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Strawberries hold significant economic value in Indonesia 

due to their high demand and nutritional benefits. Traditional 

harvesting methods, which rely on manual visual inspection, are 

often inefficient and prone to errors. Real-time multi-object 

detection presents a promising solution to enhance automation 

in harvesting, ripeness classification, and post-harvest 

processing. This study assesses the performance of four 

YOLOv11 variants—YOLOv11N, YOLOv11S, YOLOv11M, 

and YOLOv11L—in detecting strawberries across five quality 

and ripeness categories: Unripe, Half Ripe Grade B, Half Ripe 

Grade A, Fully Ripe Grade B, and Fully Ripe Grade A. A 

dataset originally consisting of 3,055 high-resolution strawberry 

images was expanded through data augmentation to 7,940 

images. These were subsequently split into training (7,330 

images), validation (305 images), and testing (305 images) sets. 

All models were trained under identical conditions utilizing the 

AdamW optimizer, cosine annealing learning rate scheduling, a 

batch size of 16, and an input resolution of 640×640 pixels. 

Performance was evaluated based on Precision, Recall, F1-

Score, mAP@0.5, mAP@0.95, and inference time. The results 

indicate that YOLOv11N achieved the best overall 

performance, with a Precision of 0.869, Recall of 0.878, F1-Score 

of 0.87, mAP@0.95 of 0.830, and the fastest inference time of 3.6 

ms, rendering it suitable for real-time deployment. YOLOv11M 

provided a balanced trade-off between accuracy and speed, 

while YOLOv11S offered competitive accuracy with lower 

inference latency. YOLOv11L demonstrated strong detection 

capabilities but with the slowest inference time. These findings 

affirm the efficacy of YOLOv11-based models in facilitating 

scalable and intelligent systems for precision agriculture. 

Keywords—strawberry, computer vision, deep learning, object 

detection, classification, YOLO. 

I. INTRODUCTION  

The adoption of artificial intelligence (AI) and deep 
learning technologies has led to a significant transformation in 
modern agriculture, enabling automation that improves 
productivity and decision-making [1]. One notable application 
of AI in this domain is real-time fruit detection, which 
enhances harvest efficiency and reduces post-harvest losses 
[2]. Manual fruit harvesting remains labor-intensive and error-
prone, making it less effective for large-scale agricultural 
operations [3]. Inconsistent human performance further 
complicates manual inspection, emphasizing the need for 
automation to ensure quality and yield optimization [4]. 

Strawberries are particularly difficult to detect due to their 
soft texture, variable sizes, and multiple ripeness stages [5]. 
Harvesting strawberries at incorrect maturity levels can lead 
to reduced shelf life and financial losses [6]. The tendency of 
strawberries to grow in clusters contributes to frequent 

occlusions that hinder accurate detection [7]. Environmental 
conditions such as lighting variability and complex 
backgrounds further reduce model reliability in open-field 
settings [8]. 

Recent advances in deep learning, especially 
convolutional neural networks (CNNs), have shown high 
effectiveness in object detection for agriculture [9]. Among 
these, the YOLO (You Only Look Once) framework has 
become a leading solution due to its balance of speed and 
accuracy [10]. Earlier versions like YOLOv3 and YOLOv4 
have been applied in fruit detection but often struggle with 
complex field conditions [11]. Enhanced versions such as 
YOLOv7 and YOLOv11 offer architectural improvements 
that improve both detection precision and computational 
efficiency [12]. 

Nevertheless, challenges remain in deploying these 
models for real-time multi-object strawberry detection due to 
occlusions, varied lighting, and intra-class variability [13]. To 
address this, a comprehensive evaluation of YOLOv11 
variants is needed to understand their performance in practical 
agricultural environments [14]. This study investigates four 
YOLOv11 variants, YOLOv11L, YOLOv11M, YOLOv11S, 
and YOLOv11N using key performance metrics including 
precision, recall, F1-score, mAP (0.5 and 0.95), and inference 
time [15]. 

The structure of this paper is organized as follows. Section 
II reviews related work relevant to the study. Section III 
describes the proposed method, including dataset preparation, 
model training procedures, and evaluation metrics. Section IV 
presents the experimental results along with a detailed 
performance analysis. Finally, Section V concludes the paper 
by summarizing key findings and outlining potential 
directions for future research. 

II. RELATED WORK 
Recent developments in deep learning have significantly 

advanced the application of YOLO-based models in fruit 
detection for precision agriculture. Azizah et al. [6] proposed 
a hybrid framework combining YOLOv7 and 
EfficientNetV2S for strawberry quality and ripeness 
classification. Their model successfully categorized 
strawberries into five distinct classes under various natural 
lighting conditions, achieving precision, recall, and F1-score 
of 0.99. However, the system required a two-stage process 
involving local inference (180 ms) and cloud-based post-
processing (1–2 s), making it less suitable for real-time edge 
deployment. Akhyar et al. [16] introduced Lightning 
YOLOv4, a lightweight model optimized for detecting surface 
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defects in sawn lumber, which maintained high accuracy and 
low computational cost for real-time inspection in industrial 
settings. Aziz et al. [17] evaluated several YOLOv8 models 
for skipjack fish quality assessment, showing strong accuracy 
(mAP 93–95%) but moderate inference speeds (20–30 ms), 
emphasizing the need to match architecture to application 
constraints. Similarly, Akhyar et al. [18] compared YOLOv5, 
v6, and v7 in lobster surveillance, focusing on behavioral 
detection under controlled aquaculture conditions. Wu et al. 
[19] enhanced YