
1. INTRODUCTION  

Forests are an important aspect in mitigating the impacts of climate change because they act as 

carbon sinks, absorbing and storing carbon dioxide from the atmosphere [1], [2], [3]. Monitoring, reporting, 

and policy-making efforts to lower greenhouse gas emissions depend on accurate assessments of carbon 

stocks [4], [5]. The manual tree measurements used in traditional carbon stock calculation methods are 

expensive, time consuming, and have a restricted geographic coverage [5], [6]. According to recent 

estimates, between 1988 and 2014, Russian woods stored about 354 teragrams (Tg) of carbon annually. 

This number, which is noticeably 47% greater than what was previously recorded in national inventories, 

shows how much carbon these forests can store because of their higher biomass density and larger forest 

area.  

The combination of Unmanned Aerial Vehicles (UAVs) and Google Earth Engine (GEE) has 

emerged as a promising remote sensing technology advancement that could help overcome the drawbacks 

of traditional approaches. A supplementary dataset for tracking vegetation dynamics is made possible by 

GEE's broad, global-scale coverage and UAVs' high-resolution, localized observations [7], [8]. Higher 

spatial resolution carbon stock estimations can be obtained by researchers by utilizing both approaches, 

particularly in remote or intricate forest environments [9], [10]. For instance, merging GEE and UAV data 

enables the integration of large-scale geographical patterns with fine-grained vegetation data, which is 

crucial for precise and scalable carbon monitoring [11], [12], [13]. Studies have demonstrated that GEE and 

UAVs have different color and texture extraction characteristics. GEE often uses conventional methods to 

isolate and transform raw data into a set of measurable attributes that can be used for further analysis, a 

process known as feature extraction techniques that may not be able to capture the same level of detail in 

texture analysis, where UAV-based uses advanced algorithms to improve classification accuracy [14], [15]. 

Therefore, combining the different properties of these two data will be a contribution that can support 

similar research in the future.  

Convolutional Neural Networks (CNN), in particular, are deep learning models that have proven 

to be efficient tools for evaluating data from GEE and UAVs. CNNs excel at extracting hierarchical spatial 

properties, which describe CNNs' capacity to identify patterns at various granularities, including edges, 

forms, and intricate structures in pictures and makes them ideal for tasks involving images, such as 

classification and segmentation [16]. Previous research has demonstrated the ability of CNNs in biomass 

estimation, with a good R2 value of 0.943 [8].  

CNN models outperformed conventional machine learning techniques in previous studies on 

individual tree biomass estimation in natural secondary forests using WorldView-3 images and aerial laser 



scanning (ALS) data, with RMSE values ranging from 7.47 kg to 36.83 kg and R2 values between 0.68 and 

0.85 [17]. Precision forestry and carbon management techniques were advanced by the combination of ALS 

with high resolution photography, which increased classification accuracy and gave comprehensive spatial 

AGB distribution. The integration of spectral and texture information, the requirement for sizable labelled 

datasets, and the dangers of overfitting persist despite CNNs' ability to detect spatial patterns [16].. In order 

to improve CNN's scalability and generalization across various forest types, settings, and regions in carbon 

stock estimation, these problems must be resolved.  

For non-spatial data analysis, Multilayer Perceptrons (MLP) have been employed extensively in 

addition to CNNs. Although MLP works well with numerical and categorical data, it is not as useful for 

tasks like carbon stock estimation because it cannot capture the spatial hierarchy of image data. 

Nonetheless, a hybrid strategy that combines MLPs for examining supplementary spectral or textural 

characteristics with CNNs for extracting spatial features may have a great deal of promise for increasing 

prediction accuracy [18], [19].  

In the calculation of carbon stocks based on remote sensing, feature extraction is essential. Green 

Chromatic Coordinates (GCC), Color Vegetation Index (CVI), and Excess Green Index (ExG) are a few 

examples of vegetation indicators that offer useful spectral data about biomass and vegetation health. In a 

similar vein, texture attributes such as homogeneity, contrast, and entropy provide information on structural 

complexity and spatial patterns, both of which are connected to carbon storage capability [20], [21]. 

Although previous studies have demonstrated that each of these traits can increase prediction accuracy on 

its own, little is known about how to integrate and use them with CNNs [22], [23].  

This study fills a major gap in current approaches by evaluating the integration of color and texture 

information with CNNs for carbon stock classification. It does this by investigating the best way to combine 

spectral and spatial characteristics to increase classification accuracy. In contrast to earlier research that 

concentrated on texture features like homogeneity, contrast, and entropy or spectral indices like ExG, CVI, 

and GCC independently, this study employs CNN architecture to capture the structural complexity and 

spectral richness of vegetation by integrating these features into a single, unique framework. Furthermore, 

this study aims to determine the most effective method for classifying carbon stocks by methodically 

comparing the performance of several feature combinations, including color-based, texture-based, and 

mixed features. This research is a new addition to the field of remote sensing-based carbon stock estimation, 

as it contributes to the development of an integrated approach that combines spectral and textural features 

for carbon stock classification, identifies the most effective classification method by comparing feature 

combinations, and proposes a scalable framework that combines UAV and GEE data for applications in 

various forest ecosystems. As far as the authors are concerned, in order to classify carbon stocks, the 



majority of previous research either only looks at textural features or spectral indices, without merging the 

two in a cohesive manner. By connecting local high-resolution observations with global-scale data, the 

complementing datasets from UAVs and GEE enhance this research and provide a precise and scalable 

approach that can be tailored to different forest ecosystems. In addition to increasing the precision of carbon 

stock monitoring, this novel framework is anticipated to be a significant step in the development of 

dependable and scalable approaches to tackle climate change issues and guide conservation policies. 


