− Rthr

n+ 1
,

(6.22b)

where μ ∼ NT
(
125, 502) or μ ∼ U (50, 200). Then Fig. 6.7 shows how Γ1 (μ)

and Γ2 (μ) change over different values of μ. Specifically, we first set Rthr =
100 Mbps ∈ (μmin, μmax), then Fig. 6.7a indicates that for different β and prob-
ability distributions of μ, Γ1 (μ) increases monotonically when μ increases from
μmin = 50 Mbps toRthr = 100 Mbps, in addition,Γ1 (μmin) < 0 and Γ1 (Rthr) > 0.
Therefore, there exists only one μ̃a (Rthr) ∈ (μmin, Rthr) which holds Γ1 (μ̃a) =
0. Similarly, we set Rthr =

(
1+ 1−β

2N

)
μmax ∈

(
μmax,

(
1+ 1−β

N

)
μmax

)
, and

Fig. 6.7b indicates that Γ2 (μ) increases monotonically when μ increases around
μmax, and only one μ̃b (Rthr) ∈ (μmin, μmax) can hold Γ2 (μ̃b) = 0. Consequently,
the conclusions in Theorems 6.1 and 6.2 are feasible and reasonable, which means
that there exists the unique μ̃a (Rthr) and μ̃b (Rthr) for beam groups of the satellite
to provide the unique SBNE bidding strategy when the MNO announces Rthr ∈
(μmin, μmax) and Rthr ∈

(
μmax,

(
1+ 1−β

N

)
μmax

)
, respectively.

Then we test the expected utility obtained by the MNO when it reports different
Rthr. Letμn ∼ NT

(
125, 502) and β = 0.3 for instance. Set (π1, π2) to select values

from {(50, 50) , (100, 50) , (50, 10)} to illustrate cases whereμcost (b, Rthr)+π1 =,
> and < γR0 − π2. Then MNO’s expected utilities for Rthr ∈ [μmin, μmax] are
shown in Fig. 6.8a. Results shown in Fig. 6.8a reflect thatE (πMNO (Rthr)) is strictly
unimodal for Rthr ∈ [μmin, μmax], which indicates that there exists the unique
optimal announced threshold R∗thr for the MNO to achieve the maximum expected
utility. In addition, when μcost (b, Rthr) + π1 > γR0 − π2, the MNO prefers to
announce a smaller value of Rthr to encourage beam groups of the satellite to bid
from [Rthr,+∞), and then the corresponding optimal threshold R∗thr is smaller than
that of the situation μcost (b, Rthr)+π1 = γR0−π2. Similarly, R∗thr increases when
μcost (b, Rthr)+ π1 < γR0 − π2. Such properties are also validated in Fig. 6.8a.

The expected utilities of the MNO for differentRthr ∈
(
μmax,

(
1+ 1−β

N

)
μmax

)

are shown in Fig. 6.8b. Similar to the results shown in Fig. 6.8a, the MNO’s optimal
announced threshold R∗thr is the smallest when π1 = 100 and π2 = 50, while
when π1 = 50 and π2 = 10, the MNO needs to announce the largest R∗thr to get
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Fig. 6.7 Monotonicity of Γ1,2 (μ) versus β with different distributions of μn. (a) Γ1 (μ), Rthr ∈
(μmin, μmax). (b) Γ2 (μ), Rthr ∈

(
μmax,

(
1+ 1−β

N

)
μmax

)
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Fig. 6.8 Expected utility of the MNO versus π1, π2 and Rthr. (a) Rthr ∈ (μmin, μmax). (b) Rthr ∈(
μmax,

(
1+ 1−β

N

)
μmax

)



6.8 Simulation Results 117

the maximum expected utility. In addition, when Rthr ∈
(
μmax,

(
1+ 1−β

N

)
μmax

)
,

beam groups of the satellite have only two optional bidding strategies, i.e., R∗thr
and ∅, which will bring utilities πMNO = Rthr + π1 and πMNO = γR0 − π2,
respectively, to the MNO. Therefore, when Rthr + π1 > γR0 − π2, the optimal
threshold for the MNO should lead that the probability of all beam groups of the
satellite giving up bidding is zero, i.e., R∗thr = μmax. On the other hand, when
Rthr + π1 < γR0 − π2, the MNO prefers to announce an R∗thr which can lead

all beam groups of the satellite to bid ∅, i.e., R∗thr =
(

1+ 1−β
N

)
μmax. Moreover,

when Rthr+π1 = γR0−π2, results shown in Fig. 6.8b reflect that E (πMNO (Rthr))

is strictly unimodal for Rthr ∈
(
μmax,

(
1+ 1−β

N

)
μmax

)
, which indicates that there

exists the unique optimal announced threshold R∗thr for the MNO to achieve the
maximum expected utility.

Then we study that how the expected utility of the MNO changes for the changing
number of channels occupied by BSs of the MNO and beam groups of the satellite.
Considering that the optimal bidding strategies are the most complicated when
Rthr ∈ [μmin, μmax], we take this situation for instance. Set Rthr = 100 Mbps ∈
(μmin, μmax), μn ∼ NT

(
125, 502), and let the number of common channels N

in the H-STM traffic offloading system varies from 3 to 9, β = 0.3, and other
parameters are set as before. The maximum expected utilities of the MNO versus
N , π1 and π2 are shown in Fig. 6.9. Results in Fig. 6.9 indicate that for different
values of (π1, π2), the maximum E (πMNO (Rthr)) decreases when the number of
common channels N grows, which results from the increasing competition for the
transmission resource.

Fig. 6.9 Maximum Expected
utility of the MNO versus π1,
π2 and N .
(Rthr ∈ (μmin, μmax])



118 6 Traffic Offloading in Satellite-Terrestrial Networks

6.9 Conclusion

In this part, an SDN architecture was established for spectrum sharing and traffic
offloading in the H-STN, which can support efficient resource management to
realize high-capacity transmission and co-channel interference control. In addition,
we proposed an auction-based mechanism to facilitate the traffic offloading nego-
tiation between the MNO and satellite, in which the MNO announced its required
threshold of offloading rate, and then each beam group of the satellite submitted
the offloading bid according to the transmission rate. For different offloading rate
threshold announced by the MNO, the optimal bidding rates for beam groups with
diverse transmission rates have been derived in this work. In addition, the expected
utility of the MNO was also analyzed for given threshold and satellite’s optimal
bids. Simulation results validated the performance of the proposed traffic offloading
mechanism, including beam groups’ bidding behaviors and MNO’s expected utility,
for different system parameter settings. Moreover, simulation results also revealed
that there existed unique optimal threshold for the MNO to achieve the maximum
utility by applying the proposed second-price auction mechanism.

6.10 Proof of Lemma 6.1

Proof Let

Γ (μ) = F(μ)N−1
[(
α − 1+ 1− β

N

)
μ− Rthr

]

+
N−1∑
n=1

(
N − 1
n

)
[F (Rthr)− F (μ)]nF (μ)N−1−n (α − 1)μ− Rthr

n+ 1
,

(6.23)

where μ ∈ (μmin, Rthr) and α = 2. Considering F (μmin) = 0, then we have

Γ (Rthr) = F(Rthr)
N−1

[(
1+ 1− β

N

)
Rthr − Rthr

]

= F(Rthr)
N−1 1− β

N
Rthr,

(6.24)
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and

Γ (μmin) =F(μmin)
N−1

[(
1+ 1− β

N

)
μmin − Rthr

]

+
N−1∑
n=1

(
N − 1
n

)
[F (Rthr)− F (μmin)]

nF (μmin)
N−1−n μmin − Rthr

n+ 1

=[F (Rthr)− F (μmin)]
N−1μmin − Rthr

n+ 1
.

Since μmin < Rthr, β < 1 and F (Rthr) > F (μmin), then we conclude that

Γ (Rthr) > 0, and Γ (μmin) < 0. (6.25)

Consider that F (μ) is the CDF of continuous random variable μ for all μ ∈
(−∞,+∞). Particularly, F (μ) = 0 holds for μ ∈ (−∞, μmin] and F (μ) = 1
holds for μ ∈ [μmax,+∞). In addition, Γ (μ) is a polynomial of F (μ). Therefore,
functionΓ (μ) is continuous forμ ∈ (−∞,+∞). According to (6.25), we conclude
that there exists at least one solution μ ∈ (μmin, Rthr) holding (6.9) in Lemma 6.1.
This completes the proof.

6.11 Proof of Theorem 6.1

Proof We consider the strategy for beam group n (∀n ∈ N ). Assuming that all the
other beam groups adopt strategy b∗ (μi, Rthr), ∀i ∈ N , i 
= n formulated in (6.10).
Then we first proof that selecting strategy b∗ (μn,Rthr) in (6.10) can maximize beam
group n’s utility by four situations in following sections.

6.11.1 μn ∈ [Rthr, μmax]

Assume that beam group n’s communication quality μn ∈ [Rthr, μmax]. There exist
the following two cases:

6.11.1.1 Case 1

b−nmax ∈ [Rthr,+∞). Then the MNO can always select one beam group of the
satellite to offload its traffic. We compare bid μn with any bid larger or smaller
than μn, respectively, and show that bid μn is optimal for beam group n.
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First, we compare bidμn with any bid μ̂1 ∈ [Rthr, μn). It is easy to find that when
b−nmax ∈ (μn,+∞) or b−nmax ∈

(
Rthr, μ̂1

)
, bid μn and bid μ̂1 generate the same utility

for beam group n. So we only consider the situation in which b−nmax ∈
[
μ̂1, μn

]
.

• When b−nmax ∈
(
μ̂1, μn

)
, bidding μ̂1 generates a utility μn for beam group n.

Since μn > b−nmax in this case, bidding μn brings a utility 2μn − b−nmax = μn +
μn−b−nmax > μn. Thus, biddingμn brings a higher utility than that under bidding
μ̂1.

• When b−nmax = μn, bidding μ̂1 generates utility μn for beam group n. In this
case, beam group n’s utility under bid μn equals ε

(
2μn − b−nmax

)+ (1− ε) μn =
μn, where ε denotes the probability with which beam group n is selected as the
winning bidder (ε = 1/|M |). Hence, in this case, bidding μn and μ̂1 generate
the same expected utility for beam group n.

• When b−nmax = μ̂1, the utility under bid μn equals 2μn − μ̂1 since μ̂1 < μn.
However, bidding μ̂1 brings a utility of ε

(
2μn − μ̂1

)+ (1− ε) μn < 2μn− μ̂1,
which results from 2μn− μ̂1 > μn. Therefore, bidding μn brings a higher utility
than that under bidding μ̂1.

To conclude, considering all cases above, biddingμn brings a higher utility than that
under bidding μ̂1 < μn. Then we compare bid μn with any bid μ̂2 ∈ (μn,+∞).
Similarly, we can notice that bid μn and bid x2 generate a difference on beam group
n’s utility only when b−nmax ∈

(
μn, μ̂2

]
. Next, we analyze situation b−nmax ∈

(
μn, μ̂2

)
and b−nmax = μ̂2, separately:

• When b−nmax ∈
(
μn, μ̂2

)
, bidding μn generates a utility of μn for beam group n.

Since μn < b−nmax in this case, bidding μ̂2 brings a utility 2μn−b−nmax < μn. Thus,
bidding μn brings a higher utility than that under bidding μ̂2.

• When b−nmax = μ̂2, the utility for beam group n under bid μn equals μn. However,
bidding μ̂2 brings a utility of ε

(
2μn − μ̂2

)+ (1− ε) μn < εμn + (1− ε) μn =
μn, which results from 2μn − μ̂2 < μn. Therefore, bidding μn brings a higher
utility than that under bidding μ̂2.

Summarily, bidding μn is beam group n’s optimal bidding strategy comparing with
any value larger or smaller than μn when b−nmax ∈ [Rthr,+∞).

Particularly, we analyze the optimal strategy for beam group n with μn = μmax.
If all other beam groups select strategy b∗ (μi, Rthr) given by (6.10), one can notice
that b−kmax < μmax always holds. As a result, bidding any value from (μmax,+∞)
can bring the same utility for beam group n as bidding μmax. In other words, if
μn = μmax, bidding any value from [μmax,+∞) is the optimal bidding strategy.

6.11.1.2 Case 2

b−nmax = ∅. In this case, bidding any value from [μmax,+∞) generates the same
utility, i.e., 2μn−Rthr for beam group n according to (6.6). On the contrary, if beam
group n gives bid ∅, its utility will fall to βμn. Considering that βμn < μn ≤
2μn − Rthr (due to μn ≥ Rthr), bidding μn is one of optimal strategies for beam
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group n. In addition, if μn = μmax, bidding any value from (μmax,+∞) is also
beam group n’s optimal strategy as well as bidding μmax.

Base on the analysis of Case 1 and Case 2, one can conclude that when all the
other beam groups of the satellite submit their bids according to (6.10), the optimal
bidding strategy for beam group with μn ∈ [Rthr, μmax] is giving bid as (6.10).

6.11.2 μn ∈ (
μ̃a (Rthr) ,Rthr

)

We consider the situation when μn ∈ (μ̃a (Rthr) , Rthr). Then we compare the
utilities that can be obtained by beam group n when it submits bid as Rthr, ∅ and
any value from (Rthr,+∞), considering that all the otherN−1 beam groups choose
the optimal bidding strategies as (6.10).

6.11.2.1 Rthr vs ∅

Denote μ̃ � μ̃a (Rthr), then the utility can be obtained by beam group n when
bn = Rthr:

πn
((
bn = Rthr,b∗−n

)
, Rthr

)

=
[
1− F(Rthr)

N−1
]
μn + F(μ̃)N−1 (2μn − Rthr)

+
N−1∑
n=1

(
N − 1
n

)
(F (Rthr)− F (μ̃))n(1− F (μ̃))N−1−nh (μn),

(6.26)

where h (μn) = n
n+1μn + 1

n+1 (2μn − Rthr). Similarly, the utility can be obtained
by beam group n when bn = ∅ is given by

πn
((
bn = ∅,b∗−n

)
, Rthr

)

=
[
1− F(Rthr)

N−1
]
μn + F(μ̃)N−1

[
βμn

N
+ (N − 1)μn

N

]

+
N−1∑
n=1

(
N − 1
n

)
(F (Rthr)− F (μ̃))n(1− F (μ̃))N−1−nμn.

(6.27)
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Then we have

πn
((
bn = Rthr,b∗−n

)
, Rthr

)− πn
((
bn = ∅,b∗−n

)
, Rthr

)

= F(μ̃)N−1
[(

1+ 1− β
N

)
μn − Rthr

]

+
N−1∑
n=1

(
N − 1
n

)
(F (Rthr)− F (μ̃))n(1− F (μ̃))N−1−n μn − Rthr

n+ 1

� δ (μn) .

(6.28)

It is easy to find that δ (μn) defined in (6.28) is a strictly increasing function with
μn. In addition, let μn = μ̃, based on the definition of μ̃ = μ̃a (Rthr) in Lemma 6.1,
we have

δ (μ̃) = F(μ̃)N−1
[(

1+ 1− β
N

)
μ̃− Rthr

]

+
N−1∑
n=1

(
N − 1
n

)
(F (Rthr)− F (μ̃))n(1− F (μ̃))N−1−n μ̃− Rthr

n+ 1

= 0.

(6.29)

Therefore, for all μn ∈ (μ̃a (Rthr) , Rthr
]
,

πn
((
bn = Rthr,b∗−n

)
, Rthr

)− πn
((
bn = ∅,b∗−n

)
, Rthr

)
> 0 (6.30)

will always hold, which implies that in this case, bidding Rthr brings more utility to
beam group n than bidding ∅.

6.11.2.2 Rthr vs μ̂ ∈ [Rthr, +∞)

We notice that either when b−nmax = ∅ or b−nmax ∈
(
μ̂,+∞)

(> Rthr), beam group n
obtains the same utility, i.e., 2μn−Rthr andμn, respectively, no matter it submits bid
as bn = Rthr or bn = μ̂. Hence we only analyze the situation when b−nmax ∈

[
Rthr, μ̂

]
:

• b−nmax = Rthr: Considering that μn ∈ (μ̃a (Rthr) , Rthr), i.e, 2μn−Rthr < μn, then
beam group n’s utility when bidding Rthr and μ̂ can be given by

πn
((
bn = Rthr,b∗−n

)
, Rthr

) = ε (2μn − Rthr)+ (1− ε) μn
>ε (2μn − Rthr)+ (1− ε) (2μn − Rthr) = 2μn − Rthr,

(6.31a)

πn
((
bn = μ̂,b∗−n

)
, Rthr

) = 2μn − Rthr, (6.31b)
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respectively. In (6.31a), ε denotes the probability with which beam group n is
selected to provide the offloading service. Therefore, in this case, bidding Rthr
generates a higher utility for beam group n than bidding μ̂.

• b−nmax ∈
(
Rthr, μ̂

)
: Beam group n’s utility when bidding Rthr and μ̂ can be given

by

πn
((
bn = Rthr,b∗−n

)
, Rthr

) = μn, (6.32a)

πn
((
bn = μ̂,b∗−n

)
, Rthr

) = 2μn − b−nmax < 2μn − Rthr ≤ μn, (6.32b)

respectively, which indicates that bidding Rthr generates a higher utility for beam
group n than bidding μ̂.

• b−nmax = μ̂: In this case, bidding Rthr generates a utility of μn for beam group
n, and its utility under bid μ̂ equals ε

(
2μn − μ̂

) + (1− ε) μn < μn, where
ε denotes the probability with which beam group n is selected to provide the
offloading service. Thus, bidding Rthr generates a higher utility than that under
bid μ̂ in this case.

So in conclusion, when all the other N − 1 beam groups of the satellite adopt
their bidding strategies according to (6.10), the optimal strategy for beam group n
with μn ∈ (μ̃a (Rthr) , Rthr) is b∗ (μn,Rthr) = Rthr.

6.11.3 μn = μ̃a (Rthr)

Similar to the analysis in Sects. 6.11.1 and 6.11.2, we can notice that when μn =
μ̃a (Rthr), bidding Rthr and bidding ∅ generate the same expected utility to beam
group n. In addition, these two bids weakly dominate any bid in [Rthr,+∞).
Consequently, when other beam groups of the satellite choose bidding strategies
in (6.10), the optimal bidding strategy for beam group n with μn = μ̃a (Rthr) is also
adopting (6.10).

6.11.4 μn ∈ [
μmin, μ̃a (Rthr)

)

Now we consider the last situation where μn ∈
[
μmin, μ̃a (Rthr)). Based on the

second-price auction designed in Sect. 6.5 and similar analysis in Sect. 6.11.2,
bidding Rthr weakly dominates any bidding strategy in [Rthr,+∞). So we only
need to compare the obtained utility when bidding Rthr and ∅. According to (6.28)
and (6.29), we have

πn
((
bn = Rthr,b∗−n

)
, Rthr

)− πn
((
bn = ∅,b∗−n

)
, Rthr

)
< 0 (6.33)
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when μn < μ̃a (Rthr), which implies that bidding ∅ brings a larger utility than
bidding Rthr for beam group n with μn < μ̃a (Rthr).

Summarizing the four situations above, we can conclude that when other beam
groups of the satellite choose bidding strategies in (6.10), the optimal bidding
strategy for beam group n is also adopting (6.10). This completes the proof of
Theorem 6.1.

6.12 Proof of Theorem 6.3

Proof Notice that in Sects. 6.11.2–6.11.4, we have analyzed the case where μn ∈
[μmin, Rthr] ⊂ [μmin, μmax], and have provided a two-part structure of optimal
bidding strategy: some beam groups with μn closed to Rthr bid rate threshold Rthr,
and some bema groups with small μn bid ∅. This situation above is similar to that

considered in Theorem 6.1, i.e., μn ∈ [μmin, μmax] ⊂
[
μmin,

(
1+ 1−β

N

)
μmax

]
⊂

[μmin, Rthr], ∀ n. Therefore, the equilibrium analysis for the situation in Theo-
rem 6.3 can be considered as a similar and special situation analyzed in Sect. 6.11.2.
Let revisit (6.28):

πn
((
bn = Rthr,b∗−n

)
, Rthr

)− πn
((
bn = ∅,b∗−n

)
, Rthr

)
(6.34a)

=F(μ̃)N−1
[(

1+ 1− β
N

)
μn − Rthr

]
(6.34b)

+
N−1∑
n=1

(
N − 1
n

)
(F (Rthr)− F (μ̃))n(1− F (μ̃))N−1−n μn − Rthr

n+ 1
. (6.34c)

It is easy to find that the term shown in (6.34c) is always negative since μn <

Rthr, ∀ n. In addition, noticing that Rthr >
(

1+ 1−β
N

)
μn holds for all n ∈ N

since Rthr >
(

1+ 1−β
N

)
μmax, the term shown in (6.34b) is also always negative.

Therefore, inequality

πn
((
bn = Rthr,b∗−n

)
, Rthr

)
< πn

((
bn = ∅,b∗−n

)
, Rthr

)
(6.35)

holds for all n ∈ N when Rthr ∈
[(

1+ 1−β
N

)
μmax,+∞

)
. This implies that bid ∅

generates a higher utility than that under bid Rthr.
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Specifically, if Rthr =
(

1+ 1−β
N

)
μmax, the expected utilities for beam group n

with μn = μmax when it bids Rthr and ∅, i.e.,

πn
((
bn = Rthr,b∗−n

)
, Rthr

) = 2μn − Rthr, (6.36a)

πn
((
bn = ∅,b∗−n

)
, Rthr

) = βμn
N

+ N − 1

N
μn, (6.36b)

are equal. This completes the proof of Theorem 6.3.
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Chapter 7
Cooperative Beamforming for Secure
Satellite-Terrestrial Transmission

Abstract In this part, we consider a scenario where the satellite-terrestrial net-
work is overlaid over the legacy cellular network. The established communica-
tion system is operated in the millimeter wave (mmWave) frequencies, which
enables the massive antennas arrays to be equipped on the satellite and terrestrial
base stations (BSs). The secure communication in this coexistence system of
the satellite-terrestrial network and cellular network through the physical layer
security techniques is studied in this work. To maximize the achievable secrecy
rate of the eavesdropped fixed satellite service (FSS), we design a cooperative
secure transmission beamforming scheme, which is realized through the satellite’s
adaptive beamforming, artificial noise (AN) and BSs’ cooperative beamforming
implemented by terrestrial BSs. A non-cooperative beamforming scheme is also
designed, according to which BSs implement the maximum ratio transmission
(MRT) beamforming strategy. Applying the designed secure beamforming schemes
to the coexistence system established, we formulate the secrecy rate maximization
problems subjected to the power and transmission quality constraints. To solve the
nonconvex optimization problems, we design an approximation and iteration based
genetic algorithm, through which the original problems can be transformed into a
series of convex quadratic problems. Simulation results show the impact of multiple
antenna arrays at the mmWave on improving the secure communication. Our results
also indicate that through the cooperative and adaptive beamforming, the secrecy
rate can be greatly increased. In addition, the convergence and efficiency of the
proposed iteration based approximation algorithm are verified by the simulations.

Keywords Integrated Satellite-terrestrial Networks · Physical Layer Security ·
Millimeter Wave (mmWave) Communications · Cooperative Beamforming

7.1 Introduction

Recently, the fifth generation (5G) of mobile communications is willing to bring
an order of magnitude improvement for the network capacity, reliability, avail-
ability and security, and to satisfy the current dramatically increasing data traffic
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demands. To achieve these performance improvements, millimeter wave (mmWave)
communication becomes a potential technology for the future outdoor wireless
networks [1, 2]. Many recent studies have demonstrated that the mmWave communi-
cation is feasible and effective by using massive antenna arrays in conjunction with
the adaptive beamforming technique. Due to its physical properties, the mmWave
techniques can solve many problems brought by the high speed broadcast wireless
transmission, such as compensating the propagation loss at high frequencies.
Specifically, with much smaller wavelengths of mmWave frequencies, the mmWave
techniques can reduce the size of antenna array and enable the large arrays in a given
area, and can support the directional beams to the receivers [3].

On the other hand, satellite communication (SatCom) has become an outgrowth
of the continuing demand for higher capacity, real-time communication and wider
coverage, due to its unique ability to provide seamless connectivity and high
data rate [4]. In addition, SatCom is a more economical solution to provide a
seamless and high speed connectivity than deploying other terrestrial networks,
especially in some remote and sparsely populated locations. To support the higher
data rate requirement, SatCom using the mmWave band, especially in Ka band
(17.7–19.7GHz for the downlink, and 27.5–29.5 GHz for the uplink), has been
investigated for many years [5, 6]. However, the Ka band ranged above has been
primarily assigned to the terrestrial fixed service (FS) microwave links, according
to Decision ECC/DEC/(00)07 adopted by the European Conference of Postal and
Telecommunications Administrations (ECPT) [9]. Therefore, in order to share this
non-exclusive spectrum, it is necessary to investigate the co-channel interference,
cooperation beamforming schemes and many other issues in the coexistence system
with SatCom and incumbent terrestrial networks to improve the system performance
and efficiency of spectrum utilization, and reduce the energy consumption.

Currently, the on-going development of 5G communication brings an opportunity
for a seamless integration of SatCom with terrestrial networks. In addition, SatCom
will play a vital role in the development and full realization of 5G [7, 8]. However,
resulting from the immense and open coverage, the transmission security in SatCom
with fixed satellite service (FSS) is confronted with an increasing serious challenge,
especially for the military applications. Therefore, how to minimize the interference
between the FSS terminals and terrestrial networks, meanwhile guarantee their
transmission quality and security requirements, plays an important role to realize an
efficient and secure transmission in the satellite terrestrial networks. In this work,
we will consider the downlink communication in a coexistence system with FSS
terminals and terrestrial cellular networks sharing the same Ka band. Subjected
to the power and transmission quality constraints, we study the cooperation based
beamforming schemes among the satellite and terrestrial based stations (BSs) to
maximize the achievable secrecy rate of the wiretapped FSS terminals.

The main contributions in this part can be summarized as follows:

• We establish a coexistence system of FSS and cellular networks, in which one
satellite communicating with multiple FSS terminals and multiple terrestrial BSs
communicating with their own users are sharing the Ka band. Consider that the
satellite and BSs carry multiple antennas, and FSS terminals and BSs’ users are
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equipped with the single antenna. Then a multiple-input-single-output (MISO)
channel in mmWave frequency band is modeled. The system model and related
assumptions established are reasonable and can be applied to model the current
coexistence system of SatCom and terrestrial cellular networks.

• To prevent the eavesdropper from wiretapping the FSS terminals, we analyze
the physical layer security issues. Based on the establish security scenario,
the non-cooperation based secure transmission beamforming and cooperation
based security transmission beamforming schemes are designed to ensure the
security of SatCom. Simulation results show that the cooperative beamforming
scheme can improve the secrecy rate of the eavesdropped FSS terminal greatly
by sacrificing the BS users’ transmission quality.

• We formulate the physical layer security problem in the established MISO
mmWave system. The objective of the security problem is to maximize the
achievable secrecy rate of the eavesdropped FSS terminal, subjected to the
power and SINR threshold constraints of FSS terminals and BSs’ users. In the
coexistence system, we consider that the communication of terrestrial network
has higher priority and legacy right of protection. This precondition is in
conformity with the current regulations and rules of the satellite terrestrial
communication.

• To solve the formulated nonlinear and nonconvex optimization problems, we
introduce an approximation and iteration based solution to transform the original
problem into a series of convex quadratic problems. Our results show that the
proposed algorithm can achieve high efficiency and fast convergence to solve the
original nonconvex optimization problems.

The rest is arranged as follows. Section 7.2 retrospects the existing studies for
security problems in satellite terrestrial networks. Section 7.3 sets up the system
model. In Sect. 7.4, the secure transmission beamforming schemes are designed, and
the corresponding secrecy rate maximization problems are formulated. The iteration
based solution for the optimization problems is proposed in Sect. 7.5. Simulations
are shown in Sect. 7.6, and conclusions are drawn in Sect. 7.7.

Notations: In this part, (·)H and (·)T demote conjugate transpose and transpose,
respectively. ‖x‖2 denotes the Euclidean norm of vector x. E {·} denotes the
expectation,� {·} defines the real operator, and ∇ defines the first order differential
operator. Define 〈x, y〉 � xHy.

7.2 Related Works

7.2.1 Satellite Terrestrial Networks

Recently, many research efforts have been devoted to the analysis and improvement
of the system performance in satellite terrestrial networks by spectrum sharing [10–
12]. In [13], authors considered terrestrial users as the primary users, and studied
the optimal power control schemes for real-time applications in cognitive satellite
terrestrial networks. Without degrading the communication quality of the primary
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terrestrial users, the delay-limited capacity and outage capacity can be maximized
through the designed power control schemes. Considering the multiple co-channel
interferes at both the terrestrial relay and destination, a multiple-antenna hybrid
satellite terrestrial relay network was analyzed in [14]. In [15], a multimedia mul-
ticast beamforming scheme was investigated for the integrated terrestrial satellite
networks, in which the maximum ratio transmission (MRT) based beamforming
scheme and the zero-forcing beamforming (ZFBF) scheme were applied by BSs
and the satellite, respectively.

However, the transmission security issues are hardly investigated in current
studies for satellite terrestrial networks. In [16], although an optimized power
allocation strategy was designed to support the secure transmission only for the
SatCom scenario, the terrestrial networks were not considered in the system. A
secure beamforming scheme was proposed in [17] for a satellite terrestrial network,
in which the terrestrial user’s capacity was maximized subjected to the power
and Signal-to-Interference Plus Noise Ratio (SINR) constraints. Nevertheless, the
framework established in [17] has a limited ability to model the current complex
and large-scale networks due to its simplified system structure, in which the satellite
communicated with only one FSS terminal and there was one terrestrial BS with an
associated user. In this work, we will establish a coexistence system of SatCom
and terrestrial networks using the mmWave channels, in which the satellite and
terrestrial BSs carry multiple antennas. Moreover, the multiple FSS terminals
associated to the satellite and mobile users associated to the BSs are equipped with
single antenna and are distributed among the terrestrial part of the system.

7.2.2 Physical Layer Security

Using an information theoretic point, physical layer security aims to enable the
legitimate destinations to successfully receive the source information and prevent
eavesdropping without upper layer data encryption [18, 19]. In the theoretical
framework of physical layer security, “secrecy capacity” is defined as the maximum
reliable rate of information transmitted from the source to the intended destination,
while eavesdroppers are kept as ignorant of this information as possible. As first
pioneered in [20], physical layer security has been generalized to the wireless
fading channel and communication networks with multiple nodes [21]. In order to
maximize the secrecy rate of destinations, cooperative jamming has been studied to
increase the SINR at the intended destinations and decrease that at eavesdroppers,
through power control, adaptive beamforming and other techniques. In [22], authors
studied the secrecy transmission with the assistance of multiple wireless energy
harvesting-enabled amplify-and-forward relays, who perform cooperative jamming
to ensure the secure transmission of the wireless sensing network. Physical layer
security theory was applied in [19, 23] to investigated the effect of outdated CSI on
the secrecy performance of MIMO wiretap channels with multiple eavesdroppers
in non-identical Nakagami-m fading and Rayleigh fading, respectively. A physical
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layer security game framework was established in [24], in which the source
was modeled as a buyer who want to optimize its secrecy capacity minus cost,
meanwhile friendly jammers modified their jamming power to maximize their own
utility. The study in [24] demonstrated the effectiveness of cooperative jamming on
improving the secrecy capacity.

On the other hand, the artificial noise (AN) aided transmission strategy is
another efficient method to improve the secrecy rate. In [25], authors introduced
AN into multi-antenna wiretap channels, and demonstrated that jointly optimizing
the precoder matrix and the portion of power allocated to AN can outperform the
solutions which rely on optimizing the precoder only. The secure transmission in
a cognitive satellite-terrestrial network with a multi-antennas eavesdropper was
investigated in [26], whose objective was to minimize the transmit power by jointly
optimizing the cooperative beamforming and AN. The power allocation problem
was studied in [27] for AN secure precoding system in MISOSE (MISO, single-
eavesdropper), MISOME (MISO, multiple-eavesdropper) and MIMOME (MIMO,
multiple-eavesdropper) channels, and the secrecy rate was analyzed and its lower
bounds were derived. In this work, we will consider the terrestrial BSs as friendly
jammers who operate cooperative beamforming to improve the secrecy rate of FSS
terminals. In addition, AN will be introduced into the system to further confuse
the eavesdropper, who is located on the ground and wiretapping the information
transmitted from the satellite to the FSS terminals.

However, it is not easy to implement an optimal beamforming design due to
complicated and nonconvex optimization problems formulated. In [28], an extra
penalty function optimization approach was introduced to solve the convex semidef-
inite programs (SDPs) together with rank-one constraints on the outer products. A
Gaussian randomization method to construct the rank-one solutions from the non-
rank one results was utilized in [29] when finding the optimal beamforming. In [30],
authors proposed a suboptimal algorithm based on the Lagrange duality method
to reduce the computational complexity. The optimized beamforming in [30] can
enhance the physical layer security for information receivers and yet satisfy energy
harvesting requirements for energy receivers. In this work, we will design a path-
pursuit and iteration based approach to improve the efficiency and convergence rate
when searching the optimal beamforming.

7.3 System Model

In a coexistence system of FSS and cellular networks in the mmWave bands, we
consider a security scenario as shown in Fig. 7.1. In particular, in this system, the
satellite, communicating with N FSS terminals distributed within its coverage, is
equipped with Ns > N antennas to illustrate beams through beamforming coher-
ently. Considering an interference mmWave scenario, there are M multi-antenna
BSs and their associated users within the coverage of the satellite. Assume that
there are Np ≥ M antennas at each BS, and BSs’ users are equipped with single-
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Fig. 7.1 The coexistence system of SatCom and terrestrial cellular networks

antenna. One eavesdropper, located inside the satellite coverage, intends to wiretap
the confidential message transmitted to one FSS terminal, named eavesdropped
FSS terminal [31, 32]. Assume that both legitimate FSSs and the eavesdropper are
equipped with a single antenna. Therefore, the communications from the sources,
i.e., the satellite and terrestrial BSs, to the destinations, which refer to FSS terminals,
BSs’ users and the eavesdropper, can be considered as the MISO wiretap channels.
In addition, we assume the system is time-slotted and quasi-static. Specifically, in
each time slot, the system status remains constant.

In this work, we consider that the satellite downlinks and terrestrial BS down-
links are both operating in the Ka band (17.7–19.7GHz). According to Decision
ECC/DEC/(00)07 adopted by the ECPT [9], the terrestrial BS links are incumbent
links in the 17.7–19.7 GHz band, which means that BSs have the higher priority and
legacy right to use this specific part of the spectrum. In other words, FSS terminals
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Table 7.1 List of Main
Notations in
Satellite-terrestrial
Communications with
Cellular Networks

Parameter Definition

N Number of FSSs

M Number of BSs

Ns Number of antennas equipped on Sat

Np Number of antennas equipped on every BS

Ps Total transmit power of Sat

Pp Total transmit power of every BS

hn Channel vector between Sat and FSSn
he Channel vector between Sat and EVE

gm Channel vector between BSm and PUm
gj,m Channel vector between BSj and PUm
gm,e Channel vector between BSm and EVE

fm Channel vector between Sat and PUm
fm,n Channel vector between BSm and FSSn
wn / w Beamforming vector of Sat for FSSn / FSSs

um / u Beamforming vector of BSm / BSs

v Artificial noise signal generated by Sat

sn Transmitted data symbols from Sat to FSSn
sms Transmitted data symbols from BSm and PUm
γn SINR threshold of FSSn
γms SINR threshold of PUm

can be deployed without the right of protection, and their interference bringing to
BSs and BS users needs to be limited [5]. Therefore, we define the transmission
from BSs to their users as the primary link, while the satellite downlink to its
FSS terminals as the secondary links in our work. Before proceeding further, we
summarize the main notations used throughout the following sections in Table 7.1
for convenience.

7.3.1 Channel Model

The channel characteristics of satellite networks and terrestrial networks have been
investigated and modeled in many current studies [33, 34]. The mmWave channels
are expected to have limited scattering [35]. In addition, for the transmission from
the satellite to FSS terminals, the line-of-sight (LOS) signal is much stronger than
the others. Therefore, we consider a link with small number of paths to model the
mmWave channel between the satellite and FSS terminals. Specifically, the channel
vector hn ∈ CNs×1 of FSS terminal n (n ∈ N � {1, 2, · · · , N}) is given by Zhou
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et al. [36]:

hn =
√
Ns

L

L∑
l=1

δn,lα
(
θn,l

)
, ∀n ∈ N , (7.1)

where L is the number of scatters, δn,l and θn,l are the complex gain and normalized
direction of the LOS path for FSS n, respectively. In addition, δ2

n,l ∼ CN
(
0, σ 2

0

)
is

independent identically distributed (i.i.d.) complex Gaussian distribution with zero-
mean, and covariance σ 2

0 = 1, which indicates Rician factor, and θn,l ∼ U [−1, 1]
is i.i.d. uniformly distributed. Moreover, when a uniform linear array (ULA) is
adopted, the normalized array response α (θ) is given by

α (θ) = 1√
Ns

[
1, e−j

2π
λ
d sin(ϕ), · · · , e−j 2π

λ
(Ns−1)d sin(ϕ)

]T
. (7.2)

Here, normalized direction θn is related to the physical azimuth angle of departure
(AoD) of ϕ ∈ [−π/2, π/2] as θ = (2d/λ) sin (ϕ), where d is the antenna
spacing (i.e., the distance between the two adjacent antennas), and λ is the carrier
wavelength. In this work, we assume the critically sampled environment, i.e, d/λ =
0.5, considering that the normalized AoD is the sine function of the actual AoD.

For the terrestrial cellular network, we adopt a multi-path channel with Lm
scatters to model the links between BSs and their users and interference links
between BSs and FSS terminals [3, 6]. In this work, we assume that there is one
associated user for each BS. Then the channel vector gm ∈ CNp×1 (m ∈ M �
{1, 2, · · · ,M}) from BS m to its user can be given by

gm =
√
Np

Lm

Lm∑
l=1

δm,lα
(
θm,l

)
, ∀m ∈M , (7.3)

where δm,l ∼ CN (0, 1) and θm,l ∼ U [−1, 1] are the path gain and AoD of the
lth path of the channel vector gm, respectively.Lm is the number of multi-path from
BS m to its user. Similar to (7.2), we have

α
(
θm,l

) = 1√
Np

[
1, e−j

2π
λ
d sin(ϕm,l ), · · · , e−j 2π

λ (Np−1)d sin(ϕm,l )
]T

(7.4)

where normalized direction θm,l are related to the physical AoD ϕ ∈ [−π/2, π/2]
as θ = (2d/λ) sin (ϕ).
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7.3.2 Received Signal Model

Let sn be the transmitted data symbols to the nth FSS terminal denoted by FSSn,
and sms be the transmitted data symbols from the mth BS, BSm, to its user PUm.
The amplitude of the signal is normalized to one, i.e., E

{|sn|2
} = E

{|sms |2
} = 1,

∀n ∈ N , m ∈ M . The transmit signals from the satellite and BSm are mapped
onto the antenna array elements by the beamforming vectors wn ∈ CNs×1, ∀n and
um ∈ CNp×1, ∀m, respectively. To confuse the eavesdropper, the satellite adds an
AN signal, which is denoted by v ∈ CNs×1 [37, 38]. In this work, we consider
that the interference AN v and all beamforming vectors wn are controlled by the
satellite-terrestrial system. In other words, for each FSS terminal, the beamforming
vectors for the other FSS terminals and AN are known. Consequently, AN signal
v is treated as interference at the eavesdropper, however v will not decrease the
quality of legitimate communications in the system. Therefore, the interference of v
is relatively weak for the legitimate FSS terminals of the SatCom system. Without
loss of generality, assume that ‖wn‖2 = Pn, ‖um‖2 = Pms , ∀n, m, and ‖v‖2 = Pv .
The total transmit power of the satellite is Ps . Assume that the total transmit power
of every BS is the same, i.e., Pp. Then

∑N
n=1 ‖wn‖2+‖v‖2 ≤ Ps and ‖um‖2 ≤ Pp,

∀m.
Thus, after beamforming, the transmitted signal from the satellite is

x =
N∑
n=1

wnsn + v, (7.5)

and for each FSSn, the received signal is

xn = wnsn + v, ∀n ∈ N , (7.6)

and the signal received by FSSn can be expressed

yn =hHn wnsn + ρint
N∑

i=1,i 
=n
hHn wisi + ρinthHn v

+ ρext
M∑
m=1

fHm,numsms + nn, ∀n ∈ N ,

(7.7)

where fm,n ∈ CNp×1 is the channel vector between the mth BS and nth FSS. 0 ≤
ρint < ρext ≤ 1 are the interference coefficients of the inter-system and extra-
system interference, respectively. In addition, ρint is with a very small value due
to that each FSS terminal knows the beamforming vectors of other FSS terminals
and AN, as assumed above. nn ∼ CN

(
0, σ 2

s

)
is the i.i.d. noise with a zero-mean

complex circular Gaussian distribution with variance σ 2
s .
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The signal received by PUm can be given by

yms =gHmumsms + ρext
N∑
n=1

fHmwnsn + ρext fHmv

+ ρint
M∑

j=1,j 
=m
gHj,muj sjs + nms, ∀m ∈M ,

(7.8)

where fm ∈ CNs×1 is the channel vector between the satellite and PUm, gj,m ∈
CNp×1 is the channel vector between BSj (j ∈ M \m) and PUm, and nms ∼
CN

(
0, σ 2

p

)
is the i.i.d. noise with a zero-mean complex circular Gaussian

distribution with variance σ 2
p .

Without loss of generality, we assume that the eavesdropper is wiretapping
FSSN , which is similar to the model in [31]. Therefore, the received signal at the
eavesdropper is given by

ye =hHe wNsN + ρe
N−1∑
i=1

hHe wisi + ρehHe v

+ ρe
M∑
m=1

gHm,eumsms + ne,
(7.9)

where he ∈ CNs×1 and gm,e ∈ CNp×1 are the channel vectors between the
satellite and the eavesdropper and between BSm and the eavesdropper, respectively.
0 ≤ ρe ≤ 1 is the interference coefficient, and ne ∼ CN

(
0, σ 2

e

)
is the i.i.d.

noise at the eavesdropper. Comparing the expressions in (7.7) and (7.9), we can
notice that the received signal at eavesdropped FSSN and the eavesdropper have
the similar composition. However, for the eavesdropper, AN signal v and wi (i =
1, 2, . . . , N − 1) can hardly known precisely. Therefore, the interference caused by
AN and other transmitted signals can bring more serious reduction of the SINR for
the eavesdropper.

7.3.3 Signal-to-Interference Plus Noise Ratio

Given the received signal formulated in (7.7), (7.8) and (7.9), the SINR of each FSS
terminal, BS’s user and the eavesdropper can be derived as

Γn = wHn Rnwn
ρint Iint,n + ρext Iext,n + ρint IAN,n + σ 2

s

, ∀n, (7.10a)
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Γms = uHmGmum
ρext Iext,ms + ρint Iint,ms + ρext IAN,ms + σ 2

p

,∀m, (7.10b)

ΓeN = wHNRewN
ρeIs,e + ρeIp,e + ρeIAN,e + σ 2

e

, (7.10c)

Respectively. In (7.10a), Iint,n = ∑N
i=1,i 
=n wHi Rnwi , Iext,n =

∑M
m=1 u

H
mFm,num

and IAN,n = vHRnv, where Rn � hnhHn and Fm,n � fm,nfHm,n. In (7.10b),

Iext,ms =∑N
n=1 w

H
n Fmwn, Iint,ms =∑M

j=1,j 
=m uHj Gj,muj and IAN,ms = vHFmv,

where Gm � gmgHm , Gj,m � gj,mgHj,m and Fm � fmfHm . In (7.10c), Is,e =∑N−1
n=1 wHn Rewn, Ip,e =

∑M
m=1 u

H
mGm,eum and IAN,e = vHRev, where Re �

hehHe and Gm,e � gm,egHm,e.

7.3.4 Achievable Secrecy Rate

There have been several works that analyzed the MISO and MIMO wiretap
channels. For the case of one eavesdropper, an achievable secrecy rate for the
eavesdropped FSSN (the N th FSS) can be given by Lei et al. [16], Dong et al.
[18]:

CsN = max {CN − CeN , 0} , (7.11)

where

CN = log (1+ ΓN) , CeN = log (1+ ΓeN) (7.12)

are the achievable rate of the link between the satellite and the eavesdroppedFSSN ,
and the achievable rate of the link between the satellite and the eavesdropper,
respectively.

7.4 Secure Transmission Beamforming Schemes for Satellite
Terrestrial Networks

In this section, we will design the secure transmission beamforming schemes by
introducing AN. In addition, considering the terrestrial BSs distributed within
the satellite coverage are performing as friendly jammers, we will also design
a cooperative beamforming scheme to further increase the secrecy rate of the
eavesdropped FSS terminal. Then we formulate the secrecy rate maximization
problems for the designed beamforming schemes in this section.
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7.4.1 Non-Cooperative Beamforming for Secure Transmission

Let us first discuss the beamforming and AN optimization for the satellite trans-
mission without the cooperative jamming from the terrestrial cellular networks. As
assumed previously, we consider that FSSN is wiretapped by the eavesdropper.
The optimization goal is to maximize the achievable secrecy rate of FSSN by
modifying the beamforming vectors and AN vector. Meanwhile, the required quality
of service (QoS) of the system, i.e., the SINR requirements from both BSs’
users and other legitimate FSS terminals, needs to be guaranteed. In addition, the
beamforming scheme must meet the power constraint of the satellite. Thus, for the
non-cooperative secure transmission beamforming (NCoSTB) scheme, the secrecy
rate optimization problem can be formulated as

max
wn,∀n,v

CsN (w, v) = CN (w, v)− CeN (w, v) , (7.13a)

s .t .
N∑
n=1

‖wn‖2 + ‖v‖2 ≤ Ps, (7.13b)

Γn (w, v) ≥ γn,∀n ∈ N , (7.13c)

Γms (w, v) ≥ γms,∀m ∈M , (7.13d)

where w = {wn}n∈N and v are the optimization variables, γn and γms are the
SINR threshold required by FSSn and PUm, respectively. The maximum ratio
transmission (MRT) is a classic beamforming scheme applied in many current
studies due to its low complexity and good performance [23, 39–41]. In this
work, we consider that the BSs implement beamforming according to MRT for the
NCoSTB scheme, i.e., for each BS,

ũm =
√
Pp

gm
‖gm‖2

, m ∈M . (7.14)

7.4.2 Cooperative Secure Beamforming for Secure
Transmission

In the NCoSTB scheme, BSs implement fixed beaming determined by the channel
states. In the coexistence system of the SatCom and terrestrial network when they
are sharing the mmWave band, the BSs’ transmitted signals after the beamforming
can bring the noise and confuse the eavesdropper, which decreases the achievable
rate at the eavesdropper according to (7.9). On the other hand, these signals from the
terrestrial network can also influence the received rate at FSS terminals. Therefore,
how to minimize the BSs’ interference to the FSS terminals as well as to confuse
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the eavesdropper at the same time, has a significant effect on improving the security
and capacity of the SatCom system.

In recent works that study the physical layer security, the cooperative jamming
has been employed to reduce the eavesdropper’s ability to decode the target
receiver’s information [42, 43]. Assume that the channel state information can
be shared among the satellite terrestrial system. When the BSs transmit to their
users, they implement their beamforming according to the channel state information
not only of their own but also of the SatCom system. Specifically, BSs can
perform as friendly jammers to minimize their interference to FSS terminals,
meanwhile, improve the transmission security. Next, we will formulate the secrecy
rate optimization problem for this cooperative secure transmission beamforming
(CoSTB) scheme above.

Let u = {um}m∈M . The optimization problem aims to maximize the secrecy rate
of the eavesdropped FSS terminal by jointly adjusting the beamforming of satellite
and BSs, subjected to the power and SINR constraints of both the satellite and BSs.
Thus, we formulate the optimization problem for the CoSTB scheme as

max
wn,∀n,v
um,∀m

CsN (w, v,u) = CN (w, v,u)− CeN (w, v,u) , (7.15a)

s .t .
N∑
n=1

‖wn‖2 + ‖v‖2 ≤ Ps, (7.15b)

‖um‖2 ≤ Pp,∀m ∈M , (7.15c)

Γn (w, v,u) ≥ γn,∀n ∈ N , (7.15d)

Γms (w, v,u) ≥ γms,∀m ∈M . (7.15e)

So far, we have formulated the secrecy rate optimization problems for the
NCoSTB and CoSTB schemes. We can notice that in (7.13) and (7.15), the objective
fuctions (7.13a) and (7.15a) are not concave. For constraints, (7.13b), (7.15b),
and (7.15c) are convex. However, constraints (7.13c), (7.13d), (7.15d) and (7.15e)
are not convex in their current forms. In the next section, we will focus on
pursuing the solutions of such nonconvex optimization problems approximately but
effectively and efficiently.

7.5 Solutions of the Optimization Problems

Currently, many works studying the beamforming design focus on solving such
complicated and nonconvex optimization problems formulated in the previous
section [44]. For instance, the tractable semidefinite technique is introduced to
transform the nonconvex problems into a tractable SDP [45, 46]. However, when
the total dimension of the optimization variables increase explosively in the
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scenarios where massive antennas are deployed for mmWave communications,
the SDP approach will become computationally expensive. Concerning this issue,
we will design a path-pursuit iteration based algorithm to solve the secrecy
rate maximization problems (7.13) and (7.15) with high efficiency. Through the
proposed algorithm, (7.13) and (7.15) will be decomposed into a series of iterative
optimization problems, and each iteration can be formulated as a convex quadratic
program in (w, v) and (w, v,u), respectively. In this section, we will first provide
a feasible solution to solve the optimization problems in the previous sections.
To improve the efficiency and convergence rate of the introduced optimization
algorithm, we will design a path-pursuit and iteration based approach later. Then
we will prove the feasibility of the designed optimization.

7.5.1 Feasible Solution of the Optimization Problems

First, we introduce a classic optimization algorithm to solve the formulated opti-
mization problems in the previous section. As discussed in the previous section,
the objective functions of secrecy rate maximization problems (7.13) and (7.15)
are nonconvex. To find out the approximate solutions, we introduce an efficient
and effective stochastic and cooperation based optimization technique, called
the cooperative particle swarm optimization (CPSO) algorithm [47]. CPSO was
proposed based on the traditional particle swarm optimization (PSO). In PSO, the
term of swarm indicates multiple particles, and there is only one swarm with many
particles. Each of these particles refers to a possible solution of the optimization
problem. PSO is operated with a series of iterations. In each iteration, every particle
finds its own best solution and then accelerates in the direction of this position, as
well as in the direction of the global best position having been found at present.
However, the performance of PSO often deteriorates rapidly as the dimensionality
of the problem increases. CPSO can be considered as an improvement of PSO,
by expanding the single swarm, aiming to find the optimal S-dimensional vector,
into S swarms. Each of these swarms has many particles. Through the cooperative
optimization of the one-dimensional vector operated by each of the S swarms, CPSO
can achieve a faster convergence to find the optimal solution than PSO.

In addition, CPSO is an effective and efficient approach to deal with a large
range of optimization problems, such as nonconvex, nonsmooth and nonlinear high-
dimensional optimization problems [48–50]. We summarize the main operation of
CPSO proposed in [47] as Algorithm 1.

7.5.2 Path-Pursuit Iteration Based Approach

However, sometimes the CPSO algorithm may converge to a local optimal solution
when applying it directly to deal with the optimization problems, which depends
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Algorithm 1 CPSO Algorithm [47]
Initialization:
1: Create and initialize S one-dimensional PSOs: Pj , j = 1, 2, · · · , S;
2: Define:
3: g (j, z) ≡ (

P1 · ŵ, P2 · ŵ, · · · , Pj−1 · ŵ, z, Pj+1 · ŵ, · · · , PS · ŵ
)
;

4: Iterations T .
5: for t ≤ T do
6: for each swarm j = 1, 2, · · · , S do
7: for each particle i = 1, 2, · · · , I do
8: if CsN

(
g
(
j, Pj · xi

))
< CsN

(
g
(
j, Pj · wi

))
then

9: Pj · wi = Pj · xi
10: end if
11: if CsN

(
g
(
j, Pj · wi

))
< CsN

(
g
(
j, Pj · ŵ

))
then

12: Pj · ŵ = Pj · wi
13: end if
14: end for
15: Update Pj by PSO with:

uij (t + 1) = wuij (t)+ c1ζ1i (t)
[
wij (t)− xij (t)

]+ c2ζ2i (t)
[
ŵj (t)− xij (t)

]
,(7.16)

xi (t + 1) = xi (t)+ ui (t + 1) , (7.17)

16: where j = 1, 2, · · · , S, S: swarm size;
17: i = 1, 2, · · · , I , I : number of particles;
18: xi = [xi1 xi2 · · ·xiS ]: current position in search space;
19: ui = [ui1 ui2 · · · uiS ]: current velocity;
20: wi = [wi1 wi2 · · · wiS]: local best position;
21: c1, c2: acceleration coefficients;
22: ζ1, ζ2i ∼ U (0, 1): random sequences.
23: end for
24: end for

on the initial feasible values selection. Especially when the objective function and
constraints of the optimization problem are nonconvex, the genetic algorithms tend
to converge much slower, and are much easier to converge to a local optimal
solution. In response, we will design an iteration based CPSO (ICPSO) to improve
the convergence speed and the reliability of the CPSO algorithm in this section.

7.5.2.1 Approximation of Optimization Problems

To solve the original optimization problems formulated in (7.13) and (7.15) with
efficiency, we decompose them into a series of iterative optimization problems. In
each iteration, the optimization problem will be approximatively formulated into a
simple convex quadratic program in (w, v) or (w, v,u). In addition, the solution of
the current iterative optimization problem will be set as the initial values of the next
iteration. Through the approximation and path-pursuit iteration process above, the
optimal point will be evolved and optimized over the iterations.
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The approximate and convex transformation mentioned above is the key oper-
ation to achieve a feasible and approximate optimal solution after a series of
iterations. We can notice that although the objective functions shown in (7.13a)
and (7.15a) are nonconvex, the components of them, i.e., CN and CeN , can be
transformed into the convex and concave functions, respectively. The proof of
the convexity of CN and concavity of CeN can be found in Sects. 7.8 and 7.9,
respectively. Additionally, we consider that the Taylor expansion can represent
any differentiable nonlinear function as a polynomial with infinite terms, and the
coefficient of each term is calculated from the value of this function’s relevant order
derivative at a given point. If the function is convex (concave), which means that its
second derivative is positive (negative), then we can find the lower (upper) bound
at a given point when only considering the terms of constant and the first derivative
of the Taylor expansion. Furthermore, when the iterative algorithm is implemented,
the given point for the Taylor expansion in every iteration can be set as the optimal
solution obtained in the last iteration.

According to the analysis above, we can establish the approximate optimization
problems of (7.13) and (7.15) for every iteration. Denote the approximate objective
functions in the tth iteration of the NCoSTB and CoSTB as C(t)sN (w, v) and

C
(t)
sN (w, v,u), respectively, which can be given by

C
(t)
sN (w, v) = C(t)N (w, v)− C(t)eN (w, v) , (7.18a)

C
(t)
sN (w, v,u) = C(t)N (w, v,u)− C(t)eN (w, v,u) , (7.18b)

where C(t)N (w, v) and C(t)N (w, v,u) are the lower bounds of CN in the t th iteration,

which will be provided in Theorem 7.1, and C(t)eN (w, v) and C(t)eN (w, v,u) are the
upper bounds of CeN in the tth iteration, which will be provided in Theorem 7.2.

Theorem 7.1 Let
(
w(t), v(t)

)
and

(
w(t), v(t),u(t)

)
be the feasible solutions of (7.13)

and (7.15), respectively, and be the datums in the tth iterative problems. Denote

ψN (w, v) = ρint
N−1∑
i=1

wHi RNwi + ρintvHRNv+ ρext
M∑
m=1

ũHmFm,N ũm + σ 2
s ,

(7.19a)

ψN (w, v,u) = ρint
N−1∑
i=1

wHi RNwi + ρintvHRNv+ ρext
M∑
m=1

uHmFm,Num + σ 2
s ,

(7.19b)
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where ũm in (7.19a) is obtained by the MRT strategy according to (7.14). For the
NCoSTB scheme, the approximate lower bound of CN (w, v) can be given by

CN (w, v) ≥ C(t)N (w, v)

� CN
(
w(t), v(t)

)
+ 2

ln 2

�
{(

w(t)N
)H

RNwN

}

ψN
(
w(t), v(t)

)

− 1

ln 2

(
w(t)N

)H
RNw

(t)
N

(
ψN (w, v)+ wHNRNwN

)

ψN
(
w(t), v(t)

) [
ψN

(
w(t), v(t)

)+
(
w(t)N

)H
RNw

(t)
N

]

− 1

ln 2

(
w(t)N

)H
RNw

(t)
N

ψN
(
w(t), v(t)

) .

(7.20)

Similarly, for the CoSTB scheme, the approximate lower bound ofCN
(
ws, v,wp

)
is given by

CN (w, v,u) ≥ C(t)N (w, v,u)

� CN
(
w(t), v(t),u(t)

)
+ 2

ln 2

�
{(

w(t)N
)H

RNwN

}

ψN
(
w(t), v(t),u(t)

)

− 1

ln 2

(
w(t)N

)H
RNw

(t)
N

(
ψN (w, v,u)+ wHNRNwN

)

ψN
(
w(t), v(t),u(t)

) [
ψN

(
w(t), v(t),u(t)

)+
(
w(t)N

)H
RNw

(t)
N

]

− 1

ln 2

(
w(t)N

)H
RNw

(t)
N

ψN
(
w(t), v(t),u(t)

) .

(7.21)

Proof See Sect. 7.8.

Remark As defined in (7.20) and (7.21), C(t)N (w, v) and C(t)N (w, v,u) are concave
functions of (w, v) and (w, v,u), respectively.
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Theorem 7.2 Let

ψe (w, v) = ρe
N−1∑
n=1

wHn Rewn + ρevHRev+ ρe
M∑
m=1

ũHmGm,eũm + σ 2
e , (7.22a)

ψe (w, v,u) = ρe
N−1∑
n=1

wHn Rewn + ρevHRev+ ρe
M∑
m=1

uHmGm,eum + σ 2
e .

(7.22b)

Then for the NCoSTB scheme, the approximate upper bound of CeN (w, v) can be
given by

CeN (w, v) ≤ C(t)eN (w, v)

� CeN
(
w(t), v(t)

)
− 1

ln 2

+ 1

ln 2

ψe
(
w(t), v(t)

)

ψe
(
w(t), v(t)

)+
(
w(t)N

)H
Rew

(t)
N

(
wHNRewN

ψ
(t)
e (w, v)

+ 1

)
,

(7.23)

where

ψ(t)e (w, v) =ρe
N−1∑
n=1

�
{〈
hHe w

(t)
n , 2h

H
e wn − hHe w

(t)
n

〉}

+ ρe�
{〈
hHe v

(t), 2hHe v− hHe v
(t)
〉}

+ ρe
M∑
m=1

ũHmG
H
m,eũm + σ 2

e .

(7.24)

Similarly, for CoSTB, the approximate upper bound of CeN (w, v,u) is given by

CeN (w, v,u) ≤ C(t)eN (w, v,u)

�CeN
(
w(t), v(t),u(t)

)
− 1

ln 2

+ 1

ln 2

ψe
(
w(t), v(t),u(t)

)

ψe
(
w(t), v(t),u(t)

)+
(
w(t)N

)H
Rew

(t)
N

[
wHNRewN

ψ
(t)
e (w, v,u)

+ 1

]
,

(7.25)
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where

ψ(t)e (w, v,u) =ρe
N−1∑
n=1

�
{〈
hHe w

(t)
n , 2h

H
e wn − hHe w

(t)
n

〉}

+ ρe�
{〈
hHe v

(t), 2hHe v− hHe v
(t)
〉}

+ ρe
M∑
m=1

ũHmG
H
m,eũm + σ 2

e .

(7.26)

Proof See Sect. 7.9.

Remark As defined in (7.23) and (7.25), C(t)eN (w, v) and C(t)eN (w, v,u) are convex
functions of (w, v) and (w, v,u), on domains

ψ(t)e (w, v) ≥ 0, (7.27a)

ψ(t)e (w, v,u) ≥ 0, (7.27b)

respectively.
According to Theorems 7.1 and 7.2, the secrecy rate maximization problems

formulated in (7.13) and (7.15) can be transformed into a series of convex quadratic
problems, which can be solved and processed with low computational complexity
and high efficiency. In order to avoid repeated and similar analysis, in the following
parts of this section, we will take the CoSTB scheme as the example to introduce the
operation of the path-pursuit iteration approach to find out the approximate solutions
of problem (7.15).

Using (7.21) and (7.25), The tth iteration of optimization problem (7.15) can be
approximated as an inner convex program as

max
wn,∀n,v
um,∀m

C
(t)
sN (w, v,u) , (7.28a)

s .t . (7.15b), (7.15c), (7.15d), (7.15e) and (7.27b), (7.28b)

where C(t)sN (w, v,u) is obtained by applying (7.21) and (7.25).

7.5.2.2 Path-Pursuit Iteration Based Algorithm Design

Based on the approximate optimization problem established above, we design a
path-pursuit based approach to maximize the secrecy rate of the eavesdropped FSS
terminal, as summarized in Algorithm 2. In this part, we still only provide the
algorithm for the CoSTB scheme as the example.

To achieve Step 7 in the repeated part of Algorithm 2, apply the CPSO
algorithm introduced in Sect. 7.5.1 to obtain the current optimal solution for each
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Algorithm 2 Path-pursuit iteration based algorithm (ICPSO)
Initialization:
1: Iterative index: t = 1;
2: Maximun iterative number: Niter;
3: Caculate initial feasible point

(
w(1), v(1),u(1)

)
: Caculate w̃ and ũ according to MRT, initialize

ṽ = 0, and then adjust
(
w̃, ṽ, ũ

)
to meet constraint (7.28b).

4:
5: for t ≤ Niter do
6: Solve optimization problem in (7.28),
7: obtain the optimal solution (w∗, v∗,u∗),
8: t = t + 1,
9: w(t) = w∗, v(t) = v∗, u(t) = u∗.

10: end for
Output:
11: Optimal solution: (w∗, v∗,u∗).

iterative optimization problem. After Niter times of iterations, the obtained Niterth
(w∗, v∗,u∗) will be considered as the optimal solution of the original optimization
problem in (7.15). Similarly, the iteration based NCoSTB (INCoSTB) can be
achieved.

7.5.3 Feasibility of Path-Pursuit Iteration Based Solution

So far, we have provided the path-pursuit iteration based solution to solve the origi-
nal nonconvex problems by transforming them into a series of convex optimization
problems approximately. Next, we will analyze the effectiveness and feasibility
of the proposed algorithm, and proof that in the t th iteration, the new optimal
point

(
w(t+1), v(t+1)

)
/
(
w(t+1), v(t+1),u(t+1)

)
is a better point than

(
w(t), v(t)

)
/(

w(t), v(t),u(t)
)

to get a larger CsN , and that

limt→∞CsN
(
w(t), v(t)

)
/ limt→∞CsN

(
w(t), v(t),u(t)

)

is a Karush-Kuhn-Tucker point of the optimization problem.
We still take the CoSTB scheme as the example to analyze the feasibility of the

iteration base approach for the optimization problems. According to the previous
definitions in (7.21) and (7.25), for the tth iterative optimization problem, we have

CsN (w, v,u) ≥ C(t)sN (w, v,u) , (7.29a)

CsN

(
w(t), v(t),u(t)

)
= C(t)sN

(
w(t), v(t),u(t)

)
, (7.29b)

CsN

(
w(t+1), v(t+1),u(t+1)

)
≥ C(t)sN

(
w(t+1), v(t+1),u(t+1)

)
, (7.29c)
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∀ w, v,u. Moreover, consider that both
(
w(t), v(t),u(t)

)
and

(
w(t+1), v(t+1),u(t+1)

)
are feasible points of the tth iterative optimization problem. According to Algo-
rithm 2,

(
w(t+1), v(t+1),u(t+1)

)
is the optimal point of t th iterative optimization

problem. Therefore, we have

C
(t)
sN

(
w(t), v(t),u(t)

)
≤ C(t)sN

(
w(t+1), v(t+1),u(t+1)

)
. (7.30)

Consequently,

CsN

(
w(t+1), v(t+1),u(t+1)

)

≥ C(t)sN
(
w(t+1), v(t+1),u(t+1)

)

> C
(t)
sN

(
w(t), v(t),u(t)

)
= CsN

(
w(t), v(t),u(t)

)
.

(7.31)

Therefore, solution
(
w(t+1), v(t+1),u(t+1)

)
in tth optimization is a better point than(

w(t), v(t),u(t)
)

as it result to a larger CsN for the original optimization problem
in (7.15).

Consider that sequence
{(
w(t), v(t),u(t)

) |t = 1, 2, · · · , T } is constrained
by (7.15b), (7.15c), (7.15d) and (7.15e). Therefore, there must exist a subsequence

{(
w(tτ ), v(tτ ),u(tτ )

)
|tτ ∈ {1, 2, · · · , T }

}

converging to a limited point (w∗, v∗,u∗), i.e.,

lim
τ→∞

[
CsN

(
w(tτ ), v(tτ ),u(tτ )

)
− CsN

(
w∗, v∗,u∗

)] = 0. (7.32)

Then for every t , there is τ that tτ ≤ t ≤ tτ+1,

0 = lim
τ→∞

[
CsN

(
w(tτ ), v(tτ ),u(tτ )

)
− CsN

(
w∗, v∗,u∗

)]

≤ lim
t→∞

[
CsN

(
w(t), v(t),u(t)

)
− CsN

(
w∗, v∗,u∗

)]

≤ lim
τ→∞

[
CsN

(
w(tτ+1), v(tτ+1),u(tτ+1)

)
− CsN

(
w∗, v∗,u∗

)] = 0.

Therefore, we have

lim
t→∞CsN

(
w(t), v(t),u(t)

)
= CsN

(
w∗, v∗,u∗

)
. (7.33)

As a result, every improved point (w∗, v∗,u∗) is a Karush-Kuhn-Tucker point of
sequence

{(
w(t), v(t),u(t)

) |t = 1, 2, · · · , T }.
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7.5.4 Complexity Analysis

In this part we will analyze the computational complexity of CPSO and pro-
posed ICPSO when applying the two designed secure beamforming schemes, i.e.,
NCoSTB and CoSTB. Considering that the ICPSO algorithm is designed based on
CPSO, we first provide the complexity of CPSO. The complexity of CPSO consist of
two parts: the complexity per iteration and the complexity introduced by iterations.
For each iteration, the fitness value of each particle of all subswarms has to be
evaluated and compared to the personal best position and the global best position of
the swarm [51]. Therefore, the computational complexity per iteration is

C iter (CPSO-NCoSTB) = O (I (NNs + Ns)) , (7.34a)

C iter (CPSO-CoSTB) = O
(
I
(
NNs +MNp +Ns

))
, (7.34b)

where I is the number of particles defined in Algorithm 1. Then the overall
complexity of CPSO is thus given by

C (CPSO-NCoSTB) = O (T I (NNs + Ns)) , (7.35a)

C (CPSO-CoSTB) = O
(
T I

(
NNs +MNp +Ns

))
, (7.35b)

where T corresponds to the maximum number of iterations required for conver-
gence. Similarly, the computational complexity of ICPSO can be given by

C (ICPSO-NCoSTB) = O (NiterT0I (NNs +Ns)) , (7.36a)

C (ICPSO-CoSTB) = O
(
NiterT0I

(
NNs +MNp + Ns

))
, (7.36b)

whereNiter is the maximun iterative number in Algorithm 2, and T0 is the maximum
number of iterations required when applying CPSO in Step 7.

7.6 Simulation Experiments and Analysis

This part provides numerical results to demonstrate and test the validity and effec-
tiveness of designed secure beamforming schemes. In addition, the convergence and
efficiency of the proposed iteration based solution for the optimization problem are
also verified through the simulation.

First of all, we introduce the scenario setup for simulations. We consider a
satellite terrestrial network consisted with one satellite, five FSS terminals and
fifteen terrestrial BSs [16, 52]. Assume that the satellite carries fifteen antenna
elements and each BS carries sixteen antenna elements [16] (Table 7.2).
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Table 7.2 Detailed system
parameters

Parameters Value

Terrestrial spanning frequency 17700 ∼ 18934 MHz [52, 53]

Satellite spanning frequency 17700 ∼ 18895.2 MHz [52, 53]

Terrestrial transmit power −26 ∼ −22 dBW [52]

Satellite transmit power 23.01 dBW [54]

Terrestrial bandwidth 56 MHz [52]

Satellite bandwidth 62.4 MHz [5, 52]

Terrestrial noise power σp −121.52 dBW [52]

FSS terminals noise power σs −126.47 dBW [5, 52]

Eavesdropper noise power σe −121.52 dBW

Number of scatters L 2 [36]

Number of scatters Lm 3 [13]

First, we test the convergence of the CPSO algorithm and the proposed ICPSO
algorithm when dealing with the optimization problems for the two designed secure
beamforming schemes, i.e., NCoSTB and CoSTB. In addition, for the CPSO and
ICPSO algorithms, the values of (w, v) and (w, v,u) are initialized randomly and
adjusted to satisfy the constraints if the random values are not feasible points of the
optimization problems. Moreover, the maximum number of iteration when applying
CPSO to solve (7.15) and (7.13) directly is set as 100. For ICPSO, let Niter = 5 in
Algorithm 2, and for each iterative optimization problem, the maximum number of
iteration of CPSO is set as 20. Therefore, the 1st, 21st, 41st, 61st and 81st iterations
are the beginnings of the new updated iterative optimization problems formulated
in Sect. 7.5.2.1 and (7.28), by setting t = 1, 2, · · · , 5. Thus, the total iteration
number is 100, the same as that of the contrast experiment above applying CPSO
directly. In addition, fix the SINR threshold as γn = γms = 0 dB, ∀n, m [17].
The achievable secrecy rate of FSSN , the eavesdropped FSS terminal, updated in
each iteration when applying the CPSO and ICPSO algorithms for the NCoSTB
and CoSTB schemes are shown in Fig. 7.2a, b, respectively. For both NCoSTB and
CoSTB, “CPSO 1” and “CPSO 2” in Fig. 7.2 indicate two different initial value
settings of (w, v) and (w, v,u). To present the influence of the eavesdropper, we
test the achievable rates of FSSN when there is no eavesdropper in the system, and
results are shown as the solid lines in Figs. 7.2a, b.

