
classify loitering behavior. The model achieves an accuracy of 
92.65% for trajectory image classification. 

Based on the results, several improvements can be made 
to enhance the proposed method. Expanding the dataset by 
recording videos in more locations could increase the variety 
and complexity of the dataset, improving adaptability to 
different CCTV setups. Additionally, exploring alternative 
methods for trajectory reconstruction, such as applying 
advanced tracking techniques, could lead to more accurate 
trajectory images. The current method is limited to detecting 
only a single person, so improving the detection and tracking 
algorithms to handle multiple individuals is essential for real-
world applications. Moreover, using lightweight models for 
real-time detection and classification would be crucial for 
practical deployment. Future work could enhance the system's 
ability to detect individuals who loiter by remaining still in 
one place for an extended period, integrating this functionality 
into an automated security system with warning notifications. 
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