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CHAPTER 1

INTRODUCTION

This chapter covers the following subtopics: (1) Rationale, (2) Statement of the Prob-

lem, (3)Objective & Hypothesis, (4) Assumption, (5) Scope and Delimitations, and (6)

Significance of the Study.

1.1 Rationale

The interaction between a drug and a target that alters the function or workflow of the

target is known as drug-target interaction (DTI) [1]. A drug is any chemical substance that

alters an organism’s chemical composition when ingested. The term ’target’ refers to any

biological component (often a protein or nucleic acid) that interacts with the drug, leading

to alterations in chemical conditions. DTI plays a crucial role in the drug development

process, which may take up to 2.6 billion US dollars and at least 17 years to complete

from the original hypothesis to official marketing [2]. The process is long, complex, costly,

and has a low chance of success. In addition, because of their unknown interactions, the

majority of known chemical substances have yet to be utilized as drugs [1]. Therefore, in

recent years, there has been a great deal of interest in the process of understanding how

drugs interact with their targets and how to predict drug-target interactions [2].

Direct laboratory experiments using techniques like high-throughput screening (HTS)

can be used to perform the DTI prediction process [2]. However, the experimental method

in the lab is time-consuming and expensive. Therefore, a new in-silico approach is needed

to address these problems [1]. One approach that can be used is the computational method.

Furthermore, the availability of large volumes of data on drug compounds with hundreds

of potential targets makes computational methods crucial in DTI prediction [2]. Com-

putational methods for DTI are categorized into three approaches: ligand-based, docking

simulation-based, and chemogenomic-based. [3]. Ligand-based approaches and docking

simulations are conventional approaches. Ligand-based approaches are founded on the prin-

ciple that structurally identical molecules exhibit identical properties, so drug molecules

should be able to bind to proteins that have identical molecules. However, this approach

has drawbacks because the interaction predictions are limited to known drug molecules

and proteins [4]. The second approach is based on docking by utilizing the 3D structure of

the protein, but this approach has disadvantages such as the 3D structure of the protein

which is still unknown, and the complexity and requires large computational power [4].

The chemogenomic approach is a solution to the shortcomings of the previous two ap-

proaches. This approach uses drug chemical space information and protein genomic space

and unifies them in the same subspace to infer possible interactions [1]. Several methods
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are often used in chemogenomic approaches, such as statistical methods [5, 6], machine

learning algorithms [7, 8], and deep learning models [9, 10].

In recent years, the use of deep learning has become a frequently used method in DTI

prediction. This is because deep learning architecture can identify hidden or complex pat-

terns or data representations. As such, creating effective deep-learning models is essential

for discovering hit compounds, which serve as potential drugs for therapeutic applications

[11]. Generally, DTI prediction is commonly classified as a classification task [11–13]. This

means only predicting whether a drug interacts with a specific target. However, the pre-

diction results lack a crucial piece of information—the binding affinity value. This value

represents the strength of interaction between a drug and its target pair and is measured

as a continuous numerical value [14]. Predicting drug-target affinity (DTA) provides the

advantage of estimating the interaction strength between a drug and its target, thereby

narrowing the vast search space for potential compounds in drug discovery research [14].

Previous studies have been conducted, showing different results using various drug and

target representations in drug-target affinity prediction using deep learning models. Sev-

eral studies in DTA prediction often utilize drug and protein sequence representations.

Convolutional Neural Networks (CNN) are a popular choice for feature extraction from

these representations, with models like [14–19] achieving notable performance on bench-

mark datasets such as Davis and KIBA. Even though deep learning models have shown

promising results for DTA prediction, many studies often only use simple concatenation

between drug and protein in the interaction modeling. This can lead to some lost interac-

tion information between drugs and proteins. To address this issue, various studies have

integrated attention mechanisms for better representation and interaction modeling be-

tween drugs and proteins [20–22]. The addition of attention mechanisms has shown good

performance in predicting drug-target binding affinity values for sequence-based models.

However, there is still essentially a lack of representation for drug and target sequences

as strings. This is due to the possibility of losing structural details about the drug and

target when employing string representation, which may have an impact on binding affinity

prediction [23]. Several studies have used graphs as drug representations. These studies

employ graph neural network models (GNN) such as graph convolutional Network (GCN),

graph attention network (GAT), and graph isomorphism network (GIN) with various mod-

ifications and additional drug and protein representation [23–26].

Although several studies have performed DTA prediction with drug representation as

a graph, there are still some issues that need to be addressed. Firstly, many studies have

used the GAT model for drug representation learning because of its attention mechanism.

