
response to rapid changes, with predicted values remaining 

marginally higher than actual ones. Finally, Figure 3d 

illustrates predictions for 24 samples (n_samples), where 

predicted values fall slightly below actual values, exhibiting 

the most significant lag while still capturing major trends in 

the data. Despite variations in prediction samples, all 

configurations effectively follow the overall pattern of soil 

moisture fluctuations, particularly during stable periods. 

 

Figure 4 presents a scatter plot comparing actual values 

(x-axis) to predicted values (y-axis) across different 

prediction samples (6, 12, 18, and 24). The analysis reveals 

that the 12-sample model achieves the highest accuracy and 

consistency, with data points clustering closely around the 

ideal prediction line and minimal deviation. In contrast, the 

6-sample model captures the overall trend but exhibits the 

widest spread and highest error, making it the least accurate 

of the four models. The 18-sample model performs well but 

shows minor errors at higher soil moisture levels, slightly 

diminishing its accuracy. The 24-sample model maintains a 

good fit but demonstrates increased variance at higher value 

ranges, indicating a slight drop in precision with longer 

prediction intervals. Overall, the 12-sample model stands out 

as the most reliable for soil moisture prediction, offering an 

optimal balance between accuracy and interval length. 

 

 TABLE I.  ExperimentSummary 

Number of 

Samples 

(n_samples 

Measurement 

RMSE MAE MAPE R2 

6 0.66378 0.53720 0.04753 0.79305 

12 0.46281 0.36648 0.03201 0.89944 

18 0.53350 0.43273 0.03838 0.86652 

24 0.50695 0.39835 0.03431 0.87955 

 

To further evaluate the effectiveness of the GRU model 

across different configurations, Table 1 presents a 

comparison of prediction results from the GRU method. The 

performance metrics used include Root Mean Square Error 

(RMSE), Mean Absolute Error (MAE), Mean Absolute 

Percentage Error (MAPE), and coefficient of determination 

(R²). These metrics collectively indicate that n_samples =12 

is the most effective sample size for prediction, yielding the 

lowest error rates (MAPE, RMSE, MAE) and the highest R² 

value. This sample likely represents an optimal balance 

where the GRU model can predict accurately without 

significant error magnitudes that can arise from either longer 

or shorter sample intervals. 

IV. CONCLUSION 

This study demonstrates the effectiveness of utilizing 

Gated Recurrent Units (GRU) to predict soil moisture levels 

based on environmental data collected through IoT devices. 

By combining soil moisture data with temperature and 

humidity levels, the GRU model can deliver accurate short-

term predictions, crucial for enhancing irrigation efficiency. 

Among various prediction intervals (6, 12, 18, and 24 

samples), the 12-sample model consistently achieves the 

highest accuracy and reliability, striking an optimal balance 

between precision and responsiveness. Comparative analysis 

through performance metrics, including RMSE, MAE, 

MAPE, and R², confirms that the 12-sample model minimizes 

error rates while maximizing prediction quality. These 

findings underscore the potential of GRU-based models for 

real-time soil moisture monitoring, highlighting their 

significance in sustainable agriculture and smart farming 

applications. 
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