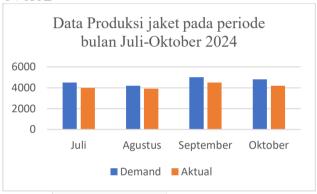
ISSN: 2355-9365

Perancangan Aktivitas 5s Untuk Meminimasi Waste Motion Pada Proses Produksi Jaket Di CV Xyz Dengan Pendekatan Lean Manufacturing

1stMuhammad Rezki Assidiq Fakultas Rekayasa Industri Telkom University Bandung, Indonesia rezkisidiq@student.telkomuniversity. ac.id 2nd Pratya Poeri Suryadhini Fakultas Rekayasa Industri Telkom University Bandung, Indonesia pratya@telkomuniversity.ac.id 3rd Ayudita Oktafiani
Fakultas Rekayasa Industri
Telkom University
Bandung, Indonesia
ayuditaoktafiani@telkomuniversity.
ac.id


CV XYZ merupakan sebuah perusahaan manufaktur di bidang produksi jaket yang mengalami pemborosan waste motion dalam proses produksi. Kondisi aktual perusahaan sering terlambat dalam pengiriman kepada pelanggan. Hal ini menyebabkan complain pelanggan kepada perusahaan. Oleh sebab itu diperlukan identifikasi terkait penyebab dari permasalahan pada lantai produksi. Identifikasi penyebab akar permasalahan dilakukan menggunakan fishbone diagram. Selain itu dilakukan identifikasi jenis dan penyebab waste menggunakan value stream mapping (VSM) dan Process Activity Mapping (PAM). Usulan yang akan dilakukan untuk dapat mengurangi aktivitas yang mengakibatkan waste motion pada proses produksi jaket CV XYZ adalah penerapan aktivitas 5S (seiri, seiton, seiso, seiketsu, dan shitsuke). Perancangan seiri berupa red tag dan log register, perancangan seiton berupa tempat pentimpanan item serta labeling, perancangan seiton berupa tempat penyimpanan alat kebersihan serta checklist aktivitas kebersihan, perancangan seiketsu berupa pembuatan jadwal piket dan aturan kerja 5S, dan perancangan shitsuke yaitu pembuatan display, checksheet audit serta aktivitas pembiasaan 5S. Sehingga dengan adanya usulan aktivitas 5S operator dapat lebih produktif.

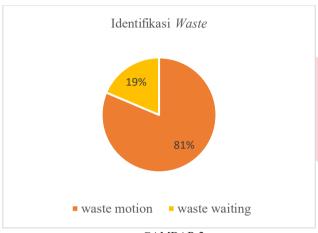
Kata kunci— Waste Motion, Lean manufacturing, 5S, Efisiensi Produksi, Value Stream Mapping, Process Activity Mapping

I. PENDAHULUAN

Pemborosan dalam proses produksi menjadi tantangan utama yang sering dihadapi oleh industri manufaktur, terutama di tengah persaingan pasar yang semakin kompetitif. Konsep lean muncul sebagai solusi yang bertujuan agar menghilangkan pemborosan (waste) dan meningkatkan nilai tambah (value added) dalam produk atau jasa. CV XYZ adalah sebuah perusahaan manufaktur yang bergerak di bidang industri konveksi, dengan fokus pada produksi jaket. Perusahaan ini menerapkan sistem make to order (MTO), yaitu sistem produksi di mana produk hanya akan diproduksi setelah ada pesanan yang diterima (Hapsari et al., 2018). Lokasi produksi di CV XYZ terpisah dengan area pengemasan, proses produksi jaket dilakukan di satu bangunan, sementara pengemasan dilakukan di bangunan lain dalam kompleks yang sama. Berikut merupakan realisasi

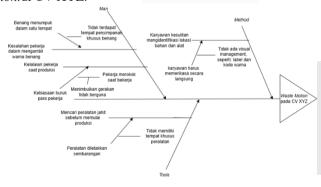
produksi jaket pada periode bulan Juli s.d. November 2024 di CV XYZ