Results in Fig. 7.2 show that through ICPSO, the solutions of the optimization
problem can converge to higher secrecy rates than through CPSO, no matter whether
applying the NCoSTB or CoSTB scheme. In other words, for the same times of
updating iteration, ICPSO tends to produce better beamforming and AN vectors
and bring a higher secrecy rate than CPSO. For both of the secure beamforming
schemes, the proposed ICPSO algorithm can achieve a faster convergence to reach
the maximum secrecy rate, which results from its convex approximation operation
of the original nonconvex objective function. In addition, Fig. 7.2 also indicates
that when the optimization variables are initialized differently, the CPSO algorithm
may converge to different optimal values, which might be the local optimal points.
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Fig. 7.2 Evolution of the achievable secrecy rate of FSSN and the convergence of CPSO and
ICPSO for the NCoSTB and CoSTB schemes
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Moreover, results in Fig. 7.2 also reveal that with the assistance of cooperative
beamforming from BSs, the achievable secrecy rate of the eavesdropped FSS
terminal can be greatly improved, comparing with the beamforming scheme without
the BSs’ cooperation.

The results shown in Fig. 7.3 reveal the effect of the optimization variable’s
initialization on the convergence of the nonconvex optimization problems. In this
experiment, the initial values

(
w(1), v(1)

)
and

(
w(1), v(1),u(1)

)
, of NCoSTB and

CoSTB, respectively, are obtained by applying MRT and randomly (denoted by
“Non-MRT” in Fig. 7.3). As shown in Fig. 7.3a, for the NCoSTB scheme, the ICPSO
algorithm can achieve a faster convergence reaching to a larger secrecy rate than
the traditional CPSO, when applying the same initialization strategy. Moreover,
no matter whether to apply MRT or non-MRT based initialization, we can notice
that although the secrecy rates obtained by ICPSO are relatively lower than by
CPSO in the beginning of the iterations (from iteration 1 to 20), the rates increase
more rapidly and reach higher values in the later iterations than that of CPSO.
For the CoSTB scheme, results in Fig. 7.2b present a similar phenomenon. On
the other hand, due to the nonconvex characteristic of original objective function
and the drawback of CPSO, the convergence points sometimes are not the global
optimal solutions, which depends much on the selection of the initial feasible point.
Results in Fig. 7.3 indicate that the initialization obtained through the MRT can
achieve better beamforming and AN vectors to get a higher secrecy rate. Even
for the improved ICPSO algorithm, a random initialization may result to a weaker
solution than the CPSO algorithm does with an MRT based initialization. Moreover,
both results in Figs. 7.2 and 7.3 show that, some achievable secure rates at the
beginning of iterative algorithms are zero. This phenomenon results from the initial
value setting of iterative algorithms. Specifically, the initial value setting may lead
to a negative value of CN (w, v) − CeN (w, v) or CN (w, v,u) − CeN (w, v,u).
Then according to (7.11), the achievable secure rate is considered as zero when
CN − CeN < 0. However, as iterations progress, achievable secure rates approach
the positive optimal values.

Next, we show the achievable secrecy rate in Fig. 7.4 when the number of
antennas carried on the satellite varies from 5 to 15 and the BSs’ SINR threshold are
set as γms = γ 1

p = 0 dB and γms = γ 2
p = 6 dB, ∀m ∈M [55]. As we can see, as the

number of antennas on the satellite increases, the secrecy rate of the eavesdropped
FSS terminal increases, no matter whether the terrestrial BSs apply the cooperative
beamforming and which optimization algorithm is applied. This result shows that
thanks to the mmWave techniques, multiple antennas can greatly improve the
transmission capacity and security of the communication network. Moreover, results
in Fig. 7.4 also demonstrate that when the BSs require a higher SINR threshold,
the secrecy rate of the eavesdropped FSS terminal will decrease. This dropping of
performance results from the fact that the satellite has to lower its transmit power
and adjust its beamforming and AN vectors to reduce its interference to BSs’ users,
which will sacrifice its own transmission rates and secrecy rates. However, with
Ns increasing, a higher achievable secrecy rate can be still achieved even when the
system is constrained by a higher γp. In a real coexistence system of FSSs and
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Fig. 7.3 Achievable secrecy rate versus optimization variable’s initialization. (a) NCoSTB. (b)
CoSTB
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Fig. 7.4 Achievable secrecy rate versus the number of antennas carried on the satellite Ns and
BSs’ SINR threshold γp . (a) NCoSTB. (b) CoSTB
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Fig. 7.5 Transmit power of the satellite versus the number of antennas carried on the satellite Ns
and BSs’ SINR threshold γp

cellular networks, the higher priority and legacy right of using some specific part of
the spectrum for terrestrial BSs may reduce the capacity and security of the SatCom
system. These results shown in Fig. 7.4 indicate that the communication quality of
both FSS terminals and BSs’ users can be guaranteed by the multiple antennas (such
as MIMO/MISO), which can be realized when using the mmWave spectrum.

To further illustrate the effect of the number of antennas Ns and BSs’ SINR
threshold γms on the system performance, we present the transmit power con-
sumption of the satellite when maximizing the secrecy rate with power and SINR
threshold constraints. As the results shown in Fig. 7.5, for the NCoSTB and CoSTB
schemes, the transmit power of satellite decreases with Ns increasing. In addition,
when the BSs’ SINR threshold is larger, i.e., γms = γp = 6 dB, satellite will
consume less power to guarantee the transmission quality of the BSs. Therefore,
results shown in Figs. 7.4 and 7.5 reveal that the multiple antennas can contribute to
improve the secure transmission capacity, meanwhile, to reduce the transmit power
of the system.

Then we show the achievable secrecy rate in Fig. 7.6 when the number of
antennas carried on each BS varies from 4 to 24 and the BSs’ SINR threshold are set
as γms = γp = 0 dB ∀ m ∈M . We can notice that the achievable secrecy rate does
not change a lot when the NCoSTB scheme is applied. This phenomenon results
from that the total transmission power of each BS remains unchanged, while these
BSs do not perform their beamforming cooperatively. Therefore, BSs’ interference
for both FSSs and the eavesdropper presents a small change when Np increases.
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Fig. 7.6 Achievable secrecy rate versus the number of antennas carried on each BS Np

On the other hand, the achievable secrecy rate increases with increasing Np more
distinctly when the CoSTB scheme is applied, comparing with that of NCoSTB,
as shown in Fig. 7.6. These results indicate that when BSs perform as cooperators,
their increasing number of antenna will bring more interference to the eavesdropper,
meanwhile less interference to the satellite-terrestrial communication.

We also verify the complexity analysis by changing the number of antennas
equipped on the satellite from 5 to 15. For both CoSTB and NCoSTB, when
solving the beamforming optimization problems by CPSO, the maximum number
of iterations is set as 100. On the other hand, when applying ICPSO, let Niter = 5,
and for each iterative optimization problem, the maximum number of iteration of
CPSO is set as 20. According to this setting, the total number of iterations for
both CPSO and ICPSO is 100. Then for the two beamforming strategies, Fig. 7.7
presents the time consumption on solving the beamforming optimization problems
when introducing CPSO and ICPSO. Results in Fig. 7.7 indicate that the complexity
grows near-linearly as Ns increasing for the four cases. In addition, when the
same beamforming strategy is applied, ICPSO costs less time than CPSO. Such
efficiency of ICPSO results from the transformed convex quadratic problems it
solves. Moreover, results in Fig. 7.7 also reveal the tradeoff between complexity and
performance improvement when BSs participate in the cooperative beamforming.
Specifically, according to results shown in Figs. 7.2, 7.3, and 7.4, CoSTB scheme
brings higher achievable secrecy rate for the eavesdropped FSS terminal. However,
the computational complexity for CoSTB is much higher than NCoSTB, which
results from there are NNs + MNp + Ns variables to be optimized for CoSTB,
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Fig. 7.7 Time consumption on solving the beamforming optimization problems versus the number
of antennas carried on the satellite Ns

while only NNs +Ns for NCoSTB. Such complexity properties indicated in (7.35)
and (7.36) are also reflected in Fig. 7.7.

7.7 Conclusion

In this part, we have considered a mmWave and MISO channel based coexistence
system of FSS and terrestrial cellular networks. The physical layer security problem
is analyzed for the established scenario. To achieve the secure transmission, the
adaptive beamforming and AN techniques are introduced to prevent the eavesdrop-
per from receiving and decoding information successfully. We have proposed a
non-cooperative beamforming scheme, through which the BSs process precoding
through an MRT beamforming. On the other hand, to further improve the secrecy
rate, the CoSTB scheme has been designed, according to which BSs implement the
cooperative beamforming to decrease the SINR at the eavesdropper and increase
the SINR at the eavesdropped FSS terminal, meanwhile ensure the SINR at BSs’
users and other legitimate FSS terminals. An iteration based approximate genetic
algorithm has been designed to solve the nonconvex secrecy rate maximization
problem.

The simulation results show that multiple antenna arrays and the designed
secure transmission beamforming schemes can improve the secrecy rate of the
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eavesdropped terminal, as well as guarantee the transmission quality of the incum-
bent communication in the coexistence system. In addition, the convergence and
efficiency of the proposed iteration based approximation algorithm are verified by
the simulation results.

7.8 Proof of Theorem 7.1

For the two security beamforming schemes, i.e., NCoSTB and CoSTB, the analysis
and derivation of the lower bound of CN (w, v) and CN (w, v,u) are similar, except
that the beamforming strategies of BSs are fixed according to MRT under the non-
cooperation scheme. In other words, for the NCoSTB, u is set as a constant vector
by (7.14). Therefore, in this part, we only provide the derivation of the lower bound
of CN (w, v,u) for simplification.

As defined in (7.12), we have

CN (w, v,u) = log2

(
1+ wHNRNwN

ψN (w, v,u)

)

=− log2

(
1− wHNRNwN

ψN (w, v,u)+ wHNRNwN

)

�− log2

(
1− g1 (wN)

g2 (w, v,u)

)
,

(7.37)

where

g1 (wN) = wHNRNwN, (7.38a)

g2 (w, v,u) = ψN (w, v,u)+ wHNRNwN > g1 (wN) . (7.38b)

Consider that f (x) = −log2 (1− x) is an increasing convex function
of independent variable x in the domain {x |x < 1 }. Thus f (g1/g2) =
−log2 (1− g1/g2) � CN (g1, g2) is convex in the domain {(g1, g2) |0 < g1 < g2 }
(g1/g2 < 1), where g1 = g1 (wN) and g2 = g2 (w, v,u) are defined as (7.38).
Considering the Taylor expansion and the convexity of CN (g1, g2) when
0 < g1 < g2, we have

CN (g1, g2) ≥ CN
(
g
(t)
1 , g

(t)
2

)

+
〈
∇CN

(
g
(t)
1 , g

(t)
2

)
, (g1, g2)−

(
g
(t)
1 , g

(t)
2

)〉
.

(7.39)
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Denote x(t) = {
w(t), v(t),u(t)

}
and x = {w, v,u} as simplified representations.

Then in (7.39),

〈
∇CN

(
g
(t)
1 , g

(t)
2

)
, (g1, g2)−

(
g
(t)
1 , g

(t)
2

)〉

= 1

ln 2

g2
(
x(t)

)

g2
(
x(t)

)− g1
(
x(t)

)

⎡
⎢⎢⎣

2�
{(

w(t)N
)H

RN
(
wN − w(t)N

)}

g2
(
x(t)

)

⎤
⎥⎥⎦

− 1

ln 2

g2
(
x(t)

)

g2
(
x(t)

)− g1
(
x(t)

)
(
g1
(
x(t)

)

g2
2

(
x(t)

)
) [
g2

(
x(t)

)
− g2 (x)

]

= 2

ln 2

�
{(

w(t)N
)H

RN
(
wN − w(t)N

)}

ψN
(
x(t)

)

− 1

ln 2

⎡
⎢⎣ 1

ψN
(
x(t)

) − 1

ψN
(
x(t)

)+
(
w(t)N

)H
RNw

(t)
N

⎤
⎥⎦ [ψN (x)

+wHNRNwN − ψN
(
x(t)

)
−
(
w(t)N

)H
RNw

(t)
N

]

= 1

ln 2

�
{(

w(t)N
)H

RN
(
wN − w(t)N

)}

ψN
(
x(t)

)

− 1

ln 2

(
w(t)N

)H
RNw

(t)
N

(
ψN (x)+ wHNRNwN

)

ψN
(
x(t)

) [
ψN

(
x(t)

)+
(
w(t)N

)H
RNw

(t)
N

] + 1

ln 2

(
w(t)N

)H
RNw

(t)
N

ψN
(
x(t)
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= 2

ln 2

�
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w(t)N
)H

RNwN

}

ψN
(
x(t)

) − 1

ln 2

(
w(t)N

)H
RNw

(t)
N

ψN
(
x(t)

)

− 1

ln 2

(
w(t)N

)H
RNw

(t)
N

(
ψN (x)+ wHNRNwN

)

ψN
(
x(t)

) [
ψN

(
x(t)

)+
(
w(t)N

)H
RNw

(t)
N

] .

Substituting the result obtained above into (7.39), then (7.21) can be achieved. This
completes the proof of Theorem 7.1.
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7.9 Proof of Theorem 7.2

In this part, we will only derive the upper bound of CeN (w, v,u) for the CoSTB
scheme. When applying the NCoSTB scheme, the derivation is similar to that of
NCoSTB, by considering u as a constant vector.

According to the definition in (7.12), we have

CeN (w, v,u) = ln

(
1+ wHNRewN

ψe (w, v,u)

)

= log2 (1+ Γe (w, v,u)) � CeN (Γe (w, v,u)) ,
(7.40)

which is an increasing concave function of Γe (w, v,u). Denote x(t) ={
w(t), v(t),u(t)

}
and x = {w, v,u}. Thus we have

log2 (1+ Γe (x)) ≤ log2

(
1+ Γe

(
x(t)

))

+
〈
∇CeN

(
Γe

(
x(t)

))
, Γ (t)e (x)− Γe

(
x(t)

)〉
,

(7.41)

where
〈
∇CeN

(
Γe

(
x(t)
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, Γe (x)− Γe
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Rew
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Rew
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[
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ψ
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+ 1

]
− 1

ln 2
,

where ψ(t)e (w, v,u) is defined by (7.26). Substituting the result obtained above
into (7.41), then (7.25) can be achieved. This completes the proof of Theorem 7.2.
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Chapter 8
Traffic Prediction Based Transmission
in Satellite-Terrestrial Networks

Abstract This part considers the resource allocation problems for video transmis-
sion in space based information networks. The queueing system analyzed in this
work is constituted by multiple users and a single server. The server is operated as
a cloud that can sense the traffic arrivals to each user’s queue, and then allocates
the transmission resource and service rate for users. The objectives are to make
configurations over time to minimize the time average cost of the system, and to
minimize the waiting time of packets after they enter the queue. Meanwhile, the
constraints on the queue stability of the system must be satisfied. In this part, we
introduce a predictive backpressure algorithm, which considers the future arrivals
with a certain prediction window size, into the consideration of resource allocation
to make decision on which packets to be served first. In addition, this part designs
a multi-resolution wavelet decomposition based backpropagation network for the
prediction of video traffic, which exhibits the long-range dependence property.
Simulation results indicate that the delay of the queueing system can be reduced
through this prediction based resource allocation, and the prediction accuracy for
the video traffic is improved according to the proposed prediction system.

Keywords Space-based Information Networks · Resource Allocation · Video
Traffic Prediction · Cloud Service · Queueing Theory · Predictive Backpressure

8.1 Introduction

In recent years, the space-based information network (SBIN) is proposed to improve
the detection and transmission capabilities of a single satellite or satellite system.
Through the cooperation scheme of the SBIN, the real-time data acquisition and
transfer can be achieved. Therefore, how to design appropriate cooperation mech-
anisms and achieve efficient network resource allocation to maximize the utility
of the whole system become a key issue for SBIN operation. On the other hand,
the demand of multimedia services for satellite communications has increased.
Take typhoon tracking systems for instance, there are multiple satellites deployed
in the low earth orbit (LEO) and geosynchronous orbit (GEO) getting video and
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image data of typhoons to monitor their trends. The obtained multimedia data from
different satellites needs to be send to the earth as soon as possible. However,
the communication resource, such as power and service rate, to receive data from
different satellites is limited. This constraint results that satellites accessing to the
ground station cannot send all of their obtained date simultaneously. Then resource
allocation policies are needed to maximize the utilization of network resource and
minimize the average transmission delay of every access satellite. This part will
focus on the resource allocation for the SBIN with multiple satellite users and a
single server deployed on the ground. We assume that the server performs as a cloud
processing center, which can sense traffic arrivals to every access satellite and the
channel state information, and serve packets sent from satellites according to the
allocated power and service rate. The assumption that the cloud service can sense
traffic arrivals is feasible. This sensing ability can be realized by many current traffic
sensing technologies such as dynamic traffic monitor [1], packet sampling based on
Kullback-Leibler Divergence (KLD) measure [2] and traffic estimation based on
sensing order confidence [3], etc.

Resource allocation and optimal control of multi-access queueing systems and
communication networks have been active research topics over past decades.
However, most of current resource allocation mechanisms were operated depending
on current traffic arrivals, while future arrivals based on the prediction were not
considered. In other words, packets can only be served by servers after they have
arrived into the queueing system according to works above. While in many current
systems for multimedia services, the prediction for the future traffic is feasible.
Moreover, learning and predicting the user behavior and then pre-serving the future
traffic can improve the system performance significantly [4]. Considering that the
transmission resource of the SBIN is much more limited and expensive, the resource
allocation policy needs to maximize both the utilization of network resource and
the network performance. Therefore, we design a resource allocation policy for
video tasks in the SBIN based on the traffic prediction, which is obtained by
learning and training the traffic characteristics. The main contributions of this part
are summarized as follows.

• Proposing a cloud-based allocation resource system for the video business in the
SBIN. In this system, the cloud server is designed to have the ability to sense
the current traffic arrivals from different user satellites, predict the future video
traffic and perform the prediction based resource allocation policy.

• Establishing a multi-level wavelet based backpropagation neural network for
video traffic prediction according to properties of the video traffic. Specifically,
the traffic sequence is first decomposed into levels with different resolutions,
which will be trained by backpropagation networks. All of these networks
constitute the prediction system for video traffic in the SBIN.

• Designing a resource allocation policy based on the future traffic prediction for
video tasks in the SBIN. In this policy, the backpressure algorithm is introduced
based on the prediction traffic information. Moreover, the power consumption
and channel state of the SBIN is also considered in the resource allocation.
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The remainder of this part is organized as follows. In Sect. 8.2, we review the
related works associated with resource allocation and optimal control of multi-
access queueing systems. In Sect. 7.3 the system model is described. The multi-
resolution wavelet decomposition based backpropagation network for video traffic
prediction is proposed in Sect. 8.4. Then we introduce the predictive backpressure
scheme into the resource allocation for the SBIN in Sect. 8.5. Simulations are shown
in Sects. 8.6, and 8.7 concludes this part.

8.2 Related Works

Resource allocation and optimal control of multi-access queueing systems and
communication networks have been active research topics over past decades.
A dynamic resource allocation scheme based on the prediction of packet loss
probability and end-to-end distortion was proposed in [5] for video streaming over
multi-hop networks. A quality-fair and Pareto optimal resource allocation for the
multimedia system was proposed in [6], which jointly considered the available
system resource and the video decoding task feature. In [7], a subcarrier and
power allocation scheme was proposed in the context of orthogonal frequency
division multiple access (OFDMA)-based cognitive radio (CR) video application
systems. Over OFDMA wireless networks, the authors of [8] also designed a cross-
layer resource allocation scheme to maximize the sum of the achievable rates and
minimize the distortion difference among multiple videos. In [9], maximizing the
video quality was optimized jointly with the time-domain resource partitioning,
and a rate allocation algorithm was proposed for heterogonous cellular networks.
In addition, game theory has also been widely utilized for modeling resource [10–
13]. However, these works above did not consider the future traffic arrival, which
can optimize the resource allocation and improve the system performance.

The future traffic information is needed for the current resource allocation. The
capability to predict video traffic can significantly improve the effectiveness of
the following dynamic resource allocation. There have been several studies on
the prediction of video traffic. An adaptive traffic prediction method based on the
identification of scene changes was proposed for variable-bit-rate (VBR) MPEG
videos in [14]. To reduce the power consumption of wireless LAN infrastructure,
a discrete autoregressive video prediction model was designed in [15]. In [16],
a short-term bandwidth prediction of a video bit stream was performed for the
dynamic resource allocation. The studies above predicted the video traffic based on
the traffic flow characteristics, which plays a key role in improving the prediction
precision. It has been demonstrated in numerous studies that the video traffic
has the property of long-range dependence [17, 18]. The correlation structure
that accompanies long-range dependence means that the traffic exhibits sustained
burstiness, summarized in the related term self-similarity. These properties bring
difficulties to the video traffic prediction. Multi-resolution wavelet decomposition
can transform discrete sequences into different resolution levels, in each level the
abundance of frequency components can be decreased. In other words, burstiness of
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the traffic arrivals can be reduced, which will be easier for training and prediction.
Many wavelet based prediction schemes were proposed for long-range dependence
discrete sequences, such as network traffic, river discharges, etc. [19, 20]. Moreover,
many supervised learning approaches, such as support vector regression (SVR)
and artificial neural networks (ANNs), were applied to non-linear training and
forecasting systems [21, 22].

8.3 System Model

In this part, we propose a cloud-based space information system, in which control
management capabilities of the cloud can greatly improve the scalability and
flexibility of the system. The SBIN is operated under high dynamic circumstance.
On the one hand, inter-satellite links (ISLs) and satellite-ground station links (SGLs)
can hardly keep stable and continuous because of the rapid changing network
topology. On the other hand, more satellites will be launched to increase the
scale and capabilities of the SBIN, and the satellites that have been launched
can be updated or replaced for enhancing functions. These changes of satellite
infrastructure and capabilities can give rise to difficulties in network management
and control. The cloud enables the ubiquitous and task-driven network access,
and can provide global management and configuration of the network resource.
Therefore, we introduce a cloud server to sense the traffic and access information
and implement resource allocation, which can enhance the scalability and flexibility
of the system.

We consider a general multiple queues system with a single server, as shown
in Fig. 8.1. In this system, the server can obtain the traffic information of a finite
number N < ∞ of users, and each of these users utilizes the service of the server.

1� 2� i� N�

Source Node

LEO/GEO

Cloud Server

Ground Station
Cloud Server

Destination

Ground Station

Fig. 8.1 The multi-queue system with a cloud server serving workload for traffic arrivals from
different users/satellites
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The user is numbers by 1, 2, · · · , N , and the server is denoted as d . In our work,
the users especially refer to Landsat satellites deployed in different earth orbits, and
the server serving as a cloud processing center is deployed at the ground station,
which is the destination of the satellite data, and performs traffic sensing, video
traffic prediction and resource allocation. Moreover, to provide the time index for
the analysis and real system operation, we assume that the system operates in slotted
time, then slots are normalized to integral units t ∈ {0, 1, 2, · · · }.

8.3.1 The Traffic Model

We consider the video traffic from different satellites as the arrivals of the system,
and use Ai (t) to denote the amount of new packets arriving to satellite i (i =
1, 2, · · · , N) at time slot t . Let A (t) = [A1 (t) , A2 (t) , · · · , AN (t)] denote the
vector of arrivals at t . We assume that arrivals to each satellite are independent and
identically distributes (i.i.d.) at different time slots, and λi = E {Ai (t)} denotes the
arrival rate at the queue of satellite i. In essence, the arrivals to different satellites
can be arbitrarily correlated, and the correlation can be not considered and ignored
when analyzing. We also assume that there existsAmax such that 0 ≤ Ai (t) ≤ Amax
for all i and t .

8.3.2 Physical Channel Model

In the transmission of the SBIN, the line of sight (LOS) signal is much stronger
than the others, which is different from ground networks. Therefore, we consider
the wireless channels for satellites and ground stations as a Rician fading channel
model with additive Gaussian noise. The signal received at the destination d at time
slot t is modeled as

yti =
√
Gl
−γ
i htix

t
i + nti, (8.1)

where i (i = 1, 2, · · · , N) is the index for the source satellite, d represents
the destination (cloud server), xi is the data transmit from satellite i, G is the
transmitting power, li is the distance between satellite i and destination d , γ denotes
the path loss exponent, and nti is i.i.d. additive Gaussian noise between i and d
at time slot t with zero-mean and variance N0. In (8.1), hi = X1 + jX2 is the
channel fading coefficient modeled as a circularly symmetric complex Gaussian
random variable for i, in which X1 ∼ N

(
μ1, σ

2/2
)

and X2 ∼ N
(
μ2, σ

2/2
)

are Gaussian random variables. Then the distribution of |hi | is given by the Rician
probability density function (PDF)

f|hi | (h) = 2h
σ 2 exp

{
−(h2+s2)
σ 2

}
I0

(
2sh
σ 2

)
, (8.2)
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where s2 = υ2
1 + υ2

2 is the power due to the Line of Sight (LOS) signal, and I0 (·)
is the 0th order modified Bessel function of the first kind [23, 24]. Then SNRi , the
Signal-to-Noise Ratio (SNR) between node i and the destination, can be specified
as

SNRi = |hi |2l−γi G

N0
, (8.3)

where |hi |2 follows the non-central chi-squares (X 2) distribution with the PDF as

f|hi |2 (h) = K+1
Ω

exp
{
−K − (K+1)h

Ω

}
· I0

(
2
√
K(K+1)h

Ω

)
. (8.4)

In (8.4), Ω = s2 + σ 2 is the total power of the LOS and scattering signal, K =
s2/σ 2 is the ratio between the power in the direct path and the power in the other
scattered paths [24, 25]. Next, we introduce the outage event and outage probability
to characterize the success and failure of the packet transmission and reception. The
condition of outrage is defined as that the SNR is less than the given SNR threshold
β. Then outage event can be expressed as (8.5).

{hi : SNRi < β} =
{
hi : |hi |2 < βN0l

γ

i

G

}
. (8.5)

Since the success probability of the packet between i and destination d at SNR
threshold β is

fi � Pr {Ci} = Pr

{
|hi |2 ≥ βN0l

γ
i

G

}

=
∫ +∞
βN0 l

γ
i

G

K + 1

Ω
exp

{
−K − (K + 1) h

Ω

}
· I0

(
2

√
K (K + 1) h

Ω

)
dh,

(8.6)

where Ci denotes the success transmission between node i and the destination.

8.3.3 The Cloud-Based Predictive Service Model

We consider that the cloud server allocates power for transmitting data packets at
each time slot t . Let Pi (t) denote the power allocated to serving packets from
satellite i at time slot t . Then we get the power allocation vector of the cloud
server as P (t) = [P1 (t) , P2 (t) , · · · , PN (t)]T. Next, we discuss the link state
between satellites and the destination. The SBIN is a kind of dynamic system,
which results from the change of the channel fading coefficients hi , various service
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requests from different users at different time slots, etc. This situation may generate
different power and other resource consumption and requests different service rate
for the server. To distinguish the change of connection and transmission, we use
Si (t) to denote the link state between satellite node i and the destination at time
slot t . Then we get the whole link state of the system as the vector S (t) =
[S1 (t) , S2 (t) , · · · , SN (t)]T. We assume that S (t) takes values in

{
sj
}K
j=1, and

let pisj (t) = Pr
[
Si (t) = sj

]
. Under a link state sj , power allocation vector P (t)

chooses values in power allocation set P(sj ), which is compact and there exists the
constraint 0 ≤ Pi (t) ≤ Pmax for each i = 1, 2, · · · , N [4]. We assume that the
cloud server can sense the link state, and allocate the power from the appropriate
power allocation set. Then given link state S (t) and power allocation vector P (t),
we define the amount of data packets served by the server from each queue of
satellites as

μi (t) = μi (Si (t) , Pi (t)) , ∀i = 1, 2, · · · , N, (8.7)

where μi (Si (t) , Pi (t)) is the continuous function of Si (t) and Pi (t). We assume
that 0 ≤ μi (Si (t) , Pi (t)) ≤ μmax for all i, S (t) and P (t) at any time slot t . In
our work, we set Si (t) ∈ {1, 2}. Si (t) = 1 denotes that there does not exist a link
between node i and the destination, and the lower service rate will be allocated.
Si (t) = 2 denotes that the link exists, and the service rate allocated for i will be
higher than the case of Si (t) = 1. According to Sect. 8.3.2, let

pi1 (t) = 1− fi (t) , pi2 (t) = fi (t) , (8.8)

where fi (t) is calculated through (8.6). In this part, we assume that the service rate
is given by

μi (t) = �log (1+ Si (t) Pi (t))� , (8.9)

where �x� is the floor function mapping the largest integer not greater than x [4].
Most previous works studying multi-queue systems allocate transmitting

resource according to the current or past arrivals to different queues. This kind
of resource allocation mechanism can lead to the serious delay resulting from
the stochastic and burst arrivals, especially for video business. To reduce the
delay and improve the quality of service, a predictive scheduling, i.e., predicting
and pre-serving arrivals, was proposed in [4]. Next, we introduce the predictive
service mechanism to the video transmission in the SBIN. We assume that the
cloud server at the ground station can predict and serve the future packet arrivals
to each queue of satellites, and allocate power for these queues according to its
prediction. Let Di ≥ 1 as the prediction window size of satellite i. Then at each
time slot t and for each i = 1, 2, · · · , N , the cloud server can predict arrival
information in the lookahead window {Ai (t) , Ai (t + 1) , · · · , Ai (t +Di − 1)},
where Ai (t + 1) , · · · , Ai (t +Di − 1) are considered as the future arrivals. We
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assume that the packets arriving at a time slot can only be served in following time
slots. At each time slot t , let μ(τ)i (t) (τ = 0, 1, · · · ,Di − 1) denote the service

rate allocated to arrival packet Ai (t + τ ), and let μ(−1)
i (t) denote the service rate

allocated for the arrival packets that are already in the queue. For each μi (t), there
always has

Di−1∑
τ=−1

μ
(τ)
i (t) ≤ μi (t) . (8.10)

8.3.4 The Queueing Model

Let Qi (t) be the amount of packets queued at the cloud server from satellite i at
time slot t . Then the dynamic of the queue is given by

Qi (t + 1) = max
{
Qi (t)− μ(−1)

i (t) , 0
}
+ A(−1)

i (t) , (8.11)

where A(−1)
i (t) is the amount of packets that actually enter the queue after

experiencing a series of predictive service processing [4]. Specifically, the packets
arriving to the queue are served by the pre-allocated rate in previous time slots, and
the processing of which can be formulated as

1. −1 ≤ τ ≤ Di − 2:

A
(τ)
i (t) = max

{
A
(τ+1)
i (t)− μ(τ+1)

i (t − τ − 1) , 0
}
. (8.12)

2. τ = Di − 1:

A
(τ)
i (t) = Ai (t) . (8.13)

In this part, we consider the system stability as the finiteness of the time average
queue size. Let E {Qi (t)} be the mean length of queue i. The system is stable, if

Q̄ � lim sup
t→∞

1
t

t−1∑
τ=0

N∑
i=1
E {Qi (τ)} <∞. (8.14)

The optimization target for the system is to find a power allocation and schedul-
ing scheme to minimize the time average cost, which subjects to the constraint that
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queues of the system must keep stable. Then establish the optimization problem as

min f̄c = lim sup
t→∞

1

t

t−1∑
τ=0

E {fc (S (τ ) ,P (τ ))}, (8.15a)

s.t. lim sup
t→∞

1

t

t−1∑
τ=0

N∑
i=1

E {Qi (τ)} <∞, (8.15b)

where fc (S (t) ,P (t)) denotes the cost of the server resulting from the power
consumption in every time slot, for given S (t) and P (t). In this work, we set the
total power consumption

fc (S (t) ,P (t)) =
N∑
i=1

Pi (t) (8.16)

as the cost of the server. We assume that there always has fc (S (t) ,P (t)) ≤ fcmax,
∀t , S (t) and P (t).

8.4 Wavelet Based Backpropagation Prediction for Traffic

As discussed in the literature review of this part, the video traffic is burst and cor-
responds to the existence of clusters of occurrences. Moreover, the autocorrelation
of video traffic decays hyperbolically, which indicates the characteristic of long-
range dependence, so the video traffic is a type of self-similar stochastic process.
Therefore, the prediction for the video traffic is very difficult and complicated
because of its characteristics different with other business.

The discrete wavelet transform (DWT) decomposes a signal sequence at different
dilations to get multiple dimensions and resolutions of approximation coefficients
and detail coefficients. The approximation coefficients represent the high-scale
and low-frequency components of the signal, and the detail coefficients represent
the low-scale and high-frequency components. DWT provides both spatial and
frequency description of signals and is very useful for processing of non-stationary
signals. The long-range dependence feature of the video traffic can be well extracted
through this kind of multi-dimension decomposition. For the prediction of the
traffic according to extracted multi-dimension features, artificial neural networks
are adopted. First, artificial neural networks are non-linear methods that learn from
patterns and obtain hidden functional relationships, which can be unknown or
difficult to identify. In addition, artificial neural networks can model non-stationary
and dynamic system, which will deal with the feature of strong dependence of
the video traffic. In this section, we will design a backpropagation neural network
prediction system based on the multi-resolution wavelet decomposition to predict
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the video traffic. This prediction system is a part of the cloud processing center
operated at the cloud server, and provides prediction information for the power and
service rate allocation in the next stage.

8.4.1 Multi-Level Wavelet Decomposition

In this part, the signal decomposed by DWT in our work is the video traffic,
specifically, the amount sequence of the arriving packets. Wavelet transforms
decompose signals through a basic mother wavelet by adjusting the time-shifting
and time-dilation parameters. DWT is derived from a continuous Wavelet transform
(CWT), the definition of which for a given continuous signal x (t) is defined by

W (a, b) = 1√
a

∫ +∞

−∞
x (t) φ

(
t − b
a

)
dt, (8.17)

where a > 0 is the scaling parameter that determines the wavelet spread, b > 0 is
the translation parameter that determines the central position, and φ (t) is the mother
wavelet function. DWT of the discrete signal x (k) is defined as

W (m, n) = 1√
2m

T−1∑
k=0

x (k) φ

(
k − n · 2m

2m

)
, (8.18)

where T is the length of the signal, k is the discrete time index, integer variable
m and n are the scaling and translation parameter (a = 2m, b = n · 2m). Then
we can analyze the signal at different frequencies with different resolutions through
an efficient filtering algorithm proposed by Mallat [26]. By using complementary
low-pass and high-pass filters, the algorithm decomposed signal x (k) into the
approximation and detail components, which represent the low and high frequency
components of the signal, respectively. The process for signal x (k) is formulated as

ylow (k) =
+∞∑
n=−∞

x (n) h (2k − n), (8.19a)

yhigh (k) =
+∞∑
n=−∞

x (n) g (2k − n), (8.19b)

where h (k) is the high-pass filter, and g (k) is the low-pass filter. The approximation
components reflect the general trend of the signal, and can be decomposed into
multiple levels through a series of processing as previous. A two-layer filter bank
implementation of DWT is shown in Fig. 8.2, where A1, A2 and D1,D2 are the
approximation and detail components of Levels 1 and 2, respectively. Through the
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Fig. 8.2 A 2-layer wavelet decomposition, A and D denote the approximate and detail com-
ponents, respectively. h (k) is the high-pass filter, g (k) is the low-pass filter, and ↓ 2 denotes
down-sampling
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Fig. 8.3 A typical 3-layer backpropagation neural network structure

down-sampling, which is represented by (↓ 2), the length of the signal can remain
unchanged.

8.4.2 Backpropagation Neural Network Prediction

Backpropagation (BP) is an important method for supervised learning with feed-
forward artificial neural networks. The BP neural network is composed of the
input level, output level and one or more hidden layers. The structure of a typical
BP neural network with only one hidden layer is shown in Fig. 8.3. The input
layer receives the external vector, which passes through a weighted connection to
the neurons in the hidden layer. Then neurons in the hidden layer compute their
activations, which will be passed to neurons in the output or next hidden layer.
This process can be considered as the given input vector is propagated forward
through the network, and the activations vector is formed in the output layer finally.
In Fig. 8.3, the number of neurons in the input, hidden and output layer is n, l and
m, respectively. xi (i = 1, 2, · · · , n), zj (j = 1, 2, · · · , l) and yk (k = 1, 2, · · · ,m)
indicate the activations in the related layer. υji denotes the connection weight from



176 8 Traffic Prediction Based Transmission in Satellite-Terrestrial Networks

neuron i in the input layer to neuron j in the hidden layer, and ωkj denotes the
connection weight from neuron j in the hidden layer to neuron k in the output
layer. Activations of neurons in the input and hidden layers are computed through a
non-linear activation function, and then we get activation outputs of the hidden and
output layers as

zj = f
(
netj

) = f
(
n∑
i=1

υjixi − θj
)
, j = 1, 2, · · · , l, (8.20)

yk = f (netk) = f
⎛
⎝

l∑
j=1

ωkj zj − ϑk
⎞
⎠ , k = 1, 2, · · · ,m, (8.21)

where θj and ϑk are the unit bias values, which can be treated as weights. In (8.20)
and (8.21), f (·) is the non-linear activation function, and the standard sigmoid
logistic function as (8.22) is mostly selected because of its nice property as (8.23).

fsig (net) =
(
1+ e−net)−1

, (8.22)

∂fsig (net)

∂net
= fsig (net)

(
1− fsig (net)

)
. (8.23)

The basic idea of the backpropagation learning algorithm is the repeat application
of the chain rule to compute the contribution of each weight, and getting a desired
mapping of input to output activations. The mapping constitutes the pattern set P .
Through training the weights, the resulting output activations of the network should
equal or approach to ideal outputs. The distance between the resulting and ideal
outputs is measured by an error or cost function as (8.24), which can be considered
as a fitness index of weights.

err = 1

2

∑
p∈P

m∑
k=1

(
t
p
k − ypk

)2
, (8.24)

where tp = [
t
p

1 , t
p

2 , · · · , tpm
]T

is the target or ideal activation vector, yp =[
y
p

1 , y
p

2 , · · · , ypm
]T

is the resulting output vector of the network. The training goal is
to get the global minimum of err . So the backpropagation algorithm can be divided
into the following two stages:

1. Feed-forward stage: activations in each layer are calculated using the weights,
the activation function and the activations in the previous layer.

2. Backpropagation stage: the algorithm checks whether the distance between the
resulting and ideal outputs err is within a given threshold. If not, all weights are
modified through (8.25a) and (8.25b), and the feed-forward stage is repeated.
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When err is within the threshold or the maximum number of iterations is
exceeded, the learning stops, and the current weights are used to generate the
learned prediction network. We have

Δωkj = −α
∑
p∈P

(
y
p
k − tpk

)
y
p
k

(
1− ypk

)
z
p
j , (8.25a)

Δυji = −α
∑
p∈P

m∑
k=1

δ
p
k ωkj z

p
j

(
1− zpj

)
x
p
i , (8.25b)

where α is the learning rate, and δpk in (8.25b) is given by

δ
p
k =

∑
p∈P

(
y
p
k − tpk

)
y
p
k

(
1− ypk

)
. (8.26)

8.4.3 Wavelet Based Backpropagation Prediction

Through the multi-resolution wavelet transform, the decomposed traffic has less
frequency components and is more stationary than the original traffic. The accuracy
of prediction for these different resolutions’ components can be improved compared
with the non-stationary and burst original traffic. Therefore, we establish the
prediction system with multiple backpropagation neural networks, of which the
inputs are approximation or detail coefficients obtained through the multi-resolution
wavelet decomposition, and the outputs are the corresponding predictive coefficients
of the future traffic. The structure of the proposed prediction system is shown as
Fig. 8.4. Specifically, according to Sect. 8.3, for a given video traffic time series
{Ai (0) , Ai (1) , · · · , Ai (t)} of user i (i = 1, 2, · · · , N), the prediction process for
the traffic of the nextDi − 1 time slots consists of the following steps:

• The original video traffic time series {Ai (0) , Ai (1) , · · · , Ai (t)} are processed
with the L-resolution discrete wavelet decomposition. Then we get approxima-
tion coefficients of the Lth level aL (t) and detail coefficients of all L levels as
d (t) = {d1 (t) , d2 (t) , · · · , dL (t)}.

• For each of approximation and detail coefficients aL (t) and d (t), we establish
L + 1 backpropagation network to predict each of the next value at time slot
t+1. Take aL (t) as an example, the training input matrix of the backpropagation
network is

ITr =

⎡
⎢⎢⎢⎣

aL (0) aL (1) · · · aL (τ0 − 1)
aL (1) aL (2) · · · aL (τ0)
...

...
. . .

...

aL (t − τ0) aL (t − τ0 + 1) · · · aL (t − 1)

⎤
⎥⎥⎥⎦ , (8.27)
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Fig. 8.4 The multi-level Wavelet decomposition based backpropagation neural network traffic
prediction system

where τ0 is the length of each training input vector, and each row vector is an
input of the backpropagation network. The corresponding outputs of each row
constitute the training output vector of the backpropagation network: OTr =
[aL (τ0) , aL (τ0 + 1) , · · · , aL (t)]T.
Through the backward propagation of error operated by the training network, we
get the prediction network for approximation coefficients aL (t).

• Set vector [aL (t − τ0 + 1) , aL (t − τ0 + 2) , · · · , aL (t)]T as the input of the
prediction network obtained in the last step, and the output is the predictive
approximation coefficient aL (t + 1).

• aL (t + 1) is combined with aL (t − τ0 + 2), aL (t − τ0 + 3), · · · , aL (t) to
predict aL (t + 2). Repeat this process and we can get the all following Di − 1
approximation coefficients. The detail coefficients in the following Di − 1 time
slots are predicted through similar processes.

• Reestablish the predictive A (t + 1) to A (t +Dn − 1) through aL (τ) and d (τ)
(τ = 0, 1, · · · ,Dn − 1).

The generated backpropagation prediction networks are modified in every time
slot by adding the new arrival traffic as the training data. Then at each time slot, we
can get future arrivalsAi (t + 1) , Ai (t + 2) , · · · , Ai (t +Di − 1) to constitute the
look-ahead window, which is discussed in the Sect. 8.3.3.
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8.5 Resource Allocation Based on the Predictive
Backpressure

According to the last section, the future traffic arrival information of satellites in the
cloud-based SBIN from time slot t+1 to t+Di−1 can be predicted and available in
the current time slot t . In this section, we design a resource allocation and scheduling
scheme based on the predictive traffic information, and the backpressure scheme [4,
27, 28] is introduced into the prediction based resource allocation to reduce the
queue length and delay of the system.

8.5.1 Dynamic Evolution of Queues

First, we introduce the conception of prediction queue [4]. As discussed in the
previous sections, future arrivals can be predicted and pre-served in the current
time slot. Let μ(τ)i (t) (τ = 0, 1, · · · ,Di − 1) denote the pre-allocated service

rate for the future arrivals Ai (t + τ ). We use Q(τ)i (t) (τ = 0, 1, · · · ,Di − 1) to
denote the amount of remaining arrivals currently of queue i in future time slot
t + τ . Notice that Q(τ)i (t) just records the residual number of arrivals in the queue

over the time line, but is not the real number of arrivals. Let Q(−1)
i (t) denote the

number of arrival packets already at queue i in time slot t , which is the same
as Qi (t) in (8.11). Different from Q

(0)
i (t) ,Q

(1)
i (t) , · · · ,Q(Di−1)

i (t), we notice

that Q(−1)
i (t) records the real backlog in the queue, and is the only real queue in{

Q
(τ)
i (t)

}Di−1

τ=−1
. Therefore, the system is stable if Q(−1)

i (t) is stable. As the same

assumption as mentioned in Sect. 8.3.3, packets arriving at a time slot can only be
served in following time slots. Then the dynamic evolvement process of queue i can
be modeled as following conditions:

1. τ = Di − 1:

Q
(τ)
i (t + 1) = Ai (t +Di) . (8.28)

2. 0 ≤ τ ≤ Di − 2:

Q
(τ)
i (t + 1) = max

{
Q
(τ+1)
i (t)− μ(τ+1)

i (t) , 0
}
. (8.29)
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Fig. 8.5 The dynamic evolvement process of the prediction queue

3. τ = −1:

Q
(τ)
i (t + 1) =max

{
Q
(τ)
i (t)− μ(τ)i (t) , 0

}

+max
{
Q
(0)
i (t)− μ(0)i (t) , 0

}
,

(8.30)

whereQ(−1)
i (0) = 0.

The dynamic evolvement process of the prediction queue is shown in Fig. 8.5. Then
for each user of the system, we get the amount of remaining arrivals at every time
slot of the prediction window, which can be considered for making decision of the
resource allocation.

8.5.2 Prediction Based Backpressure

Backpressure is originally designed to make decisions that minimize the amount of
queue backlogs in the network from one time slot to the next, and is mathematically
analyzed via the theory of Lyapunov drift [27–30]. The algorithmic mechanism
is similar to how water flows through a network of pipes via pressure gradients.
However, the future arrival information of the predictive window is available for the
current time slot, which presents difficulties in analysis and prohibits the application
of Lyapunov theory. Fortunately, [4] provided a queue-equivalence between the
predictive queueing network with a fully efficient scheduling and an equivalent
queueing network without any prediction. First, we introduce the definition of
the fully efficient predictive scheduling scheme and the equivalence between the
predictive and non-predictive queueing system proposed in [4].

Definition 8.1 A predictive scheduling scheme is fully efficient when the following
conditions is satisfied for any user i:

1.
∑
τ μ

(τ)
i (t) = μi (t);

2. μ(τ)i (t) > Q
(τ)
i (t), μ(

τ ′)
i (t) ≥ Q(τ ′)i (t), ∀ − 1 ≤ τ ≤ Di − 1, τ ′ 
= τ .
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Definition 8.1 indicates that for a queueing system with the fully efficient predictive
scheduling, all service opportunities and resource will be in full use and not be
wasted. Moreover, any queue of the system will not be allocated extra service
resource unless other queues are accomplished with serves.

Theorem 8.1 In a single-queue system, if:

1. Q̃i (0) =∑Di−1
t=0 Ai (t), where Q̃i (t) denotes the length of queue i,

2. arrivals of the single-queue system satisfy Ãi (t) = Ai (t +Di),
3. service of the system satisfies μ̃i (t) =∑Di−1

τ=−1 μ
(τ)
i (t),

and we get the queue evolution as

Q̃i (t + 1) = max
{
Q̃i (t)− μ̃i (t) , 0

}
+ Ãi (t) . (8.31)

Then for a predictive system with the fully efficient predictive scheduling scheme
andQ(−1)

i (0) = 0, it has

Di−1∑
τ=−1

Q
(τ)
i (t) = Q̃i (t) , ∀i, t. (8.32)

Theorem 8.1 provides a queue equivalence between the predictive queueing system
with a fully efficient scheduling policy and a queueing system without any predic-
tion. The complexity of analysis for the pre-serve queueing system with predictive
window can be reduced by this equivalence. According to Theorem 8.1, the delay
distribution characteristics of the non-predictive system can be considered as shifted
to the left by Di time slots in the fully efficient predictive system with Di -slots
predictive window. Detailed proofs of the delay characteristics are addressed in [4].

Next, we introduce the resource allocation policy based on the predictive back-
pressure (PBP) for the cloud-based SBIN. In this policy, prediction queue length of
every satellite in the SBIN is considered. The first object of the resource allocation
is to find a power allocation and scheduling scheme to minimize the average cost,
which is modeled as (8.15). The other optimization target is to minimize the amount
of backlogs of the entire network, in other words, to minimize the delay of the
network. This object results in that queues with or will with more backlogs are tend
to be allocated the higher service rate. The two optimization targets of the resource
allocation above can be modeled as (8.33a), where the control parameter V ≥ 1 is
defined to tradeoff the system cost and the delay. Specifically, the resource allocation
tends to give more consideration to the power consumption with the increase of V .
Then we present the predictive backpressure policy as following steps.

1. For the SBIN with N satellites, compute
∑Di−1
τ=−1Q

(τ)
i (t) for each satellite’s

traffic queue i in every time slot t .
2. Observe the current link state vector S (t).
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3. Then choose the power allocation vector of the server P (t) to solve the following
optimization problem:

min V fc (S (t) ,P (t))−
N∑
i=1

Di−1∑
τ=−1

Q
(τ)
i (t) μi (S (t) ,P (t)), (8.33a)

s.t. P (t) ∈P(S(t)), (8.33b)

where P(S(t)) is the feasible power allocation set.
4. For each prediction queueQ(τ)i (t) (τ = −1, 0, · · · ,Di −1), allocate the service

rates μ(τ)i (t) by the fully efficient scheme according to any queueing discipline.
5. Update the queues’ length by (8.28)–(8.30).

The queueing discipline mentioned in Step 4 is how to select packets to serve and

transmit from
{
Q
(τ)
i (t)

}Di−1

τ=−1
. Two typical queueing disciplines are FIFO (first

input first output) and LIFO (last input first output).

8.6 Simulation Results and Analysis

In this part, we perform simulation experiments to analyze performances of the
multi-level wavelet based backpropagation prediction system and the predictive
backpressure based resource allocation. We simulate the SBIN service system with
fifteen satellite users, i.e., N = 15. In the resource allocation system, the fifteen
satellites are deployed around the geosynchronous orbit with the orbit radius from
42,154 km to 42,182 km with equally spaced distance of 2 km, respectively. The
propagation path loss of channel between satellites and the ground cloud server is
given by γ = 2.8, and the average power of the Gaussian noise in the channel is
N0 = 10−10. The ratio K between the power in the LOS and the power in the other
scattered paths of the link is set as K = 6.99 dB, and the corresponding total power
of the LOS and other scattered path is set as Ω = 1 + K . Set the SNR threshold
as β = 5. For each satellite user, we assume that the link state S (t) selects values
in {1, 2} with probabilities 1 − fi and fi according to (8.6). The power allocated
to serving packets from satellite node i is set as Pi (t) ∈ P(Si) � {0, 5, 10}. We
assume that it allows more than one users can be allocated non-zero power in any
time slot. The service rate is set as (8.9), and we set the total power consumption
as the cost function according to (8.16). To simplify the analysis, we notice the
performance of the first satellite and eleventh satellite in the following simulations.
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8.6.1 Video Traffic Model

Video traffic arrivals Ai (t) (i = 1, 2, · · · , 15) of the users are independent
processes. First, we generate Ai through the traffic model. Long-range dependence
is the inherent property of the video traffic. Therefore, simulations in this work
use appropriate stochastic time series model to generate the sequence with self-
similarity characteristic. There are two classical stochastic models that can account
for long-range dependent: the increment processes of self-similar models and
the fractional autoregressive integrated moving average (FARIMA) processes.
FARIMA models have been widely used in the modeling for the burst and long-
range dependence traffic [31, 32]. In our simulations, we use the FARIMA model
to generate the sequence of the video traffic. The FARIMA process evolved from
the standard ARIMA (p, d, q) model by allowing the degree of differencing d
to take non-integral values. Specifically, the FARIMA (p, d, q) (p, q ∈ N

+,
d ∈ R) process is defined as a stochastic process X = {Xi |i = 0, 1, · · · } with a
representation given by

Φ
(
z−1

)
∇dXi = Θ

(
z−1

)
ni, (8.34)

where Φ
(
z−1

)
and Θ

(
z−1

)
are the autoregressive (AR) and moving average

(MA) polynomials of order p and q , respectively, in the backward shift operator
z−1 {Xi} = Xi−1. Then the differential operator can be expressed as ∇ = 1 − z−1,
and ∇d denotes the fractional differential operator with order d , which is defined
as the usual binomial expansion. ni is an i.i.d. non-Gaussian noise with finite mean
and variance [31]. The important property of the FARIMA (p, d, q) model is that,
stochastic sequence X = {Xi |i = 0, 1, · · · } performs the long-range dependence
feature when 0 < d < 0.5.

Set d = 0.1, we generate fifteen stochastic series with the length of 1000,
which present video traffic arrivals in 1000 time slots of the fifteen satellite
users. Figure 8.6 shows the traffic of the first user and the eleventh user and the
their autocorrelations, which can express the burst and the long-range dependence
property of the video traffic.

8.6.2 Performance of Wavelet Based Backpropagation
Prediction

As shown in Fig. 8.6, the generated video traffic is burst and has quite abundant
frequency components, which is difficult to be trained and learnt for prediction.
In this part, we apply the multi-resolution wavelet decomposition, and transform
the original traffic into 7 levels of approximation and detail components. Take the
traffic of user 1 for instance, the approximation components of Level 7 and detail
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Fig. 8.6 The traffic generated through the FARIMA model for the two sample users and their long
range dependence characteristics

components of Level 7, 5 and 1 are shown in Fig. 8.7. Figure 8.7 indicates that the
abundance of frequency components in each level trend to be reduced, which will
increase the prediction accuracy.

To establish the backpropagation neural network for the traffic prediction, we
generate the training traffic through the same FARIMA model with the same
parameter settings. The length of the training traffic is set as 2000. Decompose
the training traffic into 7 levels by multi-resolution wavelet transform. Then we
get the training approximation and detail components, by which we establish the
wavelet based backpropagation prediction networks introduced in Sect. 8.4.3. We
set the length of each training input vector τ0 = 5 and τ0 = 50 in (8.27) for
approximation and detail components, respectively. The threshold of err is set as
10−4, and the maximum number of iterations is set as 1000. Through training, we
get 8 backpropagation prediction networks. Take the first τ0 approximation and
detail components of the fifteen users’ traffic as the inputs of the corresponding
prediction network, the outputs are the predictive components of the original traffic.
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Fig. 8.7 Approximation components and detail components of the 7 levels wavelet decomposition
for the traffic of user 1

Table 8.1 Mean square error of BP prediction for 7-Level wavelet decomposition

Level A7 Level D7 Level D6 Level D5

Traffic of User 1 2.970 × 10−4 3.755 × 10−5 8.341 × 10−5 7.220 × 10−5

Traffic of User 11 8.560 × 10−4 7.322 × 10−5 4.620 × 10−5 4.235 × 10−5

Level D4 Level D3 Level D2 Level D1

Traffic of User 1 4.710 × 10−5 8.739 × 10−5 5.491 × 10−5 8.423 × 10−5

Traffic of User 11 4.732 × 10−5 8.252 × 10−5 9.240 × 10−5 9.223 × 10−5

For the two sample users (User 1 and User 11), the prediction accuracy of each level
of the components is shown in Table 8.1. The real traffic and the predictive traffic
by compositing predictive approximation and detail components of the two sample
users is shown in Fig. 8.8. Results indicate that the proposed method can accomplish
precise prediction of the traffic with burst and long-range dependence property.
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Fig. 8.8 The real traffic and the predictive traffic through the wavelet decomposition based
backpropagation prediction for the two sample users

8.6.3 Performance of Predictive Backpressure

Based on the SBIN queueing system, this subsection analyzes the performance of
the resource allocation based on the predictive backpressure. The predictive traffic
arrivals obtained in the previous simulations provide the prediction information
needed by the predictive backpressure. Through the service resource allocation, we
simulate the power consumption, queue length and the delay of the queueing system
by the original real traffic. LIFO is selected as the queueing discipline.

First, we test the power consumption of the cloud sever over the different control
parameter V and the size of the prediction window Di (i = 1, 2, · · · , 15). We set
V ∈ {1, 5, 10, 25, 50, 100, 150} and D1 = D2 = · · · = D15 ∈ {5, 20}. Simulation
results are shown in Fig. 8.9, in which accurate prediction denotes that the real
traffic are used to provide predictive traffic information for backpressure. Results
indicate that the power consumption decreases with the increase of V , which denotes
the tradeoff between the system cost and delay.
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Fig. 8.9 Average power consumption versus the control parameter V and prediction window size
Di

Figure 8.10 shows the average queue length of the two sample users changes
with the control parameter V and the size of the prediction window Di (i =
1, 2, · · · , 15). In Fig. 8.10, 0 prediction expresses that the backpressure scheme is
operated in the resource allocation without any prediction information. Simulation
results indicate that the average queue length increases with the increase of V , and
decreases with the prediction window size. Moreover, the average queue length will
increase when the future arrivals are not considered, i.e., Di = 0. Then we can
conclude that large prediction window size can lead to shorter average queue length,
which means shorter delay or waiting time. However, large prediction window
size requires more storage and process capacities for the server to achieve the
prediction of the future arrivals. So the setting ofDi is a tradeoff between the service
performance and operational costs of the cloud-based system.

Then we test the delay distributions of packets in the two sample users’ queues.
We set control parameter V = 50, and the prediction window size D1 = D2 =
· · · = D15 = 20. Results shown in Fig. 8.11 indicate that about 72.32% of the
packets in queue 1 and 72.07% of the packets in queue 11 do not need to wait for
service, which means that they are pre-served before they arrival to the system.
These results demonstrate that the delay of the SBIN queueing system can be
reduced by the resource allocation based on the predictive backpressure.
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Fig. 8.10 Average queue length versus the control parameter V and prediction window size Di

8.7 Conclusion

In this part, we proposed a multi-resolution wavelet based backpropagation pre-
diction system for the video traffic in the cloud-based SBIN. The predictive
backpressure policy is introduced into the resource allocation of the SBIN with
multiple satellite users and a single cloud server. Simulation results indicate
that the wavelet backpropagation network can predict video traffic precisely. The
performance of the predictive backpressure is simulated, and results demonstrate
that the prediction information based resource allocation can reduce the queue
length and delay of the queueing system.
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Chapter 9
Introduction of Cooperative
Computation and Caching

Abstract As discussed in Chap. 1, the allocated resource can be divided into
communication resource, which includes channels and bandwidth, and computing
resource, such as memory and processing power. In the two parts above, we
have introduced some cooperation mechanisms for heterogeneous communica-
tion resource. Then this part will focus on cooperative computing and caching
mechanisms for exploding computation-intensive and rich-media applications and
on-demand services in 5G/6G.

Keywords 6G · Heterogeneous Networks · Cooperative Computation ·
Cooperative Caching

As discussed in Chap. 1, the allocated resource can be divided into communication
resource, which includes channels and bandwidth, and computing resource, such as
memory and processing power. In the two parts above, we have introduced some
cooperation mechanisms for heterogeneous communication resource. Then this
part will focus on cooperative computing and caching mechanisms for exploding
computation-intensive and rich-media applications and on-demand services in
5G/6G.

The tremendous increase of computation-heavy applications has posed great
challenges in terms of enhanced service coverage and high-speed data processing. In
response, edge computing and caching have been expected as efficient approaches
to support low-latency and on-demand services, which have significant impacts
on the developments of heterogenous networks. To be specific, mobile edge
computing (MEC) is a promising paradigm that brings computing resources to
mobile devices at the network edge, which allows applications and contents to
be processed quickly by edge servers instead of remote cloud servers to meet the
requirements of mobile users via computation offloading. Similarly, vehicular edge
computing (VEC) enables task execution and analysis in close proximity to the data
sources, which eases the burden of backhaul links, and reduces the response latency
drastically compared with vehicular cloud computing. On the other hand, distributed
content caching is regarded as one of the most effective techniques to alleviate
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the transmission delay and improve the quality and experience of multimedia
services through caching and forwarding contents at the edge of networks. Aiming
at the realizing ultra-reliable and low-latency services through edge intelligence in
heterogeneous networks, we introduce four cooperative computation and caching
mechanisms in this chapter.

(1) Hierarchical edge-cloud computing: In a fog and cloud computing system
operated by one cloud computing service provider (CCP) and multiple fog
computing service providers (FCPs), a computing resource market can be con-
sidered, in which the CCP shares its cloud computing resource among FCPs and
itself to serve users with computational tasks. To facilitate the resource trading
between the CCP and FCPs, the first part proposes a Stackelberg differential
game based resource sharing mechanism. In this mechanism, performance
discrepancy is introduced as a penalty factor to denote the mismatch between
the resource supply and demand, which will encourage all computing providers
(CPs) to make their trading decisions that can truthfully reflect their resource
capacity and requirements. In addition, an evolutionary game based replicator
dynamics is established to analyze the users’ service selection among CPs.
Based on the established hierarchical game framework, we also investigate the
interactions between the user selection and computing resource sharing.

(2) Caching resource allocation: The second part investigates a small-cell based
caching system composed of one mobile network operator (MNO) and multiple
video service providers (VSPs). Considering different video popularities and
mobile users’ (MUs’) preferences of VSPs, we propose a caching mechanism
based on double auction, which can encourage both the MNO and VSPs
to truthfully report their acceptances and requirements of caching resource,
respectively. Moreover, the proposed caching mechanism ensures the efficient
operation of market by maximizing the social welfare.

(3) Priority-aware computational resource allocation: The third part investigates the
priority-aware task offloading mechanism in vehicular fog computing based on
deep reinforcement learning (DRL), in which vehicles are incentivized to share
their idle computing resource by dynamic pricing, which comprehensively
considers the mobility of vehicles, the task priority, and the service availability
of vehicles.

(4) Hybrid decision based DRL approach for energy-aware computation offloading:
Most current reinforcement learning (RL) or DRL based resource allocation
approaches were modeled in a discrete action space, which restricts the
optimization of offloading decisions in a limited action space. Such model
assumption is unreasonable in practice, where the action space of offloading
decision is often continuous-discrete hybrid. To be specific, in a task offloading
enabled 6G network, the strategies of which node should be selected to
implement traffic/computation offloading or caching constitute a discrete action
space. On the other hand, the possible resource volume should be provided by
the selected node for offloading is a continuous value usually. Such resource
allocation problem with continuous-discrete hybrid decision spaces tends to be
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extremely complex, especially when time-varying tasks, energy harvesting and
security issues are also considered. To solve these problems above, the fourth
part focuses on the hybrid decision of computation offloading in 6G networks
based on DRL, in which the energy harvesting enabled devices can offload their
computational tasks to edge computing servers. The sever selection problem
is modeled in a discrete action space, and meanwhile the decision spaces of
offloading ratio and local computation capacity are continuous. To validate
the efficiency and superiority of our proposed hybrid-action-critic (Hybrid-
AC) based computation offloading approach, we also test the average rewards
received and execution time, comparing with deep Q-learning based offloading
(DQLO), server execution and device execution mechanisms.

Experimental results validate that the mechanisms above have good performance
of latency and resource efficiency, and effectively guarantee differentiated quality
and experience of multimedia services.



Chapter 10
QoS-Aware Computational Resource
Allocation

Abstract Recently, the boosting growth of computation-heavy applications raises
great challenges for the Fifth Generation (5G) and future wireless networks. As
responding, the hybrid edge and cloud computing (ECC) system has been expected
as a promising solution to handle the increasing computational applications with
low-latency and on-demand services of computation offloading, which requires new
computing resource sharing and access control technology paradigms. This work
establishes a software-defined networking (SDN) based architecture for edge/cloud
computing services in 5G heterogeneous networks (HetNets), which can support
efficient and on-demand computing resource management to optimize resource
utilization and satisfy the time-varying computational tasks uploaded by user
devices. In addition, resulting from the information incompleteness, we design
an evolutionary game based service selection for users, which can model the
replicator dynamics of service subscription. Based on this dynamic access model, a
Stackelberg differential game based cloud computing resource sharing mechanism
is proposed to facilitate the resource trading between the cloud computing service
provider (CCP) and different edge computing service providers (ECPs). Then we
derive the optimal pricing and allocation strategies of cloud computing resource
based on the replicator dynamics of users’ service selection. These strategies can
promise the maximum integral utilities to all computing service providers (CPs),
meanwhile the user distribution can reach the evolutionary stable state at this
Stackelberg equilibrium. Furthermore, simulation results validate the performance
of the designed resource sharing mechanism, and reveal the convergence and
equilibrium states of user selection, and computing resource pricing and allocation.

Keywords Edge/Cloud computing · Software-defined Networking (SDN) ·
Resource Pricing and Allocation · Evolutionary Game · Stackelberg Differential
Game
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10.1 Introduction

Recently, computation-heavy applications are experiencing a dramatic increasing
over the Fifth Generation (5G) and future wireless networks. There is evidence
that such applications, including mining process for Proof-of-Work (PoW) in
blockchain, interactive gaming, virtual reality, video services, etc., have become
premier drivers of the exponential computing task growth [1–3]. To handle such
increasing computing requirements, hybrid edge and cloud computing (ECC)
systems have been expected to provide low-latency and on-demand computing
services to users [4–6]. In ECC systems, cloud computing, as the traditional solution
of computation offloading for user devices, is usually implemented at cloud nodes
physically located far from users, which results in a long latency service response.
Aiming at this problem, edge computing has been proposed as the complement
of cloud computing by enabling users to upload computational tasks to the edge
of networks [7, 8], which can eliminate the latency and enhance the reliability of
services. However, with the growing amount of computational task requirements,
computational power limited edge servers might be overwhelmed with severe
performance degradation. A feasible solution for this problem is forwarding these
tasks at edge nodes to the remote cloud center [9, 10], which can be considered
as computation offloading between edge computing service providers (ECPs) and
the cloud computing service provider (CCP). Therefore, to achieve the optimal and
stable performance of CCP systems, an efficient cloud computing resource sharing
mechanism plays an important role resulting from the constrained resource equipped
by the CCP and time-varying user requirements among the CCP system. In addition,
such mechanism is more challenging when the dynamic service subscription of
users is taken into account [11]. This work will establish a hybrid ECC system, in
which users can upload their computational tasks to nearby ECPs or the remote CCP
dynamically. In addition, by considering the dynamic service subscription of users
among the CCP and ECPs, this work will focus on the computing resource sharing
and computation offloading mechanism design in the ECC system to realize an effi-
cient utilization of computing resource and satisfy the service requirements of users.

As mentioned previously, the mobility and time varying service selection of users
may bring difficulties to efficient resource sharing mechanism designs. In addition,
there always exist bidirectional data interactions, including service subscription,
task uploading, service response, etc., between end users and computing servers
located at either the CCP or ECPs in the ECC system. These frequent interactions
may lead to congestions at different computing providers (CPs) [12]. To solve these
problems, an appropriate network architecture is necessary to realize an effective
management of the hybrid ECC system. In recent years, software-defined network-
ing (SDN) has been considered as an advanced network architecture to achieve
flexible resource management and system performance control [13, 14], which can
mitigate challenges above. Moreover, taking advantage of the available and accurate
information of global system status collected by the SDN controller, the system can
make optimal decisions to improve resource utilization and service quality [15].
On the other hand, latency problems, fault and Disruption tolerance, and scalability
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issues brought by the SDN-based fully centralized control architecture can be well
solved by the integrated cloud and edge computing mechanism. Therefore, in this
work, an SDN-based architecture will be established for computing resource sharing
and computation offloading in the ECC system. With a centralized controller, SDN
will help CPs to dynamically adjust the resource sharing and computation offloading
strategies, which can match time-varying demands of users by observing their
dynamic service selection.

Considering that the SDN-based fully centralized control architecture established
in Sect. 10.3 will suffer from latency problems, fault and Disruption tolerance, and
scalability issues, this section will introduce an ECC system to realize

Main contributions of this part are summarized as follows.

1. We establish an SDN-based architecture for computing resource sharing in
the ECC system. Taking advantage of SDN controllers which separate the
distributed infrastructure and resource management, the dynamic optimal pricing
and allocation strategies can be obtained.

2. We design a Stackelberg differential game based cloud computing resource
sharing, which determines the optimal resource pricing and allocation/request
strategies dynamically. Then an open-loop Stackelberg equilibrium is derived as
the optimal solution. Comparing with traditional static strategies, the proposed
mechanism can achieve higher integral utilities in a time horizon and faster
convergence speed of decision making.

3. We propose a hierarchical dynamic game framework composed of evolutionary
game in the user layer and Stackelberg differential game in the edge and
cloud layer, which can incentive the cooperation of cloud computing resource
sharing. Different from the traditional separated control outside the user layer,
this work considers the dynamic service selections of users among edge and
cloud resource. Based on this consideration, the user service requirements can be
satisfied as well as the edge/cloud computing resource can be utilized efficiently.

4. We analyze the performance of the designed computing resource sharing mech-
anism based on the hierarchical dynamic game. Specifically, the existence and
uniqueness of equilibrium of user selections, as well as their evolutionary stable
states, are analyzed. In addition, the optimal dynamic pricing and allocation of
cloud computing resource are derived based on the replicator dynamics of users’
service selection. Furthermore, simulation results validate the performance of
the designed resource sharing mechanism, and reveal the convergence and stable
states of user selection, resource pricing and resource allocation.

The roadmap of this thesis is as follows. In Sect. 10.2, we revisit the related
works. The SDN-based architecture for the ECC system is established in Sect. 10.3.
Section 10.4 presents the system model and proposed hierarchical game framework.
An evolutionary game for service selection of user devices is designed in Sect. 10.5,
and the Stackelberg differential game based computing resource pricing and
allocation schemes are proposed in Sect. 10.6. Simulations are shown in Sect. 10.7,
and conclusions are drawn in Sect. 10.8.
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10.2 Related Works

For the integrated ECC system, the computation offloading mechanism plays a
crucial role in improving resource utilization and service quality. Such computation
offloading involves two aspects. Specifically, in the aspect of users, both the
CCP and ECPs can offload users’ computational tasks with different process-
ing latency and transfer latency. On the other hand, resulting from the limited
computational power equipped, ECPs are not qualified for providing services of
heavy-computation tasks processing. Then ECPs have to forward some of these
tasks to the remote CCP, which has powerful and dedicated computing resource
and can provide services on demand. Such process above can be also considered
as computation offloading between the CCP and ECPs. According to such two-
layered resource sharing among different CPs and users, how to allocate cloud
computing resource among ECPs and users selecting the CCP will influence the
resource utilization and service quality significantly.

