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CHAPTER I 

INTRODUCTION 

1.1 Background 

Remote sensing images are utilized in a variety of fields, such as traffic 

monitoring [1], urban planning [2], intelligent monitoring [3], and environmental 

monitoring [4]. Advancements in deep learning technology have analysed remote 

sensing images more efficiently and intelligently, minimizing the reliance on 

manual processes. As essential tasks in computer vision, object recognition and 

detection are crucial for extracting meaningful insights from these images [1]. 

In remote sensing, images are captured using various technologies such as 

satellites, aircraft, and, more recently, drone-based sensors. As a result, gathering 

training data for remote sensing is more challenging. However, the unique remote 

sensing image capture methods introduce several vital challenges. Firstly, objects 

within these images are often relatively small compared to the overall image size, 

which limits the amount of feature information available for detection. For instance, 

an object might only cover a few dozen pixels in an image with millions of pixels. 

Second, because objects might appear at different angles, object detection 

algorithms must provide characteristics invariant to rotation to improve detection 

accuracy [5]. The size of objects can vary significantly both within a one image and 

divergent images, such as the difference in scale between a car and an airplane [6], 

[7], [8], [9], [10], [11]. Object detection algorithms must also address noise and 

occlusions [12]. 

Deep learning techniques have proven to be highly effective in this domain 

and have grown to be an important subject of study [13], [14]. These techniques 

generally fall into two categories: supervised and unsupervised. Unsupervised 

learning involves extracting patterns or high-level semantics from unlabelled data. 

In contrast, Convolutional Neural Networks (CNNs) have become a preferred 

choice for supervised object detection across various image processing domains. 

Popular You Only Look Once (YOLO) models have demonstrated outstanding 

performance [15], [16], [17], as they demonstrate a strong capability to 

simultaneously learn regions of interest and contextual information. You Only Look 

Once version 8 (YOLOv8) [18] has demonstrated efficiency and accuracy, 
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achieving high mean average precision. Even though it does not explicitly target 

small object detection, remains a robust benchmark method [19], [20]. 

Remote sensing images frequently exhibit significant variances in target scale 

and are influenced by complicated environmental elements such as lighting and 

weather. These challenges make it difficult to achieve optimal performance when 

applying standard deep learning models directly to these images [21]. In response 

to these challenges, researchers often adjust R-CNN and YOLO-based models to 

meet the specific requirements of remote sensing applications [22]. Xu et al. [23] 

developed an improved remote sensing object detection framework on the basic of 

You Only Look Once version 3 (YOLOv3). This framework incorporates a feature 

enhancement network designed to extract essential features more effectively. When 

tested on remote sensing datasets, the model successfully detected targets. 

Liu et al. [24] proposed an improved model on the basic of YOLOv8, called 

YOLO-SSP, which enhances detection accuracy by optimizing the downsampling 

layers to capture finer details and utilizing hierarchical pooling operations to 

generate weights from different spatial locations. Despite various efforts to enhance 

multi-scale object detection, accurately identifying tightly clustered small targets in 

remote sensing imagery remains a significant challenge. 

Liu et al. [25] introduced the YOLO-extract method, inspired by You Only Look 

Once version 5 (YOLOv5), which utilizes residual concepts to enhance feature 

extraction capabilities. This model integrates the coordinate attention mechanism 

and mixed dilated convolution. To speed up model convergence, Focal-α EIoU was 

used to replace the CIoU loss function. Additionally, an extra detection head was 

incorporated to specifically target small and densely packed objects. 

Zhang et al. [26] enhanced the backbone network's receptive field and feature 

fusion components based on YOLOv5, improving detection performance by 

strengthening the feature representation of small objects. However, enhanced 

multiscale feature extraction typically results in more complex model architectures 

and increased computational demands, which can reduce the model's inference 

speed. Some approaches aim to increase the model's consideration to small objects 

by refining the distance metrics or adjusting the bounding box thresholds. 
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Recent advancements in deep learning have led to the development of highly 

efficient and accurate models, with YOLOv8 [18] emerging as one of the state-of-

the-art (SOTA) methods. YOLOv8 has demonstrated impressive performance, 

achieving high mean average precision on benchmark datasets [19], [20]. However, 

while it excels in detecting medium to large objects, the model encounters 

challenges when applied to small objects, which require specialized techniques for 

optimal detection. 

YOLOv8's architecture, including using the C2f backbone, is effective for 

handling larger objects, but it introduces redundancy in feature extraction, reducing 

computational efficiency. Additionally, the network's neck, responsible for 

connecting the backbone to the detection head, suffers from issues such as 

vanishing gradients and inadequate feature fusion, which hinder the model's ability 

to capture fine-grained details crucial for detecting small objects. Furthermore, the 

detection head lacks specific adaptations that enhance its ability to detect small-

scale objects, leading to reduced accuracy when applied to such tasks. 

Moreover, YOLOv8 employs the Complete Intersection over Union (CIoU) loss 

function, which is well-suited for detecting standard-sized objects. However, CIoU 

struggles with small objects, where the discrepancies between predicted and ground 

truth bounding boxes are minimal. In such cases, CIoU's performance couldn’t be 

better, as it is less effective at handling the subtle differences characteristic of small 

object detection. 