However, GAT models have a static attention mechanism. The weight, or ”rank,” given

to other nodes in the graph when computing the representation of a query node does not

change depending on the query node itself. In other words, GAT looks at every rela-

tionship between a query node and other nodes in the graph in the same way, without
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considering the specific context of the query node. To overcome this limitation, GATv2

was introduced as a dynamic attention variant, providing more expressive representations

by adapting attention weights to the query node’s context [27]. Secondly, even though cur-

rent graph-based methods already implemented GATv2 models for DTA prediction. These

studies commonly represent drugs as a single graph structure. They overlook multi-scale

structural information in drugs, including the features of individual amino acids, motifs,

and various levels of structural elements such as atoms and molecular fragments. These

interactions and correlations across different structural scales are essential in drug-target

protein interactions. [28]. Additionally, substructures like motifs hold specific significance

in drug molecules, such as NO2 and carbon ring groups, which are susceptible to muta-

genesis. [24]. Thus, motifs deserve more attention as additional drug representations. By

integrating both the overall drug molecular graph and drug motifs graph, DTA models can

achieve a more comprehensive representation of the drug, leading to improved prediction

accuracy.

Thirdly, protein sequence representations are long, with each character describing an

amino acid. Conventional models are unable to process contextual relationships within

sequences, missing critical relationships between preceding and following amino acids. Bi-

directional LSTM (BiLSTM) networks provide an alternative approach by considering

both future and past contexts, enabling a more thorough understanding of the protein’s

structural and functional properties [29]. Lastly, recent interaction modeling often relies

on straightforward concatenation of drug and protein representations. This simplified ap-

proach overlooks the complex relationships between drug graphs and protein sequences,

potentially ignoring the essential interaction information that might influence binding affin-

ity. Moreover, many current methods only focus on capturing interactions between two

representations, drug graphs, and protein sequences without accounting for other poten-

tial representations (e.g., drug motifs). This limitation hinders the model’s capability to

fully capture the complex interactions between various drug and target features, possibly

affecting binding affinity value. To address these issues, alternative approaches can lever-

age advanced attention mechanisms to incorporate additional representations and employ

interaction models capable of processing multiple inputs in a more context-aware manner.

To address the limitations mentioned above, this study proposes an enhanced GATv2

model to obtain more informative features from the drug graph node and combine it with

drug multi-scale features, enabling dynamic adaptation and selective fusion of features

across different representation scales. For protein sequences, BiLSTM is utilized to capture

long-term dependencies and contextual associations, leveraging its ability for sequence

data. We also incorporate a new attention mechanism inspired by the AttentionDTA

study [22], called a three-way multi-head attention mechanism. We modified the attention

mechanism to handle additional input, which is the drug motif graph. this mechanism

enables each representation to focus on critical regions of the other, effectively highlighting
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important cross-interactions. This comprehensive framework aims to overcome existing

limitations and improve the accuracy and interpretability of DTA predictions.

1.2 Statement of the Problem

In the DTA prediction field, common baseline models include GCN and GAT. GCN ag-

gregates information from adjacent nodes to capture the structural properties of molecules,

while GAT introduces an attention mechanism that assigns varying weights to adjacent

nodes, focusing on the most relevant node features. For protein sequence embedding, base-

line models include 1DCNN, which extract local sequential features, and LSTM, which

capture long-term dependencies. These models are compared against the proposed BiL-

STM, which incorporates bidirectional processing to capture both future and past contexts

in the protein sequences, providing a more in-depth understanding of protein functional-

ity. Meanwhile, several benchmark state-of-the-art methods include GraphDTA, MSGNN-

DTA, and DGDTA. GraphDTA was a pioneer in applying graph-based representations to

DTA prediction, laying the foundation for subsequent graph neural network applications.

MSGNN-DTA utilizes multi-scale features, enabling the model to capture structural de-

tails at various molecular levels. DGDTA, on the other hand, incorporates the dynamic

attention capabilities of GATv2, enhancing the representation of molecular graphs.

Despite the progress made in DTA prediction, there are still key challenges that hinder

both accuracy and interpretability. Many existing methods employ the GAT model for

drug feature learning which has static attention mechanisms, overlooks important contex-

tual relationships in protein sequences, and relies on a single-scale representation (e.g.,

only a molecular graph or only a SMILES string sequences). Additionally, simple concate-

nation approaches used in these models often overlook the critical cross-interaction details

between the drug and the target protein, limiting their predictive power. To address these

limitations, this study introduces an improved method by integrating GATv2 for dynamic

attention in drug molecular graphs, incorporating motif-level graphs for multi-scale drug

representation, and leveraging BiLSTM for more comprehensive protein sequence encod-

ing. A three-way multi-head attention mechanism is used for the interaction modeling

between drug and protein features, capturing subtle yet crucial interaction cues that can

improve predictive performance and Interpretability. Therefore, based on the problems

discussed above, the research questions formed are:

1. How does the performance of an improved DTA prediction using a dynamic graph

attention network (GATv2) and BiLSTM with multi-scale features and a three-way

multi-head attention mechanism?