GAMBAR 1 Data Realisasi Produksi Jaket


Berdasarkan Gambar 1 dapat dilihat bahwa produksi jaket tidak tercapai pada periode bulan Juli sampai Oktober 2024, Hal ini memerlukan analisis lebih lanjut untuk mengetahui faktor-faktor yang menyebabkan tidak tercapainya target produksi jaket. Aktivitas – aktivitas yang menyebabkan proses produksi jaket tidak tercapai dapat dianalisis secara detail dan diklasifikasi berdasarkan jenisnya menggunakan pemetaan aktivitas proses (*Process Activity Mapping*/ PAM). Melalui identifikasi menggunakan PAM, setiap aktivitas diklasifikasikan ke dalam tiga kategori yaitu: *Value Added* (VA), *Necessary Non-Value Added* (NNVA), dan *Non-Value Added* (NVA). Berdasarkan Tabel I-1 hasil PAM dapat diketahui waktu dari masing-masing aktivitas.

TABEL 1 Pengelompokan Aktivitas

Aktivitas	Waktu (Detik)	Persentase
VA	836.87	59%
NNVA	206.25	14%


NVA 381.16 27%

Berdasarkan Tabel 1 aktivitas *Value Added* (VA) sebesar 59%, sedangkan aktivitas *Non-Value Added* (NVA) sebesar 27%. Data ini menunjukkan masih adanya aktivitas yang tidak memberikan nilai tambah dalam proses produksi, sehingga memerlukan upaya meminimasi. Terdapat dua jenis *waste* diantaranya *motion* dan *waiting*. Pada Gambar I-2 merupakan persentase masing-masing *waste* berdasarkan hasil identifikasi menggunakan PAM.

GAMBAR 2 Persentase Waste

Berdasarkan Gambar 2 terdapat informasi mengenai persentase masing-masing waste pada proses produksi jaket. Diagram tersebut menunjukkan bahwa waste terbesar yaitu waste motion sebesar 81%. Akar penyebab pemborosan motion dapat diketahui dengan melakukan analisis menggunakan diagram fishbone. Gambar 3 merupakan diagram fishbone untuk dapat mengurangi pemborosan motion. di CV XYZ.

GAMBAR 3 Fishbone Diagram

Berdasarkan Gambar 3 analisis permasalahan pemborosan *motion*, ditemukan bahwa beberapa faktor utama berkontribusi signifikan terhadap pemborosan. Permasalahan ini muncul akibat kendala pada manusia, metode, dan peralatan, serta berdampak besar terhadap pemborosan *waste*

II. KAJIAN TEORI

Bab ini akan membahas tentang teori – teori pendukung untuk penyelesaian permasalahan yaitu adanya waste motion

pada proses produksi jaket. Berikut teori pendukung pada penelitian ini :

A. Lean Manufacturing

Lean manufacturing adalah metode memaksimalkan produksi dengan melakukan aktivitas penghilang pemborosan agar bisa meningkatkan kepuasan pelanggan secara menyeluruh (Buer et al., 2021).

B. Tools Lean Manufacturing

Terdapat beberapa jenis *tools lean manufacturing* diantaranya yaitu:

a. Value Stream Mapping (VSM)

Value stream adalah aliran utama semua aktivitas dari value added dan non value added activity yang diperlukan untuk menghasilkan suatu produk, yaitu aliran produksi dari raw material sampai ke tangan konsumen dan aliran desain dari konsep sampai launching produk. Value stream bekerja pada gambaran besar, bukan hanya pada proses individu, dan meningkatkan keseluruhan aliran, bukan hanya mengoptimalkan bagian-bagian kecil (Rother & Shook, 2003).

b. Process Activity Mapping (PAM)