Driven by the supply and demand of computing resource among the CCP, ECPs
and users, the resource trading can be formed and facilitated, which needs to
satisfy the demands of users selecting different CPs, and meanwhile maximize
the utility of each CP. For these purposes, many researches have focused on
effect and efficient resource allocation and sharing mechanisms in edge/cloud
systems, by introducing different economic models based on auction [16, 17],
contract [18, 19], Stackelberg game [20–22], etc.. Among these studies, auction
and contract based trading mechanisms were designed to motivate participants
to report their service requirements or capacities truthfully, which can deal with
trustworthiness and information asymmetric issues in the system. On the other hand,
Stackelberg game provides a suitable framework to model the interactions of trading
strategies made in supply and demand sides, including resource pricing, requests
and proving for communications [23], storage [24], energy [25], etc., which can
facilitate the resource trading efficiently and dynamically. In [20], a multi-leader
multi-follower Stackelberg game was studied to provide cost-effective migrations
of data centers in edge-cloud environment. To optimize resource allocation of all
cloud and fog computing nodes, a Stackelberg game was formulated in [21], in
which fog computing relied on a set of low-power fog nodes that were located
close to the end users to offload the services originally targeting at cloud centers.
A two-stage Stackelberg game was introduced into the blockchain consensus
process in order to incentive the cooperation between the edge/cloud providers and
the miners in a PoW-based blockchain network [22]. Similarly, in some current
studies, Stackelberg game frameworks were also formulated to model the interaction
between the edge/cloud nodes and users [26, 27]. However, all these studies above
only considered the computing resource trading between users and CPs, or between
the CCP and ECPs, while interactions and influences among the three levels were
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hardly investigated. In fact, users’ service subscription will impact computation
offloading between the CCP and ECPs. In addition, computing service qualities
received by users selecting different CPs will vary with different resource sharing
strategies made by CPs. Then users will change their selection strategies for better
services, considering that users are rational. It is difficult to model and analyze these
interactions above, since that the strategies made by the three parties will impact and
be impacted by each other. To solve such interactive issues, this work will establish
an evolutionary game based model to analyze the users’ dynamic service selection
among CPs. In addition, we will propose a Stackelberg differential game based
cloud computing resource sharing mechanism, which will dynamically determine
the optimal resource pricing and allocation/request strategies for the CCP and ECPs.
In this Stackelberg differential game, the differential equation is introduced based
on the replicator dynamics of user selections, which can establish the connection
between evolutionary game operated among users and Stackelberg differential game
operated among CPs. According to such hierarchical control and optimization,
computing resource utilization and user service quality can be both improved.

As mentioned previously, dynamic user selections will bring challenges to the
optimization of resource sharing. Such joint optimization for users and hetero-
geneous CPs can be implemented and programmed efficiently by an SDN-based
architecture. The SDN-based architecture design for the ECC systems has attracted
researchers’ great attention, especially in the 5G heterogeneous environment and
various Internet of Things (IoT) applications [28–30]. To realize efficient and
secure resource management, data processing and access control, different SDN-
based architectures have been investigated. In [31], authors introduced a tunnel-less
SDN scheme for scalable realization of virtual tenant networks across the 5G
heterogeneous infrastructure, which could support migrations of software instances
among geo-distributed computing resources. To meet requirements of various
applications and improve the end-to-end system performance efficiently, a novel
integrated framework including SDN, computing, and caching was designed in [32].
In [33], the cooperation among edge computing nodes was investigated, and their
interactions were realized by establishing an SDN related mechanism. An SDN-
based control scheme was designed in [34] for a multi-edge-cloud environment
involves huge data migrations to realize an efficient traffic flow scheduling. In addi-
tion, different SDN-based distributed and layered network architectures were also
investigated to operate edge/cloud computing systems with blockchain techniques,
which can deal with problems brought by limited bandwidth, high latency, large
volume of data, and real-time analysis requirements [35, 36]. In summary, leverag-
ing the SDN-based architecture, flexible management of heterogonous resource and
optimal control of system performance can be implemented to support computation-
heavy applications. Therefore, this work will design an SDN-based architecture
to optimize the computing resource utilization by considering the dynamic users’
service subscription.
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10.3 SDN Architecture Design for Edge/Cloud Computing
Systems

This section will propose a model of layered edge/cloud computing service pro-
viding system which takes advantage of SDN paradigms, and show that how to
implement such cross-layer computing service for users in the designed SDN-
based architecture in detail. The SDN-based architecture, which consists of three
levels, i.e., the infrastructure plane, control plane and management plane, is
established based on the infrastructure in 5G wireless heterogeneous networks
(HetNets), as shown in Fig. 10.1. According to such SDN-based management, CPs
will provide edge and cloud computing services to users. In this architecture, the
cloud computing center and edge computing nodes are operated by the CCP and
different ECPs, respectively. These CPs constitute the infrastructure plane and
take charge of providing computing services to different types of user devices. In

Fig. 10.1 Architecture of SDN-based resource pricing, sharing and user scheduling in an ECC
system
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addition, we consider a user layer outside the SDN architecture, in which user
devices such as mobile phones, tablets, etc., can receive computing services by
subscribing to different CPs, according to their computational tasks’ requirements.
Such architecture can realize a dynamic and real-time information collection of task
requirements and system workload, and decision making of computation offloading.
Next, we will design the function and operation of the three planes in order to
satisfy the computing requirements of users, and meanwhile manage the computing
resource sharing and providing efficiently.

10.3.1 Infrastructure Plane

In the infrastructure plane, the CCP and ECPs provide remote and edge computing
services for users, respectively, who can access these CCP and ECPs via edge
nodes, such as wireless access points, radio towers, and macro-cell base station
in 5G HetNets. In addition, surveillance cameras and servers at the edge of Radio
Access Networks (RANs) can be also operated as edge servers to provide ubiquitous
computing services. In current designed mobile computing systems, edge nodes
can connect to different ECPs through edge gateways and Device-to-Device (D2D)
communication without effecting the backhaul network [12]. By subscribing to
these ECPs, users can receive fast response with respect to computing services.
Alternatively, users can also select the remote CCP, who usually possesses richer
computational power to provide higher-speed computing services than ECPs.

Considering the limited computational power of ECPs, the CCP can share parts
of its computational power with ECPs through wireline connections between the
edge gateways and cloud gateways. Resulting from the dynamic service selection
of users, how to allocate the cloud computing resource among ECPs and users
selecting the CCP will influence the efficiency of ECC system. Therefore, an
efficient and dynamic control on computing sharing between the CCP and ECPs
plays an important role on optimizing the resource utilization and satisfying the
resource requirements of users with fast response.

10.3.2 Control Plane

As shown in Fig. 10.1, the SDN-based architecture separates computing resource
management from the infrastructure, which forms a hierarchical game based market
of cloud computing resource in the control plane. In this plane, information collec-
tion of users’ subscriptions and strategy distribution for CPs in the infrastructure
plane will be implemented through the data information interaction between the
infrastructure plane and control plane.
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10.3.2.1 Information Collection

Through the controller of request analysis, the control plane collects the information
of users’ subscriptions among different CPs, as well as the local computational
power of each CP, and then sends such received information to the management
plane in real time. Specifically, the controllers of request analysis and access control
are able to communicate with the CCP and ECPs through access points, and then
call for the time-varying number of users selecting the corresponding CP.

10.3.2.2 Strategy Distribution

The control plane receives pricing and request strategies of cloud computing
resource made by the upper management plane, and then distributes these strategies
to the CCP and ECPs through the controller of resource allocation. In addition, the
access controller and core controller are responsible for resource sharing of cloud
resource and access control between edge gateways and cloud gateways, i.e., setting
approach network paths between gateways, managing computation offloading and
so on.

10.3.3 Management Plane

After receiving the information of users’ subscription and computational power
equipped at each CP, the optimal pricing and request strategies of cloud resource
will be determined at the management plane. To be specific, the management will
help the CCP to make decisions on dynamic resource pricing, meanwhile help
ECPs to determine how much computational power should be requested. Then
these decisions will be returned back to the control plane, and then guide the cloud
computing resource sharing between the CCP and ECPs. Such service response
above can be implemented fast considering the wire connections between SDN
controllers and edge and cloud gateways, and the powerful processing capacities
of SDN servers.

10.4 System Model and Hierarchical Game Framework

Considering that the SDN-based fully centralized control architecture established in
Sect. 10.3 will suffer from latency problems, scalability issues, etc., this section will
introduce a hierarchical game based computation offloading mechanism to realize
real-time and latency-sensitive services close to users.
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Fig. 10.2 Hierarchical game based resource pricing and sharing in ECC systems

10.4.1 System Model

Consider an ECC system with a finite set N = {1, 2, · · · , N} ECPs overlaying with
one remote CCP and providing edge computing service to user devices, including
mobile phones, wearable devices, tablets, etc., as shown in Fig. 10.2. In this work,
we consider that the CCP and ECPs can be operated by the mobile network operators
(MNOs) or provide the computing service as third parties. These user devices can
access and send computational tasks to different ECPs by communicating with edge
access points, such as intelligent edge nodes, radio towers, etc., which can upload
these computational tasks or service requests to ECPs through edge gateways. In
addition, to fulfil some high-complex computational tasks, users can also request
the cloud computing resource through base stations and edge access points, which
will upload their computational tasks to the CCP. Accordingly, the CCP and ECPs
will respond to these computing requests on demand. As compensation, each user
needs to pay the CCP or ECPs for accessing fee. Denote pn as the price charged by
ECP n (n ∈ N ) and pc as the price charged by the CCP, which are fixed access
fees per device per unit of time paid by users, considering current charging models
set by mobile service operators.1

1 Price pn and pc can be set by the MNO or the third-party service providers, depending on who
operate these CCP and ECPs.
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In this system, ECPs, performing as light-weight computing servers, might be
deployed at base stations, wireless access points, etc., and then providing computing
services with shortened latency. In addition, the CCP, which can promise powerful
and stationary computing services, connects to the N ECPs via cloud gateways
in a wireline manner. When ECPs cannot fulfill the received computational tasks
under their constrained computing resource, they have to forward some part of
computational tasks to the remote CCP through wireline backhaul links. Such
computation offloading means that ECPs needs to request the CCP for additional
computational power. For the shared computing resource and possible energy cost
resulting from resource allocation and information exchange for the CCP, ECPs
need to pay the CCP with uniform price p in monetized payment unit computational
power per unit time. In this work, p is a function of time and can be denoted by
p (t). Once announced by the CCP, p (t) can be observed by all ECPs in the system
through the SDN architecture.

After observing price p (t), ECP n (n ∈ N ) decides to request rn (t) ∈
[0, 1) proportion of CCPs computational power2 during a continuous observation
period [0, T ]. Then the computing resource allocation state of the system can be
described by vector r = [r1, r2, · · · , rN ]T . Let rc (t) denote the current remaining
computational power level of the CCP at time t . Then we have

∑N
n=1 rn (t)+rc (t) =

1 for t ∈ [0, T ]. In this resource transaction between the CCP and ECPs, the CCP,
as the computing resource provider, needs to optimize unit price p (t) to make
its resource bring into maximal efficacy; on the other hand, the ECPs, who are
the resource receivers and buyers, will make the optimal decision on how many
resources to buy to create a tradeoff between its quality of service and cost.

Consider that the local computational power of ECP n is Rn for all n ∈ N , the
total computational power of CCP is Rc (Rc > Rn, ∀n ∈ N ), and the number of all
user devices in the system is denoted by K . In addition, let kn (t) and kc (t) be the
numbers of user devices subscribing to ECP n and the CCP at time t , respectively.
Then xn (t) = kn (t)/K (xn ∈ [0, 1]) and xc (t) = kc (t) /K represent the population
share of ECP n and the CCP accordingly, and we have

∑N
n=1 xn (t) + xc (t) = 13

Based on these definitions above, the computational power allocated to each user
selecting ECP n and the CCP can be calculated as

ωn (x, r) = Rn + Rcrn (t)
Kxn (t)

, n ∈ N , (10.1a)

ωc (x, r) =
Rc

(
1−∑N

n=1 rn (t)

)

Kxc (t)
, (10.1b)

2 In this work, the computational power is considered as the computing frequency or speed, which
can be measured by the computing times per unit time. In blockchain applications, the unit of
computational power can be defined as H/s.
3 In this work, we only consider the users having the requirement of uploading their computational
tasks to the CCP or ECPs. Therefore, there exist at least one computing service provider to be
selected by users.
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respectively, where vector x = [x1, x2, · · · , xN, xc]T is the population distribution
state of the ECC system.

10.4.2 Hierarchical Game Framework

Based on the computing resource market model above, the service selection of user
devices, pricing strategy of the CCP and computational power requests of ECPs are
time-varying and interact with each other. To be specific, if too many users select
the same CP, the received computational power for each of these users will decrease
according to (10.1). Then these users tend to leave to other CPs with high average
computational power. In addition, CPs (including the CCP and ECPs) with large
number of user devices will expect to obtain much computational power to satisfy
the computing requirements from accessing user devices. However, such resource
request behavior also depends on and will further influence the computing resource
price decided by the CCP. To model interactions among users, ECPs and the CCP
analyzed above, this work designs a hierarchical dynamic game based scheme to
improve the computing service quality and facilitate the computing resource sharing
among CPs in the ECC system.

There are two levels in the hierarchical dynamic game designed for the com-
puting service selection, pricing and sharing system, i.e., the user level and the
computing resource level. In the user level, the behavior of users’ dynamic service
selection is formulated and analyzed through an evolutionary game model. Then
to model the computing service providing and requirement between the CCP and
ECPs, a Stackelberg differential game will be designed to optimize the pricing and
sharing strategies for the limited computational power. Such hierarchical dynamic
game framework is shown in Fig. 10.2.

10.4.2.1 Evolutionary Game in User Level

According to access price pc / pn released by the CCP or different ECPs, as well as
the received computational power, each user makes its computing service selection
among these CPs to improve its utility. For user devices, the access prices are fixed
and stay the same over time. On the other hand, one can notice that the received
computational power for users is time varying, which depends not only on the
number of user devices accessing the same CP currently, but also the dynamic com-
puting resource sharing of CCP among different CPs. Therefore, without complete
information, users can hardly make the optimized service selection globally, i.e.,
among all CPs and over all time duration. As a response, each user device will learn
and adapt its selection strategy gradually. To model this learning and adaptation
process, an evolutionary game can be designed to describe and analyze the dynamic



210 10 QoS-Aware Computational Resource Allocation

user behavior. Through replicator dynamics, all user devices in the ECC system will
reach the same individual utility at the equilibrium [37, 38].

10.4.2.2 Stackelberg Differential Game in Resource Level

To respond to users’ computational task requests on demand, computational power
limited ECPs need to buy more computing resource from the CCP. In addition, to
compensate the potential loss of accessing users and cost resulting from resource
sharing, the CCP will charge corresponding ECP with time-varying unit price p (t)
for the provided computational power. Such pricing strategy is dynamic according
to the dynamic computational power sharing/requests and number of accessing
user devices at the CCP. Accordingly, given unit price p (t), ECPs control their
resource requests dynamically to maximize their own utilities. To analyze such
dynamic computing resource pricing of CCP and dynamic resource requests of
ECPs, this work establishes a non-cooperate Stackelberg differential game, in the
two levels of which, all CPs optimize their own strategies to receive maximized
utilities. In this Stackelberg game, the CCP performs as the leader and ECPs are
followers. These players in the computing resource level makes their own optimal
decisions dynamically according to the time-varying service selection decisions of
user devices.

10.5 Evolutionary Game for Service Selection of User
Devices

In the ECC system, online users with heavy computational tasks will compete for
the limited computing resource by selecting and accessing different CPs. Initially,
every user selects a candidate CP randomly or by experience. Then to achieve
a better service quality, i.e., large computational power and/or low access price,
these users will adapt their selection decisions periodically based on the dynamic
received computational power, access price, and the population distribution of all
users among different CPs. During this adaptation process, users cannot optimize
their selection strategies globally, resulting from the asymmetry of information.
Therefore, to improve their utilities, users will learn by imitating those selection
strategies with high utilities gradually.

Evolutionary game can be expected as a suitable tool for modeling such learning
and imitating process. Thus this section will first formulate the evolutionary game
framework and evolutionary strategy adaptation for user selection dynamics. Then
the evolutionary equilibrium and evolutionary stable state (ESS) will be investigated
for the established model.
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10.5.1 Evolutionary Game Based Service Selection

We first formulate the computing service selection of users among different CPs as
an evolutionary game model.

10.5.1.1 Players

The set of K user devices in the service area are the players of the evolutionary
game.

10.5.1.2 Strategy

S = {1, 2, · · · , n, · · · , N, c}, where n ∈ N indicates selecting ECP n for
computing service, and s = c means selecting the CCP directly.

10.5.1.3 Population States

The population shares of all ECPs constitute the population distribution state
denoted by vector x = [x1, x2, · · · , xN, xc]T ∈ X, where X represents the state
space which contains all possible population distributions.

10.5.1.4 Utility

Given computing resource allocation state r = [r1, r2, · · · , rN ]T and population
distribution state x = [x1, x2, · · · , xN, xc]T , the utility function of user device
selecting ECP n and the CCP are defined by

πn (n, x, r) = βωn (x, r)
pn

= β (Rn + Rcrn (t))
Kpnxn (t)

, (10.2a)

πc (c, x, r) = βωc (x, r)
pc

=
βRc

(
1−∑N

n=1 rn (t)

)

Kpcxc (t)
, (10.2b)

respectively, β > 0 is a constant denoting the mapping factor.

10.5.1.5 Replicator Dynamic

The replicator dynamic reflects the evolutionary behavior of the population among
different strategies, i.e., selecting different CPs over time. In this work, we introduce
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the definition in [37, 39, 40], and then give the replicator dynamic as follows,

ẋn (t) = δxn (t) [π (n, x (t) , r (t))− π (x (t) , x (t) , r (t))] , n ∈ N ; (10.3a)

ẋc (t) = δxc (t) [π (c, x (t) , r (t))− π (x (t) , x (t) , r (t))] , (10.3b)

with initial population distribution state x (0) = x0 ∈ X (∀n ∈ S ), where constant
δ > 0 is the learning rate of the population which controls the frequency of strategy
adaptation for service selection. Moreover, in (10.3),

π (x (t) , x (t) , r (t)) =
N∑
n=1

xn (t) π (n, x (t) , r (t))+ xc (t) π (c, x (t) , r (t))

(10.4)

is the expected utility of the population given population distribution state x (t) and
computing resource allocation state r (t). Based on the definitions above, we have

ẋn (t) =δβ
K

[
Rn + Rcrn (t)

pn

−xn (t)
⎛
⎝

N∑
m=1

Rm + Rcrm (t)
pm

+
Rc

(
1−∑N

m=1 rm (t)

)

pc

⎞
⎠
⎤
⎦ ,

(10.5a)

ẋc (t) =δβ
K

[(
Rc

pc
−

N∑
m=1

Rcrm (t)

pc

)

−xc (t)
⎛
⎝

N∑
m=1

Rm + Rcrm (t)
pm

+
Rc

(
1−∑N

m=1 rm (t)

)

pc

⎞
⎠
⎤
⎦ .

(10.5b)

According to this replicator dynamics defined above, the number of user devices
selecting ECP n will increase when π (n, x (t) , r (t)) > π (x (t) , x (t) , r (t)), and
vice versa.

10.5.2 Existence and Uniqueness of Equilibrium

According to the population replicator dynamic formulated in (10.3)–(10.5) and
the established hierarchical game framework, there exists interactions between
decisions of computing service selection made by users and computing resource
pricing/allocation controls of CPs. In other words, the evolution of population
distribution state defined in (10.3) is controlled by the pricing strategy of the CCP
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and resource requests of ECPs. Next, Theorem 10.1 presents that under these
controls, there exists the unique population distribution state x (t) that constitutes
the solution of (10.5).

Theorem 10.1 Consider a dynamic service selection system with a fixed popula-
tion. For the evolutionary behavior of users among different strategies defined as
(10.3) with initial condition x (0) = x0, if resource allocation vector r (t) is a
vector of measurable functions on [0,∞), then there exists the unique population
distribution state x (t) constitute the solution of (10.5) for all t ∈ [0,∞).
Proof Given population distribution state x (t) and computing resource allocation
state r (t), let fn (x (t) , r (t)) be the right side of (10.3), i.e.,

fn (x (t) , r (t)) � δxn (t) [π (n, x (t) , r (t))− π (x (t) , x (t) , r (t))] . (10.6)

Given a fixed t , the partial derivative of fn (x (t) , r (t)) with respect to x (t) is
continuous. In addition, if r (t) is measurable on [0,∞), then fn (x (t) , r (t)) is
also measurable for fixed xn (t) on the same interval. Furthermore, when given any
closed bounded set Δ ∈ X and closed interval [a, b] ∈ [0,∞), there always exists a
positive I to construct an integrable function [37, 41, 42] by

In (t) =
∣∣∣∣
δβ (Rn + Rcrn (t))

Kpn

∣∣∣∣+ I |Θ| , (10.7)

where

Θ = δβ
K

⎡
⎣
N∑
n=1

Rn + Rcrn (t)
pn

+
Rc

(
1−∑N

n=1 rn (t)
)

pc

⎤
⎦ . (10.8)

Obviously, it holds that |fn (x (t) , r (t))| ≤ In (t) and |∂fn (x (t) , r (t))/∂xn (t) | ≤
In (t), for all (x, t) ∈ Δ × [a, b]. Therefore, we have
|fn (x∗ (t) , r (t))− fn (x (t) , r (t))| = Θ |x∗ (t)− x (t)|. Denote Θm = max {Θ},
then we can further derive that

∣∣fn
(
x∗ (t) , r (t)

)− fn (x (t) , r (t))
∣∣ ≤ Θm

∣∣x∗ (t)− x (t)
∣∣ , (10.9)

which implies that fn (x (t) , r (t)) satisfies the global Lipschitz condition. Accord-
ing to the analysis above, we can conclude that the solution to this dynamical
population evolutionary system under controls of the CCP and ECPs is unique and
exists globally [37, 43–45]. This completes the proof of Theorem 10.1.
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10.5.3 Analysis of Evolutionary Stable State (ESS)

Consider a situation where a small proportion of user devices switching to a different
mixed strategy y 
= x. Then these user devices can be regarded as mutants of the
population. Denote the size of these mutants by a normalized value ε ∈ (0, 1). Then
the population state after mutation can be given by (1− ε) x+εy [37]. According to
definitions above, we first give the definition of Evolutionary Stable Strategy (ESS)
in Definition 10.1.

Definition 10.1 (Evolutionary Stable Strategy) A strategy x∗ is an ESS, if ∀x 
=
x∗, there exist some εx ∈ (0, 1)4 such that ∀ε ∈ (0, εx), the following inequality
holds.

π
(
x∗, (1− ε) x∗ + εx, r) > π (x, (1− ε) x∗ + εx, r) , (10.10)

where π (x∗, (1− ε) x∗ + εx, r) and π (x, (1− ε) x∗ + εx, r) are the expected
utilities of non-mutants and mutants, respectively.

Considering that the ESS is the best response to the evolutionary system, then an
ESS is also a Nash Equilibrium (NE). In addition, the evolutionary stability of ESS
provides a string refinement of the NE. Moreover, in the NE, a single user cannot
benefit through deviating from the equilibrium strategy. On the contrary, the ESS
can avoid the deviation behavior of a set of players. Next, we summarize that the
evolutionary service selection of users presents the globally asymptotical stability
converging to the ESS in Theorem 10.2.

Theorem 10.2 Consider a dynamic computing resource selection system with a
fixed population. For the evolutionary behavior of the population among different
strategies defined as (10.3) with any initial condition x (0) = x0 (xn, xc ∈ (0, 1),
∀n ∈ S ), the replicator dynamics for resource selection is globally asymptotically
stable and converges to the ESS of game.

Proof Considering x = [x1, x2, · · · , xN , xc]T and the replicator dynamic derived
in (10.5), we have ẋ = Πx + πo, where Π is a matrix with dimensional (N + 1)×
(N + 1), and

πo =
[
δβ (R1 + Rcr1 (t))

Kp1
, · · · , δβ (RN + RcrN (t))

KpN
,

δβRc

(
1−∑N

m=1 rm (t)

)

Kpc

⎤
⎦
T

.

(10.11)

4 εx represents the maximum proportion of users selecting mutant strategies that can be resisted by
the ESS. A large εx indicates that the ESS is robust.
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Therefore, the characteristic function of (10.5) can be derived as det (γ I−Π) =
(γ +Θ)N+1 = 0, where I is the identity matrix and Θ is determined by (10.8). In
addition, (10.8) implies that Θ > 0 for all resource allocation states r (t). Conse-
quently, Π always has N+1 negative eigenvalues, which means that the replicator
dynamics for service selection is globally asymptotically stable and converges to the
ESS of evolutionary game. This completes the proof of Theorem 10.2.

10.6 Stackelberg Differential Game Based Dynamic
Computational Power Pricing and Allocation

The CCP and ECPs need to make the optimal decisions on computational power
pricing and the amount of computational power requests, respectively, considering
the dynamic service selection of user devices x (t). For the CCP, decreasing
price p (t) might incentivize ECPs to request and buy more remote computing
resource, which will increase the sharing of CCP resource. However, the user
devices accessing the CCP might then leave for other ECPs since that the amount
of their received computational power decreases. On the other hand, for ECPs,
increasing the amount of computational power requests will improve the utilities
obtained by user devices according to (10.2), which will attract more users’ selection
according to the replicator dynamics as (10.3). Then further increasing number of
users assessing will reduce the utility obtained by each user device. To analyze this
dynamic and interactive decision making problem and then facilitate the computing
resource trading between hierarchical CPs, we formulate a Stackelberg differential
game, in which the CCP and ECPs perform as the leader and followers, respectively.
To search the optimal strategies, an open-loop Stackelberg equilibrium is analyzed
as the solution of the game.

10.6.1 Formulation of Stackelberg Differential Game

As shown in Fig. 10.2, the single CCP and N ECPs perform as the players of the
Stackelberg game. Specifically, the CCP, as the game leader, first announces its unit
computing resource price p (t), according to which ECPs, who are the followers of
the game, then make their responding decisions of resource requests rn (t). In this
work, we assume that both the CCP and ECPs are rational so that they can make
the best response to the system states and strategies of other players, and follow
the strategies made by SDN controllers. In addition, in the established Stackelberg
differential game, the CCP and ECPs are willing to optimize their integral utilities
over the time horizon [0, T ], but not the current utilities, by dynamically controlling
their pricing and request strategies, responsibility.
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As the followers of Stackelberg game, ECPs can optimize the amount of
requesting computational power when observing the unit price released by the CCP.
However, the time-varying strategies of all ECPs during the time horizon cannot be
observed by the CCP in the present moment. Therefore, this work considers that the
CCP is able to learn and predict the expected best response of ECPs and then make
its pricing strategy dynamically. Next, we formulate the maximization problems of
integral utility for both the CCP and ECPs.

10.6.1.1 Maximization of Integral Utility for ECPs

Consider that the utility of each ECP is composed of economic profits and penalty
of resource sharing performance. To be specific, by setting accessing price pn
(∀n ∈ N ), ECP n obtains the revenue from users selecting to it, which is depends
on the number of subscribed users, i.e., Kpnxn (t). In addition, when requesting
the CCP for proportion of could computational power rn (t), ECP n will be charged
Rcp (t) rn (t) by the CCP. Moreover, the costs resulting from the mismatch between
resource supply and demand are also taken account of by ECP n when optimizing
its resource request strategy rn (t), from the performance aspect. This mismatch can
be modeled as the distance between the current computational power requirements
from all subscribing user devices and the current total computing resource can
be provided after receiving the CCP’s sharing resource. In the follower layer of
Stackelberg game, each ECP is trying to maximize its own profits while minimize
the costs resulting from the mismatch between resource supply and demand.
Consequently, the instantaneous utility of ECP n can be given by

un (rn (t) , x (t) , p (t)) =η1pnNxn (t)− η2Rcp (t) rn (t)

− η3[Kϕxn (t)− (Rn + Rcrn (t))]2,
(10.12)

where ϕ > 0 is defined as a nominal value of accessible computing rate for all user
devices, and η1, η2 and η3 are positive weight factors. In addition, the third term
in (10.12) reflects the matching between the computing resource requirement and
available service capacity.

According to the instantaneous utility function (10.12), the ECP utility depends
not only on the received computational power shared by the CCP, but also the
population distribution of user devices among different CPs. Therefore, given the
pricing strategy of the CCP, the integral utility maximization problem for ECPs
can be established as an optimal control problem subject to the population state of
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evolutionary game operated in the user-level, which is given by

max
rn(t)

U int
n (rn (t) , x (t) , p (t))

=
∫ T

0
e−ρt [η1pnNxn (t)− η2Rcp (t) rn (t)

−η3[Kϕxn (t)− (Rn + Rcrn (t))]2
]
dt;

(10.13a)

s.t. ẋn (t) =δxn (t) [π (n, x (t) , r (t))

−π (x (t) , x (t) , r (t))] ,∀n ∈ N ,
(10.13b)

ẋc (t) =δxc (t) [π (n, x (t) , r (t))

−π (x (t) , x (t) , r (t))] , (10.13c)

x (0) = x0, (10.13d)

rn (t) ∈ R,∀n ∈ N . (10.13e)

In (10.13), ρ > 0 denotes the discount rate influencing the discount value of future
utilities.

10.6.1.2 Maximization of Integral Utility for CCP

Similarly, the CCP optimizes its pricing strategy to maximize the profits paid by
the subscribed users and the ECPs receiving the CCP’s computational power, while
minimize the costs resulting from the performance discrepancy. Then we have the
instantaneous utility of CCP as follows,

uc (p (t) , rc (t) , r (t)) =ξ1pcNxc (t)+ ξ2Rc
N∑
n=1

p (t) rn (t)

− ξ3
[
Kϕxc (t)− Rc

(
1−

N∑
n=1

rn (t)

)]2

,

(10.14)

where ξ1, ξ2 and ξ3 are positive weight factors. Therefore, the integral utility
maximization problem for the CCP can be also established as an optimal control
problem subject to the population state of evolutionary game operated in the user-
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level, which can be formulated as

max
p(t)

U int
c (p (t) , x (t) , r (t))

=
∫ T

0
e−ρt

[
ξ1pcNxc (t)+ ξ2Rc

N∑
n=1

p (t) rn (t)

−η3[Kϕxn (t)− (Rn + Rcrn (t))]2
]
dt;

(10.15a)

s.t. ẋn (t) =δxn (t) [π (n, x (t) , r (t))

−π (x (t) , x (t) , r (t))] ,∀n ∈ N ,
(10.15b)

ẋc (t) =δxc (t) [π (n, x (t) , r (t))

−π (x (t) , x (t) , r (t))] , (10.15c)

x (0) = x0, (10.15d)

p (t) ∈ R. (10.15e)

10.6.2 Open-Loop Stackelberg Equilibrium Solutions

In this part, we will analyze the open-loop solutions to the optimal computing
resource pricing and requesting problems established above in (10.15) and (10.13)
for the CCP and ECPs, respectively. For these optimization problems, if the CCP and
ECPs choose to commit their strategies from outset, their information structure can
be seen as an open-loop pattern, and their strategies become functions of the initial
state x0, r0 and time t , for both the CCP and ECPs. Considering the Stackelberg
differential game operation, it needs to search the optimal solution for each ECP
first for the given CCP’s pricing strategy, and then the CCP can make the decision
on the computing price based on solutions of resource request strategies. Next, we
will first analyze the optimal resource request problem for each ECP (follower) in a
finite time period [0, T ], and then the optimal pricing strategy for the CCP (leader)
will be obtained based on the ECPs’ strategies.

In a Stackelberg differential game, an open-loop Stackelberg equilibrium is
regarded as the optimal solution [46, 47]. So we first introduce the definitions of
optimal control strategies for the CCP and ECPs.

Definition 10.2 (Optimal Control Strategy) For the CCP, pricing strategy p∗ (t)
is optimal if the following inequality holds for all feasible control paths p (t) 
=
p∗ (t).

U int
c

(
p∗ (t) , x (t) , r (t)

) ≥ U int
c (p (t) , x (t) , r (t)) . (10.16)
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Similarly, for ECP n (∀n ∈ N ), the proportion of computational power request
r∗n (t) is optimal if inequality (10.17) holds for all feasible control paths rn (t) 
=
r∗n (t).

U int
n

(
r∗n (t) , x (t) , p (t)

) ≥ U int
n (rn (t) , x (t) , p (t)) . (10.17)

Based on the definition of the optimal control strategy, we give the definition of
open-loop Stackelberg game equilibrium in Definition 10.3.

Definition 10.3 (Open-Loop Stackelberg Equilibrium) Strategy profileΦ∗ (t) �
{p∗ (t) , r∗ (t)} constitutes an open-loop Stackelberg equilibrium if p∗ (t) and r∗ (t)
are the optimal control strategies for the CCP and ECPs, respectively, given others’
strategies.

10.6.2.1 Open-Loop Stackelberg Equilibrium of ECPs

In order to get equilibrium solutions of the optimization problem formulated in
(10.13), we need to establish the Hamiltonian system for each ECP. Then the
open-loop equilibrium solutions of optimization problem can be characterized as
the Pontryagin’s Maximum Principle, which is the necessary conditions to find
the candidate optimal strategies. First, we summarize the Pontryagin’s Maximum
Principle in Definition 10.4.

Definition 10.4 (Pontryagin’s Maximum Principle for ECPs) A set of controls{
r∗n (t)

}
constitutes an open-loop equilibrium to the optimization problem for-

mulated in (10.13), and x∗f (t) is the corresponding population distribution state
trajectory, if there exists a set of costate functions

Λn (t) = [λn1 (t) λn2 (t) · · · λnm (t) · · · λnN (t) λnc (t)] (10.18)

such that the following relations are satisfied.5

r∗n (t) = arg max
rn(t)

{
un
(
rn (t) , x∗ (t) , p (t)

)+Λn (t) ẋ∗ (t)
}
, (10.19a)

ẋ∗n (t) = δx∗n (t)
[
π
(
n, x∗ (t) , r∗ (t)

)− π (x∗ (t) , x∗ (t) , r∗ (t))] , (10.19b)

ẋ∗c (t) = δx∗c (t)
[
π
(
c, x∗ (t) , r∗ (t)

)− π (x∗ (t) , x∗ (t) , r∗ (t))] , (10.19c)

x∗ (0) = x∗0, (10.19d)

Λ̇n (t) = ρΛn (t)− ∂ [un (rn (t) , x (t) , p (t))+Λn (t) ẋ (t)]
∂x∗ (t)

. (10.19e)

5 Considering that rc (t) = 1−∑N
n=1 rn (t), then element λnc (t) inΛn (t) can be eliminated.
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In this system, the equilibrium solutions for ECPs are the solutions of the differ-
ential game. Therefore, these solutions also constitute the Stackelberg equilibrium
for ECPs. Then we first introduce the Hamiltonian system for each ECP as follows.
Based on the Pontryagin’s Maximum Principle, the Hamiltonian system of ECP n
can be given by

Hn (rn (t) , p (t) , x (t) ,Λn (t) , t)

�un (rn (t) , x (t) , p (t))+Λn (t) ẋ (t) ,
(10.20)

where costate function Λn (t) is a function associate with population state x (t),
and is defined by (10.19e). In addition, each element of costate function Λn (t),
i.e., Λnm (t), is the costate variable of ECP n associated with state xm. Based on the
Hamiltonian function defined in (10.20), the corresponding maximized Hamiltonian
function is defined as follows:

H ∗n (x (t) ,Λn (t) , t)

�max
rn(t)

{Hn (rn (t) , p (t) , x (t) ,Λn (t) , t) |rn (t) ∈ R } . (10.21)

Lemma 10.1 The optimal computational power rate solutions for ECP n ∈ N is

r∗n (t) = −
η2

2η3Rc
p (t)+ Kϕxn (t)− Rn

Rc
+ 1

2η3Rc

δβ

K
Λnqn (x) , (10.22)

which also constitutes an open-loop Stackelberg equilibrium for ECP n. In (10.22),
qn (x) is an N-dimension vector which is given by

qn (x) = 1

pn
in −

(
1

pn
− 1

pc

) [
x1 x2 · · · xN

]T
, (10.23)

where N-dimension vector in is a standard basis, i.e., its n-th element is 1 and other
elements are 0.

Proof According to the Pontryagin’s Maximum Principle for ECPs, the optimal
control strategy of optimization problem (10.13) must also maximize the corre-
sponding Hamiltonian function. Therefore, all candidates’ optimal strategies have
to satisfy the following necessary optimality conditions:

∂Hn (rn (t) , p (t) , x (t) ,Λn (t) , t)
∂rn (t)

= 0. (10.24)

Then plug (10.2) into (10.24), and the optimal computing resource request can
be deduced as

r∗n (t) = −
η2

2η3Rc
p (t)+ Kϕxn (t)− Rn

Rc
+ 1

2η3Rc

δβ

K
Λnqn (x) . (10.25)
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Furthermore, according to (10.19e), we can calculate all elements of Λn (t),
which can be given by

λ̇nm = λnm (ρ +Θ (r (t))) , m 
= n, (10.26a)

λ̇nn = λnn (ρ +Θ (r (t)))− η1pnK, (10.26b)

whereΘ (r (t)) is defined in (10.8). This completes the proof of Lemma 10.1.

According to the optimal solutions summarized in Lemma 10.1, we can observe
that the optimal computational power requests and allocation for ECPs is an
decreasing function of pricing p (t) determined by the CCP.

10.6.2.2 Open-Loop Stackelberg Equilibrium of CCP

Similarly, we can obtain the open-loop equilibrium solutions of (10.15) for the CCP
based on the dynamic optimal control. In particular, with the definition of optimal
strategy for the CCP as (10.16) in Definition 10.2, the open-loop equilibrium
solutions for the CCP can be characterized as the Pontryagin’s Maximum Principle
for CCP, as summarized in following Definition 10.5.

Definition 10.5 (Pontryagin’s Maximum Principle for CCP) A set of controls
{p∗ (t)} constitutes an open-loop equilibrium to the optimization problem for-
mulated in (10.15), and x∗ (t) is the corresponding population distribution state

trajectory, if there exist costate functions M (t) = [
μc1 (t) μc2 (t) · · · μcN (t)

]T
and Ψ (t) = [

Ψ 1 (t) Ψ 2 (t) · · · ΨN (t)
]T

such that the following relations are
satisfied.

p∗ (t) = arg max
ρ(t)

{Hc (p (t) , x (t) , r (t) ,Λ (t) ,M (t) ,Ψ (t))} , (10.27a)

ẋ∗n (t) = δx∗n (t)
[
π
(
n, x∗ (t) , r∗ (t)

)− π (x∗ (t) , x∗ (t) , r∗ (t))] , (10.27b)

ẋ∗c (t) = δx∗c (t)
[
π
(
c, x∗ (t) , r∗ (t)

)− π (x∗ (t) , x∗ (t) , r∗ (t))] , (10.27c)

x∗ (0) = x∗0, (10.27d)

Ṁ (t) = ρM (t)− ∂Hc (p (t) , x (t) , r (t) ,Λ (t) ,M (t) ,Ψ (t))
∂x∗ (t)

, (10.27e)

Ψ̇ n (t) = ρΨ n (t)− ∂Hc (p (t) , x (t) , r (t) ,Λ (t) ,M (t) ,Ψ (t))
∂Λn (t)

, (10.27f)
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where the Hamiltonian function of the CCP is given by

Hc (p (t) , x (t) , r (t) ,Λ (t) ,M (t) ,Ψ (t))

=ξ1pcKxc (t)+ ξ2Rcp (t)
N∑
n=1

rn (t)

−ξ3
[
Kϕxc (t)− Rc

(
1−

N∑
n=1

rn (t)

)]2

+
N∑
n=1

μcn (t) ẋn (t)+
N∑
n=1

(
N∑
m=1

θnm (t) λ̇nm (t)

)
,

(10.28)

Λ (t) = [Λ1 (t)Λ2 (t) · · ·ΛN (t)]T determined by (10.19e), M (t) =
[μc1 (t) μc2 (t) · · ·μcN (t)]T and Ψ (t) = [Ψ 1 (t)Ψ 2 (t) · · ·ΨN (t)]T , where
Ψ n (t) = [θn1 (t) θn2 (t) · · · θnm (t) · · · θnN (t)]T , are costate functions for the CCP.

By solving optimization problem (10.27a) based on Hamiltonian function
(10.28), we provide the optimal pricing strategy in Lemma 10.2

Lemma 10.2 The optimal computational power pricing solutions for the CCP is

p∗ (t) � fp (x (t) ,Λ (t) ,M (t) ,Ψ (t) , t) , (10.29)

where

fp (x (t) ,Λ (t) ,M (t) ,Λ (t) , t)

� 1

2NB (ξ2 + ξ3RcNB)

{
ξ2

N∑
n=1

An

+ 2ξ3NB

[
Kϕ

(
1−

N∑
n=1

xn

)
− Rc

(
1−

N∑
n=1

An

)]

+ δβB
K

N∑
n=1

μcn

[
− 1

pn
− xn

(
−

N∑
n=1

1

pn
+ N
pc

)]

+δβB
K

N∑
n=1

N∑
m=1

θnmλnm

(
−

N∑
n=1

1

pn
+ N
pc

)}
.

(10.30)

This optimal pricing p∗ (t) also constitutes an open-loop Stackelberg equilibrium
for the CCP.
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Proof According to Lemma 10.1, optimal response r∗n (t) of ECP n can be
expressed as

r∗n (t) = An (x (t))− Bp (x) , (10.31)

where

An (x (t) ,Λn (t)) = Kϕxn (t)− Rn
Rc

+ 1

2η3Rc

δβ

K
Λn (t) qn (x) , (10.32a)

B = η2

2η3Rc
. (10.32b)

As assumed previously, the CCP can learn and predict the optimal response r∗n (t)
of ECP n, ∀n ∈ N . Therefore, plugging (10.31) into the Hamiltonian function
of the CCP (10.28), then the Hamiltonian function of the CCP become a concave
function with respect to p (t). Thus the optimal pricing strategy p∗ (t) is unique for
the CCP, which has to satisfy the following necessary optimality conditions

∂Hc (p (t) , x (t) , r∗ (t) ,Λ (t) ,M (t) ,Ψ (t) , t)
∂p (t)

�∂Hc (p (t) , x (t) ,Λ (t) ,M (t) ,Ψ (t) , t)
∂p (t)

= 0.

(10.33)

Taking the first derivative of Hc (t) with respect to p (t) and then we have

(
2Nξ2B + 2ξ3RcN2B2

)
p∗ (t)

=ξ2
N∑
n=1

An + 2ξ3NB

[
Kϕ

(
1−

N∑
n=1

xn

)
− Rc

(
1−

N∑
n=1

An

)]

+δβB
K

N∑
n=1

μcn

[
− 1

pn
− xn

(
−

N∑
n=1

1

pn
+ N
pc

)]

+δβB
K

N∑
n=1

N∑
m=1

θnmλnm

(
−

N∑
n=1

1

pn
+ N
pc

)
.

(10.34)

Therefore, the optimal pricing strategy denoted by (10.29) and (10.30) can be
obtained.
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Furthermore, according to (10.27e) and (10.27f), we can calculate all elements
of M (t) and Ψ (t), and then we obtain

μ̇cn = μcn (ρ +Θ (r (t)))− ξ1pcK, ∀n ∈ N , (10.35a)

θ̇nm = θnmΘ (r (t)) , ∀n,m ∈ N , (10.35b)

whereΘ (r (t)) is defined through (10.8). This completes the proof of Lemma 10.2.

10.6.2.3 Open-Loop Stackelberg Equilibrium Solutions

According to the optimal resource pricing and allocation strategies described in
Lemmas 10.1 and 10.2, p∗ (t) and r∗n (n) (∀n ∈ N ) can be denoted by

p∗ (t) � fp (x (t) ,Λ (t) ,M (t) ,Ψ (t) , t) , (10.36a)

r∗n (t) � fr (x (t) ,Λ (t) ,M (t) ,Ψ (t) , t) , (10.36b)

r∗c (t) = 1−
N∑
n=1

r∗n (t). (10.36c)

Then substituting (10.36) into (10.2), (10.26), (10.35a) and (10.35b), and a
dynamic control system composed of population distribution state x (t) and all
costate variables Λn (t), M (t) and Ψ (t) can be provided as follows.

x∗ (t) � fx (x (t) ,Λ (t) ,M (t) ,Ψ (t) , t) , (10.37a)

Λ∗n (t) � fΛ,n (x (t) ,Λ (t) ,M (t) ,Ψ (t) , t) , (10.37b)

M∗ (t) � fM (x (t) ,Λ (t) ,M (t) ,Ψ (t) , t) , (10.37c)

Ψ ∗ (t) � fΨ (x (t) ,Λ (t) ,M (t) ,Ψ (t) , t) . (10.37d)

The dynamic control system formulated above is a typical two-point boundary
value problem (TPBVP) [48, 49]. By solving this problem, optimal controls x∗ (t),
Λ∗n (t), M∗ (t) and Ψ ∗ (t) can be obtained. Based on the optimal solutions of
TPBVP, the open-loop Stackelberg game equilibrium Φ∗ (t) � {p∗ (t) , r∗ (t)} can
be further derived.

10.7 Simulation Results

In this part, we will analyze the service selection behavior based on the evolutionary
game, and then use MATLAB2019b to evaluate the performance of proposed
computing resource pricing and allocation mechanisms based on the Stackelberg
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differential game. First of all, we introduce the scenario setup of the simulations. In
the following simulations, we assume a typical ECC system, in which there are a
single CCP and multiple ECPs who can access the computing resource of the CCP.
These CPs provide edge and cloud computing services to K = 100 user devices
randomly distributed within the coverage of an ECC system.

10.7.1 Evolution of Population Distribution

For the numerical analysis, we first consider the situation of two ECPs, i.e., ECP
1 and ECP 2. The local available computational power of the two ECPs are
set as R1 = 2 kH/s and R2 = 1 kH/s, and the fixed access prices of the two
ECPs are given by p1 = 0.3 and p2 = 0.2, respectively [37]. In addition,
the initial population distribution state is set as x0 = [x1 (t) , x2 (t) , xc (t)] =
[0.3, 0.3, 0.4], and the initial computing resource request state of ECPs is set as
r0 = [r1 (0) , r2 (0)] = [0, 0], which means that each ECP serves its users with its
own computing resource at the beginning of the time horizon. Consider different
sharable cloud computational power of the CCP, i.e., Rc = 5 kH/s indicating a
service quality with high-computational power andRc = 2 kH/s indicating a service
quality with low-computational power. Then the CCP fixes its access price pc
by selecting values in {0.5 > max {p1, p2} , 0.2 = min {p1, p2}}, which can reflect
different cost performance of CCP for users. Moreover, set the learning rate of users
as δ = 1.

Then we first investigate the dynamics of population distribution state and the
evolution process of service selection from initial state x0, which is subject to the
control of resource pricing and allocation strategies. Considering that the dynamic
change of population distribution indicates the service selection adaptation of users,
we record the population distribution state x (t) = [x1 (t) , x2 (t) , xc (t)] over time,
and the results of which are shown in Fig. 10.3. Results in Fig. 10.3 validate that the
proportion of users selecting every CP converges to an equilibrium state at which
there is no user willing to change its service selection strategy.

Then we analyze the influence of cloud computing capacity on user selection.
As presented in Fig. 10.3a, when Rc = 5 kH/s, the CCP setting a lower access
price (pc = 0.2) tends to attract more users to select its cloud resource directly,
meanwhile share less computing resource to ECPs, although it possesses a larger
computing capacity. On the contrary, when setting a rather high access price
(pc = 0.5), the CCP will share all of its computing resource to ECPs and then drive
its subscribed users away to ECPs. In this case, the utility of CCP mainly comes
from its sharing resource to ECPs. Then we analyze the resource selection evolution
trajectory when CCP is limited with computational power, i.e., Rc = 2 kH/s, which
are shown in Fig. 10.3b. In this case, one can notice that the proportion of users
selecting the CCP at equilibrium when pc = 0.2 is larger than that when pc = 0.5,
which reflects the fact that the lower price will attract more users. Moreover, results
in Fig. 10.3b also imply that when the CCP has limited computing resource, the
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Fig. 10.3 Population distribution state evolution in the ECC system versus different Rc and pc .
(a) Rc = 5. (b) Rc = 2
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optimal pricing strategy for the CCP is reserving its resource to serve users directly
by setting relatively higher unit price p (t). These results can reveal the interaction
and influence between the evolutionary game in the user layer and the Stackelberg
game in computing resource layer, and validate the rational user behaviors and
market rules.

We also test the population distribution dynamic when there are many ECPs in
the ECC system. In particular, consider there are N = 6 different ECPs selecting
the value of their computational power in {1, 2} (kH/s) and the value of access price
in {0.1, 0.2, 0.3}. For the CCP, set Rc = 10 kH/s and pc = 0.1. In addition, the
initial population distribution is set as x = [0.05, 0.1, 0.15, 0.05, 0.1, 0.15, 0.4].
Then we get the evolution of population distribution, cloud resource allocation and
user utilities, as shown in Fig. 10.4. As shown in Fig. 10.4a, one can observe that
the proportions of users selecting ECPs with the same Rn and pn simultaneously
converge to the same equilibrium from different initial distributions. Moreover,
results in Fig. 10.4a also present that the proportion of users selecting ECP 5 and
ECP 6 are the highest among all ECPs, which indicates that users are more willing
to select the ECPs with lower access price. Next, we investigate how the local
computing capacity and access price affect the cloud resource allocation in the ECC
system. As shown in Fig. 10.4b, ECP 5 and ECP 6 request and receive the most
cloud computing shares among the six ECPs, and ECP 1 and ECP 2 are allocated
the least. Combining the results in Fig. 10.4a, results in Fig. 10.4b indicate that ECPs
with more population shares tend to request and receive more computing resource
form the CCP, which can increase the utilities obtained by the users selecting these
ECPs, as formulated in (10.2), and meanwhile boost the utilities of both the CCP
and ECPs. Furthermore, results in Fig. 10.4c validate that through the replicator
dynamics, all user devices will reach the same individual utility at the equilibrium.

Figure 10.5 illustrates the influence of user learning rate δ on the convergence
speed of evolutionary game and Stackelberg differential game towards the equi-
librium. As defined in (10.3), learning rate δ controls the frequency of strategy
adaption of all users, which will further control the speed of convergence from initial
states towards equilibrium. Results shown in Fig. 10.5 validate that the convergence
speed of replicator dynamics grows with the learning rate increasing. In this part
of simulation, we also introduce a classic static Stackelberg equilibrium control
(SSEC) proposed in [50] and [51] to optimize the resource pricing and allocation
strategies. In SSEC, the CCP and ECPs make their decisions only based on the
users’ selection strategies, but without the considering of dynamic pricing and
allocation strategies among CPs. Then results in Fig. 10.5 indicate that the open-loop
Stackelberg equilibrium control (OLSEC) applied in this work can receive a faster
convergence speed than SSEC, resulting from the dynamic learning and prediction
of all CPs’ strategies.
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Fig. 10.4 Evolutions of
population distribution,
resource allocation and user
utilities versus different Rn
and pn when the number of
ECPs is N = 6. (a)
Population distribution xn, xc .
(b) Resource allocation rn, rc.
(c) User utilities πn, πc



10.7 Simulation Results 229

Fig. 10.5 The convergence time versus increasing learning rate δ and different Stackelberg game
equilibrium control schemes

10.7.2 Dynamic Pricing and Allocation of Computing
Resource

To validate the performance of proposed Stackelberg differential game based
resource pricing and allocation strategies, and investigate the impact of Rc and
pc on these strategies made in the computing resource level, we still consider
the situation where there are two ECPs in the ECC system. Set R1 = 2 kH/s,
R2 = 1 kH/s, p1 = 0.3 and p2 = 0.2, which are the same as the simulation
in Sect. 10.7.1. Let Rc select values in {5, 6, 7} (kH/s) and pc choose values in
{0.5 > max {p1, p2} , 0.2 = min {p1, p2}}.

By applying the evolutionary game based service selection and the Stackelberg
differential game based resource pricing and allocation, we obtain the unit price
of cloud computing resource and the proportion of could computing resource
remaining to the CCP, which are shown in Fig. 10.6a and b, respectively. In
Fig. 10.6a, results illustrate that the optimal price at equilibrium decreases with
increasing total computational power of CCP. Meanwhile, the proportion of cloud
computing resource remaining to the CCP at equilibrium increases with growing
Rc. In addition, results in Fig. 10.6a also indicate that with the same Rc, the optimal
price at equilibrium set by the CCP with lower access price pc is lower than that
with high pc. Combining the results in Fig. 10.6b, this trend implies that the utility
of CCP with lower access price pc can be optimized by remaining more cloud
computing, which will attract more users selecting the CCP, meanwhile setting a
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Fig. 10.6 Dynamic computing resource pricing and allocation in the ECC system versus different
Rc and pc. (a) Price p (t). (b) Resource reservation rc (t)

high pc to reduce the ECPs’ willingness of purchasing cloud computing resource.
In addition, results in Fig. 10.6 can also validate that the strategies of computing
resource pricing and allocation will converge to the Stackelberg equilibrium.
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10.7.3 Influence of Delay in Replicator Dynamics

Next, we study that how the population distribution states change with delay in
replicator dynamics. As defined in (10.2), the utilities of user devices obtained by
selecting different CPs are depends on the service selection strategies of all users
in the evolutionary game. However, the information of population distribution state
is always delayed resulting from the communication latency. Let τx ≥ 0 denote
the delay of population information. Then the delayed replicator dynamics based on
(10.3) can be given by

ẋn/c (t) =δxn/c (t − τx) [π (n/c, x (t − τx) , r (t))
−π (x (t) , x (t − τx) , r (t))] ,

(10.38)

where n ∈ N . Considering that delayed replicator dynamics (10.38) can be
rewritten as ẋ (t) = Ax (t − τx) + b, then its characteristic equation can be given
by Θe−γ τx + γ = 0, where Θ has been defined in (10.8). Here we introduce the
necessary and sufficient condition for the stability of delayed replicator dynamics
proposed in [52], which can be given by τx < π/2Θ. Therefore, the stable ESS can
be guaranteed with a small population delay. In this simulation, we set τx = 0.7
and τx = 1.7 to test different levels of population delay. Other parameters are set
as R1 = 2 kH/s, R2 = 1 kH/s, Rc = 2, p1 = 0.3, p2 = 0.2 and pc = 0.2. By
applying the delayed replicator dynamics, the proportions of users selecting the CCP
are shown in Fig. 10.7. Results in Fig. 10.7 validate that the population distribution
state can still converge to the equilibrium after dynamic fluctuation, when τx is
small. On the contrary, when τx is large, the equilibrium cannot be reached.

10.8 Conclusion

In this part, an SDN-based architecture has been established for edge and cloud com-
puting services in 5G wireless HetNets, which can support efficient and on-demand
computing resource management to optimize resource utilization and complete the
time-varying computational tasks uploaded by user devices. In addition, considering
the incompleteness of information, an evolutionary game based service selection
was designed for users, which can model users’ replicator dynamics of service
subscription when they request the CCP or ECPs for computing resource. To com-
plete these time-varying computational tasks from users, a Stackelberg differential
game based cloud computing resource sharing mechanism was proposed to facilitate
the resource trading between the CCP and different ECPs. Moreover, open-loop
Stackelberg equilibrium solutions for the CCP (leader) and ECPs (followers), i.e.,
the optimal resource pricing and allocation strategies, were derived and obtained,
which can promise the maximum integral utilities of the leader and followers over
the time horizon, respectively. Simulation results have validated the performance of
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Fig. 10.7 Proportions of users selecting the CCP under different population delays τx and access
price of CCP pc

the designed resource sharing mechanism, and revealed the convergence and stable
states of user selection, resource pricing, and resource allocation in the ECC system.
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Chapter 11
QoS-Aware Caching Resource Allocation

Abstract Recently, wireless streaming of on-demand videos of mobile users (MUs)
has become the major form of data traffic over cellular networks. As responding,
caching popular videos in the storage of small base stations (SBSs) has been
regarded as an efficient approach to reduce the transmission latency and alleviate
the data traffic loaded over backhaul channels. This work considers a small-cell
based caching market composed of one mobile network operator (MNO) and
multiple video service providers (VSPs). In this system, the MNO manages and
operates its SBSs, and assigns these SBSs’ storage to different VSPs, who have
caching requirements. However, videos have different popularities and MUs present
different preferences to these VSPs when they request videos. In addition, the
caching service brings different utilities to different VSPs, as well as that providing
caching service to different VSPs causes distinct costs to the MNO. Such privacy
information cannot be aware of among VSPs and the MNO. Therefore, to elicit this
hidden information, this chapter designs a double auction based caching mechanism,
which ensures the efficient operation of the market by maximizing the social
welfare, i.e., the gap between VSPs’ caching utilities and MNO’s caching costs.
Moreover, the chapter demonstrated economic properties of the designed caching
mechanism, which are also validated by simulation results.

Keywords Video Caching · Double Auction · Heterogeneous Networks ·
Economic Property · Information Hidden

11.1 Introduction

Recently, mobile data traffic is experiencing a dramatic increasing over cellular
networks. There is evidence that content distribution services, such as video on
demand (VoD), catch-up TV, internet video streaming, etc., have become premier
drivers of the exponential traffic growth [1–3]. A key feature of such type of
video services is asynchronous content reuse [4]. Specifically, a relatively small
number of popular video files provided by a certain part of video service providers
(VSPs) account for the most of data traffic, and are requested frequently by mobile
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users (MUs). To deal with this fact of highly redundant video demands from
MUs, caching techniques, e.g., storing video files in MUs’ devices or potential
helper nodes disseminated in the network, have been developed to avoid the high-
throughput backhaul to the core network, which is too costly and constitutes a major
bottleneck [5, 6]. In additions, by applying caching techniques, popular video files
transmitted in backbone networks are dispersed into local caches of network nodes
located at the edge of wireless networks, e.g., femto-cells and pico-cells, and the
distance between video files and requesters is also shortened. Therefore, introducing
wireless caching into networks brings low power consumption and latency [7].

In recent years, the small-cell based architecture has dominated in ultra-dense
heterogeneous networks (HetNets). In HetNets, mobile network operates (MNOs)
deploy multiple small base stations (SBSs) which work in conjunction with micro
base stations (MBSs). For the MNO, the cost for long-distant transmission can
be saved by this architecture. On the other hand, MUs receive their requested
data through low-power consumption, low-latency and better-quality communica-
tions [8]. Based on this architecture, video caching relying on SBSs constitutes a
feasible and low-cost solution to further cope with the increasing video data traffic
over backhaul channels with assistance of the small-cell based architecture.

Small-cell based video caching generally consists of two stage: data placement
and data delivery. In the data placement stage, popular videos are cached in the SBS
storage during the off-peak time [9]. Then in the data delivery stage, if the requested
video file of an MU has been pre-cached in an SBS whose communication range
covers this MU, then the requested video is delivered from this SBS directly to this
MU [10]. Otherwise, the MBS associated by this MU will request the video file to
the related server through the backbone network via backhaul channels, and then
deliver it to the MU.

Given a set of VSPs who can provide the same set of video files and are with
different requested preferences, i.e., requested probabilities by MUs, the challenge
in this context is to find an optimal caching policy. Specifically, in a real-world
small-cell based caching system, VSPs’ utilities obtained from receiving the caching
service and the MNO’s cost caused by providing caching service to different VSPs
are local and privacy information, which means that such information is unknowable
for anyone except themselves. Consequently, with this insufficient and asymmetric
information, how to allocate SBSs’ storage to different VSPs to place their video
files, so as to maximize the social welfare, i.e., the sum of utilities obtained by the
MNO and VSPs, becomes a difficult problem for system optimization. Therefore, in
this part, we consider a small-cell based video caching system with hidden informa-
tion. To elicit the hidden information and achieve the maximum social welfare, we
study the caching resource allocation mechanism under an economic framework,
i.e., double auction. This economics based caching mechanism processes all the
following four economic properties, although these properties concluded in [11–13]
have been demonstrated that they cannot be satisfied at the same time:

1. Economic Efficiency (EE): The designed caching mechanism is able to get the
optimal solution that leads to the maximum social welfare.

2. Individually Rationality (IR): The service provider and requesters, i.e., refer-
ring to the MNO and VSPs, respectively, will never get worse or negative utilities



11.2 Related Works 239

by participating than those obtained by not participating, which will bring zero
utilities for participants.

3. Incentive Compatibility (IC): Under the designed mechanism, service
requesters are induced to report their truthful requirements or private information
directly or indirectly.

4. (Weakly) Budge Balance (BB): The broker does not have to invest additional
“money” to make the mechanism go round. In other words, the negotiated
payments from service requesters/buyers (VSPs) to the broker should not be less
than those from the broker to the service provider/seller (MNO).

The main contributions of this part can be summarized as follows:

1. We establish a small-cell based video caching system in ultra-dense HetNets,
in which the MNO operates a set of SBSs and leases SBS storage to multiple
VSPs to placing their video files. Based on different VSP preferences, VSP utility
functions, the MNO cost function and a social welfare maximization problem are
formulated in this work.

2. In order to elicit the hidden information among VSPs and the MNO, i.e.,
VSP utility functions and the MNO cost function, a double auction model is
introduced to solve the caching problem. Based on the designed bidding rules,
resource allocation schemes for the SBS storage and pricing rules are designed to
promote VSPs and the MNO to consciously provide bids reflecting their truthful
caching requirements and admission, respectively. In addition, the designed
pricing rules not only reflect the resource allocation constraint, but also the
caching cost of the MNO.

3. We formulate an alternative optimization problem which has the same optimal
solution as the social welfare optimization problem. By solving this problem,
and applying the designed allocation schemes and pricing rules, the maximum
social welfare can be achieved although there exists the hidden information.

4. We provide the detailed proof of convergence and economic properties of the
designed double auction based caching mechanism, which are also validated by
simulation results.

The remainder of the part is organized as follows. In Sect. 11.2, we briefly review the
related works that associated with caching mechanisms in heterogenous networks.
Section 11.3 sets up the system model. In Sect. 11.4, the caching problem is
formulated and the system economic benefits are analyzed. A double auction
mechanism for video caching in small-cell based networks is proposed in Sect. 11.5,
and its implementation and characteristics are provided in Sect. 11.6. Simulations
are shown in Sect. 11.7, and conclusions are drawn in Sect. 11.8.

11.2 Related Works

Small-cell based caching mechanisms can help offload data traffic from the MBSs
and bring contents closer to the MUs, which will reduce the power consumption,
shorten the transmission latency and offloading delay. Due to its significant perfor-
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mance on releasing the increasing mobile data traffic, video caching has received
considerable attention in the wireless communications, and many researches have
focused on effect and efficient video caching mechanism design.

Authors of [14] considered the problem of joint content placement and routing in
HetNets that supported in-network caching and also provided a separate (uncached)
path to a back-end content server. In [15], the caching problem was analyzed in a
distributed HetNet, assuming that popularity profiles of cached data were unknown.
In [16], cache-based content delivery in a three-tier HetNet, where the radio access
network (RAN) caching and device-to-device (D2D) caching coexist, was proposed
and analyzed. The secrecy caching capacity was investigated in [17], which derived
the maximum amount of information which can be stored in the caching network
such that there was no leakage of information during a partial repair process. In
addition, caching techniques were also applied in D2D communication networks to
reduce the downloading delay and power consumption [18–21].

Among caching techniques, video files placement and helper nodes’ storage
management also attract much recent research attention. In [22], the hit performance
of cache systems that receive file requests with general arrival distributions and
different popularities was analyzed by considering time policies. The established
bounds on the number of objects cached by the optimal policy in [22] was first
defined in [23]. Particularly, the author of [23] originally obtained formally the result
that, under independent reference modeled traffic, the performance of RANDOM
and FIFO (First Input First Output) in terms of hit probability, are the same. The
mathematic model, replacement problem formulated and important results in [23]
have become important theoretical foundations to investigate storage management,
caching mechanism design and performance optimization in caching systems and
content delivery networks [24–27].

As summarized above, most current research above on wireless caching mainly
focused on video placement problems optimized to reduce the downloading delay
and transmission power and latency. However, besides content placement, there
are many issues involved in the video caching mechanism design, such as caching
market operation and commercial property analysis. In a market of caching resource,
the MNO, operating and managing SBSs and MBSs, plays the role of resource
owner and caching service provider. On the other side, VSPs, who provide videos
to MUs, are caching resource requesters. Caching resource in this market can
be considered as the right of using SBSs, SBSs’ storage resource and so on.
Considering different popularities of videos, preference of VSPs and limited SBS
storage, benefits of different VSPs obtained by assigned different amount of SBS
storage to place their videos, as well as the cost of MNO caused by leasing different
amount of SBS storage to different VSPs will be different from a commercial
perspective. Therefore, an efficient caching resource allocation scheme working in
conjunction with a seasonable and proper pricing rule will ensure a caching system
operation with high efficiency [28]. So in this work, we consider a caching resource
market where the MNO leases the storage of SBSs to multiple VSPs, and analyze
and optimize the performance of the caching system by establishing an economic
model, i.e., automatic auction.
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Auction theory, as an effective theory in network economics, has been studied
to model and analyze the process of resource requesting and providing [29, 30],
especially for networks with heterogeneous and limited resource. In [29], different
auction models based on Markov process were proposed and analyzed, which
provided classic mathematical models for networked resource supply and demand.
To achieve efficient data transaction and traffic offloading among mobile users,
auction models were introduced in [30, 31] and [32]. Authors of [33] and [34]
established a multi-object auction model to describe and analyze the storage
competition for small-cell based caching systems. However, economic properties
of auction models, such as social welfare, incentive compatibility, etc., were less
considered in these studies above. Specifically, the heterogeneous characteristic in
small-cell based caching system means that benefits for different VSPs who are
assigned the same SBS resource, as well as costs for the MNO when it assigns
the same resource to different VSPs tends to be different resulting from different
preferences of VSPs. Through an auction based caching mechanism, the SBS
storage can be assigned to VSPs with optimal utility of the entire system, i.e., the
social welfare. On the other hand, considering the hidden information in the caching
system, it is hard to achieve a globally and socially efficient solution. To cope with
this difficulty, a double auction (DA) mechanism, which introduces a broker as a
centralized controller and requests both service providers and requesters to submit
bids for resource allocation [35, 36], is introduced in this work. With the design of
resource allocation scheme and pricing rules, the DA based caching mechanism can
make sure that the maximum social welfare can be gradually reached, without any
prior knowledge for the market.

11.3 System Model

Consider a small-cell based caching system consisting of a set of VSPs N =
{1, 2, · · · , N}, a number of MUs and a set of SBSs operated by a monopolist MNO,
who also operates a micro-cell base station (MBS), as shown in Fig. 11.1. In such
caching system, VSPs are willing to rent the SBSs’ storage from the MNO to place
their videos. Next, we define the caching problem as a market design, and the goal
of which is maximizing the social welfare considering both the MNO and VSPs.
Before proceeding further, we summarize the main notations used throughout the
following sections in Table 11.1 for convenience.

11.3.1 Network Model

In the small-cell network composed of SBSs and MUs, we assume that SBSs are
equipped with the same transmission power P and the same storage ofQ video files.
Consider that SBSs and MUs are spatially distributed in the coverage of an MBS
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Fig. 11.1 Small-cell based video caching system in HetUDNs

according to two Homogeneous Poisson Point Processes (HPPPs)Φ with density ϕ,
and Ψ with density ψ , which represent the number of SBSs and MUs within a unit
area, respectively. In addition, the wireless downlink channels from SBSs to MUs
are modeled as independent and identically distributed (i.i.d.) combination of path
loss and Rayleigh fading [37, 38]. Considering a typical MU located at the original,
then the path loss between this MU and the SBS located at d can be presented by
‖d‖−γ , where γ is the path loss exponent, and denote hd , where hd ∼ exp (1), to
be the channel power of Rayleigh fading between them. Furthermore, assume that
SBSs transmit over channels those are orthogonal to that of the MBS. Therefore,
there is no interference between SBSs and the MBS.

In this work, we consider the steady-state of a saturated network, where every
SBS in the system keeps on transmitting in the entire frequency band allocated to
it [39–42]. Therefore, the received signal-to-interference-plus-noise ratio (SINR) at
the original-located MU from the SBS located at d can be given by

SINR (d) = Phd‖d‖−γ∑
d ′∈Φ\d Phd ′ ‖d ′‖−γ + σ 2

, (11.1)



11.3 System Model 243

Table 11.1 List of main notations in small-cell based caching system

Parameter Definition

N Number of VSPs

P Transmission power of each SBS

Q Number of videos can be stored at each SBS

F Number of video files

K Average number of video requests per MU per unit time

ϕ Density of SBS (number per unit area)

ψ Density of MU (number per unit area)

pf Popularity of video f = 1, 2, · · · , F
qn Preference of VSP n = 1, 2, · · · , N
πn Fraction of SBSs assigned to VSP n = 1, 2, · · · , N
α Exponent of video popularity

β Exponent of VSP preference

d SBS location

γ Path loss exponent

h Channel power of Rayleigh fading

σ 2 Variance of the AWGN

δ SINR threshold

rld Local downloading surcharging (LDS)

rbh Average backhaul cost (ABC)

where σ 2 is the variance of the i.i.d. additive white Gaussian distributed noise with
zero mean at MUs. Notice that when SINR (d) is no less than SINR threshold
δ,1 i.e., SINR (d) ≥ δ, the original-located MU is considered to be within the
coverage of the SBS located at d . In addition, an MU can be covered by multiple
SBSs, generally.

11.3.2 Video Popularity

Consider a set of F video files denoted by F = {1, 2, · · · , F }. Since each SBS
can only storage at most Q files, we assume that F ≥ Q. In addition, we assume
that all VSPs provide the same video set F .2 When a VSP rents an SBS, the first
Q video files with the most popularities will be cached in this SBS, since this is
the most efficient way to place videos. Every file in set F can be a popular movie

1 SINR threshold δ is defined as the highest delay of downloading a video file.
2 This assumption is feasible since that although VSPs provide some different videos, the most
popular videos tend to be the same. On other words, those different videos are usually not the
popular ones, then they are not worthy to be cached at SBSs. So different videos do not affect the
caching procedure design.
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or video clip, and will be requested by MUs frequently. Then we first define the
popularity distribution of video files among popular videos to be cached at SBSs
as their probabilities of been requested. Consider that the popularity distribution of
video file set F , denoted by vector p = [p1, p2, · · · , pF ], complies with a Zipf
distribution [43],3 and thus pf is defined by

pf = 1/f α∑F
i=1 1/iα

, ∀f ∈ F , (11.2)

where exponent α > 0 characterizes the video popularity. A larger α implies a
frequent video reuse or request, and means that the most popular videos account for
the majority of video requests. In addition, according to (11.2), the popularities of
videos in set F decrease with increasing f .

11.3.3 VSP Preference

Practically, MUs present different preferences to different VSPs. For instance, most
MUs in a certain area prefer YouTube to download videos. In this work, preferences
of the N VSPs, denoted by q = [q1, q2, · · · , qF ], are also modeled as a Zipf
distribution [43], and we define qn by

qn = 1/nβ∑N
j=1 1/jβ

, ∀n ∈ N (11.3)

as the request probability that an MU prefers to download videos from VSP n.
In (11.3), exponent β > 0 characterizes the VSP preference, and a larger β implies
that the most popular VSPs account for the majority of download request.

11.4 Caching Problem Formulation and Profit Analysis

In this section, we first introduce how to implement the video caching in the small-
cell based network. Then we analyze the economic utility can be obtained by VSPs
from receiving the caching service, and the cost of the MNO when providing the
caching service to VSPs.

3 The dataset analysed in [43] consisted of meta-information about user-generated videos from
YouTube and Daum UGC services.
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11.4.1 Caching Procedure

We first introduce the caching procedure in the small-cell based caching system.
This procedure falls into three steps.

11.4.1.1 SBS Assignment

In this step, each VSP rents a certain fraction of the SBSs operated by the MNO
for placing its video files. The fraction for every VSP is denoted by vector π =
{π1, π2, · · · , πN }, where πn represents the fraction of SBSs released to VSP n,
∀n ∈ N . Constitutionally, it always holds that πn ≥ 0 and

∑N
n=1 πn ≤ 1, and the

case where πn = 0 indicates that there is no SBS assigned to VSP n for caching.
Assume that the SBSs assigned to each VSP are randomly and uniformly distributed,
and then the number of SBSs assigned to VSP n (∀n ∈ N ) is distributed as a
thinned HPPP Φn with intensity πnϕ [39].

11.4.1.2 Video File Placing

In this step, each VSP accesses and places the most popular video files at its assigned
SBSs to achieve an efficient caching. This step can be completed during the off-peak
time after the first step being finished and every VSP having been assigned a certain
fraction of SBSs for caching.

11.4.1.3 MU Video Requests

In this step, an MU sends a request of video f ∈ F to VSP n. This request is first
sent to this MU’s nearest SBS in Φn which caches this video file. If there exists an
SBS in Φn that has cached this requested video and its coverage can cover this MU,
then this MU will download the video directly from this SBS. This successful event
is denoted by In,f , and brings a local downloading saving (LDS) for VSP n. When
the MNO leases fraction πn of SBSs to VSP n, the probability of evert In,f , denoted
by Pr

{
In,f

}
is given by:

Pr
{
In,f (πn)

}

= πn

πnG1 (δ, γ )+ (1− πn)G2 (δ, γ )+ πn , ∀n = 1, 2, · · · ,Q. (11.4)
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In (11.4), G1 (δ, γ ) = 2δ
γ−2 2F1

(
1, 1− 2

γ
; 2− 2

γ
,−δ

)
, and G2 (δ, γ ) =

2
γ
δ

2
γ B

(
2
γ
, 1− 2

γ

)
, where 2F1 (a, b; c, z) is a Gaussian hypergeometric function,

and

B (x, y) �
∫ 1

0
tx−1(1− t)y−1dt

is Beta function. The detailed derivation of (11.4) can be found in [39]. Otherwise,
the requested video will be transmitted to the MU by the MBS through MNO’s
backhaul channel remotely, which will give rise to extra cost for the MNO.

11.4.2 Benefit Analysis

In this section, we will formulate utilities of VSPs and the cost of MNO brought
by the caching system. In this work, we focus on the average utility based on the
stochastically geometrical distribution of network nodes in term of per unit area
times unit period (/UAP ), e.g., /second ·meter2 or /month · kilometer2.

11.4.2.1 VSP Utility

As discussed previously, VSPs can provide videos to MUs ether through memories
of assigned SBSs directly, or from their own servers via backhaul channels. Denoted
the LDS by rld . Consider that there are average K video requests from each MU
within a unit period. Then the average utility (/UAP ) obtained by VSP n can be
calculated by

uVSP
n =

Q∑
f=1

Kψpf qn Pr
{
In,f

}
rld . (11.5)

Remark 11.1 According to the definition in (11.4), uVSP
n can be rewritten as

uVSP
n = πn

∑Q
f=1Kψpf qnrld

[G1 (δ, γ )−G2 (δ, γ )+ 1]πn +G2 (δ, γ )
. (11.6)

We can notice that every utility function of VSP, i.e., uVSP
n , ∀n ∈ N , is a

positive, increasing and strictly concave function of SBS fraction πn. Therefore, this
increasing utility will capture VSPs’ preferences of seeking more SBSs for caching.
The solid line in Fig. 11.2 illustrates the utility function of VSPs.
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Fig. 11.2 An example of the concave function of VSP utility (uVSP
n ) and convex function of MNO

cost (vMNO
n ) when system parameters are set as N = 3, F = 100,Q = 40,K = 50, n = 1, γ = 4,

P = 10, δ = 0.02, α = 0.2, β = 1, σ 2 = 10−10, ϕ = 20, ψ = 80, rld = 10−3 and rbh = 5×10−5

11.4.2.2 MNO Cost

The utility obtained from the caching procedure consists two parts: the first part is
the income from reducing the cost of backhaul by leasing SBSs to VSPs, and the
second part, which is negative, is the cost for maintaining these SBSs. Denote the
average backhaul cost (ABC) for SBSs to transmit video files by rbh. Then the first
part of utility obtained by placing VSP n’s video is given by

ubhn =
Q∑
f=1

Kψpf qn Pr
{
In,f

}
rbh. (11.7)

The cost caused by maintaining the leased SBSs to VSP n is defined as cn = cϕπn,
where c > 0 is the unit cost of the MNO to maintain the leased SBSs. Then for the
MNO, the total utility obtained by placing VSP n’s video is given by

uMNO
n = ubhn − cn. (11.8)

Remark 11.2 Consider the total cost function of the MNO when placing VSP n’s
video as:

vMNO
n = −uMNO

n . (11.9)



248 11 QoS-Aware Caching Resource Allocation

In this work, we consider that the cost of maintaining SBSs is dominant, and
the utility obtained by avoiding backhaul transmission ubhn is relatively small. Then
we can consider the total cost function vMNO

n is a positive, increasing and strictly
convex function of πn. This property is reasonable, and can capture the fact that as
the admitted fraction of SBSs for caching increases, the cost of maintaining leased
SBSs increase as well as the revenue of backhaul transmission saving, however, the
increasing speed of former is much faster than that of the latter. The dotted line in
Fig. 11.2 illustrates the cost function of MNO when it leases different fractions of
SBSs for VSP n to providing caching service.

11.5 Double Auction Mechanism Design for Small-Cell
Based Caching System

11.5.1 Social Welfare Maximization Problem

Based on the model and its analysis above, the objectives of the MNO and VSPs
are opposite to each other. Specifically, VSPs are willing to get as many as fraction
of SBSs for caching to achieve a maximum utility. On the other hand, the MNO
tends to lease less fraction of SBSs to save its maintaining cost. Therefore, it is
difficult for them to reach an agreement. Concerning this problem, a market broker
(system controller) is necessary to operate the caching service market effectively and
efficiently. In the market, the broker is paid according to the volume of transactions
it facilitates. So we consider that the broker is honest and has no incentive to distort
the transaction efficiency [35].

We consider a caching system with N VSPs and an MNO having their caching
requests and caching admission, respectively. Denote the request of SBS fraction
for caching from VSP n by xn, then the caching request vector is written as x =
(x1, x2, · · · , xN).

Then according to (11.6), the VSP n’s utility obtained from caching is given by

uVSP
n (xn) =

Q∑
f=1

Kψpf qn Pr
{
In,f (xn)

}
rld . (11.10)

Denote the admitted fraction of SBSs for caching service to VSP n by yn.
Then the MNO’s admitted fraction of SBSs for all VSPs can be given by y =
(y1, y2, · · · , yN). According to (11.8) and (11.9), we can derive the cost of the MNO
when admitting fraction yn of SBSs to VSP n as

vMNO
n (yn) = cϕyn −

Q∑
f=1

Kψpf qn Pr
{
In,f (yn)

}
rbh. (11.11)
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As the central controller of the entire caching system, the broker is willing to
maximize the global social welfare by optimizing vectors x and y. Thus the social
welfare optimization problem for the broker can be formulated as

max
x,y

U1 (x, y) �
N∑
n=1

uVSP
n (xn)−

N∑
n=1

vMNO
n (yn), (11.12a)

s. t.
N∑
n=1

yn ≤ 1, (11.12b)

xn ≤ yn, ∀n ∈ N , (11.12c)

xn ≥ 0, yn ≥ 0, ∀n ∈ N . (11.12d)

In the maximization problem above, constraint (11.12b) indicates that the total
admitted SBSs to all VSPs cannot exceed the total SBSs operated by the MNO.
Constraints (11.12c) indicate that the fraction of SBSs admitted to be assigned
to VSP n by the MNO must satisfy those requested by the respective VSP. In
addition, we can notice that it will hold xn = yn at the equilibrium, ∀n ∈ N .
Based on the analysis in Sect. 11.4.2, the objective function U1 (x, y) in (11.12a)
is strictly concave with respect to x and y. Combining the compact and convex
constraints in (11.12b), (11.12c) and (11.12d), the optimization problem formulated
in (11.12) admits a unique optimal solution and can be characterized by applying
necessary and sufficient Karush-Kuhn-Tucker (KKT) conditions. First, we define
the Lagrangian of problem (11.12) by relaxing constraints (11.12b) and (11.12c):

L1 (x, y, λ,μ) =
N∑
n=1

uVSP
n (xn)−

N∑
n=1

vMNO
n (yn)

− λ
(
N∑
n=1

yn − 1

)
−

N∑
n=1

μn (xn − yn),
(11.13)

where μ � (μ1, μ2, · · · , μN) (μn ≥ 0, ∀n ∈ N ) and λ ≥ 0 are Lagrange
multiplies corresponding to constraints (11.12b) and (11.12c), respectively. Then
the KKT conditions that yield optimal primal variables x† and y† and optimal dual
variables λ† and μ† can be given by the following equations:

∂uVSP
n

(
x

†
n

)

∂xn
= μ†

n,
∂vMNO
n

(
y

†
n

)

∂yn
= μ†

n − λ†, ∀n ∈ N ; (11.14a)

λ†

(
N∑
n=1

y†
n − 1

)
= 0, μ†

n

(
x†
n − y†

n

)
= 0, ∀n ∈ N ; (11.14b)

x†
n, y

†
n, λ

†, μ†
n ≥ 0, ∀n ∈ N . (11.14c)
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However, it is infeasible for the broker to derive the optimal solution of
problem (11.12) by solving (11.14) directly, resulting from the insufficient infor-
mation can be obtained by the broker. Specifically, VSP utility function set
uVSP (x) �

{
uVSP
n (xn) ,∀n ∈ N

}
and MNO cost function set vMNO (y) �{

vMNO
n (yn) ,∀n ∈ N

}
are local information for VSPs and the MNO, respectively,

and the broker cannot be aware of such information. To eliminate this lack of
information, it is necessary to design an incentive mechanism for the broker to
encourage the MNO and VSPs to report their truthful admission and requirements
of SBS storage for the video caching, respectively.

11.5.2 Iterative Double Auction Mechanism Design

A suitable scheme to deal with asymmetric information, i.e., the broker is unaware
of the real needs and capability of VSPs and the MNO, respectively, is the DA
mechanism. As summarized in Sect. 11.1, the DA mechanism should have the four
economic properties: EE, IR, IC and BB. However, there is no such DA mechanism
can satisfy the four properties at the same time [11, 44, 45]. To overcome this
difficulty, we will propose an iterative DA (I-DA) mechanism, which considers the
bidders (VSPs) as price-takers.4 On this precondition, the four economic properties
can be realized at the same time. In addition, the caching problem in small-cell based
system with asymmetric information can also be solved.

The basic idea of the I-DA mechanism is that the broker solves a different
optimization problem other than problem (11.12) to determine optimal vectors x and
y, according to which the pricing mechanism of the MNO and payments from VSPs
can also be determined. Moreover, through applying the proposed I-DA mechanism
to the caching system, the maximum social welfare formulated in (11.12a) can also
be achieved.

In the I-DA mechanism, the broker facilitates the MNO and N VSPs to interact
iteratively and adjust their bids until the market reaches an optimal and feasible
point. The detailed SBS storage resource allocation and pricing rules are introduced
in the following sections.

11.5.2.1 I-DA Based Resource Allocation

There are two stages to implement the I-DA mechanism. In the first stage, each VSP
submits a bid ωn to the broker, and bid ωn represents VSP n’s required fraction of
SBSs for caching. On the other hand, the MNO submits a bid vector denoted by g,

4 The assumption of price-taking bidders is reasonable for bidders under the situation of asymmet-
ric information, and the situation where there are a large number of participants having infinitesimal
effect on market prices. Moreover, this assumption applies to the perfect competition market.
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whose element gn represents the cost of the MNO when assigning SBSs to VSP n.
Then we have bid vectors of VSPs and the MNO as

ω = (ω1, ω2, · · · , ωN ) , (11.15a)

g = (g1, g2, · · · , gN ) , (11.15b)

respectively.
In the second stage, after receiving the two bid vectors above, the broker

determines the SBS storage allocation, i.e., how many fractions of SBS storage is
assigned by the MNO to each VSP to place its videos, by solving the following
optimization problem.

max
x,y

U2 (x, y) �
N∑
n=1

ωn ln xn −
N∑
n=1

gn

2
y2
n, (11.16a)

s. t.
N∑
n=1

yn ≤ 1, (11.16b)

xn ≤ yn, ∀n ∈ N , (11.16c)

xn ≥ 0, yn ≥ 0, ∀n ∈ N , (11.16d)

where the objective function (11.16a) is established based on the allocation rule
in [35, 46]. In addition, the designed functions ũVSP (x) � ln x and ṽMNO (y) �
y2/2 capture the concave and convex increasing properties of the utility function of
VSP and the cost function of MNO, respectively. Therefore, the objective function
of the optimization problem formulated in (11.16) is strictly concave. Considering
the same constraints as problem (11.12), optimization problem (11.16) admits a
unique optimal solution. Define the Lagrangian of problem (11.16) by relaxing
constraints (11.16b) and (11.16c):

L2 (x, y, λ,μ) =
N∑
n=1

ωn ln xn −
N∑
n=1

gn

2
y2
n

− λ
(
N∑
n=1

yn − 1

)
−

N∑
n=1

μn (xn − yn).
(11.17)
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Then the KKT conditions that yield optimal primal variables x∗ and y∗, and optimal
dual variables λ∗ and μ∗ can be given by the following equations, ∀n ∈ N .

ωn

x∗n
= μ∗n, gny∗n = μ∗n − λ∗, ∀n ∈ N ; (11.18a)

λ∗
(
N∑
n=1

y∗n − 1

)
= 0, μ∗n

(
x∗n − y∗n

) = 0, ∀n ∈ N ; (11.18b)

x∗n, y∗n, λ∗, μ∗n ≥ 0, ∀n ∈ N . (11.18c)

According to conditions in (11.18a), we have the SBS storage allocation rules as

x∗n =
ωn

μ∗n
, (11.19a)

y∗n =
μ∗n − λ∗
gn

. (11.19b)

11.5.2.2 I-DA Based Pricing

Comparing KKT conditions (11.14) with (11.18), we can notice that when the
submitted bids from VSPs and the MNO satisfy the following equations:

ωn = x∗n ·
∂uVSP
n

(
x∗n
)

∂xn
, (11.20a)

gn = 1

y∗n
· ∂v

MNO
n

(
y∗n
)

∂yn
, (11.20b)

the optimization problems formulated in (11.12) and (11.16) have the same optimal
solution, i.e., x† = x∗ and y† = y∗. An incentive pricing and payment rules
for the MNO and VSPs, which are designed by the broker, should be capable of
encouraging them to provide bids as (11.20). Next, we will design such payment
rules required from the broker to VSPs and payments rules implemented from the
MNO to the broker.

For VSP Bidders Denote ρVSP
n (xn) as the payment requested to be paid by VSP n

to the broker when this VSP requests the fraction of SBSs as xn. It should be noted
that xn here is not requested directly from VSP n, but is determined by the VSP
n’s bid ωn and applying the allocation scheme ruled by (11.19a). In addition, this
pricing rule is implemented by the broker, and each VSP just needs to optimize their
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bid ωn (∀n ∈ N ) to get a maximum utility after the payment. Then the optimization
problem for VSP n (∀n ∈ N ) is given by

max
ωn

uVSP
n (xn)− ρVSP

n (xn) , (11.21a)

s. t. ωn ≥ 0. (11.21b)

According to (11.6), one can notice that optimization problem (11.21) can be solved
locally by each VSP. Then take the first derivative of objective function (11.21a)
with respect to ωn, and according to allocation rule (11.19a), we derive that the
unique optimal solution of problem (11.21) satisfies

∂ρVSP
n (xn)

∂ωn
= ∂u

VSP
n (xn)

∂xn
· ∂xn
∂ωn

= 1

μn
· ∂u

VSP
n (xn)

∂xn
. (11.22)

Considering that the maximum social welfare can be achieved when VSP n submits
bid according to (11.20a), we have

∂ρVSP
n (xn)

∂ωn
= 1

μn
· ωn
xn
= 1. (11.23)

Then the pricing rule requiring VSP n to pay the broker is given

ρVSP
n (ωn) = ωn. (11.24)

For the MNO Bidder The MNO needs to submit a bid vector denoted by g =
(g1, g2, · · · , gN) to the broker. Denote ρMNO

n (yn) as the payment given by the
broker to the MNO when the MNO admits fraction of SBSs yn to VSP n for the
caching service. Similarly, yn is determined by the broker by considering MNO’s
bid gn and applying the allocation rule in (11.19b), ∀n ∈ N . Then the optimization
problem for the MNO when submitting bid g can be given by

max
g

N∑
n=1

ρMNO
n (yn)− vMNO

n (yn), (11.25a)

s. t. gn ≥ 0, ∀n ∈ N . (11.25b)

Take the first derivative of objective function (11.25a) with respect to gn, and
according to allocation rule (11.19b), we can compute that the unique optimal
solution of problem (11.25) satisfies

∂ρMNO
n (yn)

∂gn
= ∂u

MNO
n (yn)

∂yn
· ∂yn
∂gn

= λ− μn
g2
n

· ∂u
MNO
n (yn)

∂yn
. (11.26)
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Considering that the maximum social welfare can be achieved when the MNO
submits bid according to (11.20a), we have

∂ρMNO
n (yn)

∂gn
= λ− μn

g2
n

· gnyn = −
(
μ∗n − λ∗

)2

g2
n

. (11.27)

Then the pricing rule that requires the broker to pay the MNO is given by

ρMNO
n (gn) =

(
μ∗n − λ∗

)2

gn
= yn

(
μ∗n − λ∗

)
. (11.28)

Summarily, the SBS storage allocation mechanisms as (11.19) and the pricing
rules defined in (11.24) and (11.28) can ensure the maximum social welfare to be
achieved.

11.6 Implementation of I-DA Mechanism

In this section, we will first design the I-DA algorithm to implement the I-DA
based caching mechanism proposed in Sect. 11.5. Then we will demonstrate that
the designed iterative algorithm is convergent and the proposed caching mechanism
can satisfy the four economic properties, i.e., EE, IR, IC and BB, simultaneously.

11.6.1 I-DA Mechanism Based Algorithm

First, we explain how the designed caching mechanism in the previous section works
to achieve the maximum social welfare. In order to elicit the hidden information
among participants of the caching system, an iteration based algorithm is needed
to gradually adjust that whether the submitted bids can lead to a desirable resource
allocation and pricing rules. To this ends, a primal-dual Lagrange decomposition
approach [46, 47] is introduced, and main operations of the algorithm are summa-
rized as follows. In each iteration, the broker announces current Lagrange multiplies
λ and μ. Then each VSP and the MNO compute their optimal bids xn (∀n ∈ N )
and y by solving problem (11.21) and (11.25), respectively, and then submit them to
the broker. After receiving VSPs’ and MNO’s bids, the broker decides SBS storage
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allocation vectors x and y according to scheme (11.19). Meanwhile, the broker
updates λ and μ according to

λ(t+1) = max

{
λ(t) − ε ∂L2 (x, y, λ,μ)

∂λ
, 0

}

= max

{
λ(t) + ε

(∑N

n=1
yn − 1

)
, 0

}
,

μ(t+1)
n = max

{
μ(t)n − ε

∂L2 (x, y, λ,μ)
∂μn

, 0

}

= max
{
μ(t)n + ε (xn − yn) , 0

}
,∀n ∈ N ,

(11.29)

respectively, where ε > 0 is the step size, and t is the index of iteration. Then the
broker needs to adjust that whether the current bids reach stability, and if they do
not, the procedure above is repeated until the system reaches equilibrium.

Next, in Algorithm 3, we summarize the implementation of the I-DA based
mechanism, which can provide the SBS storage allocation scheme and caching
service pricing rules in the small-cell based caching system. In Step 10, 0 <

o1, o2 � 1 are convergence indexes. As implemented in Algorithm 3, the MNO
and VSPs find their optimal bids by solving (11.25) and (11.21), respectively, in
a distributed way. On the other hand, the broker, who performs as a centralized
controller, decides the optimal storage allocation strategies and pricing rules for the
MNO and VSPs.

11.6.2 Convergence of I-DA Algorithm

Next, we provide the convergence behavior of Algorithm 3 in Theorem 11.1.

Theorem 11.1 Algorithm 3 designed for the small-cell based caching system
converges to the unique optimal solution of the social welfare maximization problem
formulated in (11.12).

Proof According to (11.29), dynamics of λ and μ is given by

λ̇ (t) =
⎧
⎨
⎩

N∑
n=1
yn − 1, λ > 0,

0, λ = 0;
(11.30a)

μ̇n (t) =
{
xn − yn, μn > 0,

0, μn = 0,
∀n ∈ N . (11.30b)
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Algorithm 3 Iterative Double Auction (I-DA) Algorithm
Initialization:
1: Create and initialize x(0), y(0), λ(0) and μ(0);
2: Initialize index: t = 0, conv = 0, ε, o1, o2 > 0.
3: while conv = 0 do
4: The broker announces λ(t) and μ(t);
5: VSP n (∀n): derives optimal bid ω(t)n by solving problem (11.21), and submits it to the

broker;
6: MNO: derives optimal bid vector g(t) by solving problem (11.25), and submits it to the

broker;
7: Broker: decides the updated allocation schemes x(t) and y(t) according to

x(t)n = ω
(t)
n

μ
(t)
n

, y(t)n = μ
(t)
n − λ(t)
g
(t)
n

;

8: Broker: computes the updated λ(t) and μ(t) through

λ(t+1) = max

{
λ(t) + ε

(∑N

n=1
y(t)n − 1

)
, 0

}
,

μ(t+1)
n = max

{
μ(t)n + ε

(
x(t)n − y(t)n

)
, 0
}
,∀n ∈ N .

9: Broker: checks convergence

10: if

∣∣∣∣ω
(t)
n −ω(t−1)

n

ω
(t−1)
n

∣∣∣∣ < o1 and

∣∣∣∣ g
(t)
n −g(t−1)

n

g
(t−1)
n

∣∣∣∣ < o2 then

11: conv = 1;
12: decides pricing rules ρVSP

n (xn) and ρMNO
n (yn) by

ρVSP
n

(
ω(t)n

)
= ω(t)n , ρMNO

n

(
g(t)n

)
=
(
μ
(t)
n − λ(t)

)2

g
(t)
n

.

13: else
14: t = t + 1.
15: end if
16: end while
Output:
17: Optimal storage allocation: x∗, y∗;
18: Optimal pricing: ρVSP

n

(
ω∗n
)
, ρMNO
n

(
g∗n
)
, ∀n ∈ N .

Define the Lyapunov function as

V (λ,μ) = 1

2

(
λ− λ∗)2 + 1

2

N∑
n=1

(
μn − μ∗n

)2
. (11.31)
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Taking the first derivative of Lyapunov function V (λ,μ) with respect to t , we have

dV (λ,μ)

dt
= (
λ− λ∗) λ̇ (t)+

∑N

n=1

(
μn − μ∗n

)
μ̇n (t)

≤ (λ− λ∗)
(∑N

n=1
yn − 1

)
+

N∑
n=1

(
μn − μ∗n

)
(xn − yn)

= (λ− λ∗)
(
N∑
n=1

yn −
N∑
n=1

y∗n

)
+ (
λ− λ∗)

(
N∑
n=1

y∗n − 1

)

+
N∑
n=1

(
μn − μ∗n

) [
xn − x∗n −

(
yn − y∗n

)]+
N∑
n=1

(
μn − μ∗n

) (
x∗n − y∗n

)

=
N∑
n=1

(
μn − μ∗n

) (
xn − x∗n

)+
N∑
n=1

(
λ− λ∗ − μn + μ∗n

) (
yn − y∗n

)

+ λ
(
N∑
n=1

y∗n − 1

)
+

N∑
n=1

μn
(
x∗n − y∗n

)

≤
N∑
n=1

(
∂uVSP
n (xn)

∂xn
− ∂u

VSP
n

(
x∗n
)

∂xn

)
(
xn − x∗n

)

+
N∑
n=1

(
−∂v

MNO
n (yn)

∂yn
+ ∂v

MNO
n

(
y∗n
)

∂yn

)(
yn − y∗n

)
.

Considering the strictly concave property of VSP utility function uVSP
n (xn) and

the strictly convex property of MNO cost function vMNO
n (yn), we have ∀n ∈ N ,

N∑
n=1

(
∂uVSP
n (xn)

∂xn
− ∂u

VSP
n

(
x∗n
)

∂xn

)
(
xn − x∗n

)
< 0, (11.32a)

N∑
n=1

(
−∂v

MNO
n (yn)

∂yn
+ ∂v

MNO
n

(
y∗n
)

∂yn

)
(
yn − y∗n

)
< 0. (11.32b)

Thus we conclude that

dV (λ,μ)

dt
< 0. (11.33)

This completes the proof of the algorithm convergence.
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11.6.3 Economic Properties of I-DA Mechanism

In this part, we provide economic properties processed by the designed I-DA based
caching mechanism in Theorem 11.2, and show that the four economic properties
can be satisfied at the same time ideally.

Theorem 11.2 The I-DA mechanism designed for the small-cell based caching
system satisfies the four economic properties, i.e., Economic Efficiency, Individual
Rationally, Incentive Compatibility and Budge Balance, at the same time.

Proof

(1) Economic Efficiency: According to Theorem 11.1, we can conclude that Algo-
rithm 3 converges to an optimal solution satisfying KKT conditions (11.18a).
In addition, applying pricing rules regulated as (11.24) and (11.28) when the
broker asks payment from VSPs and pays the MNO, respectively, the optimal
bids obtained by Algorithm 3 are used to deduce optimal allocation mechanisms
x∗ and y∗. These allocation mechanisms are equal to the optimal solutions of
problem (11.12), under the situation that each VSP and the MNO submit bids
ωn and g according to (11.20). This completes the proof of efficiency of the
I-DA mechanism.

(2) Individual Rationality: Since uVSP
n (xn) is a strictly concave function of xn

and uVSP
n (0) = 0, then we have

uVSP
n

(
x∗n
)
> uVSP

n (0)+ x∗n
∂uVSP
n

(
x∗n
)

∂xn
= x∗n

∂uVSP
n

(
x∗n
)

∂xn
. (11.34)

Considering the optimal bid of VSP satisfying (11.20a) and the pricing rule
in (11.24), we derive that

x∗n
∂uVSP
n

(
x∗n
)

∂xn
= x∗n ·

ω∗n
x∗n
= ω∗n = ρVSP

n

(
ω∗n
)
, (11.35)

which implies that

uVSP
n

(
x∗n
)
> ρVSP

n

(
ω∗n
)
, ∀n ∈ N (11.36)

always holds. Similarly, considering the strictly convex property of MNO’s cost
function vMNO

n (yn), optimal bid of the MNO g∗n satisfying (11.20b) and the
pricing rule as (11.28) for VSP n (∀n ∈ N ), we can deduce that vMNO

n

(
x∗n
)
<

ρMNO
n

(
g∗n
)
, and then for the MNO, the total net utility

N∑
n=1

[
ρMNO
n

(
g∗n
)− vMNO

n

(
y∗n
)]
> 0 (11.37)
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always holds. So in conclusion, each VSP and the MNO will always obtain
a positive net utility when they honestly participate the I-DA based caching
mechanism. Moreover, each participant gets a zero utility if it does not partic-
ipate the auction. Therefore, the designed I-DA mechanism always satisfies IR
conditions.

(3) Incentive Compatibility: According to the derivation in Sects. 11.5 and 11.6,
we can observe that, VSPs and the MNO do not have to report their local-
known and real caching storage requests and admission, but submit their current
optimal bids to the broker by locally solving optimization problems (11.21)
and (11.25), respectively. In addition, these iteratively updated optimal bids
can gradually reveal VSPs’ hidden utility and MNO’s hidden cost. In other
words, although VSPs and the MNO do not share their information with each
other and the broker, their optimal bids to the broker can elicit the asymmetric
information, and the maximum social welfare can be reached by proper pricing
rules defined by (11.24) and (11.28). Therefore, we can conclude that the
designed I-DA based caching mechanism processes the characteristics of IC.

(4) Budge Balance: According to local optimization problems of each VSP and
MNO formulated respectively by (11.21) and (11.25), the budget of the broker
can be given by

Γb (ω, g) =
N∑
n=1

[
ρVSP
n (ωn)− ρMNO

n (gn)

]

=
N∑
n=1

[
ωn − 1

gn
(μn − λ)2

]
=

N∑
n=1

[λyn − μn (yn − xn)].
(11.38)

When optimal bids from the both sides of participants in DA are submitted, we
have

Γb
(
ω∗, g∗

) =
N∑
n=1

[
y∗nλ∗ −

(
y∗n − x∗n

)
μ∗n
]

= λ∗
(
N∑
n=1

y∗n − 1

)
−

N∑
n=1

(
y∗n − x∗n

)
μ∗n + λ∗ = λ∗ ≥ 0,

(11.39)

which indicates that the broker will always get a nonnegative budget when
implementing pricing rules defined in (11.24) and (11.28).

Summarizing the proof of the four economic properties above, we can conclude
that the designed I-DA based caching mechanism is capable of satisfying Economic
Efficiency, Individual Rationality, Incentive Capability and Budget Balance at the
same time. This completes the proof of Theorem 11.2.
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Remark 11.3 As summarized in Theorems 11.1 and 11.2, the maximum social
welfare will always be achieved by the I-DA based caching mechanism proposed.
Moreover, resulting from the IR and IC properties, both the MNO and VSPs are
encourage to participate the caching resource auction actively, and reflect their
caching costs and requests truthfully, respectively. Furthermore, the BB property
will ensure the feasibility of designed caching mechanism for the third-party broker,
which means that the broker does not have to invest additional “money” to make the
mechanism go round.

11.7 Evaluation Results

This part provides numerical results to demonstrate and test the validity and
effectiveness of the designed I-DA algorithm for the small-cell based video caching
system. In addition, the convergence and economic properties of the proposed I-DA
based caching mechanism are also verified through the simulation.

First of all, we introduce the scenario setup for simulations. We consider a video
caching system with an MNO and multiple VSPs. The unit cost of the MNO to
maintain the assigned SBSs is set as c = 0.005, and detailed settings of other
parameters are shown in Table 11.2.

To test the performance of the I-DA based caching mechanism and observe the
related optimal behaviors of each SBS and the MNO, we first consider a small
number of VSPs in the system, i.e., N = 3. Set the step size as ε = 0.1. According
to the definition of VSP preference in (11.3), the three VSP preferences can be
calculated, i.e., q1 = 0.5455, q2 = 0.2727 and q3 = 0.1818. Then we apply

Table 11.2 Detailed system parameters

Parameter Value

Transmission power of each SBS P 10 W [41]

Number of videos can be stored at each SBSQ 40 [41]

Number of video files F 100 [41]

Average number of video requests K 50/month [41]

Density of SBS ϕ 20/km2 [41]

Density of MU ψ 80/km2 [41]

Exponent of video popularity α 0.2 [41]

Exponent of VSP preference β 1 [41]

Path loss exponent γ 4 [39]

Variance of the AWGN σ 2 10−10 Watt [39]

SINR threshold δ 0.02 [41]

LDS rld 10−3

ABC rbh 5× 10−5

Convergence indexes o1, o2 10−5
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Table 11.3 Simulation
results of allocation (x, y),
bids (ω, g), pricing(
ρVSP, ρMNO

)
and lagrange

multiplies (λ,μ)

Parameter VSP1 VSP2 VSP1

Allocation x∗ 0.4154 0.2994 0.2441

y∗ 0.4154 0.2994 0.2441

Bids ω∗ 0.6571 0.3414 0.2269

g∗ 3.8095 3.8095 3.8096

Pricing
(
ρVSP

)∗
0.6571 0.3414 0.2269(

ρMNO
)∗

0.6571 0.3414 0.2269

VSP utility
(
uVSP

)∗
1.6374 0.7085 0.4258

MNO cost
(
vMNO

)∗
0.2631 0.1438 0.0978

Lagrange multiplies λ∗ 0

μ∗ 1.5821 1.1405 0.9298

Algorithm 3 to the caching system, and optimal allocation (request of fraction of
SBS storage) x∗, submitted bid ω∗, payment to the broker

(
ρVSP

)∗
and maximized

utility
(
uVSP

)∗
of each VSP, as well as optimal allocation (acceptance of fraction

of SBS storage) y∗, submitted bid g∗, payment obtained from the broker
(
ρMNO

)∗
and minimized cost

(
vMNO

)∗
of the MNO, are obtained, and results are shown in

Table 11.3. In addition, we record final values of Lagrange multiplies λ∗ and μ∗
when the iteration stops at the equilibrium, and also provide them in Table 11.3.

Observing the optimal results in Table 11.3, we notice that x∗ = y∗ and(
ρVSP

)∗ = (
ρMNO

)∗
. The former equilibrium indicates that, by applying the

designed allocation schemes in (11.19), the MNO and all VSPs can finally agree
on the fraction of SBSs that should be assigned to each VSP for caching service,
i.e., xn = yn, ∀n ∈ N . The later equilibrium demonstrates that the broker makes
ends meet when the iteration stops. In addition, equilibrium

(
ρVSP

)∗ = (
ρMNO

)∗
also validates the optimal budget of the broker that is derived in (11.39), i.e.,
Γb (ω

∗, g∗) = λ∗, since λ∗ = 0 shown in Table 11.3. Furthermore, this balance
of payments at the broker also verifies that the property of BB can be satisfied by
applying the designed I-DA algorithm.

In addition, results in Table 11.3 show that uVSP
n > ρVSP

n and vMNO
n < ρMNO

n ,
∀n ∈ N . These results imply that the utility obtained by every VSP exceeds its
payment to the broker, and the payment received by the MNO from the broker can
cover its cost caused by providing caching service. Thus, the property of IR can be
verified by these results.

Next, we test the convergence and other characteristics of the designed I-DA
based caching mechanism. We record values of parameters, which are listed in
Table 11.3, updated in every iteration before convergence conditions being satisfied.
The evolution of these parameters are shown in Figs. 11.3, 11.4, 11.5, and 11.6.

In Fig. 11.3a, we notice that bids submitted by VSP 1 and VSP 2 are always larger
than their allocated fractions of SBSs decided by the broker, i.e., ω(t)n > x

(t)
n , ∀t and

n = 1, 2. Conversely, for VSP 3, ω(t)3 < x
(t)
3 always holds ∀t . This phenomenon

results from the decreasing preference of the three VSPs, i.e., q1 > q2 > q3.
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Fig. 11.3 Evolution of participants’ (VSPs and the MNO) bids and SBSs’ storage allocation
(storage requests and storage admission) by the I-DA algorithm based caching mechanism (ε = 0.1
and N = 3). (a) Evolution of VSPs’ bids and SBSs allocation for them. (b) Evolution of MNO’s
bids and SBSs allocation for it
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Fig. 11.4 Budge balance property of I-DA algorithm and evolution of payment (pricing rules)
regulated from VSPs to the broker ρVSP and from the broker to the MNO ρMNO (ε = 0.1 and
N = 3)
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Fig. 11.5 IR property of I-DA algorithm and evolution of VSPs’ utility uVSP, MNO’s cost vMNO

and payment (pricing rules) regulated from VSPs to the broker ρVSP and from the broker to the
MNO ρMNO (ε = 0.1 and N = 3)
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Fig. 11.6 Impact of step size ε on the evolution of social welfare reached by the I-DA based
caching mechanism (N = 3)

Specifically, VSP’s bids are calculated locally and separately at each VSP by solving
optimization problem (11.21). Resulting from the hidden information among VSPs,
each VSP is unaware of other VSPs’ bids, and VSP 1 and VSP 2 tend to submit
high bids due to their high preferences. However, the broker, as a central controller,
cannot allocate the fraction of SBSs as high as bids from VSP 1 and VSP 2. The
broker also has to ensure its allocation for VSPs to satisfy

∑N
n=1 xn ≤

∑N
n=1 yn ≤ 1.

Therefore, x1 and x2 decrease with the increasing of iteration times. In addition, to
optimize the social welfare, the broker tends to allocate more SBS storage to these
two VSPs, which have a potential ability of saving more backhaul cost, than to VSP
3. Furthermore, we can notice that VSP 1 submits a sequence of increasing bids
as the iteration progress. This result verifies the IC property of the designed I-DA
algorithm, which is capable of prompting VSPs with higher preferences to submit
higher bids to “win” more SBS storage.

Results in Fig. 11.3b show that bids from the MNO to the broker for VSP 1
and VSP 2 increase with increasing iteration times, which results from the larger
preferences of the two VSPs than that of VSP 3. So the MNO is willing to assign
more SBS storage to VSP 1 and VSP 2 to save more backhaul cost with a high
probability. Because of the small preference of VSP 3, g3 decreases as the iterations
progress, although it increases at the beginning. Meanwhile, due to the same reason
discussed above, the allocations of caching admission y for the MNO, decided by the
broker, present a similar tendency to g, as shown in the second figure in Fig. 11.3b.
In addition, the IC property of the I-DA algorithm can also be verified since that
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results show an incentive capability for the MNO, who is promoted to submit higher
bids to ensure VSPs with higher preferences can be assigned more SBS storage.

The evolution of the payment regulated from each VSP to the broker ρVSP and
from the broker to the MNO ρMNO is shown in Fig. 11.4. we notice that ρVSP and
ρMNO present similar tendencies to x and y, respectively. This phenomenon results
from pricing rules defined in (11.24) and (11.28). In addition, ρVSP and ρMNO (∀n ∈
N ) converge to same values with increasing iteration times, and ρVSP ≤ ρMNO

(∀n ∈ N ) before the convergence points. Such results validate the BB property of
the I-DA algorithm.

Figure 11.5 shows the evolution of VSP utilities, MNO costs and their payments.
As shown in Fig. 11.5, uVSP

1 and uVSP
2 decrease with the increasing of iterations

before the equilibrium, which results from that the allocated SBS storage for VSP
1 and VSP2 decrease as shown in Fig. 11.3a. In addition, results in Fig. 11.5 show

that
(
uVSP
n

)(t)
>
(
ρVSP
n

)(t)
, ∀n ∈ N , and

(∑3
n=1 v

MNO
n

)(t)
<
(∑3

n=1 ρ
MNO
n

)(t)
,

∀t , which verify the IR property of the I-DA algorithm.
Then we test the social welfare can be reached during iterations. When iteration

step size is set as ε = 0.1, the evolution of social welfare U1 is shown as the solid
curve in Fig. 11.6. The straight pecked line in Fig. 11.6 indicates the value of U†

1 ,
and is calculated by solving problem (11.12) when assuming that all necessary
information is known. Results of these two lines indicate that by applying the
designed I-DA based caching mechanism, the allocated x and y can lead the social
welfare of the caching system to converge to the maximum social welfare. This
result verifies the EE property of the designed algorithm.

In addition, the evolution of allocation (x, y), bids (ω, g), pricing
(
ρVSP,ρMNO

)
and the social welfare, shown in Figs. 11.3, 11.4, 11.5, and 11.6, demonstrate that
the designed iterative algorithm for the caching optimization problem is of fast
convergence property. Furthermore, obtained optimal allocation solutions (x∗, y∗)
by applying Algorithm 3 are equal to

(
x†, y†

)
, and x∗ = y∗ = x† = y† is the optimal

solution of social welfare optimization problem (11.12), and then makes sure that
the maximum social welfare can be reached.

With the same parameter settings of the small-cell based caching system above,
we explore that how step size ε affects the convergence speed of Algorithm 3. We
consider another two smaller step sizes selecting values in {0.05, 0.03}, which are
used for updating Lagrange multiplies (Step 8 of Algorithm 3). For this experiment,
the convergence indexes are still set as o1 = o2 = 10−5. Figure 11.6 shows the
evolution of social welfare for three values of the three step size. Results in Fig. 11.6
indicate that the iteration time that the algorithm needs in order to converge to the
optimal solution increases with decreasing ε. Specifically, when ε = 0.1, as set in
the previous experiment, the I-DA algorithm converges after 163 iterations, while
for ε = 0.05 and ε = 0.03, it needs 304 and 475 iterations in order to converge
to the optimal solution, respectively. However, all these three small step sizes can
ensure the I-DA algorithm to be convergent, as shown in Fig. 11.6. Nevertheless,
when we increase ε to the values larger than 2, we will see that the algorithm is not
convergent any more.
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Fig. 11.7 Evolution of the demand gap between caching request x and caching admission y by
applying the SBSs allocation mechanism ruled in (11.19) (Iteration time before convergency is
324 when ε = 0.1 and N = 5)

Next, we test the convergence of the gap between x and y. To better reveal the
relationship between x and y, we consider there are N = 5 VSPs in the system.
Set ε = 0.1, and other parameters remain the same. In this simulation, the I-DA
algorithm needs 324 iterations to reach the optimal solution. While after t = 120,
the gap between x and y is not change observably. So in Fig. 11.7, we only show
how xn − yn (∀n ∈ N ) changes in the first 120 iterations. Results in Fig. 11.7
indicate that for VSP 1 and VSP 2, who are with higher VSP preference, the value
of xn − yn (n = 1, 2) is positive at the beginning of the evolution, and decreases
with the iterations progress. Conversely, for VSP n = 3, 4, 5, who are with smaller
VSP preference, the value of xn − yn is negative at the beginning of the evolution,
and increases with the iterations progress. However, for all the five VSPs, the value
of xn − yn (∀n) converges to zero with increasing iteration times. This means that
VSPs and the MNO agree on the fraction of SBS storage that should be assigned to
each VSP. In addition, results in Figs. 11.6 and 11.7 imply that the designed I-DA
based caching mechanism elicits the true hidden information, i.e., the VSP utility
function and MNO cost function.

Figure 11.8, we present the evolution of optimal social welfare when increasing
the number of VSPs in the caching system from N = 3 to N = 10 and
N = 15. We see that for the three cases, their social welfare gradually converges
to different values, which are decreasing with increasing N . This phenomenon
results from the increasing and concave properties of the VSP utility function and
the increasing convex properties of the MNO cost function. Specifically, when
N increases, the allocated fraction of SBS storage to each VSP decreases due
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stop points by applying the I-DA algorithm based caching mechanism (ε = 0.1)

to
∑N
n=1 xn ≤

∑N
n=1 yn ≤ 1. When xn decreases, uVSP

n decreases sharply; and
when yn decreases, vMNO

n decreases gently, ∀n ∈ N . Therefore, increasing N will
reduce the social welfare of the caching system. In addition, the designed algorithm
needs more iterations in order to converge to the optimal solution whenN increases
because of the increasing computation complexity.

11.8 Conclusion

In this part, we have considered a small-cell base video caching system with one
MNO who leases its SBS storage resource and multiple VSPs with caching require-
ments. The social welfare optimization problem was established and analyzed for
the caching system. To achieve the maximum social welfare when there exists
hidden information, i.e., the VSP utility function and the MNO cost function cannot
be known among the MNO, VSPs and the broker, a double auction mechanism was
designed to elicit the hidden information, and an alternative optimization problem
for the broker was formulated. To solve this problem, an iteration based algorithm
was introduce to make sure that the maximum social welfare can be achieved,
with assistance of properly designed resource allocation scheme and pricing rule.
In addition, the designed allocation scheme and pricing rule for VSPs and the
MNO reflect the VSPs’ caching requests and MNO’s caching cost, respectively.
Furthermore, the convergence, EE, IR, IC and BB properties of the designed auction
based caching mechanism have been demonstrated in this work.
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Simulation results revealed the effect of some parameters, such as the step size of
iterative algorithm, the number of VSPs, on the system performance and algorithm
performance. Moreover, the convergence, EE, IR, IC and BB properties of the I-DA
based caching mechanism were also validated by the simulation results.
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Chapter 12
Priority-Aware Computational Resource
Allocation

Abstract Vehicular fog computing (VFC) has been expected as a promising
scheme that can increase the computational capability of vehicles without relying
on servers. Comparing with accessing the remote cloud, VFC is suitable for delay-
sensitive tasks because of its low-latency vehicle-to-vehicle (V2V) transmission.
However, due to the dynamic vehicular environment, how to motivate vehicles to
share their idle computing resource while simultaneously evaluating the service
availability of vehicles in terms of vehicle mobility and vehicular computational
capability in heterogeneous vehicular networks is a main challenge. Meanwhile,
tasks with different priorities of a vehicle should be processed with different
efficiencies. In this work, we propose a task offloading scheme in the context
of VFC, where vehicles are incentivized to share their idle computing resource
by dynamic pricing, which comprehensively considers the mobility of vehicles,
the task priority, and the service availability of vehicles. Given that the policy of
task offloading depends on the state of the dynamic vehicular environment, we
formulate the task offloading problem as a Markov decision process (MDP) aiming
at maximizing the mean latency-aware utility of tasks in a period. To solve this
problem, we develop a soft actor-critic (SAC) based deep reinforcement learning
(DRL) algorithm for the sake of maximizing both the expected reward and the
entropy of policy. Finally, extensive simulation results validate the effectiveness and
superiority of our proposed scheme benchmarked with traditional algorithms.

Keywords Vehicular Fog Computing (VFC) · Task Offloading · Task Priority ·
Dynamic Pricing · Soft Actor-critic (SAC)

12.1 Introduction

The development of Internet of Vehicles (IoV) and artificial intelligence (AI)
technologies facilitates a range of compelling vehicular computation-intensive
applications [1], such as autonomous driving, crowd-sensing, virtual reality [2], etc.
To meet such increasing computational demands, on-board computers of vehicles
will face great challenges of providing high-quality services, resulting from their
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limit computational power and high cost of upgrading. As a promising solution to
these challenges, cloud offloading has been delivered to process computational tasks
in part at remote and centralized cloud to obtain a plenty of computing resource.
However, cloud offloading will lead to long transmission delay and high energy
consumption of communication. Therefore, offloading to centralized cloud is not
applicable for delay-sensitive applications [3–5].

To meet the requirement of low latency in task offloading, mobile edge com-
puting (MEC) is introduced in vehicular networks, i.e., vehicular edge computing
(VEC), where road side unit (RSU) or base station (BS) is equipped with a certain
amount of computation and storage resources to provide computing services for
vehicles [6]. However, with the increase of traffic density, it is difficult to guarantee
the quality of service (QoS) of all vehicular applications for the limited computing
resource in RSU or BS. Furthermore, RSU/BS servers are usually deployed sparsely,
and their performance is constraint by the radio coverage [7]. Moreover, since BS
and RSU are both stationary infrastructures, the relative speed between vehicle and
RSU/BS is high, which leads to short link duration. Instead, the relative speed
between two vehicles driving in the same direction is smaller, thus a longer link
duration becomes possible [8]. Nowadays, many high-end vehicles are equipped
with a fair amount of computational capacity, and with the rapid development
of autonomous driving and the fifth-generation (5G) communication technology,
there will be a growing number of vehicles equipped with plenty of computational
capacity in the near future.

Vehicular fog computing (VFC) is assumed to be a promising scheme where
vehicles can share their idle computing resource among each other. There exist some
works that investigated computational resource allocation in VFC. Some works
focused on the task allocation in VFC with the aim of minimizing the task offloading
delay, and proposed various methods to solve the problem, such as Particle Swarm
Optimization (PSO) [9, 10], modified genetic algorithm [6], Lyapunov optimization
[11], etc. Besides, some works aimed at minimizing the energy consumption [12]
or computation cost [13] in VFC task offloading. Moreover, in order to incentivize
vehicles to share their computing resource, some works employed contract theory
[14–16] and auction mechanism [17] in VFC. Considering the high dynamic
vehicular environment, the policy of computational resource allocation should vary
in response to the vehicular environment in real time, and it is hard to obtain the
complete system model and dynamics of the environment. Therefore, some works
[18–20] utilized model-free DRL to obtain the optimal resource allocation policy
by observing the system states of VFC. Additionally, some works also investigated
the task allocation in heterogeneous vehicular networks, where vehicles and fixed
road infrastructures were integrated to provide computing service cooperatively,
and provided various methods to optimize the efficiency and reliability in task
offloading, such as proximal policy optimization (PPO) [21], fault-tolerant PSO
[22], DRL-based adaptive algorithm [23], etc. However, few of existing works
considered the priority of tasks and the service availability of neighboring vehicles.
As a result, all the tasks have the same probability to be offloaded to servers and
obtain corresponding computing resource, some tasks with strict latency may not be
completed within the maximum latency. Meanwhile, offloading failure may occur



12.1 Introduction 273

due to the short V2V link duration or insufficient vehicular computing resource. In
addition, considering the energy consumption and vehicle safety, it can be expected
that vehicles on the road may not be willing to contribute their idle computing
resource without any incentive.

To solve the problems mentioned above in VFC, we design a distributed vehicle-
to-vehicle (V2V) task offloading scheme that mainly concerns with the following
aspects: 1) The priority of computational tasks is considered, and vehicular task with
high-priority is ensured to be executed preferentially. 2) The service availability
of vehicles is evaluated in the process of task offloading. 3) The mobility of
vehicles is taken into consideration as well, and the effect of vehicle mobility
in task offloading is evaluated in the calculation of transmission rate and service
availability of vehicles. The problem of task offloading is formulated as a Markov
decision process (MDP) with the objective of maximizing the mean latency-aware
utility of offloading tasks in a period. To solve the problem, we propose a model-
free reinforcement learning algorithm, which utilizes the actor-critic framework to
evaluate and improve the policy of task offloading. Meanwhile, both the expected
reward and the entropy of policy are maximized to improve the robustness and
sample-efficiency by applying the proposed algorithm.

The main contributions of this part are summarized as follows:

1. Model: We provide a VFC framework where vehicles with limited computational
capability can offload part of their computational tasks to neighboring vehicles
with idle computing resource, and the computational resource allocation is in
the charge of BSs. In the proposed framework, vehicular tasks are classified by
different priorities. In order to ensure high-priority tasks executed preferentially,
we conceive two utility functions for high-priority task and low-priority task
respectively. Moreover, with the consideration of vehicle mobility and limited
vehicular computing resource, we model vehicular service availability which
is regarded as a basis in the choice of service vehicles according to the link
duration and the vehicle state. Additionally, with the aim of incentivizing
vehicles to share their idle computing resource and improving the efficiency of
resource utilization, a dynamic pricing scheme is introduced, where the resource
allocation in a service vehicle is based on both the idle computing resource and
the service price paid for task offloading.

2. Algorithm: Considering the stochastic vehicular environment and uncertain
communication conditions, the problem is formulated as an MDP with the
objective of maximizing the mean latency-aware utility of offloading tasks in
a period, where the selection of service vehicle and the service price of task
offloading are determined at the same time. We develop a model-free deep
reinforcement learning algorithm based on soft actor-critic (SAC), in which the
expected utility and the entropy of policy are maximized at the same time.

3. Simulation: The performance of our proposed algorithm is evaluated by exten-
sive simulations. Simulation results validate that our algorithm achieves better
performance comparing to the regular algorithms under both low traffic density
and high traffic density.
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The rest of the part is organized as follows. Section 12.2 analyzes the research
work of resource allocation problem in VFC. In Sect. 12.3, the system architecture
and models are detailed. The optimization problem is formulated in Sect. 12.4,
and Sect. 12.5 presents the algorithm of task offloading. The performance of our
proposed scheme is evaluated in Sect. 12.6. Finally, we conclude this part in
Sect. 12.7.

12.2 Related Work

12.2.1 Computation Offloading Optimization In VEC

Some literatures have investigated the computational resource allocation in VEC.
In [24], a continuous alternating direction method of multipliers (ADMM) based
optimization algorithm was proposed with the consideration of the overall energy
consumption and latency of task offloading in VEC. Furthermore, Dai et al. [25]
investigated a multi-user multi-server VEC system where the load balance of servers
and task offloading were jointly optimized. In [26], a hybrid optimization algorithm
that combined partheno genetic algorithm and heuristic rules was presented in
a VEC scenario, where multiple adjacent VEC servers at the roadside provided
computing services for passing vehicles. Moreover, the system costs and offloading
latency of VEC were investigated in [27], in which a mobility-aware task offloading
scheme was proposed in independent VEC servers while a location-based offloading
scheme was proposed in cooperative VEC servers. Specifically, Zhang et al.
[28] presented an MEC-enabled LTE-V network and adopted a deep Q-learning
optimization method in task offloading where the selection of target server and
data transmission mode were both considered. In addition, based on the historical
association experiences in the dynamic scenario of VEC, each BS in [29] was
regarded as an agent that executed online reinforcement learning and decided
which vehicles were associated with the BS. In [30], vehicles were able to offload
computational tasks to nearby RSUs or BSs, and a two-side matching approach
and a double deep Q-network (DDQN) algorithm were proposed for offloading
scheduling and resource allocation respectively.

However, all of the works mentioned above assumed that the infrastructures
deployed by the road are equipped with MEC servers that have enough computing
resource for task offloading, which are not well-suited for some scenarios with no
MEC servers at the roadside.

12.2.2 Computation Offloading Optimization in VFC

VFC is deemed to be a promising solution that can increase computational capability
of vehicles in a distributed manner. In [8], Feng et al. proposed a VFC aided
computational resource allocation framework solved by a modified ant colony
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optimization algorithm for the sake of supporting task offloading in autonomous
vehicular networks. Considering the dwell time of vehicles and heterogeneous
vehicular computational capabilities in VFC, Sun et al. [6] presented a vehicular
cooperative computation offloading scheme solved by a low-complexity modified
genetic algorithm. Moreover, in consideration of the opportunistic V2V commu-
nication, a VFC framework based on graph jobs was proposed in [31], where a
computation-intensive task was represented as a graph whose components repre-
sented the interdependent subtasks. Specifically, Pu et al. [11] presented a hybrid
VFC framework where vehicles can obtain computing resource from cooperative
vehicles and the virtual machine (VM) pool, and an online task scheduling algorithm
based on Lyapunov optimization was developed. Additionally, Zhu et al. [10]
proposed a dynamic task allocation framework that optimized service latency and
quality loss of results in VFC, and the bi-optimization problem was solved by linear-
programming and binary particle swarm. In VFC, a vehicle can act as either service
provider or requester. Therefore, a Stackelberg game based opportunistic V2V
offloading scheme was conceived in [32] to decide the selection of servers and the
price of the service under situations involving complete and incomplete information.
Moreover, considering that vehicles may not be willing to share their computing
resource voluntarily, some works also investigated how to incentivize vehicles to
contribute their idle computing resource to nearby computation-intensive vehicles
in VFC. In [17], a Vickrey-Clarke-Groves based reverse auction mechanism was
proposed, while in [33], a market mechanism was developed with the consideration
of both task with time to live (TTL) and task without TTL. Furthermore, a contract-
matching method was developed in [14], and the problem of task assignment was
solved by a pricing-based stable matching algorithm. In [15], Zhao et al. employed
contract theory and developed a distributed deep reinforcement learning (DRL)
algorithm to reduce the complexity of system implementation. However, most of
the studies mentioned above assumed that the dynamics of vehicular environment
can be accurately modeled, which is usually impractical in VFC.

12.2.3 DRL-Based Computation Offloading Optimization in
VFC

With the advancement of machine learning, reinforcement learning has been applied
in some works to solve the problems of computational resource allocation in VFC.
Sun et al. [34] designed a multi-armed bandit theory based V2V task offloading
algorithm aiming at minimizing the average offloading delay in VFC. In addition,
Wang et al. [35] proposed an online learning method based on Combinatorial Multi-
Armed Bandits (CMAB) in dynamic VFC to jointly optimized task allocation
decision and spectrum scheduling. With the aim of maximizing the long-term
reward in terms of the allocation of heterogeneous vehicular computing resource in
VFC, the task offloading problem in [36] was formulated as a semi-Markov decision
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process and solved by an iterative algorithm based on Bellman equation. Moreover,
in the VFC scenario of [3], users were able to offload a group of tasks to nearby
vehicles, and a constrained Markov decision process was proposed to maximize the
utility of users with the consideration of QoS requirement. Furthermore, to reduce
the complexity of resource allocation in VFC, a multi-timescale framework based
on Q-learning was presented in [18], where mobility-aware reward was estimated
in large timescale while exact immediate reward was calculated in small timescale.
With the consideration of stochastic traffic and uncertain communication conditions
in VFC, the problem of computation offloading in [19] was conceived as a semi-
Markov process which was solved by both Q-learning and DRL based method. In
[37], both parking vehicles and moving vehicles can act as fog servers, and a DRL
algorithm based on queuing theory was developed to schedule offloading task flows
so that the overall energy consumption is minimized.

In contrast to the existing works, this work considers the integrated impacts of
vehicle mobility, priority of computational tasks, service availability of vehicles,
and incentive of resource contribution. In addition, we propose a model-free DRL
algorithm based on SAC to learn the task offloading policy that maximizes both the
mean utility of offloading tasks and the entropy of the policy.

12.3 System Model

12.3.1 System Architecture

Consider a distributed V2V communication system as illustrated in Fig. 12.1. There
is a one-way road which is covered by several BSs, and neighboring BSs can
communicate with each other. We divide the system time into several periods, and
discretize each period into a number of slots. In each slot, the system status can be
regarded as constant, but changes over slots [38]. In the system, BSs take charge of
the computational resource allocation all the time, and the communication range of
BS is much longer than vehicular communication range. We assume that if a vehicle
enters the coverage area of a BS and is willing to participate in VFC, it will send a
message that contains its position, velocity and computational capability to the BS.
Then, the traffic of the road within the coverage of a BS can be known by the agent
deployed in the BS. In a certain period T , we assume that there are several vehicles
that do not have enough computational capability to execute some of the on-board
applications, and we focus on one of these vehicles Vt and call this vehicle as task
vehicle.

We assume that during period T , there areK vehicles within the communication
range of Vt , which are denoted as K = {V1, V2, . . . , VK }, and the total compu-
tational capability of each vehicle is represented as {F1, F2, . . . , FK }, respectively.
All of these vehicles have the potential to be selected as the service vehicle that
provides idle computing resource for task vehicle. In each slot, if a task vehicle
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Fig. 12.1 VFC based vehicular network architecture

has a computational task to offload, it first sends an offloading request to the BS,
and then the BS decides which service vehicle the task should be offloaded to
and determines the corresponding price that the task vehicle pays to the service
vehicle, and transmits the message of service assignment back to the task vehicle
and selected service vehicle. Considering that the message of offloading request and
service assignment only contains several bits, we ignore the transmission delay of
offloading request and service assignment in our system. Furthermore, we assume
that there are N tasks generated by the task vehicle in period T , the task set is
denoted as N = {φ1, φ2, . . . , φN }, and the profile of task φn is represented as
{Dn,Cn, τn, κn}, where Dn denotes the input data size, Cn is the computation size
which represents CPU cycles required to complete the task, τn denotes the delay
constraint, and κn represents the priority of the task.

12.3.2 Mobility Model

In this work, we focus on a task vehicle and multiple service vehicles within
the communication range of the task vehicle on a road, all of which are in the
coverage of a BS during the period of consideration, and the traffic density and
the average vehicle velocity both affect the performance of task offloading. Similar
to [39, 40], we consider a free flow traffic model, where all the vehicles within
the coverage of BS drive at a constant speed, and the velocity of vehicles forms
a Gaussian distribution. The mean and variance of the velocity are denoted as v̄
and σv , respectively. The relationship between the traffic density and the average
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velocity of vehicles follows

v̄ = vmax
(

1− ρ

ρmax

)
, (12.1)

where ρ represents the traffic density in the coverage of the BS, vmax and ρmax are
the maximum velocity and density of vehicles, respectively. Considering that when
the traffic density becomes higher, the average distance between vehicles will be
shorter, and the variance of velocity should be lower, otherwise the high relative
speed between vehicles may cause vehicle collision. Therefore, similar to [33] and
according to (12.1), we assume that the variance of the velocity is proportional to
the average velocity, which is given as

σv = αvv̄, (12.2)

where αv is a constant.

12.3.3 Communication Model

We assume that the wireless channel state between task vehicle and service
vehicle remains static during the data transmission of each computational task. The
transmission rate between task vehicle and service vehicle is calculated by

rt,k = Bt,k log2
(
1+ γt,k

)
, (12.3)

where Bt,k is the allocated bandwidth of the V2V channel between task vehicle Vt
and service vehicle Vk, γt,k represents the signal to noise ratio (SNR) of the wireless
channel, which is calculated by

γt,k =
Ptd

−α
t,k h

2
t,k

N0 +∑
j∈K ,j 
=k Pjd

−α
j,k h

2
j,k

, (12.4)

where Pt represents the power of transmitter, dt,k is the distance between task
vehicle Vt and service vehicle Vk, α denotes the path loss exponent related to
the distance, ht,k represents the channel gain, N0 is the power of Gaussian White
Noise, and

∑
j∈K ,j 
=k Pj d

−α
j,k h

2
t,k indicates the interference introduced by other

V2V transmissions.
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12.3.4 Computation Model

There are two ways to execute a computational task in a vehicle, executing in local
processor or offloading to another neighboring vehicle. If a computational task φn is
executed locally, then the delay of the task only depends on the allocated frequency
in the local processor, which can be given as

t locn = Cn
Fn
, (12.5)

where Fn is the frequency allocated for task φn. If task φn is offloaded to a service
vehicle Vk , then the delay of the task is calculated by

ton = tupn + tcompn + tdownn = Dn
rt,k

+ Cn
Fnk

+ δDn
rk,t

, (12.6)

where tupn , tcompn and tdownn are the time for uploading the task, computing the task
and downloading the computation result, respectively. Fnk denotes the allocated
frequency in Vk . According to [41], for many applications, the data size of
computation result in general is much smaller than the size of input data, i.e., δ � 1.
In our work, we ignore the transmission time of computation result in the calculation
of offloading delay. Besides, if a computational task generated by a task vehicle is
too large, the task vehicle can divide the computational task into several subtasks,
which can be executed parallelly or sequentially, and gives each subtask a delay
constraint. Then the BS schedules the subtask according to the task profile that
contains the data size, computation size and delay constraint, which is the same
as other tasks.

12.3.5 Task Model

In general, vehicle applications can be classified into three classes: crucial tasks,
high-priority tasks and low-priority tasks [8]. Crucial tasks contain the core tasks
and safety-related tasks of vehicle system, which must be executed locally without
relying on vehicular environment. Therefore, vehicles must reserve some computing
resource for local crucial tasks. High-priority tasks represent a class of tasks that
have strict delay constraint, such as navigation, road-sensing, etc. If a high-priority
task cannot be finished within the maximum tolerable delay, the task will be failed
and may bring some loss to vehicle. Compared to low-priority tasks, vehicles should
ensure high-priority tasks executed first. Low-priority tasks are a class of delay-
tolerant tasks, such as vehicular entertainment applications, value-added services,
etc. If the completion time of a low-priority task exceeds the reference delay, the
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result will still be of use, but the availability of the result will decline with the
execution time increasing.

In our work, tasks with high priority should meet their deadline without any
negotiation. If a high-priority task is completed before the deadline, the utility of
the task is non-negative and depends on the completion time. On the other hand, if
a high-priority task fails because of the completion time exceeding the deadline,
the utility will be negative as a penalty. Moreover, since the relay of execution
result may introduce queuing time in relay node and extra transmission time, which
degrades the efficiency of task offloading, in our proposed scheme, we do not
consider the relay of execution result when the communication link interruption
occurs in the task offloading, and the task offloading will be regarded as a failure
and the utility will be the same as in the condition of completion time exceeding
deadline. Similar to [42], a logarithm function is employed to represent the utility
of executing a task, which is shown as

U H
n =

{
log (1+ τn − tn) , tn ≤ τn,
−Γ H , tn > τn.

(12.7)

where tn is the completion time of task φn, −Γ H is a negative constant, which
represents the penalty of the offloading failure of high-priority task.

For low-priority task, if the completion time is less than the reference delay,
the utility will be a positive constant. Instead, if the completion time exceeds the
reference delay, the result of the task is still regarded as available, but the utility
declines exponentially with the increase of the time beyond the reference delay. We
define the utility function of low-priority task as

U L
n =

{
Γ L, tn ≤ τn,
Γ Le−c(tn−τn), tn > τn,

(12.8)

where Γ L is a positive constant, which represents the reward of completing a low-
priority task within the reference delay, c > 0 is a constant. Specifically, if a low-
priority task fails due to the communication link interruption, the completion time
will be infinite, i.e., tn = ∞, then the utility will be zero.

We denote pn as the unit price paid by task vehicle for offloading task φn,
fn is the frequency allocated in service vehicle for task φn, and t ′n represents the
computing time of task φn, then we have Cn = fnt

′
n. We assume that the price

paid by task vehicle is proportional to the energy consumed in service vehicle. In
a service vehicle, given a certain fn, the energy consumption is proportional to the
completion time of task φn, while given a certain t ′n, the energy consumption is
proportional to the allocated frequency. As a result, the price paid for task φn should
be proportional to the computation size Cn. Finally, the utility of task vehicle for
offloading a task can be given as

Un = 1 (κn = κH )U H
n + 1 (κn = κL)U L

n − pnCn, (12.9)



12.3 System Model 281

where 1 (·) is the indicator function, κH and κL represent the priority level of high-
priority task and low-priority task respectively, and both of which are constants.

12.3.6 Service Availability

In the VFC system, not all of the vehicles within the communication range of task
vehicle are suitable for task offloading, because some vehicles may have heavy
workload or the total delay of task offloading is beyond the contact time of task
vehicle and service vehicle. We use ηkn to represent the service availability of service
vehicle Vk for offloading task φn. Then, we assume that the service availability
depends on both the service probability of the service vehicle and the V2V link
duration between the task vehicle and the service vehicle, which is given as

ηkn = εk
(
Tk − τn
Tk

)+
, (12.10)

where εk is the probability that an offloading task is accepted by service vehicle
Vk, Tk denotes the duration of the V2V transmission link between task vehicle Vt
and service vehicle Vk , τn represents the maximum tolerable delay of high-priority
task or the reference delay of low-priority task. Tk−τn

Tk
indicates that vehicles with

longer dwell time within the communication range of task vehicle are more likely
to be chosen as the service vehicle. Function (x)+ = max (x, 0) ensures that ηk is
non-negative.

In order to evaluate the value of Tk, we consider a one-dimensional road, on
which all the vehicles drive in the same direction, then Tk can be evaluated by

Tk = R

|vk − vt | −
xk − xt
vk − vt , (12.11)

where xt and vt denote the current position and velocity of Vt respectively, xk and
vk represent the current position and velocity of Vk respectively, R is the effective
V2V communication range.

To evaluate the value of εk, we first introduce a concept named service ratio
(SR) for service vehicle similar to [43]. Since a service vehicle may receive task
offloading requests from multiple task vehicles in a slot, considering the limited
computing resource and instability of V2V links, service vehicles have to reject
some of the requests which are low-priority or cannot be completed within the
maximum tolerable delay. We denote the SR of service vehicle Vk as βk , which
can be obtained by

βk = κr−c

κ0F̃k +∑
j∈Q κj r

−c
j

, (12.12)
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where κ denotes the priority of the offloading task from Vt , r is the distance between
Vt and Vk , κ0 represents the weight factor and can be assumed as a constant, Q
denotes a set of service requests from other task vehicles within the communication
range of Vk in a slot. Let Fmink represent the minimum computing resource reserved
for local tasks in Vk , then F̃k = Fmink /Fk denotes the fraction of the minimum
computing resource occupied by local tasks in Vk . From (12.12), one can observe
that the SR of a service vehicle not only depends on the number of task requests
from different task vehicles in a slot, but also depends on the fraction of the
computing resource occupied by local tasks in the service vehicle. Moreover, we
assume that each service vehicle has the same predetermined threshold of SR β̂,
then the probability that a computational task is accepted by Vk can be defined as

εk = P
(
βk > β̂

)
. (12.13)

In order to estimate the admission probability εk, a virtual zone centered at
service vehicle Vk with radius Rv,k is defined. Once other task vehicles appear in
the virtual zone and send Vk the requests of computing services, the SR of Vk for
offloading a task from Vt drops below β̂, then the offloading request from Vt is
rejected by Vk .

Theorem 12.1 Given the threshold of SR β̂, the radius of the virtual zone centered
at Vk is obtained by

Rv,k = κ
1
c

H

(
κr−c

β̂
− κ0F̃k

)− 1
c

. (12.14)

Proof According to the definition of Rv,k, once any task vehicle besides Vt appears
in the virtual zone, the SR of Vk for Vt will drop below β̂. We assume that there is a
task vehicle Vj appearing in the virtual zone, from (12.12), we have

κr−c

κ0F̃k + κj r−cj
≤ β̂, (12.15)

then, the range of rj is obtained by transforming (12.15), i.e.,

rj ≤ κ
1
c

i

(
κr−c

β̂
− κ0F̃k

)− 1
c

, (12.16)
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Notice that κi can be either κL or κH , and κL < κH . Since Rv,k is the upper bound
of rj , then we have

Rv,k = κ
1
c

H

(
κr−c

β̂
− κ0F̃k

)− 1
c

. (12.17)

This completes the proof of Theorem 12.1.