This research addresses these limitations by proposing modifications to 

YOLOv8's architecture, explicitly targeting the backbone, neck, and detection head 

to improve its capability in detecting small objects. In addition, explore alternative 

loss functions better suited for small object detection, aiming to enhance model 

performance in scenarios where objects of interest occupy fewer pixels or are 

partially occluded. The findings of this study aim to contribute to the advancement 

of object detection models by improving their efficiency and accuracy in detecting 

small objects. 

This research presents a proposed YOLOv8-based object detection architecture 

for remote sensing images trained on the DIOR dataset. This research outlines the 

key contributions as follows:  
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1. Firstly, a special C2f layers in the backbone network has been replaced by 

the DCN_C2f module [4], [27], which uses deformation convolution to 

better capture the features of objects with complex shapes and patterns. This 

enables the model to be more adaptive in recognizing objects with irregular 

contours and various visual variations. Subsequently, a more sophisticated 

attention mechanism was integrated into the neck part of the YOLOv8n 

model by incorporating ResBlock_CBAM [28], [29] during the training 

process. This mechanism enables the model to focus more on core features, 

thus improving the precision of object detection. 

2. Secondly, a high-resolution head was added to the head of the model, which 

significantly improved the ability to detect smaller objects. This change 

makes the model more sensitive to subtle details that are often overlooked 

by conventional detection methods. 

3. Finally, the loss function was optimised using the Distance Intersection over 

Union (DIoU) [30] approach to improve the overall performance of the 

model. This approach emphasizes the modelling of spatial relationships 

between predicted and ground truth boxes, improving accuracy and 

efficiency across various detection settings. 

1.2 Problem Identification 

Object detection in remote sensing presents challenges, particularly in 

detecting small, occluded, or multi-scale objects. This often results in missed 

detections or false positives in conventional models like YOLOv8 feature extraction 

and fusion limitations, especially for small objects. The fixed receptive field of 

standard convolutions and inefficient feature fusion processes contribute to poor 

detection accuracy, particularly for small-scale targets. Additionally, the current 

configuration of three detection heads in YOLOv8 must be improved to handle a 

wide range of object sizes, including small targets. 

This research explores advanced loss functions Generalized Intersection over 

Union (GIoU), DIoU, CIoU, Scylla Intersection over Union (SIoU), and Wise 

Intersection over Union (WIoU) to enhance bounding box regression and improve 

the detection of small objects. These loss functions provide better spatial alignment, 

scale consistency, and adaptive weighting for various object sizes, addressing the 
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limitations of traditional IoU-based methods. The aim is to enhance model 

accuracy, particularly for small, occluded, or multi-scale objects, by optimizing the 

regression process and improving overall detection performance. 

1.3 Objectives and Contributions 

This thesis is based on the following key assumptions: 

1. The study proposes modifications to the YOLOv8 architecture, explicitly 

targeting the backbone, neck, and head components. 

2. It seeks to optimize the loss function for improved performance. 

3. The performance of the proposed model will be compared against existing 

models to evaluate its effectiveness. 

1.4 Scope of Work 

To ensure this thesis aligns with the stated requirements, it does not appear to 

modify the subject or scope of work. 

1. The system will be implemented using Python for its development. 

2. The base algorithm is YOLOv8, with modifications applied to the backbone 

and head networks. 

3. The objects to be detected comprise 20 classes, all located on the ground. 

4. The dataset is DIOR, proposed by KeLi et al. [3]. 

5. Data processing includes converting annotations from .xml to YOLOv8 

format (.txt). 

6. Precision, Recall, F1-Score, and mAP@0.5IoU metrics will assess the 

model's performance.  

1.5 Expected Results 

Before experimenting, it is expected that the proposed EXYOLOv8-

Exploration2 model, combined with the DIoU loss function and CSPDarknet 

backbone, will significantly enhance object detection performance regarding 

accuracy, efficiency, and robustness. The model is anticipated to achieve higher 

mean Average Precision (mAP) scores compared to existing methods like GIoU, 

CIoU, SIoU, and WIoU, primarily because of DIoU's ability to directly minimize 

the distance between the center points of predicted and ground truth bounding 

boxes. This focus is expected to result in better localization and spatial alignment 

of detected objects. 
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1.6 Research Methodology 

This thesis employs fundamental research and experimental methods structured 

around distinct work packages (WP). The work packages for this thesis are outlined 

as follows: 

• WP 1: Conducting a comprehensive literature review. 

• WP 2: Selecting and configuring the model. 

• WP 3: Converting the dataset format from .xml to .txt for YOLOv8 format. 

• WP 4: Modifying the backbone by replacing the C2f layer with DCN_C2f. 

• WP 5: Enhancing the neck by adding a ResBlock_CBAM layer. 

• WP 6: Implementing modifications to the head of the network. 

• WP 7: Validating the model using test data. 

• WP 8: Evaluating the model’s performance and assessing accuracy 

improvements using Precision, Recall, F1-Score, and mAP@0.5IoU 

metrics. 

1.7 Structure of Thesis 

The following is the structure of this thesis: 

• CHAPTER II: BASIC CONCEPT 

This chapter provides an overview of this thesis's fundamental 

concepts and algorithms. 

• CHAPTER III: SYSTEM MODEL AND METHOD 

This chapter presents the system design and details the experimental 

methods used in the study. 

• CHAPTER IV: EXPERIMENTAL RESULTS AND ANALYSIS 

This chapter covers the discussion of experimental results and their 

corresponding analysis. 

• CHAPTER V: CONCLUSION 

This chapter summarizes the essential findings and conclusions 

drawn from the research. 

  


