
TABLE V
QUESTIONNAIRE STATEMENT

ID Factor Question
USQ1 PE This system quickly matches cryptocurrencies to

my preferences, saving time
USQ2 PE The system often suggests cryptocurrencies I

already know, reducing its efficiency
USQ3 INF The system explains potential risks for each

recommended cryptocurrency in detail
USQ4 INF It lacks information to help understand the

broader cryptocurrency market context
USQ5 ETU Preferences are easily customizable for tailored

recommendations
USQ6 ETU Some features are hard to locate within the

system
USQ7 PRQ The system’s recommender support more

strategic cryptocurrency investments
USQ8 PRQ Some recommendations seem misaligned with

my entered preferences
USQ9 EOU The explanation of how recommendations are

made is clear and straightforward
USQ10 EOU Excessive irrelevant details make it hard to focus

on key recommendations

Fig. 7. User satisfaction result

preferences accurately so that users are satisfied with the
recommendations.

Although the recommendations fit with the user preferences,
in some recommendation cases, 30% of users are still
unsatisfied because they get cryptocurrency recommendations
that they already know and have invested in. In addition,
the system also has limitations in mitigating major forces
that can affect cryptocurrency prices, such as world economic
conditions, wars, and international outbreaks.

In future research, we will improve CRS’s understanding
of user preferences and enrich LLM with more relevant
data. A comparison using other models, including LLaMA,
Falcon, and Mistral, is also necessary to ensure the optimal fit.
Furthermore, an additional objective is to implement real-time
browsing on LLM, which enables the system to access the
latest data on the Internet. This research can be explored to
have a more significant impact on recommender systems.
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