Furthermore, according to [44], the probability of an offloading task being
rejected by Vk can be given as follows:

1− εk = 1− e−2Rv,kρt , (12.18)

where ρt is the density of task vehicles in the communication range of service
vehicle. We assume that ρt is proportional to the traffic density ρ, i.e., ρt = ctρ,
where ct is assumed as a constant during the period of consideration. From (12.18),
we obtain εk = e−2Rv,kctρ . Finally, service availability ηk is calculated by (12.10).

12.3.7 Pricing Model

In a service vehicle, there may be local computational tasks and offloading tasks
from task vehicles to be executed at the same time. Considering the limited on-board
computational capability, the service vehicle may not ensure that all the com-
putational tasks obtain enough computing resource. Therefore, the computational
resource allocation should first guarantee the local high-priority tasks completed
before deadline. Consider that there are Lk local high-priority tasks in Vk , the
computation size and the deadline of each local task are denoted as Cl and τl ,
respectively. Then, the least required frequency of local tasks can be given as
Fmink = ∑L

l=1
Cl
τl

. If a vehicle rejects all the offloading tasks and allocates all

of its computing resource to local tasks, then we have Fk = ∑L
l=1

Cl
θkτl

, where

θk = Fmink /Fk . It can be seen that the domain of frequency reserved for local tasks is[
Fmink , Fk

]
. We use θ to denote the ratio of Fmink to the computing resource reserved

for local tasks, the domain of θ can be given as [θk, 1]. According to (12.7), the total
utility of local tasks is represented as

Ulocalk (θ) =
Lk∑
l=1

log (1+ τl − θτl) , θ ∈ [θk, 1] . (12.19)

Once a vehicle decides to accept an offloading request from other vehicle and
allocates frequency fn to an offloading task φn, the utility of local tasks changes
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from Ulocalk (θk) to Ulocalk

(
θ ′k
)
, and the price pnCn paid for task φn should satisfy

pnCn = Ulocalk (θk)− Ulocalk

(
θ ′k
)
, (12.20)

i.e., the service price of an offloading task should compensate for the loss of the
utility of local tasks. After given the price pnCn, θ ′k can be determined by (12.20),
and the frequency allocated to task φn is calculated by fn = Fk − Fmink /θ ′k .
The domain of the unit price of task φn is

(
0, Ulocalk (θk) /Cn

]
. As a result, if an

offloading task requires more computing resource in Vk, the task vehicle should pay
Vk a higher price.

In addition, during the process of executing task φn, if there is another task
φn′ offloaded to Vk , then the utility of local tasks changes from Ulocalk

(
θ ′k
)

to
Ulocalk

(
θ ′′k
)
, and θ ′′k is determined by the service price of task φn′ , and so on.

12.4 Formulation of Optimization Problem for Task
Offloading

In the proposed VFC system, we consider a certain period of time, there are some
vehicles in the coverage of the BS. We focus on a task vehicle which has to
offload a group of computational tasks due to the limited on-board computational
capability. For each offloading task in the task vehicle, the BS chooses a service
vehicle surrounding the task vehicle and determines the unit price that the task
vehicle should pay to the selected service vehicle. The utility of a computational
task depends on the completion time of the task. Our aim is to maximize the mean
utility of offloading tasks in the period. The optimization problem is formulated as
follows:

max
1

N

N∑
n=1

K∑
k=1

ckn

(
1 (κn = κH )U H

n + 1 (κn = κL)U L
n − pnCn

)
,

(12.21a)

s.t. 0 < pkn ≤
Ulocalk

(
θ̃k

)

Cn
, ∀n ∈ N , k ∈ K , (12.21b)

ckn ∈ {0, 1} , ∀n ∈ N , k ∈ K , (12.21c)

K∑
k=1

ckn = 1, ∀n ∈ N , (12.21d)

1
(
ckn = 1

)
ηkn > 0, ∀n ∈ N , k ∈ K . (12.21e)
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In the above problem, constraint (12.21b) guarantees that the price is positive and
not exceeds the maximum value, and θ̃k represents the current value of θ in Vk in
the step of offloading task φn. In constraint (12.21c), ckn = 1 means that task φn is
offloaded to Vk , while ckn = 0 means not. Constraint (12.21d) ensures that a task is
executed only in one vehicle. Constraint (12.21e) indicates that the service vehicle
selected for task φn must be available. The objective of the problem is to obtain
the maximum mean latency-aware utility of offloading tasks in the period. Notice
that the utility of computational task is non-linear, and the remaining computing
resource of a service vehicle varies with the decision of task offloading. Meanwhile,
due to the mobility of vehicles, the relative distance between vehicles and V2V link
duration are both time-variant, which makes it hard to accurately give a complete
model for the V2V channel state and the service availability of vehicles. Therefore,
regular optimization methods are not appropriate for solving the problem. In the
next section, we transform the optimization problem as a Markov decision process
which can be solved by model-free reinforcement learning method.

12.5 SAC Based DRL Algorithm for Task Offloading

In the VFC system, we focus on a task vehicle that has a group of computational
tasks to offload in a period, and in each slot, the agent in BS determines the
service vehicle and corresponding unit service price for an offloading task. Thus, the
task offloading problem can be regarded as an optimal sequential decision-making
problem under the dynamic vehicular environment. Due to the mobility of vehicles,
the contact time and the wireless channel state between vehicles are both time-
variant, and the available computing resource of vehicles varies over time as well.
Since the current state of the system changes over time slots, we cannot simply
make decision according to the current observed state. Therefore, we formulate
the problem as the Markov decision process whose dynamics are unknown to the
agent in BS. To solve the problem, we propose a model-free reinforcement learning
algorithm based on SAC [45].

SAC is a maximum entropy reinforcement learning algorithm based on off-policy
actor-critic model. Comparing to the value-based DRL algorithms, such as DQN and
double DQN, SAC is more efficient in solving the problems with high-dimensional
action space, and therefore is more suitable for the vehicular task allocation under
different traffic densities. Moreover, by incorporating the entropy measure of the
policy into the reward, SAC is able to explore more feasible strategies. If there exist
multiple optimal options, the policy in SAC will choose each option with equal
probability. Therefore, comparing to some other policy-based DRL algorithms, such
as Deep Deterministic Policy Gradients (DDPG), Asynchronous Advantage Actor
Critic (A3C), SAC is more robust and generalized, and thus makes it easier to make
adjustment in stochastic vehicular environment [46, 47].

In this section, we first demonstrate the state space, the action space, and the
reward function of the formulated MDP. Then, to illustrate how SAC works, the
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policy and value function are presented. Furthermore, we elaborate the critic part
and the actor part of SAC. Finally, the detailed implementation of our proposed
algorithm is presented.

12.5.1 State Space

In each slot, the DRL agent in BS observes the vehicular environment in the
coverage of the BS and collects the following parameters:

1. γk (t): The SNR of the wireless link between task vehicle Vt and service vehicle
Vk at time t .

2. Frk (t): The remaining computing resource of service vehicle Vk at time t . For
the sake of simplification, we assume that during a period, the local tasks to be
executed in Vk remain unchanged, and the variation of the remaining computing
resource only depends on the amount of the accepted offloading tasks in Vk.

3. ηk (t): The service availability of Vk for offloading a computational task of Vt .
According to the definition of service availability, ηk (t) can be evaluated by the
fraction of the minimum computing resource occupied by local tasks in Vk , the
priority of offloading task, the relative distance and velocity between Vt and Vk ,
and the traffic density at time t .

4. uk (t): The total utility of local tasks in Vk at time t , which equals to Ulocalk (θ)

defined in (12.19).
5. D (t) , C (t) , τ (t) , κ (t): The data size, the computation size, the deadline for

high-priority task or the reference delay for low-priority task, and the priority of
the computational task at time t , respectively.

Let S denote the state space, and the state vector at time t is represented as
follows:

st =
[
γ1 (t) , γ2 (t) , · · · , γK (t) , F r1 (t) , F r2 (t) , · · · , F rK (t) ,
η1 (t) , η2 (t) , · · · , ηK (t) , u1 (t) , u2 (t) , · · · , uK (t) ,
D (t) , C (t) , τ (t) , κ (t)] .

(12.22)

12.5.2 Action Space

By observing the state at time t , the agent conducts an action to determine the
service vehicle and the unit price that the task vehicle should pay to the service
vehicle. We denote the action space as A , and represent the action vector conducted
by the agent at time t as

at = [c1 (t) , c2 (t) , · · · , cK (t) , p1 (t) , p2 (t) , · · · , pK (t)] . (12.23)
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In the action vector, ck (t) is a binary variable, ck (t) = 1 indicates that the
computational task is offloaded to Vk. pk (t) denotes the unit price that Vt pays

to Vk per CPU cycle, and the domain of pk (t) is
(

0, Ulocalk

(
θ̃k

)
/C (t)

]
, which is

related to the fraction of the available computing resource in Vk .

12.5.3 Reward Function

In each step, the agent conducts action at by observing state st , and then gets an
immediate reward, which can be represented as R (st , at ) =∑K

k=1 c
k
t U

k
t , where Ukt

represents the utility of a task in (12.9). Our goal is to maximize the mean utility
of Vt in a period. Assume that there are T time slots in a period, and in each slot,
a computational task of the task vehicle is offloaded to a service vehicle, then the
mean reward can be given as

R = 1

T

T−1∑
t=0

K∑
k=1

ckt U
k
t . (12.24)

12.5.4 Policy and Value Function

In reinforcement learning, policy is an action-selection strategy that determines
the long-term expected return, it can be either deterministic or stochastic [48, 49].
In the algorithm, the policy is stochastic and can be denoted as π (a|s), which
means a probability distribution over actions given a certain observed state. The
goal of the agent is to learn an optimal policy π∗ (a|s) that maximizes the expected
return corresponding to the reward defined in (12.24), and the policy evaluation and
improvement are presented in the following subsections.

We then define two functions, the action-value function and the state-value
function. Since the current action can affect future returns, the action-value function
Qπ (s, a) is defined as the expected discounted return of a trajectory starting at time
0 with state s and selecting action a, which is shown as follows:

Qπ (s, a) = E
μ∼π

[
T−1∑
t=0

γ tRt |s0 = s, a0 = a

]
, (12.25)
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where Rt is the short name for R (st , at ), γ ∈ (0, 1) is discount factor, μ denotes
the state-action trajectory {s0, a0, s1, a1, . . . , sT−1, aT−1, sT }. Similarly, we define
V π (s) as the state-value function, which means the expected discounted return
starting from state s and taking actions following policy π , which is presented as
follows:

V π (s) = E
μ∼π

[
T−1∑
t=0

γ tRt |s0 = s

]
. (12.26)

In SAC, the optimization objective not only maximizes the expected reward, but
also maximizes the entropy of the policy at the same time. Therefore, the action-
value function and the state-value function should be modified in accordance with
the optimization objective of the algorithm. Similar to the regularized value function
defined in [50] and according to (12.25), the soft action-value function can be given
as

Qπh (s, a) = E
μ∼π

[
T−1∑
t=0

γ tRt + α
T−1∑
t=1

γ tH (π (·|st )) |s0 = s, a0 = a

]
, (12.27)

where α is the temperature factor that determines the importance of the policy
entropy in the optimization objective. In the same way, according to (12.26), the
soft state-value function is defined as follows:

V πh (s) = E
μ∼π

[
T−1∑
t=0

γ t (Rt + αH (π (·|st ))) |s0 = s

]
. (12.28)

Since the dimensions of state space and actor space can be extremely high, and
the process of value iteration until convergence is computationally too expensive, it
is necessary to employ function approximators for the soft action-value function and
the policy. In the algorithm, deep neural network (DNN) is employed to represent
the soft action-value function and the policy. Soft action-value function Qπh (s, a)
can be parameterized as Qθ (s, a) by utilizing a fully connected DNN which
contains multiple hidden layers, and θ represents the parameters of the network.
In the same way, policy π (a|s) is parameterized as πφ (a|s) with a fully connected
DNN, and φ represents the parameters of the network.

12.5.5 Policy Evaluation

In the algorithm, the soft value functions can be computed iteratively with a given
policy π . According to the Bellman equation, the relationship between the soft
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action-value function and the soft state-value function is shown as follows [45]:

Qπh (st , at ) = Rt + γEst+1∼ρπ
[
V πh (st+1)

]
, (12.29)

V πh (st ) = Eat∼π
[
Qπh (st , at )− α logπ (at |st )

]
, (12.30)

where ρπ is the state marginals of the trajectory distribution induced by policy π .
In order to stabilize the training in the iteration of the soft action-value function,

we employ a target soft action-value function with parameters θ̄ which can be
obtained as an exponentially moving average of θ . We define the target soft action-
value function as

Q̂θ̄ (st , at ) = Rt + γEst+1∼ρπ
[
Vθ̄ (st+1)

]
. (12.31)

To break up the temporal correlations during the training process, we set an
experience replay buffer M with a fixed size. In each time slot, the transition of the
state of the vehicular environment, the conducted action and the immediate reward
form a tuple (st , at , Rt , st+1), which is then stored in M . By sampling a mini-batch
of tuples from the buffer, the actor and the critic are updated. Then the loss function
of the critic becomes

JQ (θ) = E(st ,at )∼M
[

1

2

(
Qθ (st , at )− Q̂θ̄ (st , at )

)2
]
, (12.32)

and the parameters of the soft action-value function is trained by minimizing loss
function JQ (θ).

12.5.6 Policy Improvement

In the algorithm, if a policy of task offloading is optimal, then all the offloading
tasks in a period will be completed with the least time and price, and the total utility
will be maximum as well. On the other hand, if some of the offloading tasks are
completed with much long time or cannot be completed before deadline, the utility
will be a smaller value, which reflects that the current policy is poor. As a result,
the policy should be improved. In SAC, the policy parameters can be learned by
minimizing the expected KL-divergence, which is shown as follows [45]:

πt = arg min
π ′∈Π

DKL

⎛
⎝π ′ (·|st ) ‖

exp
(

1
α
Qπ (st , ·)

)

Zπ (st )

⎞
⎠ , (12.33)
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whereΠ represents a set of policies which correspond to a parameterized family of
distributions such as Gaussians.Zπ (st ) is a function that normalizes the distribution
and does not have effect on the gradient with respect to the new policy. We further
transform the KL-divergence in (12.33) by multiplying α and ignore the constant
normalization term Eat∼πφ

[
α logZπ (st )

]
. Afterwards, the policy parameters can

be trained by minimizing the following function:

Jπ (φ) = Est∼M
[
Eat∼πφ

[
α log

(
πφ (at |st )

)−Qθ (st , at )
]]
. (12.34)

In the process of policy iteration, the soft policy evaluation and the soft policy
improvement alternate until the iteration converges to an optimal policy with
maximum entropy among the policies inΠ .

12.5.7 Algorithm Design Based on SAC

In the process of policy evaluation and policy improvement illustrated above, the
temperature parameter is treated as a constant. Here, we will demonstrate how to
choose the optimal temperature automatically in SAC. Because the entropy can vary
unpredictably both across different training tasks and during training process, it is
difficult to adjust the temperature. To solve the problem, a constrained optimization
problem is formulated. While maximizing the expected return, the entropy of policy
should satisfy a minimum constraint, which is shown as follows [51]:

max Eρπ

[
T−1∑
t=0

R (st , at )

]
,

s.t. E(st ,at )∼ρπ
[− log (πt (at |st))

] ≥H0, ∀t,
(12.35)

where H0 is a predefined minimum policy entropy threshold. The temperature
parameter can be learned in every time slot by minimizing the following objective
function [51]:

J (α) = Eat∼πt
[−α logπt (at |st )− αH0

]
. (12.36)

In addition, in order to mitigate the positive bias in the policy improvement, two
soft action-value functions are employed in the algorithm. As is proposed in [52],
we parameterize two soft action-value functions and train them independently. Then
we use the minimum of the soft action-value functions to compute the stochastic
gradient of JQ (θ) and the policy gradient of Jπ (φ).
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Algorithm 4 Task Offloading Algorithm based on SAC
1: Initialize:
2: Initialize main soft Q-networks Qθ1 (s, a) and Qθ2 (s, a) with weights θ1 and θ2.
3:
4: Initialize target soft Q-networks Qθ̄1 (s, a) andQθ̄2 (s, a) with weights θ̄1 = θ1 and θ̄2 = θ2.
5:
6: Initialize policy πφ (a|s) with weights φ.
7: Initialize replay memory M = ∅.
8:
9: for each period do

10: Collect initial observation state s0.
11:
12: for time slot t = 0, 1, . . . , T − 1 do
13: Receive offloading request from task vehicle and collect information from vehicular

environment, estimate state st .
14: Generate action at that determines service vehicle Vk and unit price pk , and send it to

Vk and the task vehicle.
15: Compute immediate reward Rt according to the resource allocation of Vk , and estimate

the next state st+1.
16: Store tuple (st , at , Rt , st+1) in M .
17: Sample a batch of tuples B from M .
18: Update θi by computing the gradient of JQ (θi) defined in (12.32),

θi = θi − δQ∇θi
1

|B|
∑
B

JQ (θi) , ∀i = 1, 2.

19: Update policy parameters φ by calculating the gradient of Jπ (φ) defined in (12.34),

φ = φ − δπ∇φ 1

|B|
∑
B

Jπ (φ) .

20: Update temperature parameter α by computing the gradient of J (α) defined in (12.36),

α = α − δα∇α 1

|B|
∑
B

J (α) .

21: Update parameters of target soft action-value functions θ̄i by

θ̄i = ωθi + (1− ω) θ̄i , ∀i = 1, 2.

22: end for
23: end for
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Fig. 12.2 The structure of SAC-based task offloading algorithm

Finally, the structure of our proposed SAC-based algorithm is presented in
Fig. 12.2, which mainly contains two parts, the actor and the critic. The actor
contains the policy network, which takes charge of giving offloading decision by
observing the system state and meanwhile improving the policy. The critic contains
the main soft Q-networks and the target soft Q-networks, which are responsible
for policy evaluation. In addition, the replay buffer is employed to store the task
offloading experiences, which can be used to train the networks in the actor and
the critic. We present the SAC-based task offloading algorithm in Algorithm 4, and
illustrate the main steps of the algorithm in the following:

1. Initialize parameters of two action-value functionsQθ1 (s, a) andQθ2 (s, a) with
weights θ1 and θ2 that form some distributions, respectively. The parameters
of target soft action-value networks θ̄1 and θ̄2 are assigned with the weights θ1
and θ2, respectively. Initialize parameters of the stochastic policy πφ (a|s) with
random weights φ and set the experience replay buffer M as ∅.

2. In each period, the agent in BS first collects the initial state s0 by observing the
vehicular environment.

3. In each time slot, the agent receives a task offloading request from task vehicle,
and by collecting state information from the vehicular environment, state st can
be estimated. Then the actor generates action at according to state st and policy
πφ (at |st ).

4. Given action at , the agent sends service assignment which contains the selected
service vehicle Vk and unit price pk to the task vehicle and Vk , and Vk allocates
computing resource for the offloading task according to pk . Then Vk sends the
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allocation information back to the agent, and the agent computes the immediate
reward Rt . At last, the task vehicle transmits the task data to Vk.

5. The agent observes the vehicular environment and estimates the next state st+1,
and stores tuple (st , at , Rt , st+1) into the experience replay buffer M .

6. The agent samples a batch of tuples B from M randomly. The parameters θ1
and θ2 of soft action-value functions are updated by calculating the gradients of
JQ (θ1) and JQ (θ2) defined in (12.32), the parameters φ of policy is updated
by computing the gradient of Jπ (φ) defined in (12.34), and the temperature
parameter is updated according to the gradient of J (α) defined in (12.36).

7. The agent updates the parameters of target soft action-value functions, θ̄1 and θ̄2,
with the exponentially moving average of θ1 and θ2, respectively.

12.5.8 Complexity Analysis

The complexity of our proposed algorithm mainly contains two parts, one is the
complexity of action generation, and the other is the complexity of training actor
and critic networks. We assume that there areK service vehicles surrounding a task
vehicle in a period. For each offloading task, the agent generates an action in terms
of task offloading according to the system state. In our proposed algorithm, the
actor and critic are both fully-connected networks that contain two hidden layers.
We denote the hidden layers of actor as

(
La1, L

a
2

)
. From (12.22) and (12.23), the

dimension of state space is 4K + 4, and the dimension of action space is 2K . Then,
the complexity of action generation in actor is O

(
(4K + 4)La1 + La1La2 + 2La2K

)
.

Since the size of hidden layers of actor and critic in our system is fixed, the
complexity of action generation can be given as O (K). In the training process of
actor and critic networks, we assume there are T time slots in a period, then the
actor and critic networks will be trained in T steps. In each step, similar to the action
generation in actor, the complexity of training actor and critic is O (K). Finally, in
a period, the complexity of our proposed algorithm is O (KT ).

12.6 Performance Evaluation

In this section, we conduct a number of simulations to evaluate the performance
of our proposed scheme. We first present the simulation parameters of the system.
Then, we evaluate the mean utility of the proposed scheme under different traffic
densities and task arrival rates. Finally, we analyse the completion ratio and the
mean delay of high-priority tasks and low-priority tasks under different traffic
densities.
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12.6.1 Simulation Setup

In the simulation, we consider an one-way road, where a BS equipped with a DRL
agent is located along the road, and there are several vehicles passing the coverage
of the BS all the time, the traffic density is set as 5 ∼ 50 vehicles/km. Considering
that the normal velocity of a vehicle is 60 ∼ 110 km/h, we set the relative velocity
between task vehicle and service vehicle distributed in [−50, 50] km/h, and generate
the traffic data by the free flow traffic model presented in Sect. 12.3. We assume
that different vehicles have different computational capabilities, the computational
capability of a vehicle is randomly chosen from the set {5, 6, · · · , 10}GHz. Since
the data transmission between the BS and vehicles in each slot only contains a few
bits that describe offloading request and response, the transmission time between
the BS and vehicles can be ignored, we only consider the transmission time of
V2V link. According to the bandwidth of subchannels in dedicated short-range
communications (DSRC), the bandwidth of a V2V channel is set as 10 MHz, the
transmission power of each vehicle is assumed to be identical, and then the V2V
transmission rate is estimated by the channel capacity in (12.3). In the simulation,
we mainly consider the computation-intensive tasks, and due to the unstable V2V
link and short link duration, we set the data size of task uniformly distributed in
[0.02, 0.2] MB, the computation size of task uniformly distributed in [0.2, 3.2]×109

CPU cycles, the low priority of task κL = 0.5 and the high priority of task κH = 1,
and the maximum tolerable delay of high-priority task or the reference delay of low-
priority task is set as {0.5, 1, 2, 4} s. For a computational task with large data size
and computation size, the task vehicle can divide the task into several subtasks to
offload. In addition, according to DSRC, we set the maximum communication range
of a vehicle as 500 m. The maximum communication range of a BS is set as 3 km.
Finally, the parameters in our simulation are summarized in Table 12.1.

The simulations are conducted on a desktop which has two NVIDIA TITAN Xp
GPUs, a 128G RAM and an Intel Xeon CPU. The simulation platform is based
on Pytorch with Python 3.7 on Ubuntu 16.04 LTS. In our proposed algorithm, the
soft action-value function and the policy function are approximated by DNNs. We
design an actor network with two hidden layers, and the size of hidden layers is
(1200, 1200), the learning rate of the actor is set as δπ = 8 × 10−4. Similarly,
we design a critic network with two hidden layers with the size (1200, 1200), the
learning rate of the critic is set as δQ = 8 × 10−4. We set the learning rate of
temperature parameter δα = 8 × 10−4, the batch size |B| = 256, and the delay
factor ω = 0.005.

In order to verify our proposed algorithm, we introduce the following regular
algorithms for comparison.

1. Random Based Algorithm (RBA): The RBA selects a service vehicle surrounding
the task vehicle randomly, and gives a random price for the offloading task. In
the simulation, the agent runs RBA 2000 times in each slot and selects the action
corresponding to the maximum utility.
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Table 12.1 Simulation parameters

Parameter Value

Traffic density ρ (vehicles/km) 5 ∼ 50

Relative velocity vk − vt (km/h) [−50, 50]

Vehicular computational capability Fk (GHz) {5, 6, 7, 8, 9, 10}
Data size of task Dn (MB) [0.02, 0.2]

Computation size of task Cn (109 cycles) [0.2, 3.2]
Maximum delay of task τn (s) {0.5, 1, 2, 4}
High-priority κH 1

Low-priority κL 0.5

V2V bandwidth Bt,k (MHz) 10

Maximum V2V transmission range R (m) 500

Maximum BS transmission range RB (km) 3

2. Greedy Based Algorithm (GBA): The GBA selects the service vehicle with
maximum remaining computing resource and determines the service price that
maximizes the utility of the offloading task in each slot.

3. Double Deep Q-Network (DDQN): DDQN [53] is a Q-learning-based DRL
algorithm. In the simulation, the state space, the action space and the reward
function of DDQN are the same as SAC.

12.6.2 Average Utility

We first present the mean utility of offloading tasks in our proposed algorithm with
different learning rates. As shown in Fig. 12.3, when δQ ≤ 2 × 10−3 and δπ ≤
2 × 10−3, the mean utility of offloading tasks in our proposed algorithm reaches
convergence around 2000 training episodes, and the difference among the mean
utilities w.r.t. different learning rates is small, which demonstrates that our proposed
algorithm is not very sensitive to small learning rates. On the other hand, Fig. 12.3
shows that when the learning rates of the actor and the critic become large enough
(e.g., δQ = 8 × 10−3, δπ = 8 × 10−3), the proposed algorithm falls into a local
optimum and cannot reach convergence.

Then, we compare the mean utility of offloading tasks in a period by utilizing
RBA, GBA, DDQN, and our proposed algorithm. To evaluate the performance
of the proposed algorithm both in low traffic density and high traffic density, we
conduct several simulations with the vehicle density varies from 5 vehicles/km to
50 vehicles/km. As shown in Fig. 12.4, the mean utility of our proposed algorithm
is higher than the other algorithms under various traffic densities. It is because
that the objective of our proposed algorithm is to maximize the mean utility of all
offloading tasks in a period, and in each time slot, the policy of task offloading aims
to maximize the expected discounted return starting from the current time, while in
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Fig. 12.3 Mean utility of offloading tasks in SAC with different learning rates
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Fig. 12.4 Mean utility of offloading tasks versus different vehicle densities
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Fig. 12.5 Mean utility of offloading tasks versus different tasks arrival rates when the vehicle
density is 30 vehicles/km

GBA, the policy aims to maximize only the current reward in each time slot, and
thus may not obtain the maximum mean utility of all offloading tasks in a period. In
addition, although the optimization objective of DDQN is maximizing the expected
long-term return, the mean utility of DDQN is slightly less than the mean utility
of SAC, this is because SAC employs actor-critic framework while DDQN utilizes
the framework that includes main Q-network and target Q-network. Besides, SAC
includes the entropy of policy in the optimization objective, which can explore more
suitable actions in dynamic vehicular environment.

We also simulate the performance of the four algorithms with different task arrive
rates when the vehicle density is 30 vehicles/km. In the simulation, the value of task
arrive rate means the number of offloading tasks in a period. In Fig. 12.5, we can
see that the mean utilities of all the algorithms decline with the increase of task
arrive rate. With the number of offloading tasks increasing, the average allocated
vehicular computing resource for each offloading task reduces, thus makes the
average completion time longer, and further makes the mean delay-aware utility
decline. In addition, due to the optimization of the long-term expected return in
DRL, the mean utilities of DDQN and our proposed algorithm are higher than GBA
and RBA versus various task arrive rates.
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12.6.3 Completion Ratio

Figure 12.6a shows the completion ratio of high-priority tasks by utilizing the four
algorithms under different vehicle densities. It can be seen that the completion
ratios of DDQN and our proposed algorithm are higher than GBA and RBA when
vehicle density is less than 15 vehicles/km, it is because in DDQN and our proposed
algorithm, once a high-priority task cannot be completed before the deadline, the
loss of utility will be much higher than low-priority task. Since the aim of DDQN
and our proposed algorithm is to maximize the mean utility of offloading tasks, it
must ensure that high-priority tasks completed with the maximum probability. In
addition, when vehicle density is higher than 15 vehicles/km, the completion ratio
of GBA, DDQN, and our proposed algorithm are all close to 100%, which means
that the computing resource of service vehicles are enough to execute all of the
high-priority tasks.

In Fig. 12.6b, the completion ratio of low-priority tasks by employing different
algorithms is presented. Notice that the completion ratio of DDQN and our proposed
algorithm is lower than GBA when the traffic density is 5 ∼ 10 vehicles/km, it
is because the service vehicles are very few, the on-board computing resource of
service vehicles is not enough to execute all the offloading tasks of task vehicle,
DDQN and our proposed algorithm ensure the high-priority tasks completed first,
and then executes the low-priority tasks, while GBA ensures all the offloading tasks
completed with the maximum utility in each step, which makes the completion ratio
of low-priority tasks higher but the completion ratio of high-priority tasks lower
than our proposed algorithm. Moreover, from Fig. 12.6a and b, the completion ratio
of high-priority tasks in DDQN is lower than that in our proposed algorithm, but
the completion of low-priority tasks in DDQN is higher than that in our proposed
algorithm when vehicle density is less than 10 vehicles/km, which demonstrates
that our algorithm can ensure more high-priority tasks completed first when there
are fewer service vehicles.

12.6.4 Average Delay

We also simulate the completion time of offloading tasks under both low traffic
density and high traffic density. Figure 12.7a shows the average delays of suc-
cessfully completed high-priority tasks with different deadlines under low traffic
density. Although the average delay of high-priority tasks by applying RBA is lower
than the other algorithms, it suffers from the low completion ratio as shown in
Fig. 12.6a. From Fig. 12.7a, we can see that the average delays of high-priority
tasks with different deadlines by applying our proposed algorithm are all lower
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Fig. 12.6 Completion ratio of offloading tasks versus different vehicle densities. (a) Completion
ratio of high-priority tasks. (b) Completion ratio of low-priority tasks
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Fig. 12.7 Average delay of offloading tasks with different maximum tolerable / reference delays
when the vehicle density is 15 vehicles/km. (a) Average delay of high-priority tasks with different
maximum tolerable delays. (b) Average delay of low-priority tasks with different reference delays
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than GBA, while the average delays of low-priority tasks with various reference
delays by applying our proposed algorithm are all higher than GBA, as shown in
Fig. 12.7b. Compared to RBA and GBA, our proposed algorithm ensures all the
high-priority tasks completed with the least time, and meanwhile makes low-priority
tasks completed with a relative appropriate delay comparing with the reference
delay under low traffic density. Moreover, from the overall perspective, the average
delays of high-priority tasks and low-priority tasks in our proposed algorithm are
less than that in DDQN. Therefore, the proposed algorithm has better performance
in executing tasks with different priorities than other algorithms.

Figure 12.8a and b show the average delays of high-priority tasks and low-
priority tasks with different maximum tolerable or reference delays under high
traffic density, respectively. Comparing with the average delays under low vehicle
density, the average delays of high-priority tasks and low-priority tasks under high
vehicle density are both lower due to more service vehicles surrounding the task
vehicle.

12.7 Conclusion

This part targets the problem of task allocation in dynamic VFC environment. Our
work goes beyond existing approaches by jointly considering task priority, service
availability of vehicles, and incentive of computing resource sharing to obtain the
optimal offloading policy that maximize the utility of offloading tasks. Moreover,
in order to make the offloading policy adapt to changes in dynamic vehicular
environment, we formulate the task allocation problem as an MDP, and propose
a DRL method based on SAC to solve the problem. By incorporating the entropy
measure of the policy into the reward, our proposed algorithm becomes more robust
and sample-efficient. Simulation results validate that our proposed algorithm can
effectively ensure high-priority tasks completed preferentially, and meanwhile has
better performance in task completion ratio and offloading delay comparing with
the conventional approaches.
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Fig. 12.8 Average delay of low-priority tasks with different maximum tolerable / reference delays
when the vehicle density is 35 vehicles/km. (a) Average delay of high-priority tasks with different
maximum tolerable delays. (b) Average delay of low-priority tasks with different reference delays
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Chapter 13
Energy-Aware Computational Resource
Allocation

Abstract Mobile edge computing (MEC) with energy harvesting (EH) is becoming
an emerging paradigm to improve the computation experience for the Internet
of Things (IoT) devices. For a multi-device multi-server MEC system, the fre-
quently varied harvested energy, along with changeable computation task loads
and time-varying computation capacities of servers, increase the system’s dynamic.
Therefore, each device should learn to make coordinated actions, such as the
offloading ratio, local computation capacity and server selection, to achieve a
satisfactory computation quality. Thus, the MEC system with EH devices are
highly dynamic and face two challenges: continuous-discrete hybrid action spaces,
and coordination among devices. To deal with such problem, we propose two
deep reinforcement learning (DRL) based algorithms: hybrid decision based actor-
critic learning (Hybrid-AC), and multi-device hybrid decision based actor-critic
learning (MD-Hybrid-AC) for dynamic computation offloading. Hybrid-AC solves
the hybrid action space with an improvement of actor-critic architecture, where the
actor outputs continuous actions (offloading ratio and local computation capacity)
corresponding to every server, the critic evaluates the continuous actions and outputs
the discrete action of server selection. MD-Hybrid-AC adopts the framework of
centralized training with decentralized execution. It learns coordinated decisions
by constructing a centralized critic to output server selections, which considers the
continuous action policies of all devices. Simulation results show that the proposed
algorithms achieve a good balance between consumed time and energy, and have a
significant performance improvement compared with baseline offloading policies.

Keywords Computation Offloading · Mobile Edge Computing (MEC) · Energy
Harvesting · Internet of Things (IoT) · Continuous-discrete Hybrid Decision ·
Deep Reinforcement Learning

13.1 Introduction

With the rapid growth and application of the Internet of Thing (IoT) devices, such
as smartphones, sensors, and wearable devices, new advanced applications with
computation-intensive tasks are emerging [2, 3]. However, IoT devices usually
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have limited computation capacity, energy, and memory restrictions [4]. To address
the conflict between computation-intensive applications and resource-limited IoT
devices, some computation tasks have to be offloaded to the servers with sufficient
computation capability. Thus, cloud computing has been proposed to provide
a strong ability for computation and storage [5]. However, the cloud server is
physically or logically far from devices and may incur long latency which cannot
satisfy the ultra-low latency requirements especially for time-sensitive applications
or services [6].

This challenge can be relieved by mobile edge computing (MEC) [7, 8], which
provides computing services at the edge of networks. In MEC systems, the MEC
server is much closer to IoT devices compared to the traditional cloud server.
Besides, the transmission latency is significantly reduced as the data transmission
would not be congested due to the distributed structure of MEC servers. As a result,
MEC is a promising paradigm to support latency-critical services and a variety of
IoT applications compared with cloud computing. Offloading computation tasks to
relatively resource-rich edge servers can not only improve the computation quality
of service (QoS) but also augment the capabilities of end devices for resource-
demanding applications.

Compared to traditional cloud servers, MEC servers may be less resourceful and
more dynamic, and devices need to compete for the finite computation resources
of servers. Therefore, resource allocation and schedule, such as server selection,
allocation of offloading ratios and local computation capacity, are quite important
for such resource-constrained systems. To achieve efficient utilization of computing
resources and satisfy the computation requirements of devices, an intelligent
computation offloading strategy is needed. Hence, computation offloading attracts
more researchers’ attention [9].

In reality, as the IoT has a crucial need for long-term operations to support
various applications [10–12], the energy limitation of IoT devices is a critical
problem to the development of MEC systems. IoT devices are usually battery-
powered, the computation performance may be compromised due to insufficient
battery energy for offloading. As a promising solution, energy harvesting (EH) is
an emerging technique to significantly increase the device’s lifetime by capturing
ambient energies [13, 14]. An EH enabled IoT device can collect energy from
external sources, such as solar, wind, radiation and radio-frequency (RF) signals
[15]. By integrating EH into MEC sustained satisfactory computation performance
can be achieved. However, it also brings some new challenges. For example, as
the harvested energy is unpredictable, the computation offloading strategies of EH
enabled devices are not easily obtained, and the policy without considering energy
consumption cannot be directly adopted.

In this work, we will investigate hybrid decision based dynamic computation
offloading problem with EH enabled devices. Specifically, the problem is to
optimize the server selection, the continuous offloading ratio, and local computation
capacity by minimizing the execution time and consumed energy. Besides, in this
hybrid decision based dynamic system, the decision of each device is interdependent
and will affect decisions of the following states. To address the difficulties brought
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by hybrid decision and collaboration among different devices, we solve the problem
in two steps and propose two DRL approaches. The first approach is a hybrid
decision based actor-critic learning method for dynamic computation offloading
(hybrid-AC), which is an improvement of actor-critic methods and can output both
continuous and discrete actions. It combines the structure of deep deterministic
policy gradient (DDPG) [16] and deep Q network (DQN) [17]. actor outputs
continuous actions (offloading ratio and local computation capacity) corresponding
to every server, critic evaluates the Q values for continuous actions of each
server and also outputs the selected server which has the maximum Q value. To
solve the coordination between devices, we propose the second approach, multi-
device hybrid decision based actor-critic learning method for dynamic computation
offloading (MD-Hybrid-AC). Built on Hybrid-AC, MD-Hybrid-AC adopts the
widely used framework of centralized training with decentralized execution. It
considers action policies of all devices and can learn coordinated server selection
policies.

We highlight the main contributions and our main ideas as follows:

1. We establish a dynamic computation offloading framework for multiple EH
enabled devices with multiple servers, where the dynamics of both devices and
servers are considered. Our framework accounts for continuous and discrete
decisions, as well as independent and coordinated decisions.

2. We propose a hybrid decision-based DRL algorithm to solve the dynamic
computation offloading problem with continuous-discrete hybrid action space.
The discrete action (server selection) and continuous actions (offloading ratio
and local computation capacity) can be jointly obtained in an end-to-end fashion,
without discretizing or relaxing the action space.

3. We propose a multi-device hybrid decision-based DRL algorithm to coordinate
among different devices. With a centralized critic considering the continuous
actions of all devices, devices learn to coordinate in server selection.

4. We derive the optimal offloading policies for different environment conditions,
and demonstrate the effectiveness of the proposed algorithms by comparing with
three benchmark policies via simulation. It is indicated that Hybrid-AC performs
better than discrete action based DRL method and MD-Hybrid-AC achieves
better coordination than Hybrid-AC in the multi-device scenario.

The rest of this part is organized as follows. In Sect. 13.2, we discuss some
related works associated with computation offloading mechanisms. The system
model is defined in Sect. 13.3. The MDP modeling and the hybrid decision based
DRL algorithm for dynamic computation offloading are described in Sect. 13.4,
and multi-device hybrid decision based DRL algorithm is proposed in Sect. 13.5.
Section 13.6 analyses the performance of proposed optimal offloading policy.
Simulations are shown in Sect. 13.7, and conclusions are drawn in Sect. 13.8.
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13.2 Related Works

Researchers have proposed many methods to the design of computation offloading
policies. Most of the previous works have adopted the optimization or game based
methods to solve the computation offloading problem [1, 18–20]. A Lyapunov
optimization based dynamic computation offloading policy is developed in [19] for
a MEC system with wireless EH enabled mobile devices. In [20], an online multi-
tier operations scheduling scheme based on Lyapunov optimization in fog networks
is considered. The network throughput, service delay, and fairness are jointly
considered in this scheme. Although the Lyapunov optimization method is widely
used to solve the long-term optimization problems, only an approximate optimal
solution can be obtained. Besides, the prior information of environment statistics is
needed, which may not be practically available in dynamic MEC systems. To tackle
these problems, researchers have been turning to model the computation offloading
problem as a Markov Decision Process (MDP) and solve it with reinforcement
learning (RL) or Deep reinforcement learning (DRL) [21] methods.

DRL has recently made great progress [17] and various algorithms [16, 22] have
been proposed. It has been applied to various applications, such as robotics [23],
computer vision [24] and uav navigation [25, 26]. With the great success of
DRL, there are also a few works that apply RL or DRL to the computation
offloading problem [27–31]. In [27], a Q-learning based method is proposed to
solve the task offloading problem considering both the task execution time and
energy consumption. A deep Q-learning method is developed to offload computation
tasks in [28], where edge device selection and offloading rate in discrete action
spaces are selected without knowledge of the MEC model. The authors of [29]
developed a double deep Q-network and a linear Q-function decomposition based
SARSA method to deal with the state space explosion. A Q-learning method
with after-state is proposed in [30] to select computation mode, which consists of
three modes: dropping data, locally processing data and totally offloading to the
server. To manage continuous energy consumption in different EH networks, deep
deterministic policy gradient is utilized [31]. A DNN based actor-critic algorithm
with the Natural policy gradient is utilized in [32] to solve the joint optimization of
caching, computing and radio resource. A DRL-based online offloading framework
is proposed in [33]. It uses DRL to generate continuous offloading action and
quantizes the action into a binary one to avoid iteratively searching. The above
RL or DRL based methods achieved a good performance without requiring the
prior knowledge of environment statistics. However, they were modeled in either a
discrete action space or a continuous action space, which restricts the optimization
of offloading decisions in limited action space. The action space of offloading
problem in reality is often continuous-discrete hybrid, each device needs to jointly
decide continuous and discrete actions to accomplish the offloading process. For
example, the device should not only decide whether to offload task or which server
to select, but also select the offloading ratio, or the local computation capacity
to balance the time and energy consumption. Therefore, these methods may not
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perform well as a fine discretization of continuous action will be problematic when
the action space becomes large, and relaxing discrete action into a continuous set
might significantly increase the complexity of the action space.

13.3 System Model

Considering a MEC system consisting ofM edge servers to provide edge computing
services to N devices as shown in Fig. 13.1. In this MEC system, each device n ∈
N = {1, · · · , N}, with wireless charging, has a computation-intensive task to be
processed timely during each time slot t ∈ T = {1, 2, · · · }. We assume that the data
of computation task are fine-grained and can be partitioned into subsets of any size.
Therefore, each computation task can either be totally executed at the device, or be
partially offloaded to the one MEC server m ∈ M = {1, . . . ,M} for computing.
The key notations of our system model are listed in Table 13.1 for ease of reference.

At time slot t , device n needs to decide which server mtn to offload the task,
the offloading ratio αtn ∈ [0, 1], which can be consider as the percentage of the
task’s data size (in bit) to be offloaded to the server, and local computation capacity
f tn ∈ [0, fmax], which can be viewed as the CPU-cycle frequency to process the task
data locally. Specifically, device n offloads αtn parts of the task data to servermtn and
locally processes the remaining 1− αtn parts with specified CPU frequency f tn .

Server 1

Server m

Server M

Device n

Battery Task load

Locally process

data with CPU-freq
t
nf

(1 )t t
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data
t t
n na l

Harvested
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Fig. 13.1 Computation offloading model for mobile edge computing
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Table 13.1 List of key
notations

Notation Description

M Number of MEC servers

N Number of IoT devices

αtn Percentage of the data size to be offloaded

f tn CPU-cycle frequency to process the task data

ltn Processed task load

Ltn Size of computation data in the task queue

X Number of CPU cycles to process one-bit task

Zn Important factor

ϕ Maximum tolerable delay

Ctn Requested computation task data

Dtn/E
t
n Total execution delay / consumed energy

κ The effective capacitance coefficient

Ω System bandwidth

ptn Transmission power

gtn,m Normalized channel gain of device n to server m

vtn,m Transmission rate of device n to server m

etn Harvested energy

btn Battery energy level

13.3.1 Task Model

The computation task may fail to finish as the limited computation capacity of
devices, so the current task load is connected with the previous execution results, and
a task queue is needed to represent this dynamic nature. We represent a computation
task for device n at time t as

(
Ltn, l

t
n, Zn,X, ϕ

)
, where task load queue Ltn (in bits)

denotes the size of computation data in the task queue, currently processed task
load ltn (in bits) denotes the actual processed data at time t , X is the number of CPU
cycles required to process one-bit task, and ϕ is the maximum tolerable delay. We
use an index Zn to denote the importance of different devices.1 The device with
higher priority has a larger value of Zn.

At each time slot, the device could process task load ltn which is no more than its
maximum capacity. Mathematically, ltn is defined as

ltn = min
{
lmax, L

t
n

}
, (13.1)

1 Devices may run various tasks with different concerns. For instance, autonomous navigation
should have strict delay constraints, while healthcare data analytics will be more tolerant of delays.
Therefore, we should pay more attention on the device with more strict constraints.
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where lmax = ηLb denotes the maximum processed task load, with Lb is the meta
task load2 and η is a predefined coefficient.

The task queue Ltn is correlated with the remaining task from last time slot and
the new computation task generated at this time slot, which can be formulated as

Lt+1
n = min

{
Ltn − ltn1droptn=False + Ctn, Lmax

}
, (13.2)

where Ctn = Pr (ζ )Lb is the computation task requested at time t in device n, which
can be modeled as an independent and identically distributed (i.i.d.) Poisson process
with parameter ζ . droptn is a bool variable. When the task of device n in time slot
t is processed successfully, droptn = False and will be defined mathematically in
Sect. 13.3.4. In addition, Lmax in (13.2) is the maximum number of computation
task loads that can be queued at the device.

13.3.2 Local Computing

The device needs
(
1− αtn

)
ltnX CPU cycles to locally execute

(
1− αtn

)
ltn bits of

task data. By applying dynamic voltage and frequency scaling techniques [34],
the device can balance the execution time and energy consumption by adjusting
the CPU frequency for each cycle. For simplicity, we assume the executing CPU
frequency f tn stays unchanged in one time slot. The execution time for locally
processing the computation task of

(
1− αtn

)
ltn data is given by:

Dtdevicen =
(
1− αtn

)
ltnX

f tn
, (13.3)

and the corresponding energy consumption for locally computing
(
1− αtn

)
ltn data

is expressed as

Etdevicen = κ
(
1− αtn

)
ltnX

(
f tn
)2
, (13.4)

where κ is the effective capacitance coefficient that depends on the chip architec-
ture [35].

2 Specifically, Lb is the averaged data size of a typical computation task, e.g. 1000 bits in the
experiments.



314 13 Energy-Aware Computational Resource Allocation

13.3.3 Offloading Computing

To utilize the rich computation resources of the MEC server, the device will offload
αtnl

t
n data to an appropriate server, which processes the data and returns results to the

device. We assume that the size of results obtained from the server is small [19], the
time and energy consumption of feedback transmission is negligible in this work.
The frequency-division multiple access (FDMA) is commonly used for the uplink
transmission between devices and servers, which orthogonalizes different users’
transmissions, and fully mitigates intra-cell interference [20, 36].

According to the Shannon formula, the achievable transmission rate for device n
to serverm is

vtn,m = Ω log2
(
1+ gtn,mptn

)
, (13.5)

whereΩ and ptn are the system bandwidth and transmission power. gtn,m = htn,m/σ
is the normalized channel gain with the channel gain htn,m at time t and the noise
power σ .

The transmission time to offload αtnl
t
n data of device n to the edge server m in

time slot t is defined as

Dttransmitn =
αtnl

t
n

vtn,m
, (13.6)

and the corresponding energy consumptionEttransmitn
is

Ettransmitn = ptnDttransmitn . (13.7)

Note that the computation capacity of each server should be time-varying,
because one server may also support the computation requests from other device
groups. To model the server’s dynamics, we assume its available computation
capacity varies randomly between different time slots but remains unchanged in
each time slot. Mathematically, we define the computation capacity of server m is

f tserverm = fmax
server − f to , (13.8)

where f to = Pr (λ) f unit
server is the occupied server resources, which is modeled as an

i.i.d. Poisson process with parameter λ. f unit
server is the occupied computation resource

for each unit.
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After receiving the offloaded tasks, the server needs to process the offloaded data
of all devices in each time slot and then return computation results. For server m,
the execution time can be given by

Dtserverm =
∑N
n=1 1mtn=mα

t
nl
t
nX

f tserverm

. (13.9)

Based on (13.6), (13.9), the execution delay of offloading computing part is

Dtremoten = max
n∈{N |mtn=m}

Dttransmitn +Dtserverm. (13.10)

Finally, according to (13.3), (13.10) and (13.4), (13.7), the total amount of time
consumptionDtn and energy consumptionEtn of device n at time slot t are calculated
as

Dtn = max
{
Dtdevicen ,D

t
remoten

}
, (13.11a)

Etn = Etdevicen + Ettransmitn . (13.11b)

13.3.4 Energy Harvesting

The EH process can be modeled as receiving sequential energy packets at the begin-
ning of each time slot [19]. The harvested energy etn is stored in the battery, which
is stochastic and intermittent and usually modeled as a random process [37]. We
use an i.i.d. Uniform process with maximum value of emax to model the harvested
energy in each time slot. In this part, we focus on the energy consumption of local
computation and transmission and ignore the others for simplicity. Therefore, the
battery status in the next time slot depends on both the energy consumption and
harvesting, which evolves according to the following equation:

bt+1
n = min

{
max

{
btn − Etn + etn, 0

}
, bmax

}
, (13.12)

where bmax is the maximum energy capacity of battery.
Besides droptn = False mentioned in (13.2), droptn = True when the battery

energy of the device is insufficient
(
bt+1
n = 0

)
or the execution time exceeds ϕ,

which means the task will be dropped. Therefore, droptn is defined as

droptn =
{

True, bt+1
n = 0 or Dtn > ϕ,

False, otherwise.
(13.13)
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13.4 Hybrid Decision Based DRL For Dynamic Computation
Offloading

Based on the system model built in Sect. 13.3, the objective of the MEC system is
to minimize the average weighted cost of the execution time and consumed energy
in the long-term, which can be formulated as follows:

min
mtn,α

t
n,f

t
n

1

T

T∑
t=1

N∑
n=1

(
ω1D

t
n + ω2E

t
n

)
, (13.14a)

s.t. (13.11a), (13.11b), (13.14b)

αtn ∈ [0, 1] , n ∈ N , t ∈ T , (13.14c)

f tn ∈ [0, fmax] , n ∈ N , t ∈ T , (13.14d)

mtn ∈M , n ∈ N , t ∈ T , (13.14e)

Dtn < ϕ, n ∈ N , t ∈ T , (13.14f)

Etn < b
t
n + etn, n ∈ N , t ∈ T , (13.14g)

where ω1 and ω2 are weighted parameters to get tradeoff between the consumed
time and energy. The inequalities (13.14f) and (13.14g) are the time and energy
constraints respectively, which guarantee the total execution time should not exceed
the maximum tolerable delay and the battery energy should not be run out for each
computing. The object function and constraints of problem (13.14) are non-convex
and the difficulty of this dynamic computation offloading problem lies in many
aspects: it is a decision process containing both continuous decisions and discrete
decisions; the states of devices and servers are highly dynamic and dependent;
the optimal offloading strategy should coordinate among devices. Therefore, it is
difficult or impossible to find optimal solutions, which are time-dependent, using
traditional optimization-based methods. Thus, RL algorithms are introduced to
solve this dynamic offloading problem. However, the existing works deal with either
a discrete action space or a continuous action space, which are not suitable for hybrid
action space. To solve the problem, we will present our approach in two steps. To
solve the problem of continuous-discrete hybrid decisions, Sect. 13.4.2 is intended
to elaborate on the proposed hybrid decision based DRL algorithm. The proposed
method is built on the single device scenario, which is convenient and effective to
focus on the impact of hybrid action space. In the next Sect. 13.5, we will extend
the concept of hybrid decision based method into the multi-device scenario with
multi-agent settings.
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13.4.1 MDP Modeling

To model the system as an MDP, three key elements of device n are constructed as
follows.

13.4.1.1 States

stn = {Ltn, btn, etn, Zn, gtn,1, f tserver1
, . . . , gtn,M, f

t
serverM } ∈ S , (13.15)

which contains the states of device n andM servers.

13.4.1.2 Action

atn =
{
mtn, α

t
n, f

t
n

} ∈ A consists of the server selection mtn, the offloading ratio αtn,
and local computation capacity f tn . With the offloading decision of every device, the
system executes computation tasks and steps into the next state.

13.4.1.3 Reward

Reward function should be related to both the objective function and the constraints
of the system. In the proposed algorithm, the reward is composed of the following
four parts. The first two parts are the reward of normalized execution time and
energy consumption, which straightly reflect the performance of computation
offloading. The third part is a penalty when the task is dropped. The fourth part
is a penalty when the task queue exceeds the maximum queue length Lmax . The
normalized time consumption is defined as

D̄tn =
Zn∑N
i=1 Zi

DLocal −
(
Lb/l

t
n

)
Dtn

DLocal
, (13.16)

where DLocal = LbX/fmax is the execution time for totally local computing with
maximum computation capability fmax.

Similarly, the normalized energy consumption is

Ētn =
Zn∑N
i=1 Zi

ELocal −
(
Lb/l

t
n

)
Etn

ELocal
, (13.17)

whereELocal = κLbX(fmax)
2 is the energy consumption for totally local computing

with maximum computation capability.
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The penalty for exceeding the task queue is proportional to the amount of tasks
exceeded:

P̄ tn = max
{((
Ltn − ltn1droptn=False + Ctn

)
− Lmax

)
/Lb, 0

}
. (13.18)

Consequently, the reward function is defined as

rt =
N∑
n=1

ωdD̄
t
n + ωeĒtn − 1droptn=True − P̄ tn, (13.19)

where ωd and ωe are the weighted parameters of D̄tn and Ētn.

13.4.2 Hybrid Decision Based DRL Method

In reinforcement learning, the policy is a mapping from states to an action π :
S → A . The target of the agent is to learn a policy which maximizes the expected
future rewards by interacting with the environment. The future rewards are usually
discounted by a factor and the total discounted future reward, also named return,
from time slot t is: Rt =∑∞

i=t γ i−t r
(
si , ai

)
, where γ ∈ [0, 1] is a discount factor.

Note that the return depends on the state and action, therefore, action-value function
(also named Q function) should also be introduced [21]. It describes the expected
return after taking an action a in state s and thereafter following policy π :3

Q(s, a) = E (R|s, a;π) . (13.20)

As defined in Sect. 13.4.1.2, the action a = (m, α, f ) is the offloading decision,
which contains both discrete and continuous action space, thereby it is compu-
tationally intractable to directly calculate the gradient for the policy as existing
methods do [16, 17]. We divide the action space into two parts: a = (m, u). The
discrete partm represents the server selection operation and the continuous part u =
(α, f ) represents the decisions of offloading ratio and local computation capacity.
This separation has two advantages: firstly, the action space is decomposed into
independently discrete action space and continuous action space, which makes the
originally intractable action can be solved with two feasible sub actions; secondly,
as we observe that the decision of server selectionm depends on the offloading ratio
α, we can find the optimal (α, f ) for each server, then select the optimal server m
based on the continuous actions of all servers.

3 In the following part, we omit the superscript of time t for the ease of descriptions. In this Section,
we omit the subscript of device n, as we only consider a single device scenario.
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With the above action space separation, we then adopt the widely used actor-
critic architecture [21] to design our hybrid decision based DRL algorithm for
dynamic computation offloading. The actor can be used to generate continuous
actions û = (u1, · · · uM) concerning all servers, which is parameterized by a
deterministic policy networkμ

(
s;φμ

)
. Meanwhile, the critic can output the discrete

action m and also evaluate the actor’s output, which is parameterized by an action-
value network Q

(
s,m, û;φQ

)
. The action-value network Q

(
s,m, û;φQ

)
takes

states s and continuous actions û corresponding to all servers as input, and outputsQ
values for continuous actions related to each server. Then, the server corresponding
to the maximumQ value is selected as the optimal serverm. The final action can be
obtained by:

m = arg maxQ
(
s,m, û;φQ

)
, (13.21a)

(α, f ) = um = û [m] . (13.21b)

The complete interaction process can be referred to Fig. 13.2.

13.4.2.1 Continuous Action Updating

The action-value function with continuous actions corresponding to all servers is
Q
(
s,m, û

) = Q(s,m, u1, · · · , uM). Suppose server selection m is known, the

Fig. 13.2 Illustration of hybrid decision controlled DRL based dynamic computation offloading
scheme for IoT devices
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original dynamic computation offloading problem degenerates to a sub problem
which can be modeled as a continuously controlled MDP. The action-value function
for the continuously controlled sub problem is:

Qμ
(
s, û

) = max
m∈M

Q
(
s,m, û

)
. (13.22)

The maximumQ value represents the evaluation of the selected offloading ratio
and local computation capacity. Because the final actions of offloading ratio and
local computation capacity correspond only on the optimal server, it is reasonable
to take the maximum Q value as the target Q value for the policy, instead of the
sum of all servers’Q values.

With the above definition of Q function, we utilize the actor part of DDPG [16]
to update the gradient:

∇J = E

[∇Qμ (s, û)∇μ̂] . (13.23)

13.4.2.2 Discrete Action Updating

If we get the output of û, we propose a Q updating procedure with a combination
of DQN [17] and the critic part of DDPG [16]. We also call it critic, but it contains
two effects: it acts as a critic to evaluate the actions of the actor, which is used for
updating actor as in (13.23); it also acts as a DQN to output the action of maximum
Q value, which is the server selection action m. Then, we elaborate on the process
of finding the optimal policy for the discrete action.

Given the continuous action û, the optimal Bellman equation can be reformulated
as

Q∗
(
s,m, û

) = E

[
r + γmax

m′
Q∗

(
s′,m′, û′

) |s,m, û
]
, (13.24)

where s′, m′, û′ are the next state, the corresponding discrete and continuous action
respectively. The basic idea behind it is the optimal policy should choose the action
m′ that maximizing the expected value of r + γmaxm′Q∗

(
s′,m′, û′

)
.

Following this idea, the parameterized action-value functionQ
(
s,m, û;φQ

)
can

be iteratively updated to estimate the Q value. Specifically, it can be trained by
minimizing the following loss function:

L
(
φQ

) = E

[(
y −Q (

s,m, û
))2
]
, (13.25)

where y = E

[
r + γ max

m′∈M
Q
(
s′,m′, û′

) |s,m, û
]

is the target for each iteration.
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The gradient for updating theQ function can then be obtained by differentiating
the loss function:

∇L (φQ
) = E

[(
y −Q (

s,m, û
))∇φQQ

(
s,m, û

)]
. (13.26)

With the above optimization methods (13.23) and (13.26), two neural networks
are used to learn the offloading policy. To stabilize the learning procedure, a target
actor network, a target critic network, and a replay memory are used. Besides, an
exploration policy μ′ (s) = μ (s) + ν for actor and an ε-greedy policy for critic
are used in the training procedure to balance the tradeoff between exploration and
exploitation. ν is a noise process [16]. Algorithm 5 illustrates the training procedure
of the proposed hybrid decision controlled DRL based dynamic computation
offloading algorithm.

13.5 Multi-Device Hybrid Decision Based DRL for Dynamic
Computation Offloading

This section considers dynamic computation offloading with multiple devices where
the issues of non-stationarity of the environment and coordination among devices
are addressed. Directly applying Q-learning to multi-agent settings will result the
environment non-stationary from the view of any device [38, 39], which causes the
difficulty of stabling the learning procedure and also the use of past experience
replay. Policy gradient methods, on the other hand, exacerbate high variance
gradient estimates in multi-agent environments. As actions of each device may
affect the reward of other devices, the reward conditioned only on its own actions
exhibits much more variability, therefore, increasing the variance of its gradients in
the policy optimization. So, Hybrid-AC proposed in Sect. 13.4.2 cannot be directly
applied in the scenario of multiple devices.

For multi-agent DRL, centralized training with decentralized execution is a
standard paradigm [40, 41]. Furthermore, it is reasonable for each device to make
its own decision of (α, f ), and based on the decisions of all devices to jointly
schedule the server selection m for each device. Based on this observation, we
utilize multi-agent deep deterministic policy gradient (MADDPG) to introduce an
operation mode of centralized training with half-decentralized execution. Built on
this operation mode and the hybrid decision based DRL method in Sect. 13.4.2, we
propose a multi-device hybrid decision based DRL algorithm.

The proposed method is an extension of the actor-critic architecture. Each device
has its own actor with local information and shares a common critic which is
augmented with information of all devices. The centralized training with half-
decentralized execution works in the following way. At training time, actor, which
generates continuous actions, can use extra information to ease training, so long as
this information is not used at execution time. On the other side, the Q function
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Algorithm 5 Hybrid Decision Controlled Actor-Critic Learning Based Dynamic
Computing Offloading Algorithm (Hybrid-AC)
1: Initialize actor and critic network μ

(
s|φμ

)
,Q

(
s, û,m|φQ

)
.

2: Initialize target actor network μ
(
s|φ′μ

)
and target critic networkQ

(
s, û,m|φ′Q

)
with weights

φ′μ← φμ, φ′Q ← φQ.
3: Initialize replay memory D.
4: for episodes=1, · · · do
5: Initialize a random process ν for continuous action exploration.
6: Initialize observation state s1.
7: for t=1, · · · , T do
8: Receive current states st .
9: Obtain continuous action for all servers ût = μ (s|φμ

)+ νt .
10: With probability ε select a random discrete action mt , otherwise select

mt = arg maxQ
(
st , m, ût |φQ

)
. (13.27)

11: Select continuous action ut = ût [m].
12: Execute action mt , ut , obtain reward rt and next state st+1.
13: Store transitions

(
st , mt , ût , rt , st+1

)
into D.

14: Sample K transitions
(
si ,mi, ûi , ri , si+1

)
from D.

15: Set yi = ri + γ maxm′ Q
(
si+1,m′, μ

(
si+1|φ′μ

) |φ′Q
)

.

16: Update actor network using

∇φμ = 1

K

∑
i

∂Q
(
si ,mi, û|φQ

)

∂û

∂μ
(
si |φμ

)

∂φμ
. (13.28)

17: Update critic network using

∇φQ = 1

K

∑
i

(
yi −Q

(
si ,mi, ûi |φQ

)) ∂Q (
si ,mi, ûi |φQ

)

∂φQ
. (13.29)

18: Update the target networks

φ′μ← εφμ + (1− ε) φ′μ, (13.30a)

φ′Q ← εφQ + (1− ε) φQ. (13.30b)

19: end for
20: end for

cannot contain different information at training and execution time, a centralized
critic with augmented information is used. At execution time, each device’s actor
outputs the offloading ratio and local computation capacity with its states, acting
in a decentralized manner. The centralized critic takes the states and actions of all
devices to coordinate the server selection among devices.

As different device has the same type of actions and they should have a similar
policy for continuous actions when observing the same state information, we
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use a common neural network μ
(
s|φμ

)
to generate the policy of continuous

actions for all devices, which can accelerate the learning process. The centralized
action-value function Q̂

(
o, â

) = Q̂
(
o,m1, û1, · · · ,mn, ûn, · · · ,mN, ûN

)
takes the observation o and the actions of all devices as input, where
o = {Lt1, bt1, et1, Z1, · · · , LtN , btN , etN , ZN, gt1,1, . . . , gtN,1, f tserver1

, · · · , gt1,M,
· · · , gtN,M , f tserverM } consists of the states of all devices and servers. Q̂

(
o, â

)

outputs the Q values for all devices, where Q̂n
(
o,mn, û1, · · · , ûN

)
, n ∈ N is the

outputQ value for device n. The final actions of the whole system can be obtained
by:

mn = arg max Q̂n
(
o,m, û1, · · · , ûN ;φQ̂

)
, n ∈ N , (13.31a)

(αn, fn) = ûn [mn] , n ∈ N . (13.31b)

For each device, it updates the actor part independently as the previous
Sect. 13.4.2.1. Similarly, the action-value function for updating continuous actions
can be constructed with the maximumQ values of device n:

Q̂μn
(
o, û1, · · · , ûN

) = max
mn∈M

Q̂n
(
o,mn, û1, · · · , ûN

)
, (13.32)

and the actor could be updated using the following gradient:

∇Jn = E

[
∇Q̂un

(
o, û1, · · · , ûN

)∇μ̂
]
. (13.33)

By extending the critic updating gradient to multi-device, the centralized critic
is updated by minimizing:

Ln

(
φ
Q̂

)
= E

[(
ŷ − Q̂n

(
o,mn, û1, · · · , ûN

))2
]
, (13.34)

where ŷ = r + γ max
m′n∈M

Q̂n
(
o′,m′n, û′1, · · · , û′N

)
is the target for each iteration.

Therefore, the gradient for updating critic is:

∇Ln = E

[(
ŷ − Q̂n

(
o,mn, û1 · · · ûN

))∇Q̂n
(
o,mn, û1 · · · ûN

)]
. (13.35)

Note that the Q values for each device depend on the actions of other devices.
It becomes even more unstable and slower for training compared with the proposed
algorithm in Sect. 13.4.2 for a single device. However, as we use one neural network
to parameterize actor and critic, they can both be updatedN times in one step, which
accelerates the learning process. Besides, a replay memory, along with a target actor
network and a critic network are also used to stabilize the learning procedure. The
action exploration policies are the same as in the proposed algorithm in Sect. 13.4.2.
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Algorithm 6 describes the detailed training procedure of the proposed multi-device
hybrid decision controlled DRL based dynamic computation offloading algorithm.

At execution time, the actor can be run at each device with its own states, the
critic can be placed at one server-end to distribute server selection results to each
device.4 With such configuration, devices can prepare the system setting for locally
processing in advance, which is helpful for computation offloading. Besides, the
proposed learning architecture can not only be applied to the system in this section
but also adapted to similar hybrid decision based models.

13.6 Performance Evaluations

This section analyzes the optimal offloading policy with a simplified environment.
The performance is evaluated in one time slot with sufficient battery energy,
which can be viewed as a reference of upper bound to assess the DRL-based
offloading methods in the dynamic scenario. We will deduce the optimal offloading
policy under different environmental conditions, which would help us analyze the
performance of the proposed methods in the experiments. To explain what the
optimal policy would be, we first analyze the performance in a single device case,
and then discuss how devices would coordinate in a multi-device scenario with
relatively small scale, which can be similarly extended to more device scenarios.

Proposition 13.1 Consider a dynamic computation offloading system with single
device, we set the offloading target as the sum of execution time and consumed
energy U = D + E. The optimal offloading policy is

m∗ = arg min
1+ p
vm

+ X

fserverm
,m ∈M , (13.40a)

α∗ = X

X + f
vm∗ +

fX
fserverm∗

, (13.40b)

f ∗ = min{ 3
√

1/2κ, fmax}. (13.40c)

when p
X
f +κXf 2 < vm <

1+p
− X
fserverm

+κXf 2 ,m ∈M .

4 Noted that the cost of energy to execute on device is more expensive than on server, an alternative
implementation plan is to place both the actor and critic at the server-end, which is a simple
and centralized way. This configuration can reduce the interaction between devices and servers,
but increase the burden of the servers. We need to choose an appropriate implementation plan
according to practical situations.
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Algorithm 6 Multi-Device Hybrid Decision Controlled Actor-Critic Learning
Based Dynamic Computing Offloading Algorithm (MD-Hybrid-AC)

1: Initialize actor network μ
(
s|φμ

)
and critic network Q̂

(
o,m1, · · · ,mN , û1, · · · , ûN |φQ̂

)
.

2: Initialize target actor network μ
(
s|φ′μ

)
and target critic network

Q̂
(
o,m1, · · · ,mN , û1, · · · , ûN |φ′

Q̂

)
with weights φ′μ← φμ, φ

′
Q̂
← φ

Q̂
.

3: Initialize replay memory D.
4: for episodes=1, · · · do
5: Initialize a random process ν for continuous action exploration.
6: Initialize observation state s11 , . . . , s

1
N .

7: for t=1, · · · , T do
8: for device n=1, · · · , N do
9: Receive current states stn.

10: Obtain action ûtn = μ
(
stn|φμ

)+ νt .
11: end for
12: for device n=1,· · · , N do
13: With probability ε select a random discrete action mtn, otherwise select

mtn = arg max Q̂n
(
ot ,m, ût1, · · · , ûtN |φQ̂

)
. (13.36)

14: Select continuous action utn = ûtn
[
mtn

]
.

15: end for
16: Execute action mt1, u

t
1, · · · ,mtN , utN , obtain reward rt and observe next state

st1, · · · , stN .

17: Store transitions
(
st1,m

t
1, û

t
1, r

t , st+1
1 , · · · , stN ,mtN , ûtN , rt , st+1

N

)
into replay memory

D.
18: Sample a batch of K transitions

(
si1,m

i
1, û

i
1, r

i , si+1
1 , · · · , siN ,miN , ûiN , ri , si+1

N

)

from D.
19: for device n=1, · · · , N do
20: Set yin = ri + γmaxm′ Q̂n

(
oi+1,m′, μ

(
si+1

1 |φ′u
)
, · · · , μ

(
si+1
N |φ′u

)
|φ′
Q̂

)
.

21: Update actor network using

∇φμ = 1

K

∑
i

∂Q̂n
(
oi ,min, û

i
1, · · · , û, · · · , ûiN

)

∂û
|û=μ(si |φμ)

∂μ
(
si |φμ

)

∂φμ
. (13.37)

22: Update critic network using

∇φ
Q̂
= 1

K

∑

i

(
yin − Q̂n

(
oi ,min, û

i
1 · · · ûiN |φQ̂

)) ∂Q̂n
(
oi ,min, û

i
1 · · · ûiN |φQ̂

)

∂φ
Q̂

. (13.38)

23: end for
24: Update the target networks

φ′μ← εφμ + (1− ε) φ′μ, (13.39a)

φ′
Q̂
← εφ

Q̂
+ (1− ε) φ′

Q̂
. (13.39b)

25: end for
26: end for
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Proof According to (13.11a), when X

X+ f
vm
+ fX
fserverm

≤ α ≤ 1, the target function U

is

U = αl

vm
+ αlX

fserverm
+ κ (1− α) lXf 2 + αl

vm
p, (13.41)

and

∂U

∂α
= l

(
1

vm
+ X

fserverm
− κXf 2 + p

vm

)
. (13.42)

Similarly, when 0 ≤ α ≤ X

X+ f
vm
+ fX
fserverm

, we have

U = (1− α) lX
f

+ κ (1− α) lXf 2 + αl
vm
p, (13.43)

and

∂U

∂α
= l

(
−X
f
− κXf 2 + p

vm

)
. (13.44)

When p
X
f +κXf 2 < vm <

1+p
− X
fserverm

+κXf 2 , the following inequalities can be

obtained

−X
f
− κXf 2 + p

vm
<0, (13.45a)

1

vm
+ X

fserverm
− κXf 2 + p

vm
>0. (13.45b)

It means that the target function U is decreasing when α ≤ X

X+ f
vm
+ fX
fserverm

,

and increasing when α ≥ X

X+ f
vm
+ fX
fserverm

. Thus, U has a global minimum at

α∗ = X

X+ f
vm
+ fX
fserverm

. We can also find that α∗ is the ratio when locally consumed

time equals to the totally consumed time for offloading execution.
Next, we find the optimal value for f . Differentiate (13.43) against f :

∂U

∂f
= (1− α) lXf

(
−f−3 + 2κ

)
, (13.46)

where f changes in [0, fmax].
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When κ < 1
2 , ∂U

∂f
< 0 for any f ∈ [0, fmax], and U gets minimum value at

f ∗ = fmax. When κ ≥ 1
2 , U gets the minimum when ∂U

∂f
= 0, which results in

f ∗ = 3
√

1/2κ. Note that κ is the effective capacitance coefficient, which usually has
a relatively small value. Thus, the optimal f ∗ is usually on the boundary value fmax.