Process Activity mapping merupakan alat untuk memetakan keseluruhan aktivitas secara detail guna mengurangi pemborosan ditempat kerja sehingga kualitas produk dan layanan dapat meningkat, mempercepat proses dan dapat mengoptimalkan biaya. Process activity mapping berfungsi mengidentifikasi nilai tambah dan tidak memberikan nilai tambah dari setiap aktivitas dalam proses produksi dan mengevaluasi setiap aktivitas agar bisa berjalan secara efektif dan efisien (Mahendra et al., 2023, p. 51).

c. Pemborosan (waste)

Menurut Suhartono dalam Ponda, (2022) *Toyota Production System* (TPS) terdapat tujuh *waste* dalam proses produksi yaitu:

- 1. Overproduction
- 2. Waiting
- 3. Transportation
- 4. Excess Processing
- 5. Inventories
- 6. Motion
- 7. Defects

d. Aktivitas 5S

5S menurut (Fitra et al., 2023) adalah:

- 1. Seiri (ringkas)
- 2. Seiton (rapi)
- 3. Seiso (resik)
- 4. Seiketsu (rawat)
- 5. *Shitsuke* (rajin)

III. METODE

A. Tahap Pengumpulan Data

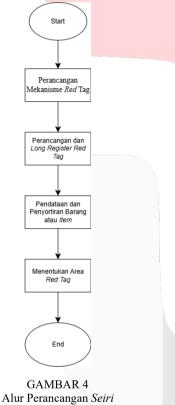
Tahapan pengumpulan data dilakukan untuk mencari informasi atau data yang dibutuhkan dalam penyelesaian permasalahan. Terdapat dua jenis data historis yang didapatkan yaitu:

1. Data primer

ISSN: 2355-9365

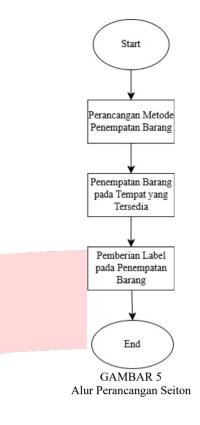
Data primer merupakan data atau informasi yang diperoleh perusahaan dan melakukan pengamatan langsung pada lantai produksi.

2. Data sekunder

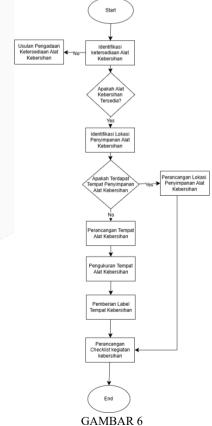

Data sekunder merupakan data atau informasi berdasarkan historis perusahaan. Data ini terdiri dari data permintaan produksi jaket, data pekerja, dan data mesin yang digunakan.

B. Tahap Perancangan Usulan

Tahap ini merupakan tahapan perancangan usulan perbaikan terhadap permasalahan yang ada. Berikut penjelasan dari perancangan aktivitas 5S:

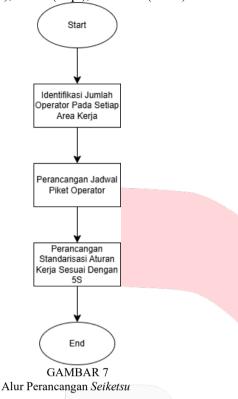

1. Seiri (Ringkas)

Seiri merupakan prinsip awal dari aktivitas 5S. Aktivitas ini dilakukan dengan mekanisme *red tag*, melakukan perancangan *red tag* dan *log register red tag*. Selanjutnya dilakukan pendataan barang pada area produksi.

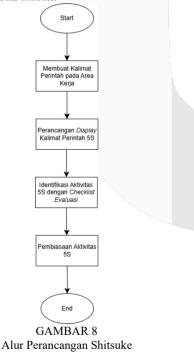

2. Seiton (Rapi)

Seiton merupakan tahapan penempatan barang yang digunakan secara rapi dan beraturan. Seiton memungkinkan operator dengan mudah mengembalikan barang ke tempat sesuai dengan penggunaannya.

3. Seiso (Resik)


Seiso merupakan tahapan pembersihan terhadap barang yang telah disusun dengan rapi agar tidak kotor, termasuk pembersihan area kerja dan lingkungan kerja serta mesin.

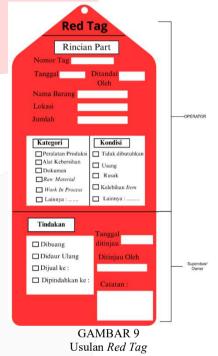
Alur Perancangan Seiso


4. Seiketsu (Rawat)

Seiketsu merupakan tahapan menjaga lingkungan kerja seterlah melakukan ketiga aktivitas sebelumnya yaitu Seiri (Ringkas), Seiton (Rapi), dan Seiso (Resik).

5. Shitsuke (Rajin)

Tahapan ini membuat para pekerja harus disiplin dalam menjalankan metode kerja tersebut walaupun tidak dalam pengawasan atasan.


IV. HASIL DAN PEMBAHASAN

Berikut merupakan rancangan usulan dari metode 5S : A. *Seiri (ringkas)*

Tahapan ini merupakan langkah awal pada metode 5S yaitu melakukan pemilahan barang pada area kerja. Penumpukan barang pada area kerja sering terjadi, sehingga area kerja terlihat berantakan dan menghambat pencarian barang yang diperlukan. Pemilahan barang bertujuan agar barang yang masih dibutuhkan atau sudah tidak dibutuhkan, sehingga dapat memudahkan operator dalam menggunakan barang dan meminimalisir gerakan yang tidak diperlukan. Berikut merupakan hasil rancangan seiri:

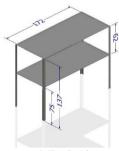
1. Perancangan red tag

Perancangan *red tag* harus memuat prosedur yang terorganisir dengan memuat informasi yang mudah dipahami oleh operator. Perancangan *red tag* terdapat *input* informasi tanggal, kondisi barang, nama barang, alasan serta tindakan yang akan dilakukan terhadap barang. Gambar 9 merupakan usulan perancangan *red tag*.

2. Perancangan Log Register

Perancangan *log register* dilakukkan setelah pelabelan barang dengan *red tag*. Operator akan menuliskan informasi berdasarkan data yang tertera pada *red tag* kedalam *log register*. *Log register* bertujuan agar catatan barang yang sudah diberi label akan tetap terpantau. Tabel 2 merupakan usulan rancangan *log register*.

TABEL 2 Usulan *Log Register*


	Log Register Red Tag								
No	Tanggal Tag	Nama Item	Nomor Item	<u>Deskripsi</u> Item	Kategori Item	Kondisi Item	Tindakan	Nama <u>Peninjau</u>	Tanggal Target
1	2/5/2025	Skipping	1	berupa tali dengan 2 gagang	alat olahraga	baik	dijual ke A	Supervisor	15/07/25

B. Seiton (Rapi)

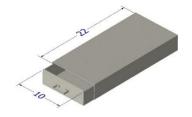
Langkah berikutnya adalah memastikan setiap barang diletakkan sesuai dengan posisi yang telah ditentukan. Hal ini bertujuan agar barang atau peralatan produksi selalu siap digunakan pada saat akan dibutuhkan. Berikut merupakan usulan pada tahap *seiton* :

 Rancangan Usulan Tempat Penyimpanan Area Red Tag

Rancangan rak tempat penyimpanan barang pada area red tag berupa rak dua susun. Rak susun bagian dua bertujuan untuk menyimpan item yang berukuran ≤ 70cm sedangkan rak susun bagian atas untuk menyimpan barang-barang yang berukuran kecil agar terlihat lebih rapi. usulan rak tempat penyimpanan red tag area memiliki dua rak susun dengan ukuran tinggi meja 137 cm, panjang meja 172 cm, dan lebar meja 72 cm. Perancangan ini menggunakan persentil 50th. Gambar 10 merupakan desain usulan rak tempat penyimpanan red tag.