2. How do the parameters of the proposed method affect the model performance in

DTA prediction?
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3. How does the proposed method performance result in predicting DTA compared to

baseline models, and in comparison to state-of-the-art models on benchmark datasets

such as Davis and KIBA?

1.3 Objective and Hypotheses

1.3.1 Objectives

1. Developing an improved DTA prediction model using GATv2 and BiLSTM with

multi-scale features and a three-way multi-head attention mechanism.

2. Evaluating the impact of the proposed method’s parameters on DTA prediction per-

formance.

3. Comparing the performance of the proposed method to baseline and state-of-the-art

models on benchmark datasets such as Davis and KIBA.

1.3.2 Hypotheses

This study hypothesizes that combining GATv2 for drug encoding, multi-scale fea-

ture representation, BiLSTM-based protein encoding, and a three-way multi-head atten-

tion mechanism will enhance DTA performance. This hypothesis is supported by several

premises. Recent studies have demonstrated that GATv2, with its dynamic attention mech-

anism, outperforms traditional static attention models by adapting the attention weights

based on the specific context of the query node, leading to more expressive and context-

aware representations of drug molecular graphs. Additionally, drug molecules have complex

hierarchical structures, ranging from atomic to molecular levels, and previous research has

indicated that multi-scale feature representations capture both the global structure and lo-

cal motifs, thereby improving predictive accuracy. For protein sequence encoding, BiLSTM

networks have proven effective in capturing long-range dependencies and contextual rela-

tionships within sequences, which is essential for understanding the interactions between

proteins and drugs. Moreover, integrating attention mechanisms for the drug-target inter-

action has shown success in capturing subtle, yet crucial, cross-interactions between drug

and target features, leading to more accurate affinity predictions. Based on these premises,

it is expected that the proposed model will outperform baseline and existing benchmark

methods, as demonstrated by improved evaluation metrics on widely recognized datasets

such as Davis and KIBA.

1.4 Assumption

In this study, several key assumptions were made. First, the Davis and KIBA datasets

are representative of real-world drug-target interactions and provide reliable binding affin-
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ity measurements. Second, the motifs identified for drug substructures accurately capture

crucial substructures relevant to binding between drug and target. Third, the BiLSTM

model can effectively model contextual relationships within protein sequences, thereby

enhancing the quality of protein encoding. Lastly, it is assumed that the model’s hyperpa-

rameters, including those for GATv2, BiLSTM, and the attention heads, can be optimized

within the available computational constraints to yield robust and reliable predictions.

1.5 Scope and Delimitation

1. Principal Variables

(a) The independent variables include drug molecular graphs, drug motif graphs

representing drug multi-scale structural features, and protein sequences encoded

using BiLSTM.

(b) The dependent variable is the predicted binding affinity, represented as a con-

tinuous value.

2. Locale

The study utilizes two benchmark datasets, Davis and KIBA, which are publicly

available and widely used in DTA research.

3. Time frame

Research activities, including dataset preprocessing, model development, training,

and evaluation, are conducted within the designated research period.

4. Delimitation

This study is limited to sequence-based protein representations using BiLSTM; it

does not incorporate structural protein data, such as 3D conformations. In addition,

drug molecules are represented as 2D molecular graphs and motif graphs, excluding

3D conformational or quantum chemical properties. The focus remains on integrating

multi-scale features and dynamic attention mechanisms to enhance DTA prediction

accuracy. The scope is limited to computational methods and does not include real-

scenario experimental validation of the predicted affinities for the drug and target.

1.6 Significance of the Study

This study makes a pivotal contribution to drug discovery research by improving the ac-

curacy and interpretability of DTA predictions. By integrating GATv2 for dynamic graph

attention, multi-scale drug motif graphs, and BiLSTM for comprehensive protein sequence

encoding, the proposed model captures intricate relationships between drugs and their tar-

gets more effectively than existing methods. The incorporation of a three-way multi-head
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attention mechanism further refines interaction modeling, allowing for the identification

of critical substructures and amino acid residues that influence binding affinity. These

improvements not only boost predictive performance but also deepen the understanding of

drug and target interactions, thereby providing more information for decision-making dur-

ing the early phases of drug development. Additionally, the study offers practical benefits

by reducing the time and costs associated with experimental drug screening, enabling phar-

maceutical researchers to prioritize promising candidates for further validation. Ultimately,

this work sets the foundation for future methodological innovations in the cheminformatics

and bioinformatics field, promoting more efficient and targeted approaches to discovering

effective therapeutic agents.
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