After fixed α and f , we can find optimal server from (13.41).U can be rewritten
as

U = αl
(

1+ p
vm

+ X

fserverm

)
+ κ (1− α) lXf 2. (13.47)

As different server has different transmission rate v and computation capacity
fserver, the optimal server is the one which has minimum value of U when m ∈M .
So, optimal server m∗ has minimum value of 1+p

v
+ X
fserver

.

Thus, we prove (13.40) is the optimal offloading policy when p
X
f +κXf 2 < vm <

1+p
− X
fserverm

+κXf 2 . This completes the proof of Proposition 13.1.

Remark 13.1 When there exists a server, which has a relatively good transmission
channel and computation capacity, the time and energy consumption are comparable
with that of the device. In this situation, device should offload partial data to save
time. When the execution time of local computing and offloading computing are the
same, the device achieves minimum execution time, which saves the most time.

Proposition 13.2 The optimal offloading policy is

α∗ = 0, (13.48a)

f ∗ = min{ 3
√

1/2κ, fmax}. (13.48b)

when vm <
p

X
f
+κXf 2 ,m ∈M .

Proof Similar to Proposition 13.1, we can derive that when vm <
p

X
f
+κXf 2 , ∂U

∂α
> 0

for α ∈ [0, 1]. Then,U is an increasing function for α, and achieves minimum value
at α = 0. This completes the proof of Proposition 13.2.

Remark 13.2 When the transmission channel is in bad condition, the consumption
of time and energy during transmission are expensive, which results in the offloading
procedure is uneconomical. In this situation, the device prefers to process the whole
computation tasks locally.
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Proposition 13.3 The optimal offloading policy is

m∗ = arg min
1+ p
vm

+ X

fserverm
,m ∈M , (13.49a)

α∗ = 1. (13.49b)

when vm >
1+p

− X
fserverm

+κXf 2 ,m ∈M .

Proof Similar to Proposition 13.1, we can derive that when vm >
1+p

− X
fserverm

+κXf 2 ,

∂U
∂α
< 0 for α ∈ [0, 1]. Then, U is a decreasing function for α, and achieves

minimum value at α = 1. This completes the proof of Proposition 13.3.

Remark 13.3 When there exists a server, which has an excellent transmission
channel and powerful computation capacity, it will consume less time and energy
for server to process per task data than that of local processing. Thus, it is
more beneficial for the device to offload more computation tasks to the server
for computing. In this situation, device prefers to execute all computation tasks
remotely.

In the following part, we will analyze the performance of multi-device scenario.
For the ease of analysis, we simplify the scenario into a two-device model. If
the states of servers are similar with each other, two devices should choose two
different servers for the benefit of good performance. For each device, this will be
the similar performance as in the previous single device scenario. However, when
the transmission channel and computation capacity vary greatly for different servers,
choosing a common server will be better for both devices.

Considering that devices have same transmission channel to each server: vm,m ∈
M , and the servers satisfy the conditions in Proposition 13.1: p

X
f +κXf 2 < vm <

1+p
− X
fserverm

+κXf 2 ,m ∈ M , therefore, each device shall offload partial computation

tasks to one server for a relatively low cost of time and energy. Servers are sorted as
1+p
vm̃1

+ X
fserverm̃1

<
1+p
vm̃2

+ X
fserverm̃2

< · · · < 1+p
vm̃M

+ X
fserverm̃M

, m̃1 · · · m̃M ∈M . Then,

we derive the following Propositions.

Proposition 13.4 Both two devices will select optimal server m̃1, when its compu-
tation capacity satisfies fserverm̃1

>
(α1l1+2α2l2)X

α2l2

(
1+p
vm̃2

− p
vm̃1

+ X
fserverm̃2

)
−
(

2 max{ α1l1
vm̃1

,
α2 l2
vm̃2

}− α1 l1
vm̃1

) .
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Proof When the devices both select server m̃1, if α1l1
v1

≥ α2l2
v2

, the total time and
energy consumption Ut is

Ut =D1 + E1 +D2 + E2

=α1l1

vm̃1

+ (α1l1 + α2l2)X

fserverm̃1

+ κ (1− α1) l1Xf
2
1 +

α1l1

vm̃1

p

+ α1l1

vm̃1

+ (α1l1 + α2l2)X

fserverm̃1

+ κ (1− α2) l2Xf
2
2 +

α2l2

vm̃1

p.

(13.50)

When fserverm̃1
>

(α1l1+2α2l2)X

α2l2

(
1+p
vm̃2

− p
vm̃1

+ X
fserverm̃2

)
− α1 l1
vm̃1

, we have

Ut =2
α1l1

vm̃1

+ α1l1X

fserverm̃1

+ (α1l1 + 2α2l2)X

fserverm̃1

+ κ (1− α1) l1Xf
2
1 +

α1l1

vm̃1

p + κ (1− α2) l2Xf
2
2 +

α2l2

vm̃1

p

<2
α1l1

vm̃1

+ α1l1X

fserverm̃1

+ α2l2

(
1+ p
vm̃2

− p

vm̃1

+ X

fserverm̃2

)
− α1l1

vm̃1

+ κ (1− α1) l1Xf
2
1 +

α1l1

vm̃1

p + κ (1− α2) l2Xf
2
2 +

α2l2

vm̃1

p

= α1l1

vm̃1

+ α1l1X

fserverm̃1

+ κ (1− α1) l1Xf
2
1 +

α1l1

vm̃1

p

︸ ︷︷ ︸
U1

+ α2l2

vm̃2

+ α2l2X

fserverm̃2

+ κ (1− α2) l2Xf
2
2 +

α2l2

vm̃2

p

︸ ︷︷ ︸
U2

.

(13.51)

U1 and U2 are the relative costs of time and energy when the device selects server
m̃1 and m̃2 for offloading.

When α1l1
v1
≤ α2l2

v2
, similar results can be found when

fserverm̃1
>

(α1l1 + 2α2l2)X

α2l2

(
1+p
vm̃2

− p
vm̃1

+ X
fserverm̃2

)
−
(

2α2l2
vm̃2

− α1l1
vm̃1

) . (13.52)

This completes the proof of Proposition 13.4.

Remark 13.4 When servers have different computation capacities, devices should
make a wise decision on which server to offload, even a common server is better
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when the computation capacities of servers vary widely. For example, assuming
that the wireless channels are the same for all servers and devices offload same
computation data to one server as α1l1 = α2l2, if there exists a server with
computation capacities fserverm̃1

> 3fserverm̃2
as obtained from Proposition 13.4,

the optimal offloading policy for the two devices is selecting the same server m̃1.

Proposition 13.5 Considering the conditions in Proposition 13.4, the optimal
offloading ratios of the two devices satisfy α1 = 1 − f1l2

f2l1
(1− α2). When

f1 = f2, l1 = l2, the devices have same offloading ratio with α1 = α2 =
X

X+ f
max{vm̃1

,vm̃2
} + 2fX

fserverm̃1

.

Proof Similar to single device scenario as in the Proposition 13.1, the optimal
offloading ratio is achieved when the consumed time of local and remote processing
are the same:

(1− α1) l1X

f1
= max{α1l1

vm̃1

,
α2l2

vm̃2

} + (α1l1 + α2l2)X

fserverm̃1

, (13.53a)

(1− α2) l2X

f2
= max{α1l1

vm̃1

,
α2l2

vm̃2

} + (α1l1 + α2l2)X

fserverm̃1

. (13.53b)

From (13.53), we can get

(1− α1) l1X

f1
= (1− α2) l2X

f2
⇒ α1 = 1− f1l2

f2l1
(1− α2) . (13.54)

When f1 = f2 = f, l1 = l2 = l, (13.53) is simplified as

(1− α1)X

f
= α1

max{vm̃1 , vm̃2}
+ (α1 + α2)X

fserverm̃1

, (13.55a)

(1− α2)X

f
= α1

max{vm̃1 , vm̃2}
+ (α1 + α2)X

fserverm̃1

. (13.55b)

From (13.54), we get α1 = α2. Bring it into (13.55), we finally get α1 = α2 =
X

X+ f
max{vm̃1

,vm̃2
} + 2fX

fserverm̃1

. This completes the proof of Proposition 13.5.

Remark 13.5 When devices selecting the same server for offloading, the relation-
ship between their optimal offloading ratios is related to local computation capacity
f and processed task loads l. If they are processing the same amount of task data
with same CPU frequency, then, they should offload the same computation tasks for
optimal performance.
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13.7 Simulation Results

13.7.1 General Setups

In this part, the performance of the proposed Hybrid-AC and MD-Hybrid-AC
algorithms are analyzed through simulation experiments. In the experiment, there
are M = 3 MEC servers to provide edge computing servers. For MD-Hybrid-
AC, we use N = 2 devices to interact with servers, which is to present in detail
how the offloading policy changes with the environment. The system parameters
are set as [19]: Lb = 1000 bits, η = 1.5, X = 737.5, Lmax = 6000 bits,
κ = 10−28, ϕ = 0.02s, fmax = 1.5 GHz, bmax = 3.2mJ, Ω = 1 MHz, p = 2W,
fmax

server = 16 GHz, f unit
server = 2 GHz. For simplicity, the normalized wireless channel

gain gtn,m is assumed to take values in [5, 14] uniformly [42]. Unless specified, the
task requested probability ζ = 0.8, the maximum harvested energy emax = 0.001J,
λ = 2 and the reward weighted parameters ωt = 3, ωe = 1.

The actor network and critic network in Hybrid-AC both have two hidden layers,
whose size are set as 400 and 300. The critic network is the same as the actor
network, except that the second hidden layer is concatenated with the control vector
and the output layer gives M Q values. The learning rate for the actor network
and critic network are 0.0001 and 0.001. We set the soft target updates ε = 0.001,
the discount factor γ = 0.99, the maximum time step T = 20 in each episode,
and the size of replay memory D is 10,000. The exploration noise process ν is
an Ornstein_Uhlenbeck process [16] with θ = 0.15 and σ = 0.2, and the ε-
greedy strategy is set as ε = 0.9. The MD-Hybrid-AC has the similar neural
network architecture as in the Hybrid-AC, except the critic network takes states
o and continuous actions of all devices as input, and outputs M × N Q values. In
the following experiments, each result in the figure is averaged over 5000 episodes.

13.7.2 Performance of Convergence and Generalizability

In this experiment, we will show the convergence and generalization of the proposed
methods. The system configurations are set as in the Sect. 13.7.1. The convergence
performances of the Hybrid-AC and MD-Hybrid-AC are shown in Fig. 13.3a, where
the performance of MD-Hybrid-AC is the averaged reward of two devices. The
theoretical result in Sect. 13.6 with g = 14 and fserver = 16 GHz is also shown
as a comparison, which is the reward for the single device. Under such simulation
conditions, the optimal offloading policy follows Proposition 13.1 and is obtained
when the execution time of local computing and offloading computing are the same.
The results reveal that the Hybrid-AC converges faster and more stably than MD-
Hybrid-AC and also achieves higher rewards. This corresponds to the difficulty
of the dynamic computation offloading problem, as the offloading decision of a
single device is much simple than that of multiple devices. Besides, with energy
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Fig. 13.3 Illustrations for the
convergence and
generalization of the
proposed algorithms. (a)
Reward vs episodes. (b)
Performance vs weighted
parameters ωt , ωe . (c)
Performance vs weighted
parameters ωt , ωe
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constraints, there is still a gap from the theoretical optimal policy as shown in
Proposition 13.1.

The generalizability of Hybrid-AC is demonstrated through the performance with
different reward weighted parameters ωt , ωe = (6, 1) , . . . , (2, 1) , (1, 1) , (1, 2) ,
. . . , (1, 6) in Fig. 13.3b. The results reveal the trade-off between time and energy
consumption can be easily tuned by assigning different values of ωt, ωe, which
means Hybrid-AC adapts to both time-sensitive and energy-sensitive tasks.

The generalizability of MD-Hybrid-AC is demonstrated through the performance
with different number of devices in Fig. 13.3c. We set 6 servers with maximum
computation capacity fmax

server = 32 GHz. The number of devices N changes from 2
to 12. The performance is compared with Exhaustive Search with Random Server
Selection (ES-RSS): The offloading ratio α and computation capacity f are both
uniformly discretized into five actions with the consideration of time complexity;
Each device randomly selects one edge server for offloading, then, the device
enumerate all possible combinations of α and f without considering other devices
to find the one with the least time consumption as the solution. The results show
that MD-Hybrid-AC deteriorates gradually but can still maintain a relatively good
performance when the network size increases. The policy turns to reduce the
proportion of executing the task on servers. The reason is that the total computing
resources of servers are limited, when more devices share a common server, it may
not time and energy efficient compared with locally processing on each device. In
comparison, ES-RSS degrades rapidly, which reveals that a wise coordination is
important in the multi-device system.

The computational complexity is shown in Table 13.2. The computation time of
MD-Hybrid-AC is insensitive to the number of devices, and the actor and critic part
cost 1 ms and 1.3 ms on average in our simulations. The time required to output
one solution depends on how large the size of the neural network used. For a even
larger scale of MEC system, the action dimension will be much larger, and we could
use a larger-scale neural network to maintain the performance. In such case, the
computation time will increase.

Table 13.2 Average
computation time under
different number of devices

Number of devices Actor part Critic part ES-RSS

2 1.039 ms 1.292 ms 0.267 ms

4 1.045 ms 1.305 ms 0.636 ms

6 1.044 ms 1.309 ms 0.935 ms

8 1.042 ms 1.307 ms 1.209 ms

10 1.056 ms 1.314 ms 1.442 ms

12 1.052 ms 1.303 ms 1.690 ms
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13.7.3 Performance Evaluation of Hybrid-AC with Different
System Parameters

To validate the effectiveness of Hybrid-AC, we compare it with four baselines:

• Device Execution: The device executes all of their computation tasks locally. The
maximum computation capacity is scheduled with maximum possible energy:

f tD_exe = min{
√(
btn + etn

)
/κltnX, fmax}.

• Server Execution: The device offloads all of their computation tasks to the
server for execution. The server is selected according to arg max

m∈M
1+p

Ωlog2

(
1+gt1,mp

)+
X

f tserverm
. If the transmission time exceeds the maximum tolerable delay, the task

is dropped.
• Deep Q-learning based offloading (DQLO): We implemented a deep Q-learning

based offloading method based on the MDP model proposed in Sect. 13.4.1. The
action space is uniformly discretized into finite discrete values and we developed
two algorithms based on the different number of discretized actions. DQLO(5):
The offloading ratio α and computation capacity f are both uniformly discretized
into five states, making the action dimension of DQN be 13. DQLO(10): Both α
and f are discretized into ten actions. The neural network is the same as the critic
network in the proposed method. The learning rate is 0.0001, and the action is
chosen by an ε-greedy strategy with ε = 0.9. The discount factor and memory
size are set as the same as the proposed method. Besides, we used the same states
and reward for a fair comparison.

• Exhaustive Search: The offloading ratio and computation capacity are both
uniformly discretized into five actions. The server is selected according to
arg max
m∈M

1+p
Ωlog2

(
1+gt1,mp

)+ X
f tserverm

. Then, the device enumerate all possible combi-

nations of α and f to find the one with the least time consumption as the solution.

Besides, we build an upper bound to help analyze the performance, which
is constructed as: The offloading ratio α and computation capacity f are both
discretized into twenty states; We enumerate all possible combinations of actions
and select the action corresponding to the largest reward as the current action.

13.7.3.1 Performance vs Different Task Requested Probability ζ

The average computation offloading performance in terms of rewards, consumed
time and energy under different computation task requested probability ζ ∈ [0.4, 2]
is shown in Fig. 13.4. The parameters in the reward function of proposed method
and DQLO are set as ωt = 3, ωe = 1 with a focus on time-sensitive tasks. For
the sake of illustration, the results of the consumed time in Fig. 13.4b are expressed
logarithmically. It can be observed that the execution time and consumed energy
increase with the amount of computation task. The Server Execution method has
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Fig. 13.4 Performance vs
different requested task load
ζ . (a) Reward. (b) Execution
time. (c) Consumed energy

0.8 1 1.2 1.4 1.6 1.8 2 2.2 2.4 2.6

Requested task load 

-40

-30

-20

-10

0

10

20

A
ve

ra
ge

 r
ew

ar
d

s

Hybrid-AC
DQLO(5)
DQLO(10)
Server Execution
Device Execution
Exhaustive Search
Upper bound

(a)

0.8 1 1.2 1.4 1.6 1.8 2 2.2 2.4 2.6

Requested task load 

10-3

10-2

10-1

100

A
ve

ra
ge

 c
on

su
m

ed
 t

im
e(

s)

Hybrid-AC
DQLO(5)
DQLO(10)
Server Execution
Device Execution
Exhaustive Search
Upper bound

(b)

0.8 1 1.2 1.4 1.6 1.8 2 2.2 2.4 2.6

Requested task load 

3

4

5

6

7

8

9

10

11

A
ve

ra
ge

 c
on

su
m

ed
 e

ne
rg

y(
J)

10-3

Hybrid-AC
DQLO(5)
DQLO(10)
Server Execution
Device Execution
Exhaustive Search
Upper bound

(c)



336 13 Energy-Aware Computational Resource Allocation

the highest energy consumption and time delay, this can be explained as follows:
the device consumes much more power for transmission to offload the computation
task than local execution; Besides, the transmission procedure in the offloading
operation consumes the primary time consumption compared to the execution time
of MEC servers. The Exhaustive Search method has a comparable performance with
DQLO(5) when the requested task is not heavy, and its performance deteriorates
even more with the increase of the task load as it does not consider energy
consumption, which leads to more tasks are dropped. Thus, a wise and intelligent
decision should be made to reduce the time and energy consumption. The DQLO
achieves better performance with the increase of the discretized action dimensions.
However, the performance would not be further improved as a finer discretization
may make it difficult to converge. Hybrid-AC is closest to the upper bound and
outperforms DQLO(10) with 18.75% shorter execution time at the cost of only
1.36% higher energy consumption, which means that Hybrid-AC makes a better
decision than the discrete action based DRL methods. As we concentrate more on
the execution time, it achieves the lowest averaged execution delay and a relatively
low energy consumption under different task loads.

13.7.3.2 Performance vs Different Maximum Harvested Energy emax

We show the performance under different maximum harvested energy emax ∈[
6× 10−4, 12× 10−4

]
in Fig. 13.5. The performance of the consumed time in

Fig. 13.5b are expressed logarithmically as in the Fig. 13.4b. The results indicate that
when the harvested energy is relatively low, the performance of Server Execution,
DQLO and Hybrid-AC deteriorate at execution delay. This is because the energy
consumption of transmission often exceeds the existing energy in the battery, which
results in dropping tasks frequently. The energy consumption for local execution
is relatively low in all the experiments, so the performance of Device Execution
usually has a good performance compared with methods using offloading. The
Exhaustive Search method has similar performance with DQLO(5) when the energy
is sufficient, and gets worse rapidly as the harvested energy decreases. It reveals
that when making an offloading decision, energy consumption is an important
consideration. The learning-based methods also perform better as the harvested
energy increases. Specifically, Hybrid-AC has a similar performance of Device
Execution as soon as emax reaches 7× 10−4J, and even consumes much less time as
the harvested energy continues to increase. It gets closer to the upper bound when
the harvested energy is sufficient, and outperforms DQLO(10) with 40.06% shorter
execution time at the cost of only 1.13% higher energy consumption in an episode
for different maximum harvested energy.



13.7 Simulation Results 337

Fig. 13.5 Performance vs
different maximum harvested
energy emax . (a) Reward. (b)
Execution time. (c)
Consumed energy
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13.7.4 Performance Evaluation of MD-Hybrid-AC with
Different System Parameters

13.7.4.1 Performance vs Different Server’s Occupied Resource Units λ

The average execution time, energy and offloading ratio are evaluated with different
server’s occupied units λ = [1, 10]. The results of two devices with important factor
Z1 = 1, Z2 = 2 are shown in the Fig. 13.6, along with the performance of Hybrid-
AC for comparison. Apparently, as the occupied computation resources of servers
increase, the device’s execution time gets longer. At the meantime, the deteriorated
service quality has caused devices to prefer to process locally, which also decreases
the energy consumptions. Besides, we can find that the two devices have different
performance. Specifically, device 2 with larger important factor has a relatively
better performance compared to that of device 1, and behaves more like Hybrid-
AC does. This can be explained that the policy pays more attentions on device 2
with higher priority, however, the limited resources constraint the performance to be
inferior to that of single device. As we concern more on time with ωt = 3, ωe = 1,
device 2 consumes 19.35% shorter time than device 1 and 16.28% longer time than
single device. It also consumes 9.38% more energy than device 1 and almost the
same energy as single device.

13.7.4.2 Performance vs Differentiated Server Capacities

This part shows the performances when three servers have differentiated available
computation resources. We set the occupied resources of servers as λ1 = 1, λ2 = 10
and λ3, which changes in [1, 10]. Besides, the default setting of important factors
is Z1 = 1, Z2 = 2. We compare its performances with the results of another
important factor setting Z1 = Z2 = 1, and Hybrid-AC. The averaged performances
of consumed time, consumed energy, offloading ratio, selected ratio of each server
are shown in Figs. 13.7 and 13.8. We will analysis the results from different aspects.
For Hybrid-AC with single device, the time and energy consumptions are nearly
unchanged, as well as the offloading ratio. We can find evidences from server
selection results. When the occupied resource units in server 3 increase, the selected
ratio of server 3 reduces consequently. However, the selected ratio of server 1 fills
the vacancy. This can also be verified by the selected ratio of server 2, which is
almost not changed. Because server 1 has a relatively enough computation resources
with λ1 = 1, which is the best performance of server 3, the device has a stable
performance all the time. For MD-Hybrid-AC with Z1 = 1, Z2 = 1, the two
devices have similar performance. They both increase the execution time as the
available computation capacities of server 3 become smaller. Simultaneously, they
offload less data for server execution, which also decrease the energy consumptions.
However, they behave differently after they decreasing the selected ratio of server
3 as the available computation resources decreasing. Device 1 mainly increases the
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Fig. 13.6 Multi-device:
Performance vs different
occupied server computation
resource unit λ. (a) Execution
time. (b) Consumed energy.
(c) Offloading ratio
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Fig. 13.7 Multi-device:
Performance vs different
occupied computation
resource unit λ3 in server 3
(Part 1). (a) Execution time.
(b) Consumed energy. (c)
Offloading ratio
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Fig. 13.8 Multi-device:
Performance vs different
occupied computation
resource unit λ3 in server 3
(Part 2). (a) Server 1 selection
ratio. (b) Server 2 selection
ratio. (c) Server 3 selection
ratio

1 2 3 4 5 6 7 8 9 10

Server 3 occupied unit 

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

S
er

ve
r 

1 
se

le
ct

ed
 r

at
io

MD-Hybrid-AC(device 1)
MD-Hybrid-AC(device 2)
Hybrid-AC
MD-Hybrid-AC(device 1,Z=1,1)
MD-Hybrid-AC(device 2,Z=1,1)

(a)

1 2 3 4 5 6 7 8 9 10

Server 3 occupied unit 

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

S
er

ve
r 

2 
se

le
ct

ed
 r

at
io

MD-Hybrid-AC(device 1)
MD-Hybrid-AC(device 2)
Hybrid-AC
MD-Hybrid-AC(device 1,Z=1,1)
MD-Hybrid-AC(device 2,Z=1,1)

(b)

1 2 3 4 5 6 7 8 9 10

Server 3 occupied unit 

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

S
er

ve
r 

3 
se

le
ct

ed
 r

at
io

MD-Hybrid-AC(device 1)
MD-Hybrid-AC(device 2)
Hybrid-AC
MD-Hybrid-AC(device 1,Z=1,1)
MD-Hybrid-AC(device 2,Z=1,1)

(c)



342 13 Energy-Aware Computational Resource Allocation

selected ratio of server 1, while device 2 selects server 2. This can be seen as the
coordination among devices, which can be explained as follows. As server 1 is more
powerful than server 2, when they both choose server 1 for better performance,
they may both perform worse. Because server 1 needs to compute the sum of the
offloaded data of device 1 and device 2, the two devices may consume more time
than that of selecting different servers. For comparison, if Hybrid-AC is utilized
in a multi-device scenario, coordination will not exist as different devices will
select the same server based on the same states of servers, which results in poor
performance. For MD-Hybrid-AC with Z1 = 1, Z2 = 2, the two devices exhibit
different performances and policies. The device 2 with relatively large important
factor Z2 = 2 has a better performance than that of device 1, and acts like Hybrid-
AC with single device. This is consistent with what we found in Sect. 13.7.4.1.
Device 1 behaves very differently from device 2. It mostly chooses server 2 with
least computation resources and saves the better servers for device 2. Though, this
policy may affect the final performance, it shows the coordination among devices.
This policy is intended to put more attention to the performance of device 2. So, it
takes a conservative strategy to guarantee the performance of device 2 with the price
of sacrificing its own performance. This is also the reason that the performance of
multi-device is worse than that of single device.

13.8 Conclusion

This part proposed two DRL-based dynamic computation offloading algorithms for
MEC systems with EH devices, which addressed the challenges of continuous-
discrete hybrid action spaces and coordination among devices. Hybrid-AC is
intended to solve the hybrid decision spaces, which is a combination of DQN and
DDPG. It utilizes actor to output continuous actions: offloading ratio and local
computation capacity. At the meantime, it uses critic to evaluate the actions of
actor and output the discrete action: server selection. MD-Hybrid-AC is aimed at
providing coordination among devices. Built on the hybrid decision architecture
of Hybrid-AC, MD-Hybrid-AC adopts the paradigm of centralized training with
decentralized execution to build a centralized critic, which considers actions of all
devices and achieve coordination on server selection. The simulation results verify
the effectiveness and superiority of the proposed algorithms.
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Chapter 14
Introduction of Cooperative Resource
and Information Sharing

Keywords Information Sharing · User Interaction · Social Networks · Resource
Allocation

Recently, the Internet of Things (IoT) enabled 6G networks have penetrated many
aspects of the physical world to realize different applications. Resulting from
ubiquitous connections of 6G, data traffic from these applications is experienc-
ing unprecedented increases. In addition, these applications generate, exchange,
aggregate, and analyze a vast amount of security-critical and privacy-sensitive data,
which makes them attractive targets of attacks. The past chapters of this book
have investigated a comprehensive study on communication, computing, caching
resource allocation of infrastructure. In this chapter, we will focus on the effect of
users’ interactions and cooperation behaviors on the quality of services.

(1) Cooperative data transaction: The first part considers auction mechanism
design and performance analysis for data transactions in mobile social networks.
We propose a data transaction mechanism, and summaries the analysis on state
transmission, stationary probabilities of the system, and the expected income for
data sellers. To make sure that both the data supply and the demand can be satisfied
at the same time, a data-demands-driven mobility model is proposed. In addition,
the designed mobility model can also improve the efficiency of data transaction.
(2) Cooperative trustworthiness evaluation: Users’ reporting and sharing of their
consumption experience can be utilized to rate the quality of different approaches
of online services. How to ensure the authenticity of users’ reports and identify
malicious ones with cheating reports become important issues to achieve an
accurate service rating. The second part proposes a private-prior peer prediction
mechanism for a service rating system with a fusion center, which evaluates users’
trustworthiness with their reports by applying the strictly proper scoring rule. In
addition, to identify malicious users and bad-functioning/unreliable users with high
error rate of quality judgement, an unreliability index is proposed to evaluate the
uncertainty of reports. By combining the trustworthiness and unreliability, malicious
users cannot receive a high trustworthiness and low unreliability at the same time
when they report falsified feedbacks. (3) Cooperative privacy protection: User-
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centric mobile sensing and computing devices, such as smartphones and vehicle
sensors, are serving as an emerging category of devices at the edge of networks. The
data in a mobile crowdsensing system always contains sensitive private information,
and can easily spread over the system via wireless channels and social application
platforms, which poses a serious threat to user privacy and causes privacy protection
to face serious strain. In response, the third part carries out some preliminary
works focusing on the interaction between users based on a community-structured
evolutionary game model. In this model, users are players, and their behaviors (i.e.,
take the secure strategy or not) are the game strategies that will evolve and spread
over the system.



Chapter 15
Cooperative Data Transaction in Mobile
Networks

Abstract Mobile data traffic is experiencing unprecedented increases due to the
proliferation of highly capable smartphones, laptops and tablets, and mobile data
offloading can be used to move traffic from cellular networks to other wireless
infrastructures such as small-cell base stations. This work addresses the related issue
of data allocation, by proposing a novel infrastructure independent method based on
the hotspot function of smartphones. In the proposed scheme, smartphones transfer
data allowances among mobile users, so that users with excess data allowances act
as accessible Wi-Fi hotspots, selling their data allowance to other users who need
extra data allowances. To achieve this objective, we propose to use auctions with
single and multiple data sellers. Efficient schemes based on auction models are
discussed to sell the data allowances over successive days in a month, and over
different time slots during a single day. Overall system performance is considered
based on the behavior of mobile users, such as changing demands for the sale
or purchase of data allowances. Together with the analytical results presented,
our simulation experiments also indicate that knowledge of user behavior can
significantly improve the performance of data allowance transactions, leading to
highly efficient allocations among users.

Keywords Data Transaction · Resource Allocation · Auction · Mobile
Networks · Cooperative Particle Swarm Optimization

15.1 Introduction

In recent decades, the mobile data traffic is experiencing an enormous growth due
to the significant penetration of smartphones, as well as Web 2.0 and a large number
of applications with high bandwidth requirements. Researchers have predicted that
each person will consume on average as much as 5 GB of data each month by
2020 [1–3]. To meet these increasing and high speed data requirements, many new
communication techniques and standards are provided, such as LTE Release 8,
which can achieve a high peak data rate of 300 Mbps on the downlink and 75 Mbps
on the uplink for a 20 MHz bandwidth [4]. Additionally, ultra-dense heterogeneous
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networks, which consists of a large number of small-cell base stations (SBSs) to
provide data offloading, have been proposed as an another solution to relief the
heavy traffic load brought to the macro base stations [5–7]. Through data offloading,
the data traffic from mobile users can be sent over SBSs, such as femto base stations
and Wi-Fi hotspots, when these SBSs are available, otherwise traffic is delivered
over cellular networks.

However, almost all recent data offloading studies can only be implemented with
assistance of external infrastructures, i.e., SBSs. Sometimes these SBSs are operated
by the mobile network operators (MNOs), while usually the SBSs are owned by
some third parties, which means that MNOs need to rent these SBSs if they want
to utilize them for data offloading. Meanwhile, due to the introduction of these
external and heterogeneous infrastructures, resource management problems, such
as power control and mobile user equipment scheduling, become more complicated
and challenging, especially for networks with densely deployed SBSs and a
large number of mobile users. Moreover, system stability, protocol compatibility
and switching, traffic fairness, network congestion control, etc., will pose great
challenge for data offloading. In order to avoid these problems above, in this work,
we propose a novel infrastructure-free approach to implement data offloading, i.e.,
operating the data transaction among the mobile users by turning on the Wi-Fi
hotspot function of smartphones.

15.1.1 Motivation

Currently, to face the increasing data demands of mobile users, all MNOs, such as
AT&T in the US, Giffgaff in the UK and China Mobile, have offered many optional
monthly data plans with different amounts of data. While the arbitrary of the data
plan regulations made by different MNOs are the same, i.e., if the data in the current
data plan is not run out by the end of a month, the remaining data will not be
cumulated to the next month data plan.1 On the other hand, when the monthly data
has been used out before the end of a month, mobile users have to purchase some
extra data with a higher price than monthly plans, otherwise they will suffer a lower
speed of data service. Therefore, the opposite results leading by these regulations
come down to the following situations. On the one hand, users buying data plans
with a large amount of data might still hold a lot of unconsumed data at the end
of a months. On the other hand, users with a small amount of data might use out
their data before the end of a month. As a consequence, this contradiction between

1 Currently, most MNOs provide this arbitrary data clear policy, except for those very few
operators, such as AT&T and China Mobile, not clearing users data by the end of a month.
However, such “data rollover program” provided is limited popularized. Take China Mobile and
AT&T for instance, the accumulated data will be cleared by the end of the second month. In
addition, the data rollover service of NTT can only be accessed by their users with data plans
larger than 5 GB.
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the redundancy and demands of data resource make it possible for the two types of
mobile users to make an internal data transaction between them, which is operated
without any third party infrastructures. According to a certain rule or contract of
data transaction, “data owners” can sell their unused data to those “data requesters”
at a lower price compared with the market price.

15.1.1.1 Feasibility of Data Transaction

The direct data dealing is never allowed among the mobile users, no matter
whether they are belonging to the same MNO. Fortunately, the hotspot function of
current smartphones makes this data transaction between data owners and requesters
mentioned above to become a reality. By unlocking the hotspot mode, hotspot
phones will allow other mobile phones or wireless devices to access them and
phone-to-phone communication via WiFi interface can be realized [8, 9]. The data
transaction between mobile users is similar to an offloading process in current
heterogeneous networks, which refers to delivering data traffic of the MNO to third-
party networks. However, the data transaction is designed to transfer the data of one
mobile user to another one to increase the data utilization among users effectively,
which cannot reduce the total volume of data traffic mobile networks [10, 11].

15.1.1.2 Effective and Efficient Data Transaction

Mobile phones will consume more energy when working as Wi-Fi hotspots.
Moreover, such accessible Wi-Fi mode might result in potential threat of personal
information. So it is reasonable for data owners to sell their data with a price as
high as possible to compensate their costs of energy and privacy. In addition, such
incomes brought by unconsumed and to-be-wasted data can encourage data owners
to participate in data transaction, if incomes can compensate their costs resulting
from information security risks [12]. On the other hand, for data requesters, buying
data through this data transaction can obtain high-speed data service by a relatively
lower price. So these requesters have the motivation to fuel the transaction and
compete for the data resource when there are many data requesters. This competitive
relationship can be modeled by auction mechanisms effectively. So in this work, we
will introduce the auction models to describe the operation of data transaction.

15.1.1.3 Changing Demands of Selling and Buying Data

The demands of selling and buying data always change over time for data owners
and requesters, respectively. To be specific, the closer to the end of a month, the more
urgent the data owners are to sell their data. Similarly, the number of data requesters
will increase when the end of a month is coming, and the willing to buy data through
data transaction tends to be much stronger. Then tendency of data selling and buying
will further influence the price of data. So how to allocate the amount of data to be
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sold in every day over a month, and how to schedule data auction in a single day are
very important to maximize the utilities of data owners and satisfy the data demands
of requesters at the same time. In this work, we will design different data allocation
mechanisms to realize high efficient data transaction, based on auction models.

15.1.2 Contribution

The main contributions and our main ideas are summarized as follows:

1. We establish a basis auction framework for the data transaction system with only
one data seller. This auction model is different from traditional auction models
based on game theory [13–15], but established for performance analysis based on
stochastic process and queueing theory. Based on this model, the data allocation
mechanisms are designed to decide how to sell the extra data in different days to
optimize the expected income for the data owner. In this work, we consider that
the urgency of data selling and buying are changing over time, when maximizing
the income of the data owner. In addition, the transaction efficiency is also
considered to achieve a further optimization of the income. Simulation results
validate that the designed allocation mechanism can increase the total income of
the system, and the data transaction efficiency can be also guaranteed.

2. We propose a networked data transaction system, in which there are multiple data
owners operating their own basic data auction, based on a networked auction
model. To describe the movement of data bidders among different auctions, a
data-demands-driven mobility model is proposed, which can make sure that both
the data supply and the demand can be satisfied at the same time. In addition, the
designed mobility model can also improve the efficiency of data transaction.

3. Based on the networked data transaction system established, we design three
different data allocation mechanisms to decide how to sell data in a single day
for every data auctioneer in the system, to maximize the income obtained in
each time slot, each auctioneer’s income or the entire income of the system. To
optimize the system performance, the prediction of the data bidders’ movement
is considered when designing the allocation mechanisms. Simulation results
demonstrate that the prediction based data allocation mechanism can bring more
income for data auctioneers than the non-prediction approach.

The reminder of this part is organized as follows. We first review the relevant
literature in Sect. 15.2. In Sect. 15.3, the data allocation mechanisms are designed
for the basic auction model based data transaction. Data allocation mechanisms
based on the networked auction model are proposed in Sect. 15.4. The approximate
solution of the optimization problems based on cooperative particle swarm for data
allocation is introduced in Sect. 15.5. Simulations are shown in Sects. 15.6, and 15.7
concludes this part.
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15.2 Related Work

Mobile data offloading by applying SBSs in heterogeneous networks, regarded
as a feasible solution to deal with the increasing of mobile data requirement and
services, has attracted more and more attention. With assistance of heterogeneous
SBSs, the throughput of cellular networks can be greatly improved. However,
providing offloading services results in more energy consumption and bandwidth
resource occupation for these SBSs, which calls for incentive mechanisms to
encourage SBSs to participate in the transmission cooperation. To promote altruistic
behaviours among resource providers, many economics theory based mechanisms
have been designed to improve resource utilization of communication systems [16].
In [17], a user-centered opportunistic offloading approach was proposed based on
a network formation game, in which the users autonomously formed a cooperative
network, and promised device-to-device (D2D) sharing with their adjacent users.
A coalitional game framework was proposed in [18] to improve the performance
of mobile data offloading in wireless mesh networks, by savings the base stations’
power consumption and reimbursements for mesh users. A competitive game was
established for the mobile computing offloading problem in [19], in which each
user pursued to minimize its own energy consumption, and the game formulated
was subject to the real-time constraints imposed by the job execution deadlines,
user specific channel bit rates, and the competition over the shared communication
channel. In [20], the Nash bargaining game combining with the group bargaining
theory was analyzed for the mobile traffic offloading in heterogeneous networks
(HetNets), in which the social welfare maximization and the fairness of resource
sharing were both considered.

Auction has become an important and effective theory in network economics,
which can model and analyze the resource supplying and requesting from the aspect
of economic. In recent years, auction mechanisms have been introduced to deal
with dynamic spectrum optimization, resource sharing, D2D communications and
many other issues in wireless networks [13, 21–23]. To deal with the increasing of
mobile data traffic, a novel spectrum sharing framework for the cooperation and
competition between LTE and Wi-Fi was designed based on an effective auction
model in [14]. In [15], a double auction based resource allocation was designed
for mobile edge computing in industrial Internet of Things, in order to maximize
the system efficiency, while meeting the desired economic properties. To increase
the network capacity dynamically and adaptively, a reverse auction model was
established to formulate the mobile data offloading problem in [24]. In [25], a
hierarchical combinatorial auction was designed for the virtualization issues in
5G cellular networks, based on a truthful and sub-efficient resource allocation
framework. In addition, different auction models, such as reverse auction, VCG
auction, procurement auction, were introduced to D2D communications for cellular
traffic offloading [26–28]. All these auction mechanisms above were modeled based
on game theory, where all bidders submit their bids/prices/costs towards a single
auctioneer which finally decides only one winner to provide or receive the offloading
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service. Such game-based models are designed to guarantee the system efficiency
and ensure that bidders in the system report bids truthfully. However, these models
fail to describe the traditional bidding process and realize an information of bidders’
requirements sharing among the system, which results from the incentive capability
of game-based auction models. A sequential-price based auction mechanism was
designed in [29] to realize data offloading via D2D communications. However, this
model still paid less attention to the analysis of auction process.

Moreover, as mentioned above, all these current studies focus on the mobile data
offloading depending on applying third party infrastructures. The internal transac-
tion among mobile users to realize data offloading has been hardly investigated. In
this user-initiative data offloading, it is necessary to study the influence of human
behaviors on data transaction performance. In our previous work, we did some
studies focusing on such user-initiative data offloading based on auction in [10, 11]
and [30], in which the movement of users was predicted according to the topology of
network. However, the changing amount of mobile data can be sold and the auction
process in a long time period were not considered. So in this work, the statistics
feature of data requests, the rest amount of mobile data owned by data sellers are
consider to optimize the efficiency and balancing of data allocation. In addition, for
the data transaction system with multiple data sellers, the prediction information of
data requester’ movement among different data auctions is introduced into the data
allocation design to optimize the system performance.

15.3 Data Allocation of Single Data Provider

In this section, a classic basic data auction, first established in [31, 32], will be
introduced to model a series of successive transaction among a single data owner
and multiple potential data buyers as bidders. In each of the successive transaction,
the data owner operates an auction to sell a fixed size of its unconsumed and
unnecessary data from its data plan. Different from game theory based auction
models designed mainly for the truthful biding, this auction model is designed to
describe a traditional and practical auction process. In a later section, this basic
auction will be extended into a networked auction for the data transaction system
with multiple data owners. Before proceeding further, we summarize the main
notations used throughout the following sections in Table 15.1.

15.3.1 Basic Auction Mechanism

The process of the auction-based data transaction with a single data seller is
shown in Fig. 15.1. In this work, we assume that the automatical operation of
data auction can be realized through a special application installed in both of
the data owners’ and bidders’ smartphones. This assumption is feasible since
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Table 15.1 List of main notations in the basic auction (B) and networked auction (N) formulation
for data transaction

Parameter Definition

λ Bid arrival rate for data owner (B)

λi Bid arrival rate for the ith data owner (N)

δ Increment of data bids

h Highest price that data requesters intend to pay

rc Rate parameter of exponential distributed considering time for the data owner (B)

rc,i Rate parameter of exponential distributed considering time for the ith data owner
(N)

rs Rate parameter of exponential distributed service time for the data owner (B)

rs,i Rate parameter of exponential distributed service time for the ith data owner (N)

v0 Beginning state of data auction/starting price of data auction

vj State of that j data bids have arrived/price of the j th bid made by data requesters

vh State that highest bid has been made/highest bid made by data requesters

Aj State that the j th bid is accepted

ni Number of data requesters in auction i (N)

xi Price has been reached in auction i (N)

fi,j Probability of each bidder in auction i gives a bid (N)

C Total amount of data left (B)

D Total days left to sell data (B)

cd /cid Amount of data to be sold on day d (B) for data seller i (N)

M Total time slots for a day (N)

N Number of data sellers (N)

zim Data to be sold in time slot m for seller i (N)

there are already many mature mobile applications which make the auction-based
transaction become true, especially on some e-commerce platforms. In addition,
user authentication can be implemented through these applications to guarantee
the user trustworthiness, which can protect the data transaction from malicious
attacks [33]. Moreover, resulting from the requirement of physical proximity to
realize the Wi-Fi hot-spots transmission among mobile phones, we consider that
the data auction and transaction process is implemented in a limited area, such as
offices, halls, classrooms, etc., where data owners and requesters may settle for a
while to operate such data transaction. Moreover, there are always a crowd of people
gathered in such places, which results in a deterioration of Wi-Fi quality, and mobile
users with data requesters may looking for an alternative and effective way to obtain
data. Therefore, data owners can be also considered as feasible Wi-Fi resources to
meet these data requests. Then we will introduce the elements and operations in the
automatic data auction as follows.



358 15 Cooperative Data Transaction in Mobile Networks

Bid Accept

Consider Time rc

Data Bids

Arrival rate

Data Transaction Service

Service Time rs
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Mobile device accepted by the hotspot

Data Requesters

Fig. 15.1 Basic data auction with single auctioneer

1. Data auctioneer: The mobile user with unconsumed and needless mobile data.
To meet data requirements requested by more mobile users, we assume that,
instead of selling all data as a whole, data is cut into “data blocks” with a certain
size, and in each round of auction, only one block of data can be sold. Then the
data owner will perform as an auctioneer to operate a series of successive data
auction.

2. Data requesters (data bidders, potential data buyers): The mobile users who
have run out their mobile data and have the data requirements. In each round of
data auction, all data requesters are potential data buyers and give bids for the
data.

3. Beginning of a basic auction: The data owner starts an auction by unlocking the
hotspot mode of its phone, sets the starting price v0 of one block of data planned
to sell, and then waits for bids. In this stage, v0 can be modeled as the monetized
compensation to cover the data owner’s energy consumption when turning on its
hot-spot feature.

4. Bid arrivals: The personal mobile business for a single user arrives according
to a Poisson process with a certain rate, and therefore the average time between
successive arrivals is the reciprocal of the arrival rate [34–36]. During the data
auction, every time when the business arrivals to the phone of a data requester,
a data bid will be triggered. We assume that the data bid providing is public
information which can be observed by both the data owner and other data
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requesters.2 The business arrivals for different mobile users are independent and
identically distributed (i.i.d.), so that the bid arrivals for the data owner can be
still regarded as a statistic process obeying a Poisson distribution with arrival
rate λ. In a single round of auction, λ can be considered constant. If a bid is not
accepted by the data owner, then the next bid will increase the value of the offer
by fixed δ. In addition, potential buyers will stop increasing the price of bid as
long as the highest price h, at which data requesters intend to pay, is reached.
Consider that data requesters are rational, which means that they will not buy the
data from the auctioneer at a price higher than the market price. Then the value
of h can be set as a constant lower than the market price of data.

5. Auctioneer decisions: After each bid arrives, the data owner waits for a random
“considering time” to determine whether to accept the current bid or not.
Assume that the consider time has an exponential distribution with average
r−1
c and the memoryless property. If the next bid arrives before the end of the

considering time, then this considering process is repeated for this new bid.
On the contrary, if the considering time expires and still no new bid arrives,
the data owner will accept the latest data requester’s offer, allow it to access
into the hotspot and complete the data transaction with this successful data
bidder. Considering the limited transmission capacity of the data owner, this
work assumes that only the winning bidder can receive the data transaction
service in a single round of auction to guarantee the transmission quality,
although a hotspot can be simultaneously accessed by multiple users. Due to the
memoryless property of the considering time, the potential data buyers cannot
use the ongoing observations of considering time to give bids. Furthermore, the
remaining considering time at any time point after an arrived bid has the same
distribution as the initial considering time.

6. Data transaction procedure: The data transaction will last a “service time”
before starting a new round of data auction by the data owner. The service time
is modeled as an exponentially distributes time with rate rs , and is i.i.d. and
memoryless in different rounds of auctions.

Remark 15.1 According the “auctioneer decision” step, we notice that if the data
owner decides to wait a long time for the next bid, it might have a chance to get
a higher-price offer, but the cost is a long time consumption. Conversely, short
“considering time” will lead to a frequently repeated auctions, in each of which
the data owner tends to get a low-price offer due to its weak patience. So for the
data seller, how to select appropriative “considering time” to optimize the income,
specifically, the income per unit time that the auctions bring to the data owner?
Furthermore, the willing of selling and buying data of the data owner and requesters
is always changing over days, as explained in Sect. 15.1.1.3. So how to allocate
the amount of rest redundant data to be sold in different days before the end of a

2 Concerning the privacy issues, we consider that only the prices offered by the bid can be
shared. Meanwhile, the personal information of data bidders should be preserved or provided
anonymously.
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month, plays an important role when maximizing the income of the data owner and
satisfying demands of data requesters. Next, we will pay attention to the problems
above and design the data allocation mechanisms to optimize the performance of
the basic auction-base data transaction system.

15.3.2 Data Allocation for Single-Auctioneer Transaction

The mathematic model and system performance of the basic auction model have
been well established and analyzed in [37], in which many important economical
characteristics of the basic auction model are derived and provided with closed-
form expressions. In this section, we will first introduce this auction model into
the data transaction system, and summarize some of important results obtained
in [37] as Lemma 15.1. Then based on these theoretic results, we will design some
efficiency and request aware data allocation mechanisms for the single-auctioneer
data transaction in the later part of this section.

Lemma 15.1 In a data auction system with only one data auctioneer, the starting
price of the data is set as v0. The data bids arrive as a sequence of Poisson
arrivals with arrival rate λ, and every bid increases the value of offer by δ. The
data requesters stop providing bids when the offer price reaches h. The data seller
accepts the bid after a considering time, which follows an exponential distribution
with average r−1

c , and starts a new round of data auction after the service time,
which also follows an exponential distribution with average r−1

s . Then the average
income of the data owner from a single round data auction is

EI =
h∑
j=1

(v0 + jδ) Pa (j) = v0 + δ · 1− ρh
1− ρ , (15.1)

where ρ = λ
λ+rc . The total average time that every round of data auction lasts is

T = λ−1 + r−1
c + r−1

s . (15.2)

The average income per unit time for the data owner is

E0
I =

EI

T
=
(
λ−1 + r−1

c + r−1
s

)−1 ·
(
v0 + δ · 1− ρh

1− ρ
)
. (15.3)

To be general, let v0 = 0 and δ = 1, then the average income per unit time can be
gotten as

EGI =
EI

T
=
(
λ−1 + r−1

c + r−1
s

)−1 · 1− ρh
1− ρ . (15.4)
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Proof See [37].

Consider that the total amount of data left is C, and the data seller plans to sell
all of its data in the last D days of the month. Let cd (d = 1, 2, · · · ,D) denote the
amount of data planned to be sold on the dth day. As assumed previously, in each
round of data auction, only one-unit amount of data can be sold. Then on the dth
day, cd rounds of data auction are needed for the data auctioneer to sell the amount
of cd data. We use λ (d) to denote the arrival rate of data bid on the dth day, and
r−1
c (d) to denote the average considering time of the data seller on the dth day. As

mentioned previously, the urgency of selling and buying data from the data provider
and requesters, respectively, change over time. Therefore, we assume that λ (d) and
rc (d) satisfy the following settings:

λ (d1) ≤ λ (d2) , ∀ d1 < d2; (15.5a)

rc (d1) ≤ rc (d2) , ∀ d1 < d2, (15.5b)

which imply that the closer to the end of a month, the more frequently the data
requesters make bids, as well as the data seller accepts the offers.

According to Lemma 15.1, the average income of the data auctioneer from a
single round of data auction on the dth day is

EI (d) = 1− ρh (d)
1− ρ (d) , d = 1, 2, · · · ,D, (15.6)

where ρ (d) = λ (d) /[λ (d)+ rc (d)]. Then if all allocated data is sold, the total
expected income can be achieved is

E (d) = cd · 1− ρh (d)
1− ρ (d) , d = 1, 2, · · · ,D. (15.7)

To maximize the total income of D days, we establish the following income
maximization problem for the data allocation.

max
D∑
d=1

cd · 1− ρh (d, cd)
1− ρ (d, cd) , (15.8a)

s .t .
D∑
d=1

cd ≤ C, (15.8b)

cd ≤ C − γ (D − d) , ∀d = 1, 2, · · · ,D. (15.8c)

In (15.8a),

ρ (d, cd) = λ (d)

λ (d)+ rc (d, cd) . (15.9)
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Constraint (15.8c) indicates that the total amount of data allocated to be sold in D
days from d = 1 to d = D should not exceed the amount of total data C left on
the first day (d = 1). In constraint (15.8b), γ > 0 is set as a constant to denote the
amount of data consumed by the data owner every day. We can also consider γ as
the amount of data to be reserved for the seller’s own data demands. To guarantee
that the data owner will have plenty data to consume in the following D days after
allocating its data, the amount of γ (D − d) data needs to be reserved on the dth
day. Therefore, constraint (15.8b) provides the upper limit of the amount of data
allocated on the dth day.

15.3.2.1 Efficiency Aware Data Allocation

According to (15.8), we can notice that if EI (d), the average income of the data
auctioneer from a single round auction, is high, the data allocation mechanism
formulated by this income maximization problem will allocate more data to that day
to maximize the total expected income the data auctioneer. With a fixed considering
time, selling more data means that the data auction will last longer according
to (15.2), which reduces the efficiency of data transaction. When the data auctioneer
anticipates higher efficiency as well as an optimized income, it is necessary to design
a data allocation method which can achieve a tradeoff between the total income and
time cost. To realize this tradeoff, we design an efficiency-aware data allocation
(EADA), in which the considering time, rc in (15.9), is modified according to

rEADAc (d, cd) = r (d) [1+ ϕ1 (d, cd)] , (15.10)

where

ϕ1 (d, cd) = 1− e−
[

cd
C−γ (D−d)

]2

. (15.11)

According to the definition in (15.11), rECDAc in (15.10) is an increasing function
of the allocated amount of data to sell on the dth day, cd . In other words, when
the amount of allocated data is large, the EADA mechanism will adjust the seller’s
considering time to improve the data transaction efficiency and increase the average
income per unit time of the data seller. On the contrary, when the amount of allocated
data is little on a day, the considering time tends to be longer to increase the expected
income of a single round of auction. The upper limit of the allocated data, C −
γ (D − d), performs as a control factor to modify the increasing speed of the bid
acceptation rate with increasing cd . In addition, r (d) in (15.11) is the original rate
of bid acceptation, which has the property given by (15.5).
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15.3.2.2 Efficiency and Request Aware Data Allocation

Through (15.6) and (15.9), we can obtain the first order partial derivative of EI , the
average income of a round of data auction, with respect to variable λ: ∂EI /∂λ >
0. This result holds for both mechanisms of original data allocation and EADA.
Therefore, a low rate of data bid will reduce the income of the data auctioneer. By
the both of the data allocation methods above, little or even no data will be allocated
to days with small λ, especially when the data bid arrival rate is smaller than the
rate of bid acceptation. In other words, the requests from data bidders on these days
are hardly met if the bid arrival rate is small, which may also result from that there
are not too many data requesters. To meet the data requests in days with small λ,
we design an efficiency and request aware data allocation (ERADA) mechanism, in
which the considering time is adjusted to fit the data bid arrival rate according to

rERADAc (d, cd) = r (d) [1+ ϕ1 (d, cd)] ϕ2 (λ (d) , r (d)) , (15.12)

where r (d) is defined similar to EADA, ϕ1 (d, cd) is defined as (15.11), and
ϕ2 (λ (d) , r (d)) is obtained by

ϕ2 (λ (d) , r (d)) = emin
{
λ(d)−r(d)
r(d)

,0
}
. (15.13)

According to (15.13), when λ (d) < r (d), then we can get

ϕ2 (λ (d) , r (d)) = exp

{
λ (d)− r (d)
r (d)

}
< 1. (15.14)

Consequently, the considering time to accept the data bid can be expended. Then
the expected incomes of the data seller increase potentially, and more data will be
allocated to the corresponding days. On the other hand, when λ (d) ≥ r (d), some
data can be allocated to the corresponding days through applying EADA. Therefore,
rc remains the same as EADA, i.e., ϕ2 (λ (d) , r (d)) = 1.

15.4 Networked Auction Model for Data Transaction
with Multiple Auctioneers

In the previous section, we establish and analyze the data allocation problem for a
single data auctioneer. According the proposed mechanisms of EADA and ERADA,
the expected incomes of the data seller can be optimized with high efficiency, and
the data requests from data buyers can be satisfied as much as possible. By applying
EADA and ERADA, the data seller can make decisions that how to allocate its rest
data to remaining days before the end of a month. The next problem is that after the
amount of data to be sold in a single day has been decided, then how to operate data
auctions to achieve further optimization of the daily income?
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As analyzed previously, the proposed income maximization problems in (15.8)
is based on the fact that the needs of data selling and buying vary over time
within a month. However, in a certain day d , specifically, during the period of data
transaction on this day, the rate of arrival data bids remains relatively stable, i.e.,
with λ (d). In addition, by the designed EADA and ERADA, the average considering
time can be optimized according to (15.10) and (15.12), respectively, when cd has
been determined. In a data transaction system with only one data auctioneer, this
auctioneer can operate the basis data auction introduced in Sect. 15.3.1, and the
expected maximum income can be achieved when applying EADA and ERADA.
However, when there are multiple data auctioneers, who share the same community
of potential data requesters, then some system status, such as the number of data
requesters in a single auction, the data bid arrival rates, etc., may change if the
mobility of data requesters among different auctions is allowed. Therefore, it is
necessary to analyze the data auction and allocation mechanisms for a networked
data transaction system, in which more than one data owners are planning to
sell their fixed amounts of data. Fortunately, with assistance of current mobile
social networks, some system status in auctions operated by different data owners
can be shared among users, i.e., referring to both the data sellers and requesters,
through the social platforms. This status information can be very helpful for the
further performance improvement. Consequently, how to model the networked data
transaction system and how to make advantage of the system status information
to design an efficient data auction and allocation mechanism become essential
problems to be studied.

In this section, we extend the basis data transaction model into the networked sys-
tem to discuss the data transaction processes operated by multiple data auctioneers.
The networked data transaction system model and the mobility model are shown
in Fig. 15.2. A system-status-aware mobility model is designed for data requesters.
Then we analyze the stationary probabilities of the networked auction system for
the performance estimation. Furthermore, to maximize the income of every data
auctioneer, three data allocation mechanisms are proposed in this part.

15.4.1 Networked Auction Model

The classic networked auction model has been formulated in [37]. In this part, we
first introduce the established mathematical model in [37] as follows.

Consider that there are N data suctions operated by N data sellers in the system
at the same time. These sellers are numbered by i = 1, 2, · · · , N . Let n (t) =
{n1 (t) , n2 (t) , · · · , nN (t)} denote the numbers of potential data buyers in auction i
at time t , and X (t) = {x1 (t) , x2 (t) , · · · , xN (t)} denote the price has been reached
in auction i at time t . Similar to the basic auction, xi (t) ∈

{
v0, v1, · · · , vhi

}
, and

vhi is the highest price that data requesters intend to pay in auction i. Then the
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Fig. 15.2 Networked data auction system and the mobility model

state of the networked data auction system can be described as the pair of vector
(n (t) ,X (t)). In each of these N auctions, the auction rule and strategy are similar
to the basic auction. We consider that the bid arrival rate in each auction is dependent
on the price xi (t) and the number of bidders ni (t) in this auction. In addition, for
current achieved prices vj (j = 1, 2, · · · , h), there are at least one potential data
buyer has given a bid and it will not give the next bid. Contrarily, if current price
is v0, which means the beginning of a new round of auction, then each of the ni (t)
potential buyers are allowed to give the next bid. As a consequence, we define the
bid arrival rate in auction i as

λi
(
ni, vj

) = (ni − 1) λifi,j , (15.15a)

λi (ni , 0) = niλi , (15.15b)

where fi,j = P
(
vj < vhi

)
, and λi > 0 is the rate of that each data bidder in

auction i gives a bid. Moreover, similar to the basic auction model, we set r−1
c,i to

be the average considering time of auctioneer i, which is an i.i.d. random variable
having an exponential distribution.
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15.4.2 Mobility Model

In this part, we will design a mobility model for the data requesters based on the
mobile bidder model (MBM) established in [37].

In a networked data transaction system operated by N data auctioneers, we
consider that the data requesters can enter and leave the whole system, as well as
moving from one auction to another in the system. Such movement does not refer
to the physical trajectory as analyzed in [12, 38], but is realized through a special
social application installed in both of the data owners’ and bidders’ smartphones.
Then how to design a mobility model to describe the moving of these potential
data buyers, is an important issue to keep balance of the number of participants
in each auction, optimize the efficiency of the system and maximize the expected
income of each data sellers. In order to achieve these objectives above, we introduce
some prediction-based factors that may affect the user behaiours, and then propose
a system-status-aware mobility model for the networked data transaction, which
can reflect the mobile users’ rationality and further improve the performance of the
networked data transaction.

Next, we will formulate the mobility of data requesters. Consider that in auction
i at time t , the number of potential data buyers is ni and the current achieved bid is
vi (v0 ≤ vi ≤ vhi ). Then the dynamic parameters of the mobile model are defined
as follows.

1. Arrivals from the outside of the system: Data requesters arrive into auction i
from the outside of the networked data transaction system according to a Poisson
process with arrival rate λ0

i .
2. Departure from the ith auction: Consider that the bidder providing the current

highest price for the data cannot leave auction i until that the next bid arrives
or the data seller decides to accept its bid. Moreover, consider the situation that
when a new round of the auction is operated by auctioneer i, all the data bidders
are allowed to depart from this auction. The rate of departure from auction i can
be given as follows

μi
(
ni, vj

) = (ni − 1) μi, (15.16a)

μi (ni, 0) = niμi, (15.16b)

where μi > 0 is the departure rate of each data bidder in auction i. The
definitions above are similar to the rate of bid arrivals formulated in (15.15).

Next, we consider the two possible actions that a data bidder might take after it
departs from a data auction:

• Departure from auction i to the outside of the system:

Denote PiD as the probability that the data bidders in auction i leave the entire
networked transaction system. In addition, PiD can be estimated by the status
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changing in each data auction, and then published as a public information for all
participants in the networked system.

• Departure from auction i to auction k:

In the auction-based networked data transaction system, mobile users with data
requests are allowed to shift from one auction to another. We assume that the amount
of the rest data to be sold in the day can be updated and observed by other auction
participants in the networked system. This assumption is reasonable and feasible
because this kind of information can be provided by data owners, and broadcasted
to data requested through the relevant mobile applications. Then the data requesters
transfer among different auctions according to the amount of remaining data to be
sold in these auctions. We represent the transition probability from auction k to
auction i with Pki

Pki = (1− PkD) · ci,rest∑N
j=1 ci,rest

, i, k = 1, 2, · · · , N, (15.17)

where ci,rest denotes the amount of the rest data to be sold for auction i. According
to (15.17), data requesters more likely tend to participate the data auction operated
by the data owners with more remaining data, which can give them more chances
and a higher probability to get the data quickly and successfully. In addition, the
definition of transition probability in (15.17) essentially guarantees

N∑
k=1

Pik + PiD = 1. (15.18)

15.4.3 Expected Income of Networked Systems

To optimize the data auction performance and maximize the incomes of data
auctioneers through effective data allocation, it is important to analyze the stationary
distribution and the expected income of the networked data transaction system. The
stationary probabilities of the number of data requesters in each auction have been
analyzed in [37], the main results of which are summarized as Lemma 15.2. Then
we will derive some stationary performance such as expected income for the data
owners based on results obtained in [37].

Lemma 15.2 In a networked data auction system, data bidders arrive and depar-
ture from auction i with rate λi and μi , respectively. According to the mobility
model of data requesters established in Sect. 15.4.2, the approximate stationary
probabilities of data auctioneer i (i = 1, 2, · · · , N) and the stationary probability



368 15 Cooperative Data Transaction in Mobile Networks

of the networked data transaction system are given by

π (ni) = ψ
ni
i e

−ψi
ψi (ni − 1)! , (15.19a)

π (n) ≈
∏N

i=1

ψ
ni
i e

−ψi
ψi (ni − 1)! , (15.19b)

respectively, where ψi = ϕi/μi , and ϕi (i = 1, 2, · · · , N) are the solutions of the
following linear equations:

ϕi = λ0
i +

N∑
k=1

ϕkPki . (15.20)

When the bid arrivals and the data transactions are very frequent, which means that
for all i = 1, 2, · · · , N , μi << rc,i , then ∀ni > 0, ki > 0, the stationary solution
π (X |n ) is given by

π (X |n ) ≈
N∏
i=1

πi (xi |ni ), (15.21)

where

πij |ni = πi0|ni
j∏
l=1

λi (ni − 1) fi,l−1

rc,i + λi (ni − 1) fi,l
, (15.22a)

πi0|ni =
⎡
⎣1+

hi∑
j=1

j∏
l=1

λi (ni − 1) fi,l−1

rc,i + λi (ni − 1) fi,l

⎤
⎦
−1

. (15.22b)

Proof See [37].

Based on these results in Lemma 15.2, we further derive the average of the
income per unit time for every data owner in the system, and we the results in our
Theorem 15.1.

Theorem 15.1 In a networked data auction system with N data auctioneers, data
bidders arrive and departure from auction i with rate λi and μi , respectively.
Consider the situation that the bid arrivals and the data transactions are very fre-
quent. According to the mobility model of data requesters established in Sect. 15.4.2,
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expected incomeEi,ni for auction i when there are ni data requesters in this auction
is given by

Ei,ni =
hi∑
j=1

jP ia (j |ni ), (15.23)

where

P ia (j |ni ) =
rc,i

λini

j∏
l=1

λi (ni − 1) fi,l−1

rc,i + λi (ni − 1) fi,l
. (15.24)

The average of the income per unit time for the data owner i is given by

E0
i =

∞∑
ni=1

ψ
ni
i e

−ψi
ψi (ni − 1)!

rc,i
∑hi
j=1 j

∏j
l=1

λi(ni−1)fi,l−1
rc,i+λi(ni−1)fi,l

1+∑hi
j=1

∏j

l=1
λi(ni−1)fi,l−1
rc,i+λi (ni−1)fi,l

. (15.25)

Proof The local stationary equations of the networked auction system can be given
by

λi (ni , 0) πi0|ni = λi (ni, 0)
hi∑
j=1

πiAj |ni =
(
rc,i + λi (ni , v1)

)
πi1|ni , (15.26a)

λi
(
ni, vj−1

)
πij−1|ni =

(
rc,i + λi

(
ni, vj

))
πij |ni , j = 1, 2, · · · , hi − 1,

(15.26b)

λi (ni , vh−1) π
i
h−1|ni = rc,iπih|ni , (15.26c)

rc,iπ
i
j |ni = λi (ni , 0) πiAj |ni , j = 1, 2, · · · , hi . (15.26d)

In (15.26a),Aj denotes the state that the j th bid is accepted.
According to (15.26d) and (15.22b), we get

πiAj |ni =
rc,iπ

i
j |ni

λi (ni , 0)
= rc,i

λini
πi0|ni

j∏
l=1

λi (ni − 1) fi,l−1

rc,i + λi (ni − 1) fi,l
, (15.27)

and then

P ia (j |ni ) =
πiAj |ni∑hi
k=1 π

i
Ak |ni

= rc,i

λini

j∏
l=1

λi (ni − 1) fi,l−1

rc,i + λi (ni − 1) fi,l
. (15.28)
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When there are ni potential data buyers in this auction, expected income Ei,ni
and the total average time Ti,ni that every round of data auction lasts for auction i is

Ei,ni =
hi∑
j=1

jP ia (j |ni ), (15.29)

Ti,ni =
1

niλi

⎛
⎝1+

hi∑
j=1

j∏
l=1

λi (ni − 1) fi,l−1

rc,i + λi (ni − 1) fi,l

⎞
⎠ , (15.30)

respectively. Consequently, we obtain the average of the income per unit time for
the data owner i as:

E0
i,ni
= Ei,ni
Ti,ni

=
rc,i

∑hi
j=1 j

∏j
l=1

λi(ni−1)fi,l−1
rc,i+λi(ni−1)fi,l

1+∑hi
j=1

∏j

l=1
λi(ni−1)fi,l−1
rc,i+λi (ni−1)fi,l

. (15.31)

Then according to (15.19), the average of the income per unit time for data owner i
is given by

E0
i =

∞∑
ni=1

E0
i,ni
π (ni)

=
∞∑
ni=1

ψ
ni
i e

−ψi
ψi (ni − 1)!

rc,i
∑hi
j=1 j

∏j

l=1
λi(ni−1)fi,l−1
rc,i+λi(ni−1)fi,l

1+∑hi
j=1

∏j

l=1
λi(ni−1)fi,l−1
rc,i+λi (ni−1)fi,l

.

(15.32)

This completes the proof of Theorem 15.1.

15.4.4 Data Allocation for Networked Data Transaction

Based on the obtained analytical results given in the last section, we will design
some efficient data allocation mechanisms for the networked data transaction system
in the following part.

Consider a networked data transaction system with N data sellers, each of them
needs to sell all allocated data in a certain duration [0, T ]. Data requesters are
allowed to enter, departure from any of N data auctions according to the mobility
model introduced in Sect. 15.4.2.
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For a certain day d = 1, 2, · · · ,D, vector c = {c1d, c2d, · · · , cid , · · · , cNd },
determined by the EADA or ERADA proposed previously, denotes the amounts
of data allocated to be sold for each of the N data sellers. In following work, we
apply the ERADA mechanism and the rate of considering time of data auctioneer
i = 1, 2, · · · , N modified by (15.12)–(15.14). Then for data seller i, we have

rc,i (d, cid )=ri (d) [1+ ϕ1 (d, cid )]ϕ2 (λ (d) , ri (d)) , ∀i = 1, 2, · · · , N.
(15.33)

When the requests of data is far more than the data can be provided, then
ϕ2 (λ (d) , r (d)) = 1, and the rate of considering time for each data auctioneer i
is

rci (d, cid ) = ri (d) [1+ ϕ1 (d, cid )] . (15.34)

Consider that the duration [0, T ] is slotted into M time slots, each of them is
indexed bym = 1, 2, · · · ,M . We assume that in every time slot, the number of data
bidders in every auction is stable. Then let n (m) = {n1 (m) , n2 (m) , · · · , nN (m)}
denote the number of data bidders in auction i at time slot m, ∀i, m. For each time
slot m, we express the allocated amount of data to be sold for every data seller i in
the system by zm = {z1m, z2m, · · · , zNm}.

15.4.4.1 Non-cooperative Distributed Data Allocation (NDDA)

According to Theorem 15.1, when there are ni (m) data requesters in auction i at
time slot m, and the amount of data to sold is zim, then the expected income of data
auctioneer i can be given by

zimEi,ni (m) = zim
hi∑
j=1

jP ia (j |ni (m))

=zim
hi∑
j=1

j
rc,i

λini (m)

j∏
l=1

λi (ni (m)− 1) fi,l−1

rc,i + λi (ni (m)− 1) fi,l
.

(15.35)

Then at every time slot m = 1, 2, · · · ,M , each data requester solves the
following optimization problem to maximize the expected income of current time
slot:

max fzim|zm = zimEi,ni (m) , (15.36a)

s .t . zim ≥ min

{
cid −

m−1∑
t=1

zit , zmin

}
,∀i = 1, · · · , N, (15.36b)
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zim ≤ min

{
cid −

m−1∑
t=1

zit , zmax

}
,∀i = 1, · · · , N, (15.36c)

N∑
i=1

zim ≤ zch. (15.36d)

In (15.36b) and (15.36c),

zmin = 1

M
·max {c1d, c2d, · · · , cid , · · · , cNd } , (15.37a)

zmax = κzmin, κ > 1. (15.37b)

Remark 15.2 In constraint (15.36b), lower bound zmin shown in (15.37a) ensures
that the data owner with the most amount of data to sold on the current day can
sold out all of the data before time slot m = M ends. cid −∑m−1

t=1 zit in (15.36b)
is provided for the case that the remaining data of a auctioneer at time slot m is less
than zmin, then all the remaining data needs to be sold during time slot m. The low
bound of the allocated amount of data in each time slot can keep the data allocation
mechanism efficient. On the other hand, due to the duration of every time slot is
limited, the amount of data can be transacted in one time slot is constrained by
an upper bound, which is denoted by zmax in constraints (15.36c) and (15.37b). In
addition, cid −∑m−1

t=1 zit in (15.36c) plays a constraining role when the rest data is
less than zmax. Constraint (15.36d) is determined by the channel capacity.

15.4.4.2 Prediction-Based Cooperative Distributed Data Allocation
(PCDDA)

As mentioned above, the amount of the rest data of different data auctioneers
to be sold is accessible information for all data requesters having arrived and
planning to enter into the system. According to the mobility model introduced in
Sect. 15.4.2, data requesters in auction i will move to auction k with probability
Pik , which is determined by the amount of remaining data to be sold in auction k,
i.e., ck,rest . In other words, the number of data requester in every auction during the
following time slots can be predicted in sense of probability, according to the public
information of the rest amount of data. Then by applying the results in Lemma 15.2
and Theorem 15.1, the expected income of the current time slot can be predicted
by (15.23) for a fixed number of data requesters. In addition, the potential average
income of the next time slot can also be predicted through (15.25) by predicting
mobility trend of data requesters. Considering this prediction information, data
owners can make better decisions on how much data to sell in the current time
slot for maximizing the total income ofM time slots.
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Consider the previous assumption that the number of data requesters in each
auction does not change. Then we assume that the bidder’s transition probability
from auctions k to i after time slot m, Pki

(
m+

)
, is determined by the rest amount

of data after finishing the allocation of m time slots:

Pki
(
m+

) = (1− PkD) · cid −∑m
t=1 zit∑N

j=1

(
cjd −∑m

t=1 zjt
) . (15.38)

If PkD = PD , ∀k = 1, 2, · · · , N , then

Pi
(
m+

)
� Pki

(
m+

) = (1− PD) · cid −∑m
t=1 zit∑N

j=1

(
cjd −∑m

t=1 zjt
) . (15.39)

According to (15.20), we can get

ϕ (m) = λ0 + P
(
m+

)
ϕ (m) , (15.40)

where

ϕ (m) = [ϕ1 (m) ϕ2 (m) · · · ϕN (m)]T , (15.41a)

λ0 = [λ1 λ2 · · · λN ]T , (15.41b)

and

P
(
m+

) =

⎡
⎢⎢⎢⎣

P11
(
m+

)
P21

(
m+

) · · · PN1
(
m+

)
P12

(
m+

)
P22

(
m+

) · · · PN2
(
m+

)
...

...
. . .

...

P1N
(
m+

)
P2N

(
m+

) · · · PNN
(
m+

)

⎤
⎥⎥⎥⎦

�

⎡
⎢⎢⎢⎣

P1
(
m+

)
P2
(
m+

)
...

PN
(
m+

)

⎤
⎥⎥⎥⎦ ·

[
1 1 · · · 1

]
︸ ︷︷ ︸

N

.

(15.42)

Then solve (15.40) and we can get the solutions as

ϕi (m) = λi +
∑N
j=1 λj

PD
Pi
(
m+

)
, i = 1, 2, · · · , N. (15.43)



374 15 Cooperative Data Transaction in Mobile Networks

Therefore, applying results in Lemma 15.2 and Theorem 15.1, the future
expected income of the rest amount of data for data owner i at time slot m can
be calculated by

Ei
(
m+

)
�
(
cid −

m∑
t=1

zit

) ∞∑
ni=1

Ei,ni (m) π (ni), (15.44)

whereEi,ni (m) and π (ni) are obtained by (15.23) and (15.19), respectively, andψi
in (15.19) is determined by ϕi in (15.43).

Based on the analysis above, we consider that at each time slot, every data
auctioneer i (i = 1, 2, · · · , N) is willing to optimize its comprehensive income,
which is composed of current income calculated through (15.35) and predictive
future income determined by (15.44). Assume that every data auctioneer is selfish
and intends to maximize its own total expected income of the M time slots. Then
we establish the following income maximization problem for each data auctioneer i
at time slot m (m = 1, 2, · · · ,M).

max fzim = zimEi,ni (m)+ ωM−mEi
(
m+

)
(15.45a)

s .t . zim ≥ min

{
cid −

m−1∑
t=1

zit , zmin

}
,∀i = 1, · · · , N, (15.45b)

zim ≤ min

{
cid −

m−1∑
t=1

zit , zmax

}
,∀i = 1, · · · , N, (15.45c)

N∑
i=1

zim ≤ zch. (15.45d)

In (15.45a), ω ∈ (0, 1] denotes the discount rate of the future income considered at
the current time slot, which reflects the weight of future income considered in the
current comprehensive income.

At the beginning of every time slot, each data owner publishes the rest amount
of its data, observes the number of data requesters in its auction, and then solve
the optimization problem in (15.45) to determine how much data to be sold in the
current time slot.

15.4.4.3 Prediction-Based Centralized Data Allocation (PCDA)

According to PCDDA designed in the previous section, if every data auctioneer
solves the optimization problem locally to maximize its own expected income
instead of a central process, the optimal solution for each data auctioneer cannot
ensure that constraint (15.45d) is always satisfied. In other words, the distributed
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mechanism may cause data auctioneers to fail to get the maximum income they
anticipate. Concerning this issue, we design a prediction-based centralized data
allocation (PCDA) mechanism to maximize the income of all data auctioneers.
To achieve this centralized optimization, we assume that there is a data fusion
center which operates the PCDA and determine how much data to be sold for every
data seller in each time slot. Wish assistance of current mobile network platform,
this assumption is rational and enforceable. The objective function of PCDA is
shown as (15.46), and the constraints are the same as those of NDDA and PCDDA,
i.e., (15.36b)–(15.36d) and (15.45b)–(15.45d), respectively.

max
N∑
i=1

[
zimEi,ni (m)+ ωM−mEi

(
m+

)]
. (15.46)

Remark 15.3 According to objective function (15.46) and constrain (15.45d),
PCDA tends to allocate more amounts of data to be sold to the data owners with
more current expected income in a single round of data auction, which can increase
the efficiency of the networked data transaction system.

15.5 Operation of Data Allocation for Data Transaction
Systems

15.5.1 Approximate Solution of Optimization Problems

In the previous two sections, we establish the income maximization problems for
the data allocation. For a large time scale, the data owner can decide how much
data to be sold in the following days before the end of a month, by applying
EADA and ERADA. Then for a smaller time scale, data owners can determine
how to schedule the data auctions in a single day by considering the peer data
auctioneers behaviours, through NDDA, PCDDA or PCDA. However, we can also
notice that it is difficult to achieve the closed-form solutions for the optimization
problems formulated as (15.8), (15.36), (15.45) and (15.46). To find the optimal
solution approximately, an efficient and effective stochastic and cooperation-based
optimization technique, called the cooperative particle swarm optimization (CPSO)
algorithm [39], will be introduced to our work to solve the income maximization
problems. As introduced in Chap. 7, the update process is operated as follows:

vij (t + 1) =wvij (t)+ c1ζ1i (t)
[
yij (t)− xij (t)

]

+ c2ζ2i (t)
[
ŷj (t)− xij (t)

]
,

(15.47)

xi (t + 1) = xi (t)+ vi (t + 1) , (15.48)
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Algorithm 7 CPSO algorithm [39].
Initialization:
1: Create and initialize n one-dimensional PSOs: Pj , j = 1, 2, · · · , n;
2: Define:
3: g (j, z) ≡ (

P1 · ŷ, P2 · ŷ, · · · , Pj−1 · ŷ, z, Pj+1 · ŷ, · · · , Pn · ŷ
)
;

4: Iterations T .
5: for t ≤ T do
6: for j = 1, 2, · · · , n do
7: for i = 1, 2, · · · , s do
8: if f

(
g
(
j, Pj · xi

))
< f

(
g
(
j, Pj · yi

))
then

9: Pj · yi = Pj · xi
10: end if
11: if f

(
g
(
j, Pj · yi

))
< f

(
g
(
j, Pj · ŷ

))
then

12: Pj · ŷ = Pj · yi
13: end if
14: end for
15: Update Pj by PSO with (15.47) and (15.48).
16: end for
17: end for

where j = 1, 2, · · · , s, and s is the swarm size. xi = [xi1 xi2 · · · xin] is the
current position in the search space, vi = [vi1 vi2 · · · vin] is the current velocity,
yi = [yi1 yi2 · · · yin] is the local best position, n is the number of particles, c1
and c2 are acceleration coefficients, and random sequences ζ1, ζ2i ∼ U (0, 1) [40].

In PSO, there is only one swarm with s particles, which tries to find the optimal
n-dimensional vector. While in CPSO, this n-dimensional vector is decomposed into
n swarms, each of which has s particles. These n swarms cooperatively optimize the
one-dimensional vector. The main processes of CPSO are shown in Protocol 7.

15.5.2 Data Allocation for Data Transaction

In this part, we will introduce how to operate data allocation in different days and
different time slots in one day for the auction-based data transaction system.

As mentioned previously, the elements of the networked data transaction,
including data auctioneers, the number of data auctioneers, data requester arrival
rates, etc., change over time. Therefore, a certain data owner cannot determine how
to allocate its extra data into the rest days through a networked auction mechanism,
according to the current data transaction network. In this work, we design a data
allocation mechanism based on the basic data auction and networked data auction,
for a large time scale (referring to days) and a small time scale (referring to time
slots), respectively. Specifically, for every data owner who has extra data and plans
to sell the data during the rest days before the month ends, it makes decision on how
to allocate the data into different days according to the ERADA mechanism based
on the basic data auction model. To achieve a maximum expected total income of
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Algorithm 8 Data allocation for data transaction
Initialization:
1: Bid arrival rate: λ (d);
2: Original bid acceptation rate: r (d);
3: Number of days left before the end of the month: D.
4: Number of time slots in a single day to operate data transaction: M .
5:
6: Each data seller i operates the following processes:
7: for d = 1, 2, · · · ,D do
8: if λ (d) − rc (d) then
9: ϕ2 (λ (d) , r (d)) = exp

{
λ(d)−rc(d)
rc(d)

}
;

10: else
11: ϕ2 (λ (d) , r (d)) = 1.
12: end if
13: Apply ERADA, solve it by CPSO and obtain optimal cid and rc,i .
14: for m = 1, 2, · · · ,M do
15: Recognize and establish the structure of the networked data transaction system;
16: Submit the amount of the rest data cid −∑m

t=1 zit ;
17: Predict the stationary probability of the number of data requesters n (m);
18: Apply PCDDA/PCDA, solve it by CPSO and obtain optimal zim (zm =

{z1m, z2m, · · · , zNm}).
19: end for
20: end for
Output:
21: Amount of allocated data to sell on the day d: cid ; Amounts of allocated data to sell in time

slot m: zm; Optimized did acceptation rate: rc,i .

D days, the data owner optimizes the bid acceptation rate rc and obtains cd , the
amount of data to be sold on a certain day d . Then the data owner recognizes and
establishes a networked data transaction system with other data owners planning to
sell data on this day. Then by applying the networked data allocation mechanism,
i.e., DNNA, PCDDA or PCDA designed in Sect. 15.4.4, every data owner can decide
how to allocate the amount of cid data into different time slots on day d to maximum
the expected income of its own (by DNNA or PCDDA) or the entire networked
data transaction system (by PCDA). The operation of the proposed data allocation
mechanism is shown in Protocol 8.

15.6 Performance Evaluation

In this section, we will evaluate the performance improvement of the designed
allocation mechanisms for the data transaction systems with single data auctioneer
and multiple data auctioneers.



378 15 Cooperative Data Transaction in Mobile Networks

15.6.1 Data Transaction Systems with Single Auctioneer

First of all, we introduce the scenario setup for simulations. We consider a data
transaction system with only one data seller, who plans to sell its rest data with an
amount of C = 100 in following D = 10 days. The amount of data to be reserved
for the data owner’s own consumption every day is set as γ = 5. The highest price
data requesters can accept is set as h = 10, and the service time is rs = 1. To reflect
the changing demands of buying and selling data from the data requesters and data
owner, denoted by (15.5), arrival rates of data bids and original considering time are
given by

λ (d) = βλ2 −
(
βλ2 − βλ1

)
e−(d/σλ)2, (15.49a)

rc (d) = βrc2 −
(
β
rc
2 − βrc2

)
e−(d/σr )2, (15.49b)

where βλ1 , βλ2 , βrc1 , βrc2 , σλ and σr > 0 are constants, d = 1, 2, · · · , 10. For
comparison purposes, we consider four cases with different original bid acceptance
rates and bid arrival rates, the parameter settings of which are shown in Table 15.2.
These settings for the four cases can reflect different relationships between λ (d)
and original rc (d), which will further influence the data allocation policies.

First, we test the convergence of the proposed allocation algorithms and the
expected maximum total income for the data owner by applying EADA and ERADA
for the data transaction system with a single data seller. For CPSO algorithm, the
number of particles is set as 6, and the number of iterations is set as 120. The
simulation results of the first 25 iterations for the four cases are shown in Fig. 15.3.
As shown in Fig. 15.3, the maximum expected total income for the data seller can
be achieved by applying three data allocation mechanisms, after about 15 iterations
by applying CPSO algorithm. In addition, for all of the four cases, the data seller
can obtain the maximum income when utilizing ERADA (denoted by dotted lines),
which is followed by the data allocation method based on the original considering
time (denoted by solid lines), and EADA (denoted by dashed lines) performs the
worst among the three mechanisms. The weak performance of EADA on data
seller’s income results from the its efficiency-aware property, which mean that there
is a tradeoff between the total income and time cost. On the other hand, when we
consider the influence of the data bids arrival rates, and then modify the considering
time according to the bid arrivals in ERADA, the total income for the data seller can
be also improved, meanwhile the efficiency can be still guaranteed. In addition, we

Table 15.2 Simulation
parameters

Case βλ1 βλ2 β
rc
1 β

rc
2 σλ σr

Case 1 0.35 9 0.35 9 6 5

Case 2 0.35 9 0.35 9 5 6

Case 3 0.35 10 1 9 5 5

Case 4 0.15 10 1.25 9 5 5
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Fig. 15.3 Achieved maximum total income for the data auctioneer obtained by CPSO, for the four
cases when applying three allocation methods

notice that for Case 1, the bid arrival rates are always larger than the bid acceptation
rates, then the incomes obtained by the data seller by applying EADA and ERADA
are the same, which results from the definition in (15.13).

For a further revelation to see how the proposed data allocation mechanisms
optimize the performance of the data transaction system, we analyze the modified
considering time and the amount of data allocated for each day. For the four cases
illustrated by Table 15.2, we apply the three data allocation methods based on
original rc, EADA and ERCDA. Then for the D = 10 days, the modified rc and the
amount of data allocated in each day are shown in Fig. 15.4a–d and e–h, respectively.

For Case 1, the rates of bid acceptance are always lower than the bid arrival
rates in the ten days. Similar to results in Fig. 15.3, the two proposed data allocation
mechanisms, i.e., EADA and ERADA, get the same adjusted rc and the amount
of data allocated for every day. Results in Fig. 15.4e also indicate that without
modification of rc, the data tends to be allocated to the beginning days when
λ (d) > rc (d), ∀d , which means that the data requests during the later days cannot
be satisfied at all. Through the modification of considering time at the beginning
days according to (15.10) and (15.12), the average time of considering time is
shortened from d = 1 to d = 5, as shown in Fig. 15.4a. Then the data are allocated
to the ten day with more balance.

For Case 2, the opposite situation to Case 1, the results are shown in Fig. 15.4b,
f, which indicate that EADA and ERADA will lead to different considering
time modification and data allocation when λ (d) < rc (d). Moreover, results in
Fig. 15.4b reflect the tradeoff effect of EADA for the income and time cost, i.e.,
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Fig. 15.4 Adjusted considering time and data allocation for the data auctioneer in every day. (a)
Case 1. (b) Case 2. (c) Case 3. (d) Case 4. (e) Case 1. (f) Case 2. (g) Case 3. (h) Case 4
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Table 15.3 Simulation results of income and efficiency obtained by applying three allocation
methods for data transaction system with single auctioneer

Algorithm Case 1 Case 2 Case 3 Case 4

Total income Original 189.2919 187.0193 210.4264 203.9975

EADA 187.4022 185.5160 208.0609 202.7293

ERADA 197.4599 196.8851 212.3980 204.2962

Total time Original 8.5566 8.5566 6.6608 7.3510

EADA 8.2486 7.9895 6.3544 7.0858

ERADA 8.2486 8.4573 6.7222 7.5536

Average income Original 22.1223 21.8567 31.5918 27.7509

EADA 22.7192 23.2199 32.7428 28.6106

ERADA 23.9386 23.2799 31.5965 27.0462

larger rc means higher frequency of bid acceptation and less time consumption.
In addition, ERADA can achieve a further tradeoff between the original rc and
adjusted rEADAc , which can obtain the best data allocation balancing among the
three allocation methods and the optimized income for the data seller at the same
time.

For Case 3, as shown in Fig. 15.4c, λ > rc in the beginning days, and then
λ < rc during the rest days, which is opposite to Case 4, as shown in Fig. 15.4d.
The optimized balancing effect of ERADA can be also verified by results in
Figs. 15.4g, h.

Based on the obtained maximum total income shown in Fig. 15.3, and the
adjusted considering time and the amount of data allocated shown in Fig. 15.4, we
calculate the total data transaction operation time of the 10 days and the average
income per unit time for the data seller by applying the three allocation algorithms.
The results are shown in Table 15.3, which indicates that although EADA will bring
less total income for the data seller, the average income per unit time is higher
than that obtained without considering time modification. Meanwhile, the least time
consumption can be achieved by EADA, comparing with another two allocation
methods. In addition, ERADA receives the highest total income, which is also
shown in Fig. 15.3. This best performance of ERADA results from its adaption to
the bid arrival rate, which also leads to larger time cost to operate the transaction
than EADA. However, the efficiency can also be improved by ERADA than the
original considering time, for most cases. For case 4, as an exception, ERADA does
not perform better than the original considering time method, which results from
the allocation-balance improvement of ERADA. Specifically, we can notice that for
Case 4, without any considering time modification, all data is allocated to the last
four days, which means that the data requests of earlier six days cannot be served at
all, and in addition, the total time cost tends to be very small comparing to EADA
and ERADA, which increases the average income.
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15.6.2 Data Transaction Systems with Multi-Auctioneer

In this section, we will test the performance of the networked data allocation for the
data transaction system with multiple auctioneers. In the simulations, we consider
that there areN = 10 data sellers with different amounts of data to be sold in a single
day, i.e., with values from set {15, 20, 25, 30, 35, 40, 45, 50, 55, 60}, and these
sellers are numbered by an ascending sort order according to the amount of data
they plan to sell in M ≤ 5 time slots in a single day. In addition, bids arrival rates
λi (i = 1, 2, · · · , 10) for different data auctioneers and the bid acceptation rates
rc,i are obtained by the single-auctioneer data transaction system in the previous
simulations, by applying ERADA. Moreover, the numbers of particle and iterations
are set as 20 and 80, respectively, when applying the CPSO algorithm.

By applying the three networked data allocation mechanisms, i.e., NDDA,
PCDDA and PCDA designed in Sect. 15.4.4, the allocated amount of data and
corresponding income for each of the 10 auctioneer in every time slot are shown in
Fig. 15.5. The three mechanisms finish the data transaction in four time slots. Results
in Fig. 15.5a–d indicate that NDDA and PCDDA can finish the data transaction
faster than PCDA. To be specific, Auction 1 with the least amount of data sells out
all of auctioneer’s data in the first time slot through NDDA and PCDDA, while
two time slots are needed when applying PCDA. In addition, eight auctioneers
finish the data transaction in three time slots by NDDA and PCDDA, while three
auctioneers with the most data amount still have data to be sold in the fourth time
slot by PCDA. Moreover, allocation results also indicate that with some prediction
information obtained by the information sharing and cooperation of auctioneers,
i.e., the number of data bidders in each auction and their probable movement among
different auctions, PCDDA does not operate allocation radically, which means that
data owners tend to preserve a certain amount of data and sell it in the later time
slots. This behavior can be reflected more obviously in Fig. 15.5d, in which PCDDA
has more data allocated to this time slot than NDDA does. With the prediction
information and global income optimization for the entire system, this conservative
performance is presented much more prominently when applying PCDA.

Then we analyze the economics performance of the three networked data
allocation methods. We further process the obtained results in Fig. 15.5e–h, and
get the total income of the N = 10 data auctioneers and their total income in every
time slot. The results are shown in Fig. 15.6. The results in Fig. 15.6a indicate that
the higher total income can be obtained for every data seller by PCDDA than by
NDDA, which benefits from the prediction information utilization and the income
maximization for the entire auction period. Moreover, when applying PCDA, which
pursues a global income maximization, the total income of some data auctioneers is
sacrificed, meanwhile, the other auctioneers will get more total income.

Without any prediction information, NDDA is operated to maximize the income
of the current time slot. As a result, in the beginning time slots, the total income by
NDDA is higher than the other two methods, which is achieved by scarifying the
income in later time slots. This phenomenon is presents in Fig. 15.6b. Figure 15.6b
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Fig. 15.5 Data allocation and income for each data auctioneer by applying NDDA, PCDDA and
PCDA in networked data auction system. (a) Time slot 1. (b) Time slot 2. (c) Time slot 3. (d) Time
slot 4. (e) Time slot 1. (f) Time slot 2. (g) Time slot 3. (h) Time slot 4
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also indicates the total incomes of the ten data auctioneers in the entire four time
slots, which can be considered as the system income. As shown in Fig. 15.6b,
higher system income can be achieved by PCDDA than NDDA resulting from the
prediction information. In addition, PCDA performs the best on the system income
due to its global optimization objective, although the income obtained in some single
time slot might be lower than NDDA and PCDDA.

15.7 Conclusion

In this part, we have proposed a novel data transaction system for mobile networks
based on the basic and networked auction models. In addition, the data allocation
mechanisms have been designed to make decisions that how to sell the rest data
in different days, and then for each day, how to sell the allocated data in a system
with multiple data sellers, to improve the performance of the system, maximize the
income of the data sellers and satisfy the demands of data requesters. Simulation
results for the system with single data auctioneer indicate that the modification of
considering time according to the rest amount of data can improve the efficiency
of the data transaction, although the total income for the data seller might decrease
due to the tradeoff between the income and time cost. In addition, when the data bid
arrival rates are considered, the system efficiency and total income of the data seller
can be both guaranteed, and meanwhile, the best data allocation balancing effect
can be also achieved. Simulation results for the networked data transaction system
demonstrate that the prediction information of data bidders’ movement can improve
the income for every data auctioneer effectively.
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Chapter 16
Cooperative Trustworthiness Evaluation
and Trustworthy Service Rating

Abstract With the development of online applications based on the social network,
many different approaches of service to achieve these applications have emerged.
Users’ reporting and sharing of their consumption experience or opinion can be
utilized to rate the quality of different approaches of online services. How to ensure
the authenticity of the users’ reports and identify malicious ones with cheating
reports become important issues to achieve an accurate service rating. In this
chapter, we provide a private-prior peer prediction mechanism based trustworthy
service rating system with a data processing center (DPC), which requires users to
report to it with their prior and posterior believes that their peer users will report
a high quality opinion of the service. The DPC evaluates users’ trustworthiness
with their reports by applying the strictly proper scoring rule, and removes reports
received from users with low trustworthiness from the service rating procedure. This
peer prediction method is incentive compatible and able to motivate users to report
honestly. In addition, to identify malicious users and bad-functioning/unreliable
users with high error rate of quality judgement, an unreliability index is proposed in
this chapter to evaluate the uncertainty of reports. Reports with high unreliability
values will also be excluded from the service rating system. By combining the
trustworthiness and unreliability, malicious users will face a dilemma that they
cannot receive a high trustworthiness and low unreliability at the same time when
they report falsely. Simulation results indicate that the proposed peer prediction
based trustworthy service rating can identify malicious and unreliable behaviours
effectively, and motivate users to report truthfully. The relatively high service rating
accuracy can be achieved by the proposed system.

Keywords Service Rating · Trustworthiness · Reliability · Peer Prediction ·
Private Prior · Social Networks

16.1 Introduction

Information communication and computation technologies have been developing
rapidly in recent years. With the growing demands of big data and development
of different applications, the emerging fifth generation (5G) mobile communication
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technology will be a multi-service and multi-technology integrated network, which
can enhance the user experience by providing various intelligent and customized
services [1]. Moreover, social networks have become important platforms for users
to enjoy different kinds of online services. With the rapid development of Internet-
based applications, different approaches to achieve these applications have emerged.
Take e-commerce for an instance, in which users are allowed to use different online
or mobile payment systems, such as PayPal, Google Wallet, Alipay and Apple Pay,
to complete payments. In addition, for some file sharing applications, users can use
different downloaders to download their favorite music, movies or other media files.

In order to provide accurate and useful suggestions to new users and help them
to make choices, the use of service quality ratings for these different services has
become an important method [2–4]. Concerning this problem, the feedback and
evaluation from users who have experienced a service provide essential reference
information for the service rating [5–7]. Meanwhile, social networks provide
platforms that collect and share users’ feedback, according to which the service
rating can be provided through some data fusion mechanism. However, false and
dishonest reports from malicious users can destroy the fairness and usefulness of
such ratings. Therefore, it is rather necessary to introduce some trust assessment
function to such systems and design an incentive mechanism to motivate users to
output truthful feedback.

In this part, we will establish a peer prediction based trustworthy service rating
system for social networks. With peer prediction based decision, network functions
of malicious behavior detection, trustworthiness and unreliability assessment can be
achieved. Then the reliable and trustworthy service ratings can be obtained by the
feedback from honest and reliable users. In this work, we assume that the service
quality is an objective evaluation independent of users’ subjective judgements. This
assumption is reasonable for many service quality indicators, such as convenience
of online payment methods and download speeds [8, 9].

We summarize the major contributions of this part as follows.

1. We introduce private-prior peer prediction in the service rating system of social
networks. The user trustworthiness obtained through certain strictly proper
scoring rules is formulated to motivate users to report trustfully. We analyze the
incentive compatibility of the basic peer prediction mechanism with respect to
the false alarm and missed detection probabilities of judgement and report.

2. We propose an unreliability index to eliminate unreliable reports from the service
rating system. By applying the unreliability index, malicious users are confronted
with a dilemma that they cannot get a high trustworthiness and a low unreliability
at the same time when they provide a false report. However, the best choice of
honest users is still reporting truthfully even for poorly functioning ones with
high error rates of judgement.

3. Based on the proposed user trustworthiness and unreliability index, we design a
service rating framework. In this framework, trustworthiness is used to evaluate
the possibility of whether the subject user’s report is dishonest and the user
is a malicious one. On the other hand, the unreliability index is introduced to
determine whether the reports are reliable, but does not consider the type of
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the users, i.e., honest or malicious. By removing the feedback reports with high
unreliability and reports received from users with low trustworthiness, from the
final rating procedure, an accurate and trustworthy service rating can be achieved.

The remainder of this part is organized as follows. We review the relevant
literature in Sect. 16.2. In Sect. 16.3, the system model is described. The private-
prior peer prediction based user trustworthiness evaluation for motivating truthful
reports is proposed in Sect. 16.4. Then we analyze the reliability of users’ reports
and design the service rating system in Sect. 16.5. Simulations are presented in
Sect. 16.6, and conclusions are drawn in Sect. 16.7.

16.2 Related Works

Service ratings for different application systems have been active research topics
over the past decades. Many service evaluation systems have been developed for
mobile social networks [10], multiple providers service systems [11] and many
other kinds of web services [12, 13]. In [14], researchers designed the objective
rating scores of products or services through an iterative rating algorithm. This
rating mechanism entirely decoupled the credibility assessment of the evaluations
from the ranking itself, which makes it very robust against collusion attacks as well
as random and biased raters. A two-phase methodology was proposed in [15] for
systematically evaluating the performance and availability of cluster-based Internet
services. A service rating scheme that is robust against manipulations by malicious
users and services was proposed in [16]. In [16], the service rating made by the target
customer was predicted, based on which the system helped this customer to choose
a suitable service. The authors of [17] proposed a user-service rating prediction
approach for the recommender system by exploring social users’ rating behaviors.
In [17], the user’s social relationships were considered in order to understand social
users’ rating behavior diffusions.

A social network is a platform that allows its users to obtain services and share
their experiences. Based on such feedback gathered, a data processing center (DPC)
can provide quality ratings for different services, which can further give suggestions
for new users. To ensure the accuracy of service ratings, the trustworthiness and
reliability of the feedback from users need to be checked and ensured. Currently,
trust and reputation management has become a challenge in many kinds of feedback
and decision systems. Many trustworthiness evaluation mechanisms have been
proposed for social networks [18, 19], wireless sensor networks [20, 21] and cloud-
based service systems [22]. To motivate secondary users (SUs) in a multiple channel
cognitive radio network to report truthfully, a Stackelberg game model was designed
in [23], according to which trustworthy SUs gain transmission opportunities as
rewards. A consumer feedback based service rating system was presented in [24] to
evaluate the trustworthiness of a cloud service. In [24], a novel protocol was
proposed to improve and ensure the credibility of trust feedback from consumers.
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In [25], a dynamic trust evaluation model was proposed to evaluate the user’s
reputation. The authors of [25] considered both users’ preferences for different
quality of service attributes and the impact of vicious ratings on trust evaluation.
For rating the reputation of the service, different users’ ratings were weighted
dynamically according to their honesty assessment, and the influence of malicious
ratings were thus effectively diluted.

Most of the local and global trustworthiness evaluation methods mentioned
above are established by users’ own current and/or past behaviors. Further, some
researchers have considered relationship and interaction among users of a network
for user trustworthiness assessment and prediction [26–30], although the incentive
mechanisms for truthful information are not studied much. Originally applied in
electronic commerce, common-prior peer prediction with a strictly proper scoring
rule [31, 32] was proposed for truthful feedback from users in [33]. To be specific,
Peer Prediction refers to a scheme using one user’s report to update or predict a
probability distribution for the report of someone else, whom we refer to as the
“peer”. The former user is then scored not on a comparison between the likelihood
assigned to the peer’s possible ratings and the peer’s actual rating. Moreover, in
the common-prior peer prediction mechanism, the prior probability of the product
type or service quality is commonly held, conditional on which, the probability
distribution of user’s received product type or service quality is also common
knowledge. Relaxing the assumption of common-prior, the authors of [34] modified
the classical peer prediction method such that only users’ subjective and private
opinions were needed, and this trustworthiness evaluation mechanism is known as
private-prior peer prediction. Both of these two peer-prediction methods estimated
the trustworthiness using strictly proper scoring rules, which can provide incentives
for truthful reporting. The peer prediction mechanism can be applied efficiently
in the scenario where the prior knowledge is subjective and private to each user.
For instance, peer prediction has been used in wireless sensor networks [35, 36],
cognitive radio networks [37], social and online systems [38, 39] and many other
kinds of crowd-sourcing systems [40, 41] to collect truthful reports from users, and
has been considered as an effective solution to elicit trustworthy feedback. In this
part, we propose a service rating system for social network based services according
to honest users with high trustworthiness. Private-prior peer prediction is introduced
to evaluate users’ trustworthiness and motivate users to provide truthful feedback.

16.3 Mathematical Model for Service Rating Based on User
Report Fusion

With the boom of online applications based on social networks, different services
to support these applications have emerged [42]. As mentioned previously, users
are allowed to select different online payment methods to complete their online
purchases, or download their favorite music and movies by downloaders those they
think are faster and more reliable. To rate the quality of different services, users
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are required to report and share their consumption experiences or opinions to the
social application platform, which can use this valuable feedback for service rating
and helping new users to judge whether the applications can provide high quality
services. In our work, the quality of the services is considered as an objective
evaluation independent of users’ subjective judgements. For instance, different users
tend to have the same opinion about whether a payment system is convenient or a
downloader has a high download speed. Such a social rating system is different from
systems such as movie review, in which users’ subjective opinions and standards
may vary considerably between individuals.

In this case, users’ truthful feedback of a service is important for achieving an
accurate rating of this service approach’s quality and providing helpful suggestions
to new users. However, some malicious users in social networks provide untruthful
evaluations of the service quality for some purposes. On the one hand, malicious
users report to the service rating system that the object approach of service is high
in quality when it gives a bad service performance to improve its competitiveness.
On the other hand, malicious users report a low service-quality evaluation to lower
the rating of the object approach of service, which will encourage new users not to
select it. These malicious behaviours undermine the fairness of the service rating
and provide unreliable suggestions to new users. Therefore, it is important to make
sure that the feedback from users is truthful.

In this work, we design a mechanism to provide incentives for truthful opinions
of users. Moreover, we define a trustworthiness management method to identify
malicious users, excluding whose untruthful feedback, the service rating with high
accuracy can be made.

16.3.1 System Model

Consider a population of N users distributed over a social network with a service
platform, which can provide different approaches of this service. Quality Q of the
service is a binary rating, which is considered as a random variable represented
by {l, h} referring to the low quality and high quality, respectively. As mentioned
previously, this quality is an objective fact. In other words, after experiencing
the service, different honest users tend to give the same evaluation or opinion
independent of their individual subjective standards. As shown in Fig. 16.1, each
user i (i = 1, 2, · · · , N) accepts the service m, and then makes a binary opinion of
the service quality denoted by Si = si ∈ {l, h}. Meanwhile, users are allowed to
provide some required QoS reports to the cloud, and these reports will be processed
by the DPC. For instance, the opinion report denoted by xi ∈ {0, 1} is generated by
applying a report strategy ri : Si → {0, 1}. User i will report xi = 1 when Si = h
(or xi = 0 when Si = l) to the cloud if he/she is honest. We assume that xi is the
semi-public information published to the social service-evaluation platform by the
cloud, and can be observed by the DPC and other users over the social network and
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Fig. 16.1 Peer prediction based service rating and user trustworthiness management system

having the friendship with user i. In addition, Si is the private or local information
only known by user i, and other users and even the cloud cannot get it.

16.3.2 Service Rating Based on User Report Fusion

Define the false alarm of the judgement as that the service is misjudged as a low
quality while it is a high quality in fact, and the user i’s false alarm probability
of judgement is denoted by Pfa,i = P (Si = l |Q = h). In order to simplify
the expression, let Pfa to denote the false alarm probability of judgement. On
the contrary, define the missed detection probability of judgement as Pmd,i =
P (Si = h |Q = l ). Similarly, we use Pmd to denote the missed detection probabil-
ity of judgement for a simpler expression. As mentioned previously, the quality is
an objective fact, which leads that both honest and malicious users trend to make the
similar and accurate judgement for it. So we assume that Pfa < 0.5 and Pmd < 0.5
hold for all users in the social network.

On the other hand, we consider the false alarm of the report as that a user
reports a low quality evaluation to the cloud when the quality of service is high,
and the user i’s false alarm probability of report is Pf,i = P (xi = 0 |Q = h). The
missed detection probability of report is Pm,i = P (xi = 1 |Q = l ). In addition,
the simplified expression of the two probabilities of report above are Pf and Pm.
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We consider that the user type are represented by θi ∈ {0, 1}, i.e., θi = 0 if i
is an honest user, and θi = 1 if user i is the malicious otherwise. Assume that
if user i is malicious, his/her false alarm cheating rate is Pcf,i ∈ [0, 1], and the
missed detection cheating rate is Pcm,i ∈ [0, 1]. We assume that the honest users
always report their real judgement of the service quality, no matter whether his/her
judgement is accurate. Then for each user i, we have

Pf,i =
{(

1− Pfa,i
)
Pcf,i + Pfa,i

(
1− Pcf,i

)
, θi = 1;

Pfa,i, θi = 0;
(16.1)

Pm,i =
{(

1− Pmd,i
)
Pcm,i + Pmd,i

(
1− Pcm,i

)
, θi = 1;

Pmd,i, θi = 0.
(16.2)

As shown in Fig. 16.1, based on the users’ reports received by the cloud, the
DPC can obtain trustworthiness Ti of each user and make the decision of the service
rating by applying the following rule:

R =
∑
i∈T
xi

{
< n, the DPC rates the serviceQ = l;
≥ n, the DPC rates the serviceQ = h, (16.3)

where n is the threshold of service rating. In (16.3), T = {i |Ti ≥ t } is the set of
honest users with high trustworthiness Ti , which is determined by the threshold of
trustworthiness t . A simple decision making rule is that the DPC rates the service as
high, i.e.,Q = h, only if more than half of trust users report the service’s quality is
high, i.e., n = |T | /2.

16.4 Peer Prediction for User Trustworthiness

In this section, we will introduce the private-prior peer prediction method, which
enable to encourage users to provide rating reports truthfully. With some certain
strictly proper scoring rules to estimate the users’ trustworthiness, the mechanism
can identify malicious users those with low trustworthiness. Then users are moti-
vated to report truthfully in order to obtain high trustworthiness and avoid being
considered as the malicious.

16.4.1 Private-Prior Peer Prediction Mechanism

Private-prior peer prediction is an incentive compatible mechanism originally
proposed to motivate agents to report their private prior and posterior signal belief
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on electronic commerce [34]. In the basic private-prior peer prediction mechanism,
each agent i coupled with his/her peer agent j = i + 1 is required to report his/her
prior and posterior signal belief of the state before and after observe the signal,
respectively. According to the two reports, the agent i’s score can be calculated
by a strictly proper scoring rule, which will be introduced in the later part of this
section.

16.4.1.1 Prior Belief Reports to the Cloud

In the system established in this work, any two users accepting the same service can
be considered as a pair of peers, which establishes a kind of friendship and topology
of all users. For rating the quality of service m, we consider that each user i has
one peer user j selected randomly from other users who have accepted and will still
accept the same service m as i. Before experiencing the service, user i is required
to report his/her prior belief yij ∈ [0, 1], or called information report, to the cloud
that his/her peer user j will report a high quality signal, i.e., xj = 1. Then yij can
be given by

yij = Pi
(
xj = 1

)

= Pi
(
xj = 1 |Q = h)Pi (Q = h)+ Pi

(
xj = 1 |Q = l )Pi (Q = l)

� P
(
xj = 1 |Si = h

)
P (Si = h)+ P

(
xj = 1 |Si = l

)
P (Si = l) .

(16.4)

In (16.4), Pi
(
xj = 1 |Q = h) and Pi

(
xj = 1 |Q = l ) can be obtained by the

previous report xj of user j released among the network. Pi
(
xj = 1 |Q = h)

represents the probability that user j gives a report of “high quality” evaluation
for the service when user i makes a high quality judgement to the same service, i.e.,
Si = h. This judgement is a private and local information only known by user i, and
the prior belief Pi (Q = h) is user i’s subjective prior of the service quality and is
identical to P (Si = h). Similarly, Pi (Q = l) is equal to P (Si = l). Therefore, we
can get the second equivalence relation in (16.4) established by �.

16.4.1.2 Posterior Belief Reports to the Cloud

After experiencing the service, user i makes his/her own opinion of the service
quality Si = si , and then sends the posterior belief, or called prediction report to the
cloud, denoted by y ′ij (si ) ∈ [0, 1], that the peer user j will report of a high quality
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evaluation for the service. Then y ′ij can be expressed as

y ′ij (si ) = Pi
(
xj = 1 |Si = si

)

= P (xj = 1 |Q = h)P (Q = h |Si = si )
+ P (xj = 1 |Q = l )P (Q = l |Si = si ) .

(16.5)

Similar to the previous analysis, y ′ij (si ) can be decomposed into two conditions as
follows.

y ′ij (l) =
ϕ1
(
1− Pf,j

)+ ϕ2Pm,j

ϕ1 + ϕ2
, (16.6a)

y ′ij (h) =
ϕ3
(
1− Pf,j

)+ ϕ4Pm,j

ϕ3 + ϕ4
, (16.6b)

where

ϕ1 = Pfa,iP (Q = h) , (16.7a)

ϕ2 =
(
1− Pmd,i

)
P (Q = l) , (16.7b)

ϕ3 =
(
1− Pfa,i

)
P (Q = h) , (16.7c)

ϕ4 = Pmd,iP (Q = l) . (16.7d)

As defined previously, yij is the user i’s prior judgement that xj = 1 before
user i experiences the service. After user i experiencing the service and sensing
that si = h, it is reasonable for user i to make the judgement that xj = 1 with
a larger probability, i.e., y ′ij (h) > yij , which means that i’s prior belief xj = 1
will be “boosted”. On the contrary, yij > y ′ij (l) if user i receives a low-quality
service. However, when there are malicious users providing untrustful evaluations
of the service, the relation of inequality above cannot always satisfied. Lemma 16.1
provides the sufficient conditions which can ensure y ′ij (h) > yij > y ′ij (l).

Lemma 16.1 In the private-prior peer prediction mechanism, for each user i with
prior and posterior belief reports yij and y ′ij of user j , it holds that y ′ij (h) > yij >
y ′ij (l) if all users satisfy that Pfa + Pmd < 1 and Pf + Pm < 1.
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Proof In (16.4),

y ′ij (h) = P
(
xj = 1 |Si = h

)

=P (xj = 1 |Q = h)P (Q = h |Si = h)
+ P (xj = 1 |Q = l )P (Q = l |Si = h)

= 1

P (Si = h)
[(

1− Pf,j
) (

1− Pfa,i
)
P (Q = h)+ Pm,jPmd,iP (Q = l)

]
.

(16.8)

Similarly,

y ′ij (l) = P
(
xj = 1 |Si = l

)

=P (xj = 1 |Q = h)P (Q = h |Si = l )
+ P (xj = 1 |Q = l )P (Q = l |Si = l )

= 1

P (Si = l)
[(

1− Pf,j
)
Pfa,iP (Q = h)+ Pm,j

(
1− Pmd,i

)
P (Q = l)] .

(16.9)

So yij can be written as

yij =
(
1− Pf,j

)
P (Q = h)+ Pm,jP (Q = l) . (16.10)

Then,

y ′ij (h)− yij

= 1

P (Si = h)
[(

1− Pf,j
) (

1− Pfa,i
)
P (Q = h)

+Pm,jPmd,iP (Q = l)
]− (

1− Pf,j
)
P (Q = h)− Pm,jP (Q = l)

= 1

P (Si = h)
{(

1− Pf,j
) (

1− Pfa,i
)
P (Q = h)+ Pm,jPmd,iP (Q = l)

− [(
1− Pf,j

)
P (Q = h)+ Pm,jP (Q = l)

]

· [(1− Pfa,i
)
P (Q = h)+ Pmd,iP (Q = l)

]}

=A0 (Q, Si )
[(

1− Pf,j
) (

1− Pfa,i
)+ Pm,jPmd,i

−Pm,j
(
1− Pfa,i

)− (
1− Pf,j

)
Pmd,i

]

=A0 (Q, Si )
(
1− Pfa,i − Pmd,i

) (
1− Pf,j − Pm,j

)
,

(16.11)
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where

A0 (Q, Si) = P (Q = h) P (Q = l)
P (Si = h) . (16.12)

Therefore, when Pfa,i + Pmd,i < 1 and Pf,j + Pm,j < 1, inequality y ′ij (h) >
yij holds. By symmetry, we have y ′ij (l) < yij under the same conditions. This
completes the proof of Lemma 16.1.

Remark 16.1 As been assumed that Pfa < 0.5 and Pmd < 0.5, condition Pfa +
Pmd < 1 always holds for all users. According to (16.1) and (16.2), for honest user
i, i.e., θi = 0, we have Pf,i + Pm,i < 1. On the other hand, for dishonest user i
(θi = 1), whether Pf,i +Pm,i < 1 can hold depends on his/her false alarm cheating
rate Pcf,i and missed detection cheating rate Pcm,i . Notice that outright malicious
users with relatively highPcf > 0.5 and/orPcm will have highPf > 0.5 and/orPm >
0.5, respectively. Users with both/either of the two cheating behaviors above can be
identified easily according to their former reports with high error report probability.
If the rating system removes reports of users having high formerPf and/orPm, these
malicious reports will not make sense when the system updates the rating of the
service. Consequently, to achieve a continuous trick, malicious users need to manage
their Pcf and Pcm to disguise themselves as trustful ones sometimes to make sure
Pf < 0.5 and Pm < 0.5. So in our work, we analyze the peer prediction mechanism
under the conditions of Pf < 0.5 and Pm < 0.5. Therefore, the condition of Pf +
Pm < 1 in Lemma 16.1 is reasonable, and in this case, inequality y ′ij (h) > yij >
y ′ij (l) can be always satisfied.

16.4.1.3 Inferred Opinion Reports

Instead of reporting the private evaluation of the service quality Si or xi , user i sends
his/her prior and posterior probability of belief that peer user j gives report xj = 1.
We notice that both report xi and xj are not provided directly by the relative user.
In basic private-prior peer prediction, user i only sends reports yij and y ′ij (si ) to
the cloud, according to which the DPC infers opinion report xi and publishes it to
the social service-evaluation platform. Inferred opinion report xi is generated by the
following rule:

xi = x
(
yij , y

′
ij

)
=
{

1, y ′ij > yij ,
0, y ′ij < yij .

(16.13)

Remark 16.2 According to Lemma 16.1, it holds that y ′ij (h) > yij > y ′ij (l) when
both user i and j satisfy Pfa + Pmd < 1 and Pf + Pm < 1. In other words, when
user i makes a high-quality judgement of the service after experiencing it (Si = h),
inequality y ′ij (h) > yij always holds. Then applying (16.13), the DPC infers the
opinion report as xi = 1 because y ′ij > yij . So this inferred report xi = 1 is
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consistent with user i’s real judgement Si = h. Symmetrically, when Si = l, (16.13)
can also derive the truthful opinion report xi = 0. Therefore, the rule formulated
by (16.13) can truthfully reflect the judgement when the user is honest, under the
conditions of Pfa + Pmd < 1 and Pf + Pm < 1.

16.4.1.4 User Trustworthiness

Based on reports yij and y ′ij (si ), the DPC calculates user i’s trustworthiness through
a certain scoring rule. Users with low trustworthiness are classified as the malicious,
and their reports will be unconsidered in the service rating system. Next, we first
introduce the strictly proper scoring rule, which can motivate users to provide
truthful reports yij and y ′ij (si ). The strictly proper scoring rule can be defined as
Definition 16.1.

Definition 16.1 Strictly Proper Scoring Rule [34]: A binary scoring rule is proper
if it leads to an agent maximizing his/her score by truthfully providing his/her report
y ∈ [0, 1], and is strictly proper if an agent can maximize his/her score if and only
if providing his/her report truthfully.

The binary logarithmic and quadratic scoring rules shown as (16.14) and (16.15),
respectively, are strictly proper, which has been proved in [31].

1. The binary logarithmic scoring rule:

Rl (y, ω = 1) = ln y, (16.14a)

Rl (y, ω = 0) = ln (1− y) . (16.14b)

2. The binary quadratic scoring rule:

Rq (y, ω = 1) = 2y − y2, (16.15a)

Rq (y, ω = 0) = 1− y2. (16.15b)

In (16.14) and (16.15), ω ∈ {0, 1} indicates a binary report.
We define the trustworthiness of user i as a function of yij , y ′ij and xj :

Ti = αR
(
yij , xj

)+ (1− α) R
(
y ′ij , xj

)
+ β, (16.16)

whereR (y, ω) is a strictly proper scoring rule, α ∈ [0, 1] is the parameter weighting
the importance of the prior and posterior belief. In addition, the trustworthiness
will be cumulative as the service and scoring process continues. A negative
trustworthiness can be a reflection of either monetary punishment or the limitation
of report providing for the corresponding user, and the negative benefits will be
transferred as positive benefits to the users as rewards for their honor and accurate
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reports. Therefore, to keep the budget balanced, β is given by

β = − 1

N

N∑
k=1

[
αR

(
ykj , xj

)+ (1− α) R
(
y ′kj , xj

)]
. (16.17)

In (16.16), yij and y ′ij are the reports from user i before and after he/she makes
judgement Si = si for the object service approach, respectively, and xj is the user
j ’s implicit opinion report inferred by the DPC according to user j ’s reports.

In addition, according to the analysis above, one can notice that the trustwor-
thiness of user i is determined on user j ’s inferred opinion report xj , user i’s
prior belief report yij and posterior belief report y ′ij . In other words, one user’s
trustworthiness is irrelevant to reports or inferred reports of the other users in the
system. Therefore, the cooperative cheating of malicious users will have little effect
on the evaluation of users’ trustworthiness, which is defined by (16.16).

16.4.2 Incentive Compatibility

As proved in [34], prior belief report yij and posterior belief report y ′ij (si ) given by
user i are temporal separated, which results from that they happen before and after
making judgement Si = si . Therefore, yij and y ′ij (si ) are independent and then we
have

E [Ti] = E
[
αR

(
yij , xj

)]+ E
[
(1− α) R

(
y ′ij , xj

)]
+ E [β]

= α
(

1− 1

N

)
E
[
R
(
yij , xj

)]

+ (1− α)
(

1− 1

N

)
E
[
R
(
y ′ij , xj

)
|Si = si

]

− 1

N

N∑
k=1,k 
=i

[
αR

(
ykj , xj

)+ (1− α)R
(
y ′kj , xj

)]
,

(16.18)

where both α
(

1− 1
N

)
R
(
yij , xj

)
and (1− α)

(
1− 1

N

)
R
(
y ′ij , xj

)
are still strictly

proper [33].
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16.4.2.1 Binary Logarithmic Scoring Rule

We first apply the binary logarithmic scoring rule. Let p1 = P
(
xj = 1

)
and p2 =

P
(
xj = 1 |Si = si

)
, and then we have

E [Ti] =α
(

1− 1

N

) [
p1 ln yij + (1− p1) ln

(
1− yij

)]

=α
(

1− 1

N

)[
p1 ln y ′ij + (1− p1) ln

(
1− y ′ij

)]

− 1

N

N∑
k=1,k 
=i

[
αR

(
ykj , xj

)+ (1− α) R
(
y ′kj , xj

)]
.

(16.19)

Take the partial derivatives with respect to yij and y ′ij :

∂E [Ti]

∂yij
= α

(
1− 1

N

)
p1 − yij
yij

(
1− yij

) = 0, (16.20a)

∂E [Ti]

∂y ′ij
= α

(
1− 1

N

)
p1 − y ′ij

y ′ij
(

1− y ′ij
) = 0. (16.20b)

Therefore we get the optimal values as

ŷij = p1 = P
(
xj = 1

)
, (16.21a)

ŷ ′ij = p2 = P
(
xj = 1 |Si = si

)
. (16.21b)

Then take the second partial derivatives with respect to yij and y ′ij , and let yij = ŷij
and y ′ij = ŷ ′ij , then we have

∂E2 [Ti]

∂y2
ij

∣∣∣yij=ŷij = α
(

1− 1

N

)
yij

(
yij − 1

)

y2
ij

(
1− yij

)2 < 0, (16.22a)

∂E2 [Ti]

∂y ′ij
2

∣∣∣y ′ij=ŷ ′ij = α
(

1− 1

N

) y ′ij
(
y ′ij − 1

)

y ′ij
2
(

1− y ′ij
)2
< 0. (16.22b)

Therefore, the maximum of E [Ti] can be achieved when yij = p1 and y ′ij = p2,
which means that user i can receive the maximum trustworthiness if and only if
he/she reports both yij and y ′ij truthfully.
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16.4.2.2 Binary Quadratic Scoring Rule

Next, we employ the binary quadratic scoring rule shown as (16.15). Thus we have

E [Ti] =α
(

1− 1

N

)[
p1

(
2yij − y2

ij

)
+ (1− p1)

(
1− y2

ij

)]

+ (1− α)
(

1− 1

N

)[
p2

(
2y ′ij − y ′ij 2

)
+ (1− p2)

(
1− y ′ij 2

)]

− 1

N

N∑
k=1,k 
=i

[
αR

(
ykj , xj

)+ (1− α)R
(
y ′kj , xj

)]
.

(16.23)

Take the partial derivatives with respect to yij and y ′ij , and set them to zero, we
get the same optimal values as (16.21a) and (16.21b). Then take the second partial
derivatives, the following inequality

∂E2 [Ti]

∂y2
ij

= ∂E
2 [Ti]

∂y ′2ij
= −2α

(
1− 1

N

)
< 0 (16.24)

can be always satisfied.

Remark 16.3 Noticing that ∂2E [Ti]/∂y2
ij < 0 and ∂2E [Ti ]/∂y ′ij

2
< 0 will always

be satisfied no matter whether the binary logarithmic or quadratic scoring rule
is applied, the maximum of E [Ti] can be reached when satisfying both (16.21a)
and (16.21b). In other words, user i can receive the maximum trustworthiness if and
only if he/she provides both yij and y ′ij truthfully, as mentioned previously. Assume
that the cooperative cheating exists, which means that malicious users can contact
with each other and manage the malicious behaviour. According to Definition 16.1,
user i will obtain a lower score by reporting untruthfully than truthfully when his/her
peer user j is a malicious one. For example, user i experiences a high-quality service
and it means that his/her honest reports satisfy y ′ij > yij . However, because of
user j ’s dishonest implicit opinion xj = 0, user i will obtain a higher score if
he/she gives a lower y ′ij < yij instead of reporting truthfully, according to the
binary logarithmic or quadratic scoring rule formulated as (16.14b) and (16.15b),
respectively. To make sure that the honest users are predominant even when the
cooperative cheating happens in the social network, we assume that the number of
malicious users is less than the half of the total. Based on this assumption, the users
with accurate information reports and prediction reports will always receive higher
trustworthiness in a long term; meanwhile, the malicious users will be punished by
a loss of trustworthiness every time they announce dishonest reports resulting in
cheating opinion reports.
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16.5 User Trustworthiness and Unreliability Based Service
Rating

16.5.1 Unreliability of User Report

In private-prior peer prediction, all users are required to report their prior belief that
their peer users will report a high evaluation for the service before experiencing
the service yij = Pi

(
xj = 1

)
. This report can be obtained by the past reports xj

inferred by the DPC and published by the cloud, which means that past reports xj are
accessible for i’s other friends in the social network, the cloud and DPC. Therefore,
it is difficult to fabricate information report yij for malicious users. To achieve
cheating, malicious user i needs to manage his/her information and prediction report
according to (16.13), i.e., y ′ij = yij + ε (ε > 0) with probability Pcm,i when the
service quality is low (Q = l), and y ′ij = yij − ε with probability Pcf,i when the
service quality is high (Q = h). Meanwhile, malicious users have to set ε as small
as possible to avoid being punished by much loss of score and trustworthiness when
their peer users are honest ones. In addition, we can notice that the false-alarm report
and missed-detection report do not only result from the wrong judgements of honest
users, but also due to the dishonest users’ cheating behaviours, according to (16.1)
and (16.2). Both of the situations above are considered as unreliable behaviours
which need to be identified and removed from the final service rating. Therefore, it
is necessary to set a threshold to limit the minimum gap between yij and y ′ij .

Next, we analyze the influence of false-alarm judgement and missed-detection
judgement on the scoring. Taking the derivative of (16.6a) and (16.6b) both with
respect to Pfa,i and Pmd,i , we can calculate to get

∂y ′ij (l)
∂Pf a,i

= Φ1
(
1− Pmd,i

) (
1− Pf,j − Pm,j

)
, (16.25a)

∂y ′ij (l)
∂Pmd,i

= Φ1Pfa,i
(
1− Pf,j − Pm,j

)
, (16.25b)

∂y ′ij (h)
∂Pf a,i

= −Φ2Pmd,i
(
1− Pf,j − Pm,j

)
, (16.25c)

∂y ′ij (h)
∂Pmd,i

= −Φ2
(
1− Pfa,i

) (
1− Pf,j − Pm,j

)
, (16.25d)

where Φ1 = P (Q = h) P (Q = l)/(ϕ1 + ϕ2)
2, Φ2 = P (Q = h) P (Q = l)/

(ϕ3 + ϕ4)
2. Based on the previous assumptions of Pfa,i < 0.5, Pmd,i < 0.5 and

Pf,j + Pm,j < 1, we have

∂y ′ij (l)
∂Pfa,i

>
∂y ′ij (l)
∂Pmd,i

> 0,
∂y ′ij (h)
∂Pmd,i

<
∂y ′ij (h)
∂Pf a,i

< 0. (16.26)
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So under both of situations Q = h and Q = l , the score of user i goes down
with the increasing Pfa,i and Pmd,i when user j reports truthfully, according
to (16.14a)/(16.15a) and (16.14b)/(16.15b), respectively. In other words, for fixed
Pf , Pj and P (Q = h), the honest users with high judgement accuracy will
receive higher scores and trustworthiness, compared to those honest users with high
judgement error rates and malicious users reporting their prediction inversely and
conservatively to give wrong reports and minimize the loss of scores. In the service
rating system, neither implicit opinion reports of malicious users nor honest users
with low judgement accuracy should be considered. To identify the two kinds of
unreliable behaviour, we define an unreliability index to indicate the unreliability of
user i by his/her prior belief report yij and posterior belief report y ′ij as follows.

ρi =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

∣∣∣y ′ij−Pm,j
∣∣∣P(Q=l)∣∣∣y ′ij−(1−Pf,j )
∣∣∣P(Q=h)

, y ′ij < yij ,
∣∣∣y ′ij−(1−Pf,j )

∣∣∣P(Q=h)∣∣∣y ′ij−Pm,j
∣∣∣P(Q=l)

, y ′ij > yij .
(16.27)

Remark 16.4 In (16.27), the first situation y ′ij < yij indicates that the more report

y ′ij is closed to P
{
xj = 1 |Q = l }when the service quality is low and farther away

from P
{
xj = 1 |Q = h} when the service quality is high, the more reliable y ′ij is.

Meanwhile, for y ′ij > yij , when report y ′ij is closed to P
{
xj = 1 |Q = h} and far

away from P
{
xj = 1 |Q = l }, this report can be considered reliable. In addition,

according to (16.26), y ′ij (l) increases with growing Pfa,i and Pmd,i , and is more
sensitive to Pfa,i than Pmd,i ; y ′ij (h) decreases with growing Pfa,i and Pmd,i , and is
more sensitive to Pmd,i than Pfa,i . With assumption Pfa,i, Pmd,i ∈ [0, 1], we can
get that Pm,j < y ′ij (l) , y ′ij (h) < 1−Pf,j , thus the definition of unreliability shown
in (16.27) can be rewritten as

ρi =

⎧
⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

[
y ′ij−Pm,j

]
P(Q=l)[

(1−Pf,j )−y ′ij
]
P(Q=h) , y

′
ij < yij ,

[
(1−Pf,j )−y ′ij

]
P(Q=h)[

y ′ij−Pm,j
]
P(Q=l) , y ′ij > yij .

(16.28)

To calculate the unreliability of users’ reports, the DPC needs to observe the
report error rates Pf and Pm of each user based on the historical reports and
service rating results. In addition, we assume that the service quality, denoted by
P (Q = l) and P (Q = h), can also be obtained according to a long time scale and
relatively stable historical rating results of services. Such assumptions are feasible
and reasonable, considering that most current service-based application systems
have the ability to provide such information. By utilizing (16.28), the users with
high unreliability ρ are considered to be uncertainty ones who might be honest users
with high error judgement rate or malicious users. Reports from these users are not
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reliable for the DPC to rate the quality of service. Consequently, the DPC needs to
set a threshold ρthr , and reports from the users with unreliability exceeding ρthr will
be removed from the service rating procedure. The threshold can be designed by the
typical error rates of honest users with relatively high judgement accuracy.

Next, we describe the validity of the user unreliability defined in (16.28). Take
situationQ = h for instance, malicious user i has to give the prediction report y ′ij =
yij−ε < yij to achieve cheating. In order to get a lower unreliability value below the
threshold and make his/her cheating make sense in the service rating, user i needs to
fabricate report y ′ij to make it close to Pm,j and away from 1−Pf,j . With conditions
Pf,i < 0.5 and Pm,i < 0.5, the smaller y ′ij is, the lower unreliability value will be
get. On the other hand, the majority honest users trend to report the implicit opinion
reports as xj = 1 when Q = h. According to (16.14a) and (16.15a), the score of
user i decreases with reducing y ′ij when his/her peer user j gives an accurate and
honest report. Symmetrically, the dilemma still exists when Q = l. Therefore, it is
difficult for malicious users to get high trustworthiness and low unreliability at the
same time, if they report trickly. However, for those “bad functioning” honest users
with relatively high error rate of judgement, the best choice is still reporting yij and
y ′ij truthfully. It is unnecessary for them to modify their y ′ij because their benefit is
the score and trustworthiness determined by the information and prediction reports,
and this benefit is irrelevant to that whether their reports are accepted by the DPC
or not.

16.5.2 Peer Prediction Based Service Rating

According to the user’s trustworthiness and unreliability analysis above, we design
the private-prior peer prediction based service rating method as following proce-
dures.

1. For every user i who accepts the service, choose another non-overlapped user j
randomly among his/her friends as i’s peer.

2. Ask user i for his/her prior belief report yij ∈ [0, 1], i.e. his/her peer j will
provide a report to the cloud that j evaluates the service as high-quality.

3. User i experiences the service and then makes his/her judgement Si = si for the
quality of the service.

4. Ask user i for his/her posterior belief report y ′ij ∈ [0, 1] to the cloud, with y ′ij 
=
yij , that his/her peer j will provide a report of receiving a high-quality service.

5. The DPC calculates the unreliability of every user by applying (16.28), and
removes reports of users with ρi > ρthr from the service rating system.

6. The DPC infers the implicit opinion report xi of user i through (16.13), and
calculates user i’s trustworthiness according to (16.14), (16.15) and (16.16)
assisted by user j ’s inferred opinion report xj . Then remove reports of users
with lowest trustworthiness from the service rating system.
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7. The DPC makes the rating for the service by implicit opinion reports of users
with both high trustworthiness and lower unreliability through (16.3).

16.6 Performance Evaluation

In this part, we perform numerical simulation experiments to analyze the properties
and performances of the private-prior peer prediction service rating system and its
influential factors such as the proportion of the malicious users and ε. First, we
analyze the effect of the time accumulation on the trustworthiness and unreliability.
In the peer prediction mechanism, we can notice that if the peer user of an honest
user is a malicious one who decides to cheat when he/she reports to the cloud, the
trustworthiness of the honest user trends to be low because of the strictly proper
scoring rule. However, when malicious users are not predominant in the social
network, which means that the proportion of the malicious users is less than half
of the total, then honest users’ accumulative trustworthiness will increase distinctly
comparing with malicious ones in a long term.

16.6.1 Simulation Settings

The simulation for the service rating system is operated based on the topology of
Flickr, a real-world online social network database. The Flickr topology contains
5,899,882 edges connecting 80,513 users, and the edge represents the friendship of
the connected two users. In addition, this friendship of users in the Flickr network,
also known as the topology, is determined by their favorites. In other words, the
connection between any two users is established if the corresponding two users
are sharing the common favorites and have followed the same community. Then
such two users will be considered as a pair of peers. The topology of the Flickr
network are depicted in Fig. 16.2. These users are separated into three types, i.e.,
reliable honest users with high judgement accuracy rate, malicious users with high
judgement accuracy rate and high error report rate, and unreliable honest users with
relatively high judgement error rate but always report truthfully. The three types
of users exist with some certain percentage. We set that false alarm of judgement
Pfa and missed detection of judgement Pmd are uniform distribution variables, and
for all reliable and malicious users Pfa, Pma ∼ U [0.01, 0.02], and for unreliable
users Pfa, Pma ∼ U [0.05, 0.06]. In addition, as analyzed in the Remarks of
Lemma 16.1, malicious users need to make sure that their false alarm and missed
detection of report, Pf and Pm, are both smaller than 0.5 to achieve a continuous
trick. Therefore, we set Pf = Pm = 0.3 (< 0.5) for malicious users in the
following experiences. We assume that all honest users always report truthfully,
i.e., Pf = Pm = 0.
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Fig. 16.2 Graph structures of the Flickr network used for simulation

• Historical database. To calculate the unreliability of each user, the DPC needs
to obtain their historic error rates of report. So we first establish the report
database by allowing each user judge the quality of the service independently
and then report to the cloud all according to the type of the user. The process
repeats 80 times and in each time, the probability of high service quality is set as
P (Q = H) = 0.6. In addition, the quality of the service is determined through
the majority rule shown as (16.3) by applying reports from all of the users.

16.6.2 Accumulative Trustworthiness and Unreliability

Then in the following experiences, the private-prior peer prediction method is
introduced, and the peer of each user is updated in every new experience. Then
new implicit opinion reports (inferred by yij and y ′ij ) and service rating results are
added into the database and provide the historical data for the DPC. We consider
that the trustworthiness and the unreliability of each user can be accumulated with
the increasing service times. To calculate the trustworthiness, both of the scoring
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rules, i.e., binary logarithmic and binary quadratic, are applied. Simulation results
of users’ accumulative trustworthiness and unreliability in the following 200 times
of service are shown in Figs. 16.3 and 16.4, in which the percentages of reliable
honest user, malicious user and unreliable honest user are set as 40, 40 and 20%,
respectively. In both of the figures, we show the results of some sample users
selected from the three types randomly. In Fig. 16.3, the trustworthiness of honest
users might be negative at the beginning, when their peer users are the malicious.
On the other hand, some malicious ones even obtain larger trustworthiness at the
beginning, when their peers are also the malicious. However, resulting from the peer
updating after each time of service, as well as the small proportion of the malicious,
the predomination of honest users trend to work in a long term. Figure 16.3 indicates
that the accumulative trustworthiness of honest users grows with the service rating
times or experience time. On the contrary, the accumulative trustworthiness of
malicious users drops down and is negative. In addition, we can notice that no
matter which scoring rule is applied, the accumulative trustworthiness shows the
similar characteristics and tendency.

Similar results of accumulative unreliability are shown in Fig. 16.4, in which the
gaps are more obvious among different types of users. Moreover, we can notice
that unreliable honest users can be identified through the unreliability index, which
cannot be achieved by the trustworthiness. This result demonstrates that the best
choice for unreliable honest users is still reporting truthfully, and their unreliability
will bring no hazard to their high positive trustworthiness.

16.6.3 Influence of ε, Scoring Rules and User Structure

In the basic private-prior peer prediction mechanism, the strictly proper scoring rule
leads malicious users to fabricate minimum ε, i.e., y ′ij = yij + ε (ε > 0) when
the quality of the service is low, and y ′ij = yij − ε when the quality is high. In
the trustworthy service racing system, the unreliability index proposed brings the
dilemma to malicious users when they set ε as discussed previously. Next, we test
the influence of ε on the average trustworthiness and unreliability. Considering two
cases of user structure, the percentages of reliable honest user, malicious user and
unreliable honest user are set as 60, 20 and 20% in one case, respectively, and in
another case are set as 40, 40 and 20%. We repeat the service rating experiments for
200 times, and then calculate the average trustworthiness and unreliability of each
type of users in these 200 times experiments (not the accumulative trustworthiness
or unreliability). Results in Fig. 16.5a, b present the average trustworthiness when
applying binary logarithmic and binary quadratic scoring rules, respectively, when
ε ∈ [0.1, 0.2]. In addition, Fig. 16.6 presents how the average unreliability changes
when ε increases. As depicted in Figs. 16.5 and 16.6, both the trustworthiness and
unreliability decrease with the increase of ε for malicious users, which demonstrates
the incentive and identification capabilities when combining trustworthiness and
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Fig. 16.3 The accumulative trustworthiness of user samples of three types. (a) Binary logarithmic
scoring. (b) Binary quadratic scoring
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Fig. 16.4 The accumulative unreliability of user samples of three types

unreliability together to evaluate users reports. On the other hand, the average
trustworthiness and unreliability of honest users are not sensitive to changing ε.
In addition, we can notice that, when the percentage of malicious users is small, the
gaps between the trustworthiness and unreliability malicious and honest user tend
to be wide, which will make it much easier to identify the malicious.

Removing unreliable reports and reports from users with low trustworthiness, we
rate the service quality by trustful reports to improve the accuracy of rating. In this
part, we define the service rating accuracy as the ratio of the number of selected
correct reports to the number of all correct reports. In addition, the threshold of
unreliability is set as an empirical value obtained from the training of historical
database, to be specific, ρthr = 5. Then we test the service rating accuracy over
the proportion of malicious users, unreliable honest users’ error rates of judgement
and ε. Results shown in Fig. 16.7 indicate that the service rating accuracy decreases
with the increasing proportion of malicious users. When this proportion is closed
to 0.5, the rating accuracy decreases distinctly because of the probable cooperative
cheating. In addition, the rating accuracy is higher when unreliable honest users’
Pfa, Pma ∼ U [0.35, 0.45] than Pfa, Pma ∼ U [0.1, 0.2], which results from
that honest users with higher judgement error rates can be identified more easily by
applying the unreliability index. Figure 16.7 also indicates that the lower ε malicious
users set, the harder they can be detected through the trustworthiness.
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Fig. 16.5 The average trustworthiness of different types of users versus the percentage of each
user type and ε. (a) Binary logarithmic scoring. (b) Binary quadratic scoring
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Fig. 16.7 The service racing accuracy versus the percentage of each user type, error rates of
judgement Pfa , Pmd and ε
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16.7 Conclusions

In this part, we proposed a cloud based architecture for the service rating system.
To achieve a trustworthy service rating, a private-prior peer prediction based mech-
anism was designed to identify malicious and dishonest users. Coupled with some
certain strictly proper scoring rules, the peer prediction method can evaluate users’
trustworthiness and motivate them to report honestly. Moreover, an unreliability
index was also designed to ensure the reliability of the users’ reports. According
to the trustworthiness and unreliability index, untruthful and unreliable reports can
be identified and eliminated to improve the accuracy of service rating. Simulation
results indicated that the proposed peer prediction based trustworthy service rating
system can identify malicious and unreliable behaviours effectively, and achieve
relatively high service rating accuracy.
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Chapter 17
Cooperative Privacy Protection Among
Mobile User

Abstract Social networks have attracted billions of users and supported a wide
range of interests and practices. Users of social networks can be connected with
each other by different communities according to professions, living locations and
personal interests. With the development of diverse social network applications,
academic researchers and practicing engineers pay increasing attention to the related
technology. As each user on the social network platforms typically stores and
shares a large amount of personal data, the privacy of such user-related information
raises serious concerns. Most research on privacy protection relies on specific
information security techniques such as anonymization or access control. However,
the protection of privacy depends heavily on the incentive mechanisms of social
networks, like users’ psychological decisions on security execution and socio-
economic considerations. For example, the desire to influence the behaviors of
other people may change a user’s choice of security setting. In this chapter, a
game theoretic framework is established to model users’ interactions that influence
users’ decisions as to whether to undertake privacy protection or not. To model the
relationship of user communities, community-structured evolutionary dynamics are
introduced, in which interactions of users can only happen among those users who
have at least one community in common. Then the dynamics of the users’ strategies
to take a specific privacy protection or not is analyzed based on the proposed com-
munity structured evolutionary game theoretic framework. Experiments show that
the proposed framework is effective in modeling the users’ relationships and privacy
protection behaviors. Moreover, results can also help social network managers to
design appropriate security service and payment mechanisms to encourage their
users to take the privacy protection, which can promote the spreading of privacy
behavior throughout the network.
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Protection · Behavior Spreading · Social Networks
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17.1 Introduction

Over the past decade there has been an unprecedented development of social
network applications. Online social networks, such as Facebook, Google+, and
Twitter are inherently designed to enable people to distribute and share personal and
public information [1–5]. In addition, social connections among friends, colleagues,
family members, and even strangers with similar interests are established via these
online social network platforms. However, as these platforms, as well as other
online applications and cloud computing, allow their users to host large amounts
of personal data on their platforms, important concerns regarding the security and
privacy of user-related information arise [6–10]. How to protect users’ personal
information, and encourage users to participate the privacy protection to improve
the information security of the entire social network, have become one of critical
problems for social network managers.

In response, many social networks have provided different privacy protection
measures to try to protect their users’ personal information. Take “Privacy Setting
and Tools” of Facebook for instance, it allows the users to decide who can see
their stuff, contact them and look them up to obtain different levels of protection.
In addition, the “Privacy and safety” settings of Twitter provide some similar
options for its users to determine that who can receive their Tweets, tag them in
photos, etc. Furthermore, privacy protection mechanisms have been also studied
from many aspects such as information collection [11], information processing [12–
14], anonymity [15], access control [16, 17], etc., to improve the security of
users’ data. However, users’ decisions, actions, and preferences regarding personal
information security, and social-economic relationships, can critically influence the
implementation of privacy protection on online social network platforms. On the
one hand, a user’s selection of security level can protect her or his own personal
information, and help to preserve the privacy of others related to this user. On
the other hand, users’ behavior to adopt security measures can be affected by the
decisions of other users and potentially spread throughout the entire social network,
depending of course depends on the network topology. Thus, the privacy protection
of users in the network relies on its users to make use of security services to protect
their friends’ and their own information, and this behavior is conditional. One user
has to make a decision on whether or not to undertake privacy protection according
to many considerations, such as if and how many friends of his/hers make the same
choice. To understand and to model such interactions among users, game theory
can be used. Particularly useful is evolutionary game theory which considers that
a game is played over and over again by socially conditioned players randomly
drawn from large populations. It studies population shift and evolution processes,
and pays particular attention to the dynamics and stability of the strategies of the
entire population. For the privacy protection issues, evolutionary game theory can be
used to model the spreading of users’ security behavior over social networks, which
heavily depends on the interaction and friendship among the users. Thus, in this
part, we establish a community structured evolutionary game theoretic framework
to analyze and reveal the interactions between users and the spreading of security
behavior throughout a social network.
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Most current research on privacy protection and behavior spreading considers
a social network of a regular, random, and flattened topology. Based on this
assumption, individuals connect with each other, and the influence of users’ actions
and behaviors is spread over the entire social network accordingly. However, in a
real social network, the relationships among users are much more complicated than
these simple models. Moreover, the interaction and influence between any two users
largely depends on how close the relationship between these two users is. In this
research, we model the population of social networks as a community structure in
order to characterize the connections of users in a more appropriate and accurate
way. By this community structure based model, we may successfully analyze the
spreading of the privacy protection behavior over the social network.

The main contributions and our main ideas are summarized as follows:

1. We propose a game theoretic framework to model the interaction and influence
when users choose strategies that make use of the privacy protection or not. The
framework reveals that the protection of the users’ privacy information depends
not only on the users’ own strategies, but also strategies of other users. In other
words, the framework can analyze the information protection through users’
interactions and decision making.

2. We establish a community structure based evolutionary game theory to model
and analyze the privacy protection over social networks with a community
structured population. This framework can characterize the dynamics of the
process of the users’ behaviors regarding taking the privacy protection or not. In
addition, the framework can also predict the final stable behavior spreading state.

3. Based on the proposed community structure based evolutionary game theory
framework, we analyze the dynamics of the users’ behaviors with regard to
taking the privacy protection or not. The critical cost performance is analyzed
for both non-triggering game and triggering game scenarios. The critical cost
performance is an important parameter, exceeding the value of which the
behavior of taking the privacy protection is more frequent than the behavior of
not taking the privacy protection in the equilibrium distribution of the deviation-
imitation process in the social network.

The remainder of this part is organized as follows. Section 17.2 reviews the
existing methods for personal information security. In Sect. 17.3, the community
structure based evolutionary game formulation of privacy protection in social
networks is described. The privacy protection among users belonging to K com-
munities and evolution of security behavior are analyzed in Sect. 17.4. Then we
extend the model to a triggering interaction scenario in Sect. 17.5. Simulations are
shown in Sect. 17.6, and conclusions are drawn in Sect. 17.7.

17.2 Related Works

Game theoretic models and evolutionary game theoretic models have been intro-
duced in the literature to comprehend and to interpret the interactions among
network users regarding personal information security. In [18], the authors orga-
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nized the presented works on network security and privacy into six main categories:
security of the physical and medium access control (MAC) layers, security of
self-organizing networks, intrusion detection systems, anonymity and privacy,
economics of network security, and cryptography. In each category, they identified
security problems, players, and game models, and main results such as equilibrium
analysis. In [19], the authors formulated a non-cooperative cyber security infor-
mation sharing game, the strategies of which are participation and sharing versus
non-participation. They analyzed the game from an evolutionary game-theoretic
viewpoint, and determined the conditions under which the players’ self-enforced
evolutionary stability can be achieved. A model of an evolutionary game between
social network sites (SNS) and their users was established from the perspective
of privacy concerns in [20]. In this work, the SNS tend to decide whether to
disclose users’ privacy or not for profit, and users tend to decide about privacy
disclosure to obtain certain benefits. Authors of [21] proposed an evolutionary
game theoretic framework to model the dynamic information diffusion process in
social networks, and derived the closed-form expressions of the evolutionary stable
network states through analyzing the proposed framework in uniform degree and
non-uniform degree networks. For a better understanding of online information
exposure, a deception model for online users was proposed in [22] based on a game
theoretic approach characterizing a user’s willingness to release, withhold or lie
about information depending on the behavior of individuals within the user’s circle
of friends.

As mentioned previously, the influence of users’ behaviors also plays an impor-
tant role on the selection of privacy protection throughout the social network. In
other words, behaviors of users can spread over the network according to some
kind of natural selection. In the practice of a game, if the utility obtained by one
strategy is larger than that by another strategy for a specific player, this strategy
will be imitated by other players of high probability, which suggests this strategy
is more likely being spread over the entire social network. For the user privacy
concerns, it is important to analyze the spreading and influence of user behaviors
that make use of the privacy protection or not. Based on such analysis, the benefit-
cost mechanism can be designed to promote the use of the privacy protection
among the users, and then the information security of the social network can be
improved. The spreading of human behaviors has been studied from various aspects.
In [23], individuals were separated into interdependent groups, and their different
combinations were studied to reveal that an intermediate interdependence optimally
facilitates the spreading of cooperative behavior between groups. It has been shown
that there is an intermediate fraction of links between groups that is optimal for the
evolution of cooperation in the prisoner’s dilemma game. Results in [24] suggested
that strong ties are instrumental for spreading both online and real-world behavior in
human social networks. The authors demonstrated that the messages diffused in the
network directly influenced political self-expression, information seeking and real
world voting behavior of millions of people. Furthermore, the messages not only
influenced the users who received them but also the users’ friends, and friends of
friends. It was suggested in [25] that if the goal of policy is to adequately protect
privacy, then we need policies that protect individuals with minimal requirements
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of informed and rational decision making that include a baseline framework
of protection. In [26], a model for small-world networks regarding information
epidemics was proposed to analyze the mixed behaviors of delocalized infection
and ripple-based propagation for hybrid malware in generalized social networks
consisting of personal and spatial social relations. A number of other works have
analyzed the spread of user behavior based on the epidemic spreading theory or
social contagion [27–29].

17.3 Community Structure Based Evolutionary Game
Formulation

17.3.1 Basic Concept of Evolutionary Game

Consider an evolutionary game with r strategies χ = {1, 2, · · · , r} and a payoff
matrix U, which is an r × r matrix with entry umn denoting the payoff for
strategy m versus strategy n. The system state of the game can be denoted as
p = [p1, p2, · · · , pr ]T. In this case, the average mean payoff within a population in
state q = [q1, q2, · · · , qr ]′ against a population in state p is q′Up.

Definition 17.1 Evolutionary Stable State, ESS: A state p∗ is an ESS, if and only
if p∗ satisfies following conditions for all different states q 
= p [30]:

q′Up∗ ≤ p∗′Up∗, (17.1a)

if q′Up∗ = p∗′Up∗, p∗′Uq > q′Uq. (17.1b)

In Definition 17.1, first condition (17.1a) is equivalent to the Nash equilibrium
condition, and ensures that the average payoff of the population in ESS p∗ is not
smaller than the average payoff of the population in a different strategy q′ against
p∗. The second condition (17.1b) further guarantees the stability of ESS p∗ in case
of equality in the equilibrium condition. Solving the ESS is an important problem
in an evolutionary game [31, 32]. An approach to this problem is to find the stable
point

p∗ = argp

(
dp
dt
= 0

)
(17.2)

of the network mean dynamics, which specifies that the rate of change in the use
of each strategy equals to zero [33, 34]. In this work, we analyze the frequency
of users taking different strategies over several times of updates in Sect. 17.4. The
network evolves and updates according to the following process, which is similar
to the Wright-Fisher process [35–37]. The users with evolutionary behaviors and
community memberships are considered as discrete and non-overlapping updated



422 17 Cooperative Privacy Protection Among Mobile User

generations, and the number of users is constant. All users update at the same
time. Users reproduce their own decisions in the new update proportional to their
fitness [38], which means that if the user has a higher fitness, he/she tends to
maintain his/her current strategy and community memberships in the following
update with a high probability. Consider that when an offspring user adopts the
imitated user’s strategy and community memberships, he/she might select the
opposite strategy or different communities, which is similar to the conception of
“mutation” in genetic theory [39]. Denote u as the probability with which an
offspring adopts a random security strategy, i.e., selecting the security service or
not. Then an offspring will adopt the imitated user’s strategy with probability 1−u.
Similarly, denote v as the probability with which a user adopts a random community
membership, which includes that of the imitated user. Then a user adopts the
imitated user’s configuration with probability 1− v. Notice that the probability that

any possible configuration of community membership is selected is v/
(
M

K

)
.

17.3.2 Community Structured Evolutionary Game Formulation

Assume that a social network can provide a higher grade of security, i.e., privacy
protection, for users’ privacy besides the basic services. This additional security
service for user privacy protection means applying more advanced encryption
and anonymization, secure database management and dissemination, and personal
privacy protection techniques to data processing on the user privacy information.
When users take this security service, they need to accept terms ruled by the
network, such as that users have to provide more personal information, complete
real-name authentication or pay for the service. Then they can get more privacy
protection when other legitimate or malicious persons and organizations access or
use their personal and privacy information. The more personal information provided
by one user to the social network managers, the more secure authentication will
be required when stealing his/her information, and as a result, the better privacy
protection can be achieved for this user. In most real social networks, these kinds
of additional services are not mandatory, and users are therefore free to accept such
services or not, according to users’ own judgements. For instance, users of many
forum websites are usually required to provide a mobile phone number or e-mail
address to get a higher level of the user information security service, although this
service is not mandatory.1

1 Current social networks have provide some privacy protection measures for their users. For
instance, there are many optional settings in “Privacy Settings and Tools” of Facebook. However,
such protection tends to be weak when the users’ privacy information is suffering professional
or specialized attacks of hackers. The privacy protection service provided by network managers
mentioned in our work refers to the high-level technical protection for the user’s privacy, not just
simple options by users without any pay.
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In current social networks, users are allowed to join multiple but a limited
number of communities according to their professions, living or touring locations,
expertise, or personal interests, etc. For instance, the Google Circles and Facebook
Groups can be considered as establishing different communities or some kinds
of relationships for their users. We consider that these users are classified by
their categories of groups, which can be termed communities of the population
structure, and the friendships are established among users in the same community.
Therefore, each user holds multiple friendship relations with the users in the same
community. The degree of closeness in the relationship between two users can be
measured by the number of communities they share. Take users in Google Groups
for instance, if User A and User B are both in the Group “Arts and Entertainment”
and Group “Schools and Universities” at the same time, then we can consider that
the relationship between A and B is stronger than that between B and C, who only
belong to Group “Arts and Entertainment” in common. In addition, the information
shared between A and B will typically be more than that between B and C. Assume
that users are allowed to change communities, which can be influenced by their own
or other users’ actions. Consider that user interactions can only happen between
individuals belonging to the same community, i.e., having some kinds of friend
relationships in a social network. Interaction among users in this work refers to the
influence of their friends and their own strategies, i.e., the payoff obtained through
the game. In addition, some of users’ information, such as personal information and
status, is accessible only to their friends.

Based on these premises above, we assume that the information of both of a user
and his/her friends can be protected by the network to some extent if the user makes
use of the privacy protection, even if his/her friends do not take the same action. We
assume that, the user taking the privacy protection can obtain this service by paying
a price as a deal with the network manager. Meanwhile, the privacy information
of his/her friends can also be protected by the network no matter whether these
friends take the privacy protection service or not. Taking WeChat for instance, the
Moments (similar to the Timeline of Facebook) of a user can only be seen by his/her
friends, and the Group Chat can be organized by one user among his/her friends,
not matter whether these friends are also friends with each other or not. In addition,
Facebook provides an optional setting in “Privacy Settings and Tools”: Who can
see your friends list, which can illustrate that user’s security behavior makes sense
on the information protection of his/her friends. The closer the relationship is, the
more personal information of the user can be accessed by his/her friends. If the
user’s friend makes use of the privacy protection or some other information security
services, the accessible information of this user can be also protected at some level.
The more accessible information for his/her friend, the more information can be
protected, even when this user does not take the privacy protection. In this work, we
assume that the privacy protection service not only protects the information of the
users who select this service, but also the information these users can access, i.e.,
the information of their friends. Therefore, if the user does not select the service, the
personal information of his/her friends will also be threatened by this user’s unsafe
strategies.
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Privacy protection over a social network shares fundamental similarities with the
strategy updating in the community-structured evolutionary game theory (EGT). We
consider users in a social network as the players in the evolutionary game. Each of
these users has two possible strategies, i.e., to take or not take the privacy protection
provided by the network:

{
Sp, take the privacy protection,
Sn, do not take the privacy protection.

(17.3)

The strategy taking the privacy protection can be considered as the secure behavior,
and otherwise, insecure behavior. Meanwhile, the users’ payoff matrix can be
defined as

Sp Sn

Sp
Sn

(
βb − c b − c
b 0

)
,

(17.4)

where b > 0 is the baseline security benefit received by the user resulting from
that this user or this user’s friends take the privacy protection (security behavior).
For existing social networks, b can be set as traditional measurements of privacy,
such as disclosure risk and information loss, when applying current encryption,
anonymization, secure database management and dissemination techniques. c >
0 denotes the cost that users taking the privacy protection need to pay for the
protection service, which could be more personal information providing, real-name
authentication and payment as required by current social networks. On the other
hand, if the privacy protection service is provided through an application (APP)
update, which is a common approach adopted by WeChat, Twetter and other existing
social networks, the cost for user to take the service can be then measured by the
increasing memory occupancy of the latest APP version. In addition, when both of
the interacted users take strategy Sp, two of them will obtain higher level privacy
safety benefit βb as the first entry of the payoff matrix shown in (17.4), where β > 1.
The payoff will be zero when both of the interacted friends are defectors, i.e., neither
of them selects the privacy protection service, then no pay or gain for them.

Based on the definitions of the strategies and payoff above, ratio b/c or βb/c,
which can be defined as the cost performance, is a crucial parameter. It can help the
social network managers to make appropriate security service level and payment
mechanism to encourage their users to accept the security service, and then promote
the spreading of this secure behavior. In a community structured population well-
mixed, any two individuals belonging to the same community interact with equal
likelihood. Then as reflected in (17.4), users taking the privacy protection would
be out-competed by those users doing not. Therefore, the interaction between users
with security behavior and with insecurity behavior needs to be investigated, and
the question that whether dynamics on a community structured population allows
the evolution of security behavior needs to be figured out.



17.3 Community Structure Based Evolutionary Game Formulation 425

Consider a social network withN users. The number of communities operated by
the social network isM . However, users of current social networks are only allowed
to join a limited number of these communities. Then we set that each user belongs
to exactly K communities, where K ≤ M . In addition, each user has a strategy
index si ∈ {0, 1}, which is defined as that si = 1 when user i take the privacy
protection strategy Sp, or si = 0, otherwise. Then the state of the social network
can be given by a strategy vector s = [s1, s2, · · · , sN ] and a matrix Θ . Θ is an
N ×M matrix, whose entry θim (i = 1, 2, · · · , N , m = 1, 2, · · · ,M) is 1 if user i
belongs to community m, and θim = 0, otherwise. Matrix Θ can be represented as
Θ = [θ1, θ2, · · · , θN ]T, where θi is the vector giving the community membership
of user i. Then the number of communities that user i and user j having in common
can be expressed by the dot product of their community membership vector, as θi ·θj .
In addition, based on the definition of K , we have θi · θi = K , ∀i. The state of the
social network can be given as S = (s,Θ).

We assume the influence of user j on i (i 
= j ) is related to the number of
communities that they share in common. Specifically, user i’s fitness obtained by j
is proportional to the total utility according to (17.4), and the proportional coefficient
is the number of communities that i and j share in common. In addition, user i
interacts with user j only when they share at least one community in common,
i.e., θi · θj 
= 0. Then the total fitness of user i of the community-structured social
network can be written as

πi = 1+ α
∑
j 
=i

(
θi · θj

) [
(βb − c) sisj + (b − c) si

(
1− sj

)+ b (1− si ) sj
]

= 1+ α
∑
j 
=i

(
θi · θj

) [
(β − 2) bsisj + (b − c) si + bsj

]
,

(17.5)

where α represents the selection intensity, i.e., the relative contribution of the game
to fitness. The case α = 1 denotes the strong selection, which means that the payoff
obtained through (17.4), i.e., the game among users with strategies Sp and Sn, plays
an dominant contribution to the total fitness of every user, and then the user with
high payoff will be chosen and imitated with high probability. On the contrary, α→
0 denotes the weak selection [40]. Under the weak selection, the payoff obtained
through (17.4) has limited contribution to the total fitness of each user. In this work,
we only analyze the weak selection case as the results derived from weak selection
are often valid approximations for stronger selection [41]. In addition, the weak
selection scenario can be more helpful to reveal the user behavior spreading over
social networks [21].

As an example shown in Fig. 17.1, there are N = 5 users, denoted by U1 -
U5, over M = 4 communities as ellipses A, B, C and D. Each user belongs to
K = 2 communities. The community memberships determine how users interact
each other, and the broken lines indicate the weighted interaction. The structure
changes as users updating in discrete time slot. In this example, U1, U3 and U5 take
the same security strategy, and the other users take the opposite strategy at the first
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Fig. 17.1 An example of security strategy and associations evolution over a social network with a
community structured population

Table 17.1 Correspondence between community structured evolutionary theory and social net-
work

Community-structured EGT Social network

Community-structured population Social network with friendships

Classified by communities

Players Users in the social network

Strategies Sp : take the privacy protection

Sn: do not take the privacy protection

Fitness Utility from taking the privacy protection or not

ESS Stable security behavior state over users

time slot. During the update process, imitator U1 picks another user U2, and adopts
U2’s security strategy and community associations.

Table 17.1 indicates the correspondence between the elements in the community
structured evolutionary game theory and those in the social network, whose
users hold relationships according to their interested communities. Based on the
definitions above, we can derive the expression for the critical cost performance,
which is an important parameter that determines the stable security behavior state
of the users among the network. In the following section, we will analyze the critical
cost performance for the social network where games exist among all users in the
same community. In other words, the security strategy of a user can only influence
the payoff of his/her friends who share at least one common community with this
user. Moreover, the critical cost performance for the situation named “L-triggering
game” will be further analyzed in the later part of this work.
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17.4 Privacy Protection Among Users Belonging to K

Communities

In this section, we study the evolution of users’ behaviors that take the privacy
protection or not over social networks using the evolutionary game theory based
on the community structured population. In the uniform scenario, a social network
withN users, each of whom belongs to exactlyK communities, is considered in this
section. We define the network user state as (p, 1− p), where p is the frequency of
the users those select to take the privacy protection (choose strategy Sp), and 1− p
are the others (choose strategy Sn). Our ultimate goal is to derive the evolutionary
stable network state (p∗, 1 − p∗) that ensures the evolution of security behavior,
i.e., users select strategy Sp more frequently than Sn.

17.4.1 Evolution of Security Behavior on Communities

First, we summarize the key conceptions in the spreading of the privacy protection
behavior when applying evolutionary game into social networks.

Update Assume that users can change their community memberships and security
behaviors to get better user security experience. This change can be considered as
the update.

Imitation In social networks, the imitation of other users’ behaviors plays an
important role in behavior spreading. By times of updates, the behavior with higher
fitness can spread among the users in the network. Specifically, a user’s community
membership and security behavior can bring high fitness for the user, which means
that the security behaviors of this user and his/her friends obtain a relative high level
of privacy protection. Then for the security concern, other users will tend to imitate
this user’s community membership and security behavior. Similarly, the user will
maintain his/her own community membership and security behavior if the current
fitness is rather high, which means that the user will imitate hiself/herself.

Deviation Deviation means that the user does not imitate the community mem-
bership or community membership of the users being imitated, who can be
himself/herself and other users with high fitness. The community and strategy
deviation can also make sense on the behavior spreading. On the one hand, when
a user imitates another one for a better security experience, he/she only imitates
the community membership. This user might not change his/her previous security
behavior, i.e., he/she still not take the privacy protection to just get security benefit
brought by friends, or still take the privacy protection to get more benefit brought
by new communities. On the other hand, a user might only imitate another user’s
security behavior but not change some or all of his/her previous communities
because of interests. These two situation bring security behavior (strategy) deviation
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and community deviation, respectively, as mentioned in Sect. 17.3.1. We still
use u and v to denote the rates of strategy deviation and community deviation,
respectively.

We consider that user i is an imitated user with the probability proportional to its
fitness, which can be given by its payoff relative to the total payoff, i.e., πi/

∑
j πj .

Assume that both the imitation and deviation are implemented independently N
times in each update step. Denote the average number of imitators of user i as ωi .
After one update step, we have

ωi = Nπi∑
j πj

. (17.6)

According to Eq. (17.5), the total payoff can be written as

∑
j
πj =

∑
j

[
1+ α

∑
l 
=j

(
θj · θl

)
f
(
sj , sl

)]

= N + α
∑

j

[∑
l

(
θj · θl

)
f
(
sj , sl

)− (
θj · θj

)
f
(
sj , sj

)]

= N + α
∑

j

∑
l

(
θj · θl

)
f
(
sj , sl

)

− α
∑

j
K
[
(β − 2) bsj sj + (2b − c) sj

]

= N + α
∑

j

∑
l

(
θj · θl

)
f
(
sj , sl

)− αK (βb − c)
∑

j
sj ,

(17.7)

where

f
(
si , sj

) = (β − 2) bsj sl + (b − c) sj + bsl, (17.8)

and the last term in Eq. (17.7) is obtained considering sj sj = sj , ∀j . We consider the
weak selection situation, i.e., α → 0, because of that results derived from the weak
selection often remain as valid approximations for large selection strength [42]. In
addition, the weak selection assumption helps to achieve a close-form analysis of
spreading process and reveal how the behavior spreads over the social network [21].
Then we can rewrite ωi in Eq. (17.6) as

ωi =1+ α
[
(β − 2) b

∑
j

(
θi · θj

)
si sj + (b − c)

∑
j

(
θi · θj

)
si

+ b
∑

j

(
θi · θj

)
sj −K (βb − c) si − (β − 2) b

N

∑
j

∑
l

(
θj · θl

)
sj sl

−2b− c
N

∑
j

∑
l

(
θj · θl

)
sj + K (βb − c)

N

∑
j
sj

]
+ o

(
α2
)
,

(17.9)

where the third equality is according to Taylor’s Theorem and weak selection
assumption with α→ 0.
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Proof Similar to the derivation of Eq. (17.7), we get:

πi = 1+ α
∑

j

(
θi · θj

)
f
(
si , sj

)− αK (βb − c) si . (17.10)

For α = 0, the Taylor expansion of ωi can be given by:

ωi = Nπi∑
j πj

= ωi (0)+ αω(1)i (0)+ o
(
α2
)
, (17.11)

where ω(1)i (0) = ∂ωi (α)/∂a.
According to Eq. (17.5) and (17.7), we have

∑
j
πj |α=0 = N, πi |α=0 = 1, (17.12)

∂πi

∂α
|α=0 =

∑
j

(
θi · θj

)
f
(
si, sj

)−K (βb − c) si, (17.13)

∂
∑
j πj

∂α
|α=0 =

∑
j

∑
l

(
θj · θl

)
f
(
sj , sl

)−K (bβ − c)
∑

j
sj . (17.14)

Then ω(1)i (0) can be calculated as

ω
(1)
i (0) =

N2
[∑

j

(
θi · θj

)
f
(
si, sj

)−K (βb − c) si
]

N2

−
N
[∑

j

∑
l

(
θj · θl

)
f
(
sj , sl

)−K (bβ − c)∑j sj

]

N2

=
∑

j

(
θi · θj

) [
(β − 2) bsisj + (b − c) si + bsj

]−K (βb − c) si

− 1

N

[∑
j

∑
l

(
θj · θl

) [
(β − 2) bsj sl + (b − c) sj + bsl

]

−K (bβ − c)
∑

j
sj

]

= (β − 2) b
∑

j

(
θi · θj

)
sisj + (b − c)

∑
j

(
θi · θj

)
si

+ b
∑

j

(
θi · θj

)
sj −K (βb − c) si

− (β − 2) b

N

∑
j

∑
l

(
θj · θl

)
sj sl − b − c

N

∑
j

∑
l

(
θj · θl

)
sj

− 1

N

∑
j

∑
l

(
θj · θl

)
sl + K (bβ − c)

N

∑
j
sj .
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Then we can rewrite ωi in Eq. (17.11) as

ωi =1+ α
[
(β − 2) b

∑
j

(
θi · θj

)
sisj + (b − c)

∑
j

(
θi · θj

)
si

+ b
∑

j

(
θi · θj

)
sj −K (βb − c) si − (β − 2) b

N

∑
j

∑
l

(
θj · θl

)
sj sl

−2b − c
N

∑
j

∑
l

(
θj · θl

)
sj + K (βb − c)

N

∑
j
sj

]
+ o

(
α2
)
.

This completes the proof of Eq. (17.9).

To find out the ESS of the system state dynamic, we let p denote the frequency
of the users those select to take the privacy protection. As assumed previously, there
exist two situations in the update process of the social network state, one is the
imitation of another user’s community membership and security decision or the
maintenance of his/her own, and the other is the deviation. So we need to analyze
the effect of imitation and deviation on the average change in p. Because of that the
average value of p is constant, the two effects must cancel [39]. Then we can get

〈
p̂
〉
imi +

〈
p̂
〉
dev = 0, (17.15)

where
〈
p̂
〉
imi and

〈
p̂
〉
dev denote the effect of imitation and deviation, respectively,

and they are both the continuous functions of α.
Next, we consider the weak selection situation that α = 0, and Taylor expansion

of
〈
p̂
〉
imi can be written as

〈
p̂
〉
imi = 0+ α 〈p̂〉(1)imi + o

(
α2
)
, (17.16)

where
〈
p̂
〉(1)
imi is the first derivative of

〈
p̂
〉
imi with α = 0, and o

(
α2
)

is according to

Taylor’s Theorem. We notice that when
〈
p̂
〉(1)
imi > 0, the amount of users who take

the privacy protection due to the imitation increases, which means that the user’s
decision tends to the security behavior. On the contrary, if

〈
p̂
〉(1)
imi < 0, the user’s

decision tends to not taking the privacy protection.

17.4.2 Finding the Critical Ratio

In order to obtain the critical parameter value of cost performance, we must have〈
p̂
〉(1)
imi = 0. The Lemma 17.1 provides the critical cost performance b/c in the limit

of weak selection.

Lemma 17.1 In a social network with N users, every user belongs to exactly K
communities. There are two strategies Sp and Sn for users. The state of the social
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network is given as S = (s,Θ). Interactions are only allowed among users sharing
communities in common. For each user, the payoff matrix is given by (17.4). The
critical cost performance that keeps the neutral stationary state, i.e., the frequencies
of users selecting strategies Sp and Sn approaches stable state, is given by

(
b

c

)∗
= Num
Den

, (17.17)

In Eq. (17.17),

Num = −K〈f1〉0 +
K

N
〈f2〉0 + 〈f3〉0 −

1

N
〈f5〉0, (17.18)

Den =− βK〈f1〉0 +
βK

N
〈f2〉0 + 〈f3〉0

+ (β − 1) 〈f4〉0 −
2

N
〈f5〉0 −

β − 2

N
〈f6〉0,

(17.19)

where

f1 =
∑

i
si , f2 =

∑
i,j
si sj , (17.20a)

f3 =
∑

i,j

(
θi · θj

)
si , f4 =

∑
i,j

(
θi · θj

)
sisj , (17.20b)

f5 =
∑

i,j,l

(
θj · θl

)
sisj , f6 =

∑
i,j,l

(
θj · θl

)
sisj sl, (17.20c)

In Eqs. (17.18) and (17.19), the angular bracket with a subscript zero represents the
average value among all possible states S. Take f3 for instance,

〈∑
i,j

(
θi · θj

)
si

〉
0
=
∑

S

(∑
i,j

(
θi · θj

)
si |α=0

)
· q(0)S , (17.21)

where qS denotes the probability that the network is in state S [39].

Proof We pursuit the stable state by calculating
〈
p̂
〉
imi, which can be given by

〈
p̂
〉
imi =

∑
S

〈
p̂
〉
S
qS, (17.22)

where
〈
p̂
〉
S

denotes the average number of users take strategy Sp (take the privacy
protection) in a given state S. Then rewrite Eq. (17.22) by introducing the Taylor
expression for both

〈
p̂
〉
S

and qS at α = 0, we can obtain

〈
p̂
〉
imi
= α

N

∑
S

(∑
i
si
dωi

dα
|α=0

)
· q(0)S + o

(
α2
)
. (17.23)
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Notice that the sum part of Eq. (17.23) denotes the average of
∑
i si

dωi
dα
|α=0

among all possible states S. Similar to the definition in Eq. (17.21), we express
this average value by an angular bracket with a subscript zero referring the weak
selection situation (α = 0):

∑
S

(∑
i
si
dωi

dα
|α=0

)
· q(0)S =

〈∑
i
si
dωi

dα

〉

0
. (17.24)

We plug Eq. (17.9) into
∑
i si

dωi
dα

and get

∑
i
si
dωi

dα
=−K (βb − c) f1 − K (βb − c)

N
f2 + (b − c) f3

+ (β − 1) bf4 − 2b − c
N

f5 − (β − 2) b

N
f6,

(17.25)

where fi (i = 1, 2, · · · , 6) are defined by (17.20). Then plug Eq. (17.25)
into (17.23) and with the definition in (17.24), we can calculate and gain the
first derivative of

〈
p̂
〉
imi as follows

〈p〉(1)imi =
1

N

[
−K (βb − c) 〈f1〉0 −

K (βb − c)
N

〈f2〉0 + (b − c) 〈f3〉0

+ (β − 1) b〈f4〉0 −
2b − c
N

〈f5〉0 −
(β − 2) b

N
〈f6〉0

]
.

(17.26)

As the derivation process above, we can obtain the critical cost performance b/c
when Eq. (17.26) equals zero. The obtained (b/c)∗ can be given by

(
b

c

)∗
= −K〈f1〉0 + K

N
〈f2〉0 + 〈f3〉0 − 1

N
〈f5〉0

f (f1, f2, f3, f4, f5, f6)
, (17.27)

where f (f1, f2, f3, f4, f1, f6) = −βK〈f1〉0+ βK
N
〈f2〉0+〈f3〉0+ (β − 1) 〈f4〉0−

2
N
〈f5〉0 − β−2

N
〈f6〉0. This completes the proof of Lemma 17.1.

Remark 17.1 In a social network whose current state S, i.e., the users’ community
memberships and security behaviors, can change with every update, Eq. (17.17)
shows the threshold of the security protection cost performance. This parameter
can be controlled by the social network manager, either by adjusting the price of the
security service that is related to the parameter c, or by providing sufficient security
services benefit that is related to the parameter b. Note that the expression of cost
performance provided in Lemma 17.1 hold the weak selection situation i.e., α→ 0.
Compared with [39], in which a simplified Prisoner’s Dilemma game was analyzed,
more situations are considered in our game model.
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Next, we will analyze the neutral stationary state and get the more general
expression of cost performance. Theorem 17.1 states the desired term of cost
performance βb/c.

Theorem 17.1 In a social network with N users, every user belongs to exactly K
communities. There are two strategies Sp and Sn for users. Interactions are only
allowed among users sharing communities in common. For each user, the payoff
matrix is given by (17.4). The deviate rates of community membership imitation and
strategy imitation are given by v and u, respectively. The critical cost performance
that keeps the neutral stationary state is given by

(
βb

c

)∗
= 1+ μ+ υ + 3

μ+ υ + 1
· Kυ (μ+ υ + 2)+M (μ+ 1)

Kυ (μ+ υ + 2)+M (μ+ 2υ + 3)
, (17.28)

where υ = 2Nv and μ = 2Nu.

Proof To proof Theorem 17.1, each term of Eq. (17.20) needs to be analyzed.
First, we consider that 〈f1〉0 is the average number of the users taking the privacy
protection and can be given by

〈f1〉0 =
N

2
. (17.29)

For 〈f2〉0, we notice that 〈f2〉0 = N2 Pr
(
si = sj = 1

)
. In a neutral stationary state,

the probabilities of both of user i and j select to take the privacy or not are equal, i.e.,
Pr
(
si = sj = 1

) = Pr
(
si = sj = 0

) = Pr
(
si = sj

)
/2. User i and j are selected

randomly to be analyzed, and the replacement is allowed. So we can get

〈f2〉0 =
N2

2
Pr
(
si = sj

)
. (17.30)

Similar to the analysis above, we can get

〈f3〉0 = N2〈θi · θj1 (si = 1)
〉
0 =

N2

2

〈
θi · θj

〉
0, (17.31)

where 1 (·) is the indicator function, the value of which is 1 if the argument is true,
and 0, otherwise. This indicator function introduces a non-zero contribution. So〈
θi · θj1 (si = 1)

〉
0 indicates the average number of communities that user i and

j belong in common under the situation that the first user i takes the privacy
protection.

〈
θi · θj

〉
0 represents the average number of communities that the two
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users belong in common. With the same analysis for Eqs. (17.29) –(17.31), we can
get other terms of (17.20) as follows.

〈f4〉0 =
(
N2/2

) 〈
θi · θj1

(
si = sj

)〉
0, (17.32a)

〈f5〉0 =
(
N3/2

) 〈
θj · θl1

(
si = sj

)〉
0, (17.32b)

〈f6〉0 =
(
N3/2

) 〈
θj · θl1

(
si = sj = sl

)〉
0. (17.32c)

Equation (17.32a) provides the average number of communities that the two
random users have in common, and the case that the two users select the same
security behavior (both or neither of the users take the privacy protection) give the
non-zero contribution to the average. In both of Eqs. (17.32b) and (17.32c), three
random users are considered. So the sum has N3 terms. Equation (17.32b) provides
the average number of communities that latter two users j and l have in common,
and the non-zero contribution to the average is given by the case that first two users
i and j select the same security behavior. Equation (17.32c) is the average number
of communities that latter two users j and l have in common, and the non-zero
contribution to the average is given by the case that all these three users take the
same security behavior. The three users are selected randomly and with replacement.

Next, we need to calculate the terms obtained in Eqs. (17.29)–(17.32c) in the
case that three users are selected to be analyzed without replacement, i.e., i 
= j and
i 
= j 
= l. For convenience, we give some notations as follows.

ϕ = Pr
(
si = sj |i 
= j

)
, (17.33a)

ψ = 〈
θi · θj |i 
= j

〉
0, (17.33b)

γ = 〈
θi · θj1

(
si = sj

) |i 
= j 〉0, (17.33c)

ξ = 〈
θj · θl1

(
si = sj

) |i 
= j 
= l 〉0, (17.33d)

η = 〈
θj · θl1

(
si = sj = sl

) |i 
= j 
= l 〉0. (17.33e)

In (17.33), ψ is the average number of communities two different randomly picked
users have in common. γ is the average number of communities the two users have
in common given that only users with the same security behavior. For ξ and η, there
are three different users considered. ξ is the average number of communities the
latter two users belonging in common given that only the first two users have the
same security behavior. η is the average number of communities the latter two users
having in common given that there is a non-zero contribution to the average only
when all the three users take the same security behavior.
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Given two users, the probability that the same user is chosen again in the second
selection experience is 1/N . Then we get

Pr
(
si = sj

) = 1

N
+ N − 1

N
ϕ, (17.34a)

〈
θi · θj

〉
0 =

K

N
+ N − 1

N
ψ, (17.34b)

〈
θi · θj1

(
si = sj

)〉
0 =

K

N
+ N − 1

N
γ. (17.34c)

Then for the situation that three users i, j and l are given, the probability that both
of the last two users are same as the first selection is N1 = 1/N2. The probability
that none of the users chosen in the second and third selection is same as the one
in the first selection is N2 = (N − 1) (N − 2)/N2. The probability that the user
chosen in the second selection is same as the one in the first selection, and the third
selection chooses the different user is N3 = (N − 1)/N2. Then we get

〈
θj · θl1

(
si = sj

)〉
0 = N1K +N2ξ +N3 (ψ + γ +Kϕ) , (17.35a)

〈
θj · θl1

(
si = sj = sl

)〉
0 = N1K +N2η + N3 (2γ +Kϕ) . (17.35b)

According to (17.34) and (17.35), terms in (17.27) can be calculated as follows.

〈f2〉0 =
N2

2

(
1

N
+ N − 1

N
ϕ

)
, (17.36a)

〈f3〉0 =
N2

2

(
K

N
+ N − 1

N
ψ

)
, (17.36b)

〈f4〉0 =
N2

2

(
K

N
+ N − 1

N
γ

)
, (17.36c)

〈f5〉0 =
N3

2
[N1K +N2ξ +N3 (ψ + γ +Kϕ)] , (17.36d)

〈f6〉0 =
N3

2
[N1K +N2η + N3 (2γ +Kϕ)] . (17.36e)

By calculating, ϕ is eliminated, and the critical ratio b/c expressed by ψ , γ , ξ
and η is given as

(
b

c

)∗
= ψ − ξ + ψ−γ

N−2

ψ − 2ξ − (β − 2) η + (β − 1) γ + γ−ψ
N−2

. (17.37)
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When the population of the social network is large, i.e., N →∞, we have

(
b

c

)∗
N→∞

= ψ − ξ
ψ − 2ξ − (β − 2) η + (β − 1) γ

. (17.38)

Next, we will calculate each quantity of ψ , γ ξ and η. According to the physical
interpretations of these parameters, we notice that all of them cannot be written
as independent products of the average number of common communities times the
probability of taking the same security decision. In response, we introduce a time
instant that users’ most recent common user being imitated (MRCI). Then if we
fix the time to the MRCI, the community deviations and strategy deviations are
independent. Take γ for instance, if the time to the MRCI of users i and j is T = t ,
then we get

〈
θi · θj1

(
si = sj

) |i 
= j, T = t 〉0
=〈θi · θj |i 
= j, T = t

〉
0 · Pr

(
si = sj |i 
= j, T = t

)
.

(17.39)

So if the time to users’ MRCI is given, we can calculate ψ , γ , ξ and η. Given some
randomly selected users, Lemmas 17.2, 17.3 and 17.4 present the probability of
users’ MRCI, the probability that users have the same security behavior at the time
from their MRCI and the average number of communities two random users have in
common, respectively. These results are summarized from [39], in which detailed
explanation can be found.

Lemma 17.2 Consider a social network with N users. Given two random users,
the probability that their MRCI is at time T = t is

Pr (T = t) =
(

1− 1

N

)t−1 1

N
. (17.40)

Given three random users, the probability that the first merging by imitating the
same user’s communities and strategy happens at time t1 ≥ 1 and the second takes
t2 ≥ 1 more time steps is

Pr (t1, t2) = 3

N2

[(
1− 1

N

)(
1− 2

N

)]t1−1(
1− 1

N

)t2
. (17.41)

When N → ∞, let τ = t/N , τ1 = t1/N and τ2 = t2/N , the distributions of
Pr (T = t) and Pr (t1, t2) are given by

p (τ) = e−τ , (17.42a)

p (τ1, τ2) = 3e−(3τ1+τ2). (17.42b)
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Remark 17.2 Lemma 17.2 indicates that the MRCI for random two and three users
situations both have exponential distributions. The physical meaning of MRCI is the
most current common user affected and imitated by another two users. Note that the
introduction of MRCI is for the independence between the community deviations
and strategy deviations, which makes the calculation of ψ , γ ξ and η defined in
Eq. (17.33) feasible, and time indexes τ , τ1 and τ2 will be removed by the integral.
Equation (17.42a) and (17.42b) hold for the limit of N →∞, which is rational for
social networks with large number of users.

Lemma 17.3 In a social network with N users, every user belongs to exactly K
communities, where K ≤ M . The deviate rate of strategy imitation is given by u.
The probability that two random users have the same strategy at time t from their
MRCI is given by

ϕ (t) = Pr
(
si = sj |T = t

) = 1

2

[
1+ (1− u)2t

]
. (17.43)

When N →∞, let τ = t/N , τ1 = t1/N and τ2 = t2/N , the distributions is

ϕ (τ) = 1

2

(
1+ e−μτ ) , (17.44)

where μ = 2Nu. Given that the first merging by imitating the same user happens
at time t1 ≥ 1 and the second takes t2 ≥ 1 extra time steps, the distribution of the
probability that three random users have the same strategy is given by

ϕ (τ1, τ2) = 1

8

[
(1− e1)

2 (1− e2)+ (1+ e1)
2 (1+ e2)

]
, (17.45)

where e1 = exp
{−μ2 τ1

}
, e2 = exp

{−μ2 (τ1 + τ2)
}
, μ = 2Nu.

Remark 17.3 Equation (17.44) in Lemma 17.3 indicates that at τ < ∞ after the
time when two users imitated the same other user, these two users have the same
security behavior with the probability more than 0.5. The shorter τ is, the larger the
probability is, and the probability is an exponential distribution. Equation (17.45)
has similar properties. Both of the two equations hold for the N → ∞ and u→ 0
limits. N → ∞ is reasonable for most social networks. u → 0 indicates that if
a user imitates another user, he/she selects this user’s security behavior with high
probability. This means that the security behaviors with high fitness can spread over
the social network, which is a favorable state for the social network manager.

Lemma 17.4 Consider a social network with N users distributed overM commu-
nities. Each user belongs to exactly K communities, where K ≤ M . The deviate
rate of community membership imitation is given by v. Then the average number of
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communities that two random users have in common is

ψ (τ) = Ae−υτ + B, (17.46)

where A = K − K2

M
, B = K2

M
and υ = 2Nv.

Remark 17.4 Lemma 17.4 holds for the N → ∞ and v → 0 limits. v →
0 indicates that the users’ community memberships are not stable, and users
participate in the imitated user’s community memberships with high probability.
This corresponds to the scenarios in real social networks, where some communities
providing more comfortable service, such as security and information service, can
attract more and more users due to the interactions and information sharing among
users.

According to Lemmas 17.2 and 17.4, we can calculate that

ψ = 〈
θi · θj |i 
= j

〉
0 =

∫ ∞

0
ψ (τ) p (τ) dτ = A

υ + 1
+ B. (17.47)

Next, we analyze and solve γ defined as (17.33c). Let

γ (τ) = 〈
θi · θj1

(
si = sj

) |i 
= j, T = τ 〉0. (17.48)

As discussed above, the deviations of community membership and security behavior
are independent when the time to the MRCI of users is fixed, i.e., γ (τ) =
ϕ (τ) ψ (τ). Then plug Eqs. (17.44) and (17.46) in and we can get

γ =
∫ ∞

0
ϕ (τ) ψ (τ) p (τ) dτ

= 1

2

(
A

υ + 1
+ A

μ+ υ + 1
+ B

μ+ 1
+ B

)
.

(17.49)

Then we need to calculate ξ , for which three users i, j and l are considered. As
defined in Eq. (17.33d), ξ indicates the amount of communities the latter two users
having in common given that the first two users have the same security behavior, for
three distinct random users. For any three random users, they must have an MRCI.
Let T (i, j) be the time up to the MRCI of i and j , and T (j, l) be the time up to the
MRCI of j and l. We define that

ξ (τ1, τ2) =
〈
θj · θl1

(
si = sj

) |i 
= j 
= l, T1 = τ1, T2 = τ2
〉
0, (17.50)

where T1 and T2 denote the time of the first and second merging by imitating other
users happen, respectively. As mentioned before, the community deviations and the
strategy deviations are independent if the time to the MRCI is fixed. Therefore,
ξ (τ1, τ2) can be expressed as a product. By looking back the time into the past,
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Fig. 17.2 Three cases of imitated users for three distinct random users i, j and l by looking back
the time into the past. (a) T (i, j) = τ1,T (j, l) = τ1 + τ2. (b) T (i, j) = τ1 + τ2, T (j, l) = τ1.
(c) T (i, j) = τ1 + τ2, T (j, l) = τ1 + τ2

there are three cases shown in Fig. 17.2 for the same imitated users of three distinct
users i, j and l as follows.

1. user i and j have the same imitated user first, and then they have the same
imitated user with l:

ξ (τ1, τ2) = ϕ (τ1)ψ (τ1 + τ2) ; (17.51)

2. user j and l have the same imitated user first, and then they have the same
imitated user with i:

ξ (τ1, τ2) = ϕ (τ1 + τ2) ψ (τ1) ; (17.52)

3. user i and l have the same imitated user first, and then they have the same imitated
user with j :

ξ (τ1, τ2) = ϕ (τ1 + τ2) ψ (τ1 + τ2) . (17.53)
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Each of the three cases happens with probability 1/3, so we can get ξ as

ξ =1

3

∫ ∞

0
dτ1

∫ ∞

0
p (τ1, τ2) (ϕ (τ1) ψ (τ1 + τ2)

+ϕ (τ1 + τ2) ψ (τ1)+ ϕ (τ1 + τ2) ψ (τ1 + τ2)) dτ2

=1

2

[
A

μ+ υ + 3

(
1

υ + 1
+ 1

μ+ 1
+ 1

μ+ υ + 1

)

+ A

υ + 1
+ B

μ+ 1
+ B

]
.

(17.54)

With the similar analysis, we can find η as

η =1

3

∫ ∞

0
dτ1

∫ ∞

0
ϕ (τ1, τ2) (ψ (τ1)+ ψ (τ1 + τ2)

+ψ (τ1 + τ2)) p (τ1, τ2) dτ2

=1

4

[
A

μ+ υ + 3

(
1+ 2

υ + 1
+ 4

μ+ 2
+ 8

μ+ 2υ + 2

)

+ A

υ + 1
+ 3B

μ+ 3

(
1+ 4

μ+ 2

)
+ B

]
.

(17.55)

According to Eqs. (17.47), (17.49), (17.54), (17.55), and (17.38), we can obtain
the critical (b/c)∗ as

(
b

c

)∗
= 1

β

(
1+ μ+ υ + 3

μ+ υ + 1

Kυ (μ+ υ + 2)+M (μ+ 1)

Kυ (μ+ υ + 2)+M (μ+ 2υ + 3)

)
,

which equals to

(
βb

c

)∗
= 1+ μ+ υ + 3

μ+ υ + 1

Kυ (μ+ υ + 2)+M (μ+ 1)

Kυ (μ+ υ + 2)+M (μ+ 2υ + 3)
. (17.56)

For μ→ 0, we have

(
βb

c

)∗
= 1+ υ + 3

υ + 1

Kυ (υ + 2)+M
Kυ (υ + 2)+M (2υ + 3)

. (17.57)

This completes the proof of Theorem 17.1.

Remark 17.5

(1) Properties: Theorem 17.1 gives the critical cost performance (b/c)∗ or (βb/c)∗.
In the equilibrium distribution of the imitation-deviation process, if the cost
performance exceeds this critical value, the users in the social network will
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select the strategy of privacy protection more frequently than the other strategy,
i.e., not take the privacy protection, which will promote the diffusion of
security behaviors among the network. Moreover, consider (βb/c)∗ provided in
Theorem 17.1 as a function ofK/M , and we take the derivative of (βb/c)∗ with
respect to K/M , then get ∂(βb/c)

∗
∂(K/M)

> 0. So (βb/c)∗ increases with increasing
K/M . Hence, for a social network with M communities, the best choice for
social network managers to set the minimize (βb/c)∗ is allowing their users to
belong to only one community, i.e., K = 1.

(2) Feasibility and flexibility: The obtained critical cost performance gives sugges-
tions on privacy protection quality and “pricing” strategy for the social network
managers from the perspective of economics to incentive their users to take the
high quality of privacy protection service. These suggestions are feasible and
realizable to be introduced into the social networks, according to the definitions
of b and c discussed in the previous section. In addition, it is also flexible to
apply these suggestions to the existing social networks, such as WeChat and
Facebook. Specifically, the high quality of privacy protection service for the
users can be more rigorous backstage verification and authorization when some
uncertain users manage to access the personal space, information or photo of
legitimate users. In addition, to improve the security benefit or reduce the cost of
users, some other security related service can also be provided. Take WeChat for
instance, a user can know how many of his/her friends have followed a certain
official account, which is a necessary and helpful message for users to choose
this official account or not. However, this information can only be obtained if
this user has updated his/her APP to the latest version, which can guarantee
safe enough privacy protection to provide such personal information of users’
friends. This service above can only bring benefit and better experience to users
who take the service, and to their friends who also update the APP and take
the service. Therefore, the brought benefit can be considered as the reduction
of cost c, but not as the increasing of b. Meanwhile, in this case, the increasing
cost of users to obtain the service can be measured by the memory occupancy
increment to update the APP.

17.5 Privacy Protection Among Users with L-Triggering
Game

In a social network, the interaction between two users sometimes depends on the
strength of their connection, which could be measured by the number of com-
munities that they have in common. In other words, some interactions, especially
behavior to take security functions, can only happen among users belonging to
multiple common communities. Specifically, user i and j are sharing a close
relationship, which means that they have many interested communities in common.
As a result, most information of user j are accessed for user i. In this case, if
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user i selects the privacy protection, user j ’s personal information even privacy
information can be protected to a great extent. Conversely, if the amount of the
two users’ common communities is really small, for instance, user i and j coming
from different countries just join the same travel community because of their annual
leaves, then the relationship between the two users is actually quite weak and there
is little personal information can be accessed for each other. In this case, user j
cannot benefit from user i’s selection of privacy protection.

In response, we generalize the model, in which the users’ interaction happens as
long as they have at least one communities in common, into an L-triggering game
situation in this section. In the extended model, users only influence each other
if they have at least a minimum number of common communities, L. In a social
network, if a user taking the privacy protection i meets another user j in θi · θj
communities, then i interact θi ·θj times if θi ·θj ≥ L, otherwise, the game between
them is not triggered. We call this mechanism as L-triggering game. We notice that
L = 1 degenerates to the previous model. The analysis of cost performance at the
end of this section indicates that large values of L lead to that users with security
behavior are more imitative in choosing with whom to imitate. Next, we will analyze
the impact of L-triggering game on the critical cost performance.

17.5.1 L-Triggering Game

Given 1 ≤ L ≤ K . When L = 1 the model is same as of Sect. 17.4. Then the fitness
of user i formulated as Eq. (17.5) can be rewritten as

πi = 1+ α
∑

j 
=i χij
(
θi · θj

) [
(β − 2) bsisj + (b − c) si + bsj

]
, (17.58)

where χij = 1 if θi · θj ≥ L, and χij = 0, otherwise.
We notice that ϕ (τ), which indicates the distribution of the probability that two

random users have the same security behavior at the time τ from their MRCI, and
ϕ (τ1, τ2), the distribution of the probability that three random users have the same
security behavior, are unchanged. However, ψ (τ) = 〈

θi · θj |i 
= j, T = τ
〉
0 now

changes to ψ̂ (τ ) = 〈
χij θi · θj |i 
= j, T = τ

〉
0, which denotes the average number

of communities that two random users have in common when they have at least
L communities in common. Consequently, ψ , γ , ξ and η will all change with the
same physical interpretation, but under the constrain that related users have at least
L common communities, which can be rewritten as

ψ̂ =
∫ ∞

0
ψ̂ (τ ) p (τ) dτ , (17.59a)

γ̂ =
∫ ∞

0
ψ̂ (τ ) ϕ (τ ) p (τ) dτ , (17.59b)
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ξ̂ = 1

3

∫ ∞

0
dτ1

∫ ∞

0

(
ϕ (τ1) ψ̂ (τ1 + τ2)+ ϕ (τ1 + τ2) ψ̂ (τ1)

+ϕ (τ1 + τ2) ψ̂ (τ1 + τ2)
)
p (τ1, τ2) dτ2,

(17.59c)

η̂ = 1

3

∫ ∞

0
dτ1

∫ ∞

0
ϕ (τ1, τ2)

(
ψ̂ (τ1)+ ψ̂ (τ1 + τ2)

+ψ̂ (τ1 + τ2)
)
p (τ1, τ2) dτ2.

(17.59d)

Next, we will find ψ̂ (τ ). The probability that two users have i ≤ K common
communities at time T = τ from their MRCI is

κi (τ ) =

⎧
⎪⎪⎨
⎪⎪⎩

e−υτ + (
1− e−υτ )/

(
M

K

)
, i = K;

(
1− e−υτ )

(
K

i

)(
M −K
K − i

)
/

(
M

K

)
, i < K.

(17.60)

Then we have

ψ̂ (τ ) = 〈
χij θi · θj |i 
= j, T = τ

〉
0 =

K∑
i=L
iκi (τ ). (17.61)

17.5.1.1 Case 1: L = 1

According to Vandemonde convolution formula, we have

ψ̂ (τ ) =
K∑
i=1

iκi (τ )

= Ke−υτ + (
1− e−υτ )

K∑
i=1

i

(
K

i

)(
M −K
K − i

)
/

(
M

K

)

= Ke−υτ + (
1− e−υτ )K

(
M − 1
K − 1

)
/

(
M

K

)

= e−υτK (1−K/M )+ K
2

M
.

(17.62)

The result is same as the previous model provided in Lemma 17.4.
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17.5.1.2 Case 2: 1 < L ≤ K

Let K̂ = M
K

K∑
i=L
i

(
K

i

)(
M −K
K − i

)
/

(
M

K

)
, we get [39]

ψ̂ (τ ) = e−υτK
(

1− K̂
M

)
+ KK̂
M
. (17.63)

Then the critical cost performance formulated in Eq. (17.57) turns to

(
βb

c

)∗
= 1+ υ + 3

υ + 1

K̂υ (υ + 2)+M
K̂υ (υ + 2)+M (2υ + 3)

, (17.64)

in case that N →∞ and μ→ 0. Notice that K̂ = K , if L = 1.

Remark 17.6 Comparing with Eq. (17.57), the expressions of (βb/c)∗min for non-
triggering game and L-triggering game are much the same, except that K̂ ≤ K , and
the equality hold up if and only if L = 1.

17.5.2 Analysis of Cost Performance

Setting appropriate cost performance can facilitate the security behavior, i.e., the
action of taking the privacy protection, among the entire social network. In this
part, we will find the minimum cost performance that can make users to choose the
privacy protection more frequently than not.

According to the last two sections, we notice that the result of the cost
performance shown in Eq. (17.64) is general, since that the L-triggering game
becomes the non-triggering game when L = 1. So we only analyze the model
with the L-triggering game. (βb/c)∗ given by Eq. (17.64) has a minimum value as
a function of υ. Then let r (υ) = (βb/c)∗, and we take the derivative of r (υ) with
respect to υ. Set the result equal to zero and we get

M

K̂
= υ

2
(
υ2 + 4υ + 4

)

υ2 + 6υ + 6
, (17.65)

according to which, optimal solution υ∗ must satisfies
√
M/K̂ < υ∗ <

√
M/K̂+1.

IfM/K̂ is large, solution υ∗ to obtain the minimum cost performance is

υ∗ =
√
M/K̂, (17.66)
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and the minimum cost performance is

(
βb

c

)∗
min
= 1+

√
M/K̂ + 3

(√
M/K̂ + 1

)2 . (17.67)

Remark 17.7 According to Eq. (17.67), (βb/c)∗min ∼
√
K̂/M , which means that

small values of K̂ and large values of M can promote the evolution of security
behavior among the social network. For non-triggering game situation, i.e., K̂ = K ,
we can notice that given number of communitiesM , it is best if users belong to only
one community (K = 1). The largerK is, it is harder for users who take the privacy
protection to avoid the exploitation by users who do not take the privacy protection.
For L-triggering game situation, K̂ < K if M is fixed according to the definition
of K̂ in Sect. 17.5.1.2, then smaller (βb/c)∗min can be gotten. So large values of L
lead to that users with security behavior are more imitative in choosing with whom
to imitate.

17.6 Performance Evaluation

The critical cost performance is an important parameter that helps the social network
managers to make appropriate security service level and payment mechanism to
encourage their users to accept the security service, and then promote the spreading
of this secure behavior. In this part, we perform numerical simulation experiments
to analyze properties and performances of the critical cost performance and its
influential factors such as the community deviate rate, population and number of
communities of the social network. First, the community deviate rate v reflects
the subjective selectivity for community memberships. If users select communities
depending on their own interest mostly, but not on those users with high fitness,
then v is large. Otherwise, v is small. Then we analyze the effect of the community
deviate rate υ = 2Nv for different selections ofK and L, which denote the number
of communities that a user is allowed to belong to and the minimum number of
common communities that game can be triggered. The population of the social
network is large, i.e., N = 104 (N →∞), and the number of communities is set as
M = 20. We set the strategy deviate rate as u = 10−4 (u → 0). We consider the
population of the network is constant. Simulation results of non-triggering game and
L-triggering game are shown in Fig. 17.3a, b, respectively. As shown in the results,
the critical cost performance (βb/c)∗ is a U-shaped function of community deviate
rate υ. When υ is small, (βb/c)∗ tend to be large and all users belong to the same
community. Conversely, when υ is large, the community affiliations cannot persist
for a long time. Moreover, the results of numerical analysis shown in Eq. (17.66)
and (17.67) can be demonstrated by the simulations results shown in Fig. 17.3.
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Fig. 17.3 Critical cost performance (βb/c)∗ versus the community deviate rate υ = 2Nv. The
population size is large, N = 104. The strategy deviate rate is u = 10−4. The number of
communities isM = 20. (a) Non-triggering game. (b) L-triggering game
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As shown in Fig. 17.3a, we notice that for a fixed number of communities
M , small values of K can facilitate the evolution of the security behavior, which
means that the selection of taking the privacy protection is promoted in the
evolution process. This conclusion is consistent with the numerical analysis shown
in Eq. (17.67). Consequently, when the number of communities is given, the best
choice for users is to belong to K = 1 community. With the increasing of K , it is
hard for users taking the privacy protection to avoid the exploitation by users not
taking the privacy protection. But according the results of the L-triggering game
situation shown in Fig. 17.3b, for K = 3, if L = 2 or L = 3, the critical cost
performance is smaller than K = 1. These results indicate that belonging to more
communities, i.e., K > 1, can also facilitate the evolution of the security behavior
when the game only happen if users have a certain minimum number of common
communities L.

We test the effects of the population of the network on the critical cost
performance, and the results are shown in Fig. 17.4. We set the strategy deviate rate
as u = 10−4, and the community deviate rate as v = 0.01. Parameter settings ofM ,
K andL are shown in the figures. Results illustrate that for both non-triggering game
and L-triggering game cases, the critical cost performance is a convex function
of population N . According to the results, we notice that if the population of the
network is too small, then the effect of spite tends to be strong, so the critical cost
performance (βb/c)∗ has to be very large. If N = 2, it will never pay to users

Fig. 17.4 Critical cost performance (βb/c)∗ versus the population of the social network N under
the non-triggering game andL-triggering game, respectively. The strategy deviate rate is u = 10−4,
and the community deviate rate is v = 0.01



448 17 Cooperative Privacy Protection Among Mobile User

with security behavior, which means that users will not take the privacy protection
to ensure their information security. When N is large, all the communities that
get population by users who take the privacy protection and not take the privacy
protection cannot persist for long. In addition, the lower bound of the critical cost
performance is 1, which is consistent with the result in Eq. (17.67).

As shown in Fig. 17.5, the cost performance decreases as the number of
communitiesM increasing. These results indicate that more communities is helpful
for the spreading of security behavior, which mean that adding community number
will help users to take the privacy protection more frequently.

Next, we simulate the evolution process of the strategies that taking the privacy
protection or not in the social network. The topology we used in this simulation is
based on Flickr, a real-world online social network database. There are 5,899,882
edges connecting 80,513 users in the Flickr graph dataset, and the edge represents
the connection between two users. In order to test the performance of the evolu-
tionary game theoretic framework we proposed, the topology of Flickr is modified.
The communities are established based on the users with most importance in the
network, i.e., with largest values of betweenness or having largest amounts of one-
hop and two-hop neighborhoods. In addition, each user is allowed to join limitedK
communities. If one user belongs to more than K communities, the topology will
be modified as the following rules: The connection between user i and community
k is established with probability

pik = Mk∑
j∈Ji Mj

, (17.68)

where Mk is the number of users belonging to community k, and Ji is the set of
all communities belonged by user i. For the network, we use N = 50, 000 users
in Flickr distributing over M = 15 or M = 20 communities. Each user belongs
to K = 1 or K = 2 communities. The graph structures of the modified Flickr
network are depicted in Fig. 17.6. We set the strategy deviate rate and community
deviate rate as u = 10−4 and v = 0.01, responsibility. The parameter settings for
the eight cases are shown in Table 17.2. In Table 17.2, α = 0.05 and α = 0.2 denote
different intensities of selection, p0 = 0.5 and p0 = 0.4 indicate the different
initialized frequencies of the users who select to take the privacy protection, and
(βb/c)∗ is obtained according to Eq. (17.57). In our simulation, the network updates
100 times. Evolutions of the privacy protection in the network with different cost
performance are shown in Fig. 17.7, in which c = 1, β = 2, and b varies to realize
different βb/c. As accepted, the evolutionary stable state of the frequency of users
taking the privacy protection is 1 when βb/c > (βb/c)∗, otherwise, 0. These results
demonstrate that when the cost performance exceeds the critical cost performance,
then users select to take the privacy protection more frequently than not. In addition,
the evolutionary stable state of the network cannot be achieved if βb/c = (βb/c)∗,
and the frequency is around 0.5.
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Fig. 17.5 Critical cost performance (βb/c)∗ versus the number of communities M . The popula-
tion size of the social network is set as N = 15. The strategy deviate rate is u = 10−4, and the
community deviate rate is v = 0.01. (a) Non-triggering game. (b) L-triggering game
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Fig. 17.6 Graph structures of the modified Flickr network used for simulation. (a) N = 50, 000,
M = 15, K = 1. Case 1, 2, 5, 6. (b) N = 50, 000,M = 20, K = 2. Case 3, 4, 7, 8
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Table 17.2 Parameters
setting of the simulation for
different cases

Case M K L α p0 (βb/c)∗

1 15 1 1 0.05 0.5 1.8416

2 15 1 1 0.2 0.5 1.8416

3 20 2 1 0.05 0.5 1.8850

4 20 2 1 0.2 0.5 1.8850

5 15 1 1 0.05 0.4 1.8416

6 15 1 1 0.2 0.4 1.8416

7 20 2 1 0.05 0.4 1.8850

8 20 2 1 0.2 0.4 1.8850

Remark 17.8 For a social network with given number of community and number of
community that each user is allowed to belong to, the critical cost performance can
be obtained through Theorem 17.1 and Eq. (17.64). Social network managers have
to make appropriate security service b and payment mechanism c to ensure that
βb/c > (βb/c)∗. Then their users can be encouraged to accept the security service,
and the spreading of the secure behavior can be promoted over the social network.
Besides, we notice that the convergence speed of evolutionary stable state depends
on many factors, such asM , the number of communities in the network, andK , the
number of communities each user belongs to. Given the same cost performance, L,
α and p0, small values ofM/K result in fast convergence. This result is reasonable.
On the one hand, if M is fixed, larger values of K increase dimensions of the
relationship among users, then each user might have more new friends, and the
closeness to his/her old friends might be stronger. These changes can help the
spreading of user behaviors, i.e., taking the privacy protection if βb/c > (βb/c)∗,
otherwise, not taking the privacy protection. On the other hand, for fixedK , smaller
M means that there might be more common communities among every two users.
Therefore, the closeness between users tends to be stronger, which can help the
spreading of user behaviors. After social network managers release a new security
service, such as the privacy protection in our work, security service b and cost c
for users are determined. Then the speed of revenue for managers and the set up of
privacy protection at the network platform depend on how fast that all users take the
privacy protection, which is concerned with the convergence speed. It will help the
network managers to make network structure and service plan, and the storage and
processing capacities of network server can also be planed for the improvement of
the user information security.

17.7 Conclusions

In this part, we analyze the privacy protection behaviors of social network users
by a community structured evolutionary game theoretic framework. The players,
strategies, payoff matrix and the topology structure of users are defined in this
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Fig. 17.7 Evolution of the privacy protection in the network with a population of size N =
50, 000. The strategy deviate rate is u = 10−4, and the community deviate rate is v = 0.01.
Other parameters values are set as Table 17.2. (a) Case 1. (b) Case 2. (c) Case 3. (d) Case 4. (e)
Case 5. (f) Case 6. (g) Case 7. (h) Case 8
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framework. We obtain the critical cost performance, which is an important param-
eter that can help social networks to design incentive mechanisms to facilitate the
privacy protection behavior among their users. Simulation results demonstrate that
the proposed theoretic framework is effective in modeling the users’ relationship
and privacy protection behavior.
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Chapter 18
Conclusion

Resource allocation and networking are classic techniques for the future 6G
heterogeneous networks that has gained wide attentions. As a new information
network paradigm for heterogeneous networks, the impact of cooperation and
integration at different network layers needs to be studied and understood. This
book aims to provide a comprehensive cooperation and integration solution for
differentiated QoS and Experience of Service (EoS) requirements. Therefore, in this
book, we deliver a range of technical issues in cooperative resource allocation and
information sharing for the future 6G heterogenous networks, from the terrestrial
ultra-dense networks and space-based networks to the integrated satellite-terrestrial
networks, as well as introducing the effects of cooperative behavior among mobile
users on increasing capacity, trustworthiness and privacy. For the cooperative
transmission in heterogeneous networks, we commence with the traffic offloading
problems in terrestrial ultra-dense networks, and the cognitive and cooperative
mechanisms in heterogeneous space-based networks, the stability analysis of which
is also provided. Moreover, for the cooperative transmission in integrated satellite-
terrestrial networks, we present a pair of dynamic and adaptive resource allocation
strategies for traffic offloading, cooperative beamforming and traffic prediction
based cooperative transmission. Later, we discuss the cooperative computation
and caching resource allocation in heterogeneous networks, with the highlight of
providing our current studies on the game theory, auction theory and deep reinforce-
ment learning based approaches. Meanwhile, we introduce the cooperative resource
and information sharing among users, in which capacity oriented-, trustworthiness
oriented-, and privacy oriented cooperative mechanisms are investigated.

This book gives a systematic and comprehensive introduction to the resource
allocation and networking mechanisms to achieve the cooperation and integration
of the future 6G heterogeneous networks, which can provide reliable research ideas
and directions for relevant personnel. In the future, we will continue to explore the

© The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd. 2023
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459

http://crossmark.crossref.org/dialog/?doi=10.1007/978-981-19-7648-3_18&domain=pdf

 420 4612 a 420 4612 a
 
https://doi.org/10.1007/978-981-19-7648-3_18


460 18 Conclusion

potential cross-layer and multi-dimensional resource allocation and management for
varied and emerging application scenarios requiring high-complexity of computa-
tion and huge-amount of communications, and carry out more in-depth research on
resource allocation mechanisms combined with cutting-edge technology.
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