GAMBAR 10 Usulan Desain Rak Penyimpanan *Red Tag Area*

2. Rancangan Usulan Rak Penyimpanan Benang Rancangan rak penyimpanan memiliki kapasitas 63 penyangga benang dengan ukuran lebar rak 40 cm, tinggi rak 30 cm, dan jarak antara penyangga terakhir dengan bagian bawah 14,5 cm. Sehingga dapat menyimpan benang obras yang tinggi nya sekitar 11,5 cm. Diperlukan sekitar empat rak penyimpanan benang yang akan ditempatkan, dua di lantai satu dan dua di lantai dua. Bagian bawah setiap penyangga benang dilengkapi dengan tatakan yang berfungsi sebagai tempat penyimpanan benang obras. Operator dalam melakukan pengecekan ketersediaan benang setiap tiga hari sekali agar setiap warna benang yang dibutuhkan selalu tersedia pada rak penyimpanan. Gambar 11 merupakan usulan rak penyimpanan benang



GAMBAR 11 Usulan Desain Rak Penyimpanan Benang

Rancangan Usulan Tempat Penyimpanan Gunting di Area cutting

ukuran panjang tempat penyimpanan disesuaikan dengan panjang gunting yaitu 21cm maka panjang tempat penyimpanan adalah 22 cm. Tempat penyimpanan gunting digunakan untuk menyimpan

gunting yang biasanya disimpan sembarang tempat oleh operator setelah melakukan *cutting* pada pola. Gambar 12 merupakan desain usulan tempat penyimpanan gunting.

GAMBAR 12

Usulan Desain Tempat Penyimpanan Gunting

4. Rancangan Usulan Tempat Penyimpanan Peralatan di Area Sewing

Lebar kotak usulan rancangan disesuaikan dengan lebar telapak tangan operator yaitu dengan 10 cm. Panjang kotak disesuaikan dengan panjang obeng yaitu 25cm sehingga panjang kotak adalah 27 cm. Kotak terdiri atas empat bagian yaitu pada rak pertama berisi pinset dan benang, bagian kedua berisi gunting cekris, bagian ketiga berisi gunting, dan bagian akhir berisi obeng. Tempat penyimpanan ini akan dikhususkan untuk menyimpan peralatan agar tidak disimpan sembarang tempat oleh operator setelah digunakan. Gambar 13 merupakan desain usulan tempat penyimpanan peralatan area sewing.

GAMBAR 13
Usulan Desain Tempat Penyimpanan peralatan area sewing

5. Rancangan Usulan Tempat Penyimpanan Kain Selesai *Cutting*

panjang keranjang rancangan ini disesuaikan dengan panjang rentang tangan kedepan operator yaitu 72 cm. Tinggi keranjang disesuaikan dengan panjang lengan atas operator yaitu 33 cm. Lebar keranjang disesuaikan dengan penjang lengan bawah operator yaitu 45 cm. Tempat penyimpanan ini dikhususkan untuk menyimpan kain yang selesai di *cutting* dan akan di proses pada area *sewing* agar operator mudah dalam mengambil kain yang ingin di *sewing* dan area produksi menjadi lebih rapi. Kain yang akan disimpan pada kotak ini sesuai dengan model atau jenis yang akan di produksi. Gambar 14 merupakan desain usulan tempat penyimpanan kain selesai dilakukan *cutting*.

GAMBAR 14 Usulan Desain Tempat Penyimpanan Kain Selesai *Cutting*

6. Usulan Rancangan Label

Perancangan label berdasar pada *American National Standards Institute* (ANSI) Z535. Perancangan label berguna untuk mengidentifikasi dan memperingatkan pekerja tentang suatu bahaya. Gambar 15 merupakan contoh dari usulan label.

Barang tidak digunakan kurang dari tiga bulan Barang tidak digunakan lebih dari tiga bulan

GAMBAR 15 Contoh Usulan Label Area *Red Tag*

C. Seiso (Resik)

Seiso atau resik merupakan kegiatan membersihkan area kerja, khususnya area produksi dari CV XYZ yang harus dibersihkan secara berkala dengan prosedur dan inspeksi secara berkala bertujuan untuk menghilangkan sampah, debu dan dapat mengidentifikasi kerusakan pada peralatan, serta menghilangkan pemborosan pada area kerja oleh operator.

1. Perancangan Usulan Tempat Penyimpanan Alat Kebersihan

Perancangan tempat penyimpanan ini bertujuan agar peralatan kebersihan mudah ditemukan dan terorganisir dengan baik sehingga operator tidak meletakkan alat kebersihan disembarang tempat. Perancangan ini juga dilakukan agar peralatan kebersihan dapat terpelihara dengan baik dan menjaga agar alat-alat kebersihan bertahan lama. Gambar 16 merupakan usulan tempat penyimpanan alat kebersihan.

GAMBAR 16

Usulan Desain Tempat Penyimpanan Alat Kebersihan

2. Merancang Aktivitas Kebersihan

Aktivitas kebersihan ini berupa lembar pemantauan (*checklist* kebersihan) untuk seluruh operator yang akan melakukan kebersihan pada area produksi (area *cutting* dan area *sewing*). Tujuan dibuat *checklist* agar dapat

digunakan sebagai panduan untuk memastikan seluruh area kerja tidak terlewatkan pada saat dilakukan pembersihan. Aktivitas ini diusulkan karena pada kondisi aktual CV XYZ tidak terdapat kegiatan kebersihan yang diterapkan pada pekerja yang menyebabkan *tools* tidak tertata rapi pada area kerja.

D. Seiketsu (Rawat)

Tahap seiketsu berguna mempertahankan kegiatan 3S (seiri, seiton, dan seiso) yang sudah dirancang seperti pengelompokan dan penyimpanan tools serta pembersihan area produksi. Berikut merupakan usulan penerapan seiketsu.

1. Pembuatan Jadwal Piket Kebersihan

Penyusunan jadwal piket operator dilakukan karena pada kondisi aktual di perusahaan tidak terdapat jadwal piket yang dapat mengatur untuk melakukan pembersihan secara teratur. Kegiatan usulan ini bertujuan agar tidak ada operator yang tidak disiplin dan tidak melaksanakan tanggung jawabnya. Kegiatan ini hanya meliputi aspek kebersihan umum pada area kerja sementara untuk pembersihan peralatan merupakan tanggung jawab masing-masing operator. Jadwal piket dibagi menjadi dua area yaitu area *cutting*, dan *sewing*.

2. Perancangan Aturan Kerja 5S

Aturan kerja dibuat bertujuan agar para pekerja dapat berperilaku sesuai dengan rancangan kinerja. Terdapat beberapa faktor yang mempengaruhi perilaku pekerja dalam melakukan tugasnya, yaitu faktor individu dan faktor lingkungan.

E. Shitsuke (Rajin)

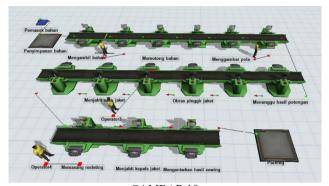
Tahap kelima pada metode 5S adalah *shitsuke*, tahap ini merupakan pembiasaan kepada seluruh pekerja agar terus dapat mempertahankan prosedur yang sudah diterapkan pada aktivitas 4S (*Seiri, Seiton, Seiso*, dan *Seiketsu*). *Shitsuke* bertujuan memberikan motivasi kepada para pekerja agar terus melakukan kegiatan perawatan terhadap area kerja, taha ini mendorong para pekerja agar dapat melakukan perbaikan berkelanjutan dan membuat pekerja mematuhi aturan yang sudah ditetapkan. Berikut merupakan usulan penerapan *shitsuke*:

1. Pembuatan Display 5S

Pembuatan *display* digunakan sebagai media komunikasi *visual* dalam usulan penelitian ini. *Display* yang akan dirancang memuat informasi mengenai penerapan 5S. Pembuatan *display* 5S merupakan alat untuk dapat menyampaikan informasi agar dapat dipahami dan dilihat oleh semua operator. Gambar 17 merupakan usulan perancangan *display*.

GAMBAR 17 Usulan Rancangan *Display*

Evaluasi Metode 5S Menggunakan Checksheet Audit


Usulan selanjutnya pada tahap *shitsuke* adalah melakukan evaluasi terhadap penerapan 5S menggunakan *checksheet* Evaluasi ini bertujuan untuk mengevaluasi efektivitas pekerja dalam menerapkan 5S dan bisa mengidentifikasi kepatuhan terhadap aturan yang sudah ditetapkan Perusahaan, sehingga dapat mengidentifikasi permasalahan potensial, meningkatkan kinerja, dan kepatuhan pekerja. Penilaian audit dilakukan secara *cross function*, sehingga tim audit tidak boleh melakukan penilaian terhadap departemennya sendiri (Surya Wiranata & Adi, 2022), hal ini bertujuan meminimalisir kecurangan terkait penilaian audit 5S.

3. Pembiasaan

Sebelum melakukan pembiasaan program 5S, seluruh karyawan harus memahami terlebih dahulu konsep 5S sendiri, maka pada pembiasaan 5S dilakukan usulanusulan sebagai berikut: pelatihan, *briefing*, dan penghargaan.

F. Hasil simulasi

Simulasi kondisi aktual dan usulan berdasarkan pada *Current State Value Stream Mapping* dan *Future State Value Stream Mapping*. Simulasi dilakukan menggunakan aplikasi FlexSim agar mengetahui hasil waktu dan *output* yang dihasilkan pada kondisi aktual dan usulan. Gambar 18 merupakan hasil dari simulasi.

GAMBAR 18 Hasil Simulasi Usulan

Simulasi ini dilakukan untuk melihat optimalisasi dari usulan yang rancang berdasarkan *output* dan waktu proses produksi jaket. Tabel 3 merupakan perbandingan waktu sebelum dan sesudah perancangan usulan.

Perbandingan Waktu Sebelum dan Sesudah Perancangan

Aktivitas	Total Waktu	Total Waktu	Gap	
	Kondisi	Kondisi	Waktu	
	Current	Future	(detik)	
	(detik)	(detik)		
VA	836.87	836.87	0	
NVA	381.16	71.06	310.10	
NNVA	206.25	196.74	9.51	
Total Lead	1424.74	1104.67	319.61	
Time				

Berdasarkan Tabel 3 diperoleh hasil pengurangan *lead time* pada *non value added* yang disebabkan oleh *waste motion* sebesar 310.10 detik. Maka, dengan adanya perancangan usulan aktivitas 5S dapat mengurangi aktivitas yang tidak memberikan nilai tambah sebesar 81%. *Output* produksi mengalami peningkatan dalam sehari. Sebelum adanya penerapan aktivitas 5S perusahaan dalam sehari dapat menghasilkan *output* sebanyak 151 buah dan mengalami pengingkatan setelah menerapkan aktivitas 5S sebesar 2 buah sehingga menjadi 153 buah dalam sehari.

V. KESIMPULAN

Berdasarkan hasil dari penelitian Tugas Akhir yang sudah dilakukan dapat disimpulkan bahwa perancangan yang dilakukan untuk mengurangi aktivitas yang disebabkan oleh waste motion pada Tugas Akhir ini dapat dilakukan menggunakan metode 5S (Seiri, Seiton, Seiso, Seiketsu, dan Shitsuke). Berikut beberapa usulan aktivitas 5S:

- 1. Tahap *seiri*, perancangan *red tag* yang dilakukan untuk item yang sudah disortir berdasarkan kegunaannya, penentuan area *red tag*, serta usulan perancangan *log register* untuk item yang ada di area *red tag*.
- 2. Tahap *seiton*, melakukan perancangan tempat penyimpanan item yang sudah berlabel *red tag*, tempat penyimpanan benang, tempat penyimpanan gunting di area *cutting*, tempat penyimpanan peralatan di area *sewing*, dan tempat penyimpanan kain selesai *cutting*, serta merancang label untuk masing-masing tempat penyimpanan.

- 3. Tahap *seiketsu*, melakukan perancangan tempat penyimpanan alat kebersihan, merancang tempat sampah (organik dan anorganik), serta pembuatan *checklist* kebersihan.
- 4. Tahap *seiketsu*, melakukan perancangan jadwal piket kebersihan dan peraturan aktivitas 5S.
- 5. Tahap *shitsuke*, melakukan perancangan *display* mengenai aktivitas 5S, *checksheet* audit dan melakukan pembiasaan aktivitas 5S (pelatihan, *briefing*, serta *penghargaan*).

Berdasarkan perbandingan pada simulasi menggunakan FlexSim, didapatkan hasil simulasi kondisi aktual dan kondisi usulan bahwa pada aktivitas non value added berkurang sebesar 310.10 detik yang disebabkan oleh waste motion, sedangkan aktivitas necessary non value added berkurang sebesar 9.51 yang disebabkan karena aktivitas mengambil gunting sudah dihilangkan. Usulan aktivitas 5S dapat mengurangi aktivitas yang disebabkan oleh waste motion sebesar 81%, sehingga output produk yang dihasilkan sebelum adanya usulan yaitu 151 buah dalam sehari mengalami peningkatan setelah dilakukan usulan menjadi 153 buah dalam sehari.

REFERENSI

Buer, S. V., Semini, M., Strandhagen, J. O., & Sgarbossa, F. (2021). The complementary effect of lean manufacturing and digitalisation on operational performance. *International Journal of Production Research*, 59(7), 1976–1992.

- https://doi.org/10.1080/00207543.2020.1790684
- Fitra, P. A., Suryadhini, P. P., & Prasetio, M. D. (2023). Usulan Penerapan Aktivitas 5S Untuk Mengurangi Waste Motion Pada Proses Produksi Kelambu Tidur di PT. XYZ dengan Pendekatan Lean Manufacturing. *EProceedings of Engineering*, 10(2), 1293–1303.
- Hapsari, R. K., Azinar, A. W., & Sugiyanto, S. (2018). Rancang Bangun Sistem Produksi dan Persediaan UMKM. *Jurnal Nasional Teknologi Terapan (JNTT)*, 2(1), 179. https://doi.org/10.22146/jntt.39171
- Mahendra, A., Susetyo, J., & Wibowo, A. H. (2023). Usulan Perbaikan Waktu Proses Produksi Menggunakan Metode 5S, Value Stream Mapping, dan Process Activity Mapping Pada UD Nok Susi. *Jurnal REKAVASI*, 11(1), 48–57.
- Ponda, H., Fatma, N. F., & Siswantoro, I. (2022). Usulan
 Penerapan Lean Manufacturing Dengan Metode Value
 Stream Mapping (Vsm) Dalam Meminimalkan Waste
 Pada Proses Produksi
 Pembuat Ban. Heuristic, 23–42.
 https://doi.org/10.30996/heuristic.v19i1.6568
- Rother, M., & Shook, J. (2003). Learning to See Value Stream Mapping to Create Value and Eliminate Muda. Lean Enterprise Institute Brookline, 102. https://doi.org/10.1109/6.490058
- Surya Wiranata, F., & Adi, P. (2022). Perancangan dan Implementasi Role Model pada Ruang Kerja dengan.... *Jurnal Titra*, 10(2), 609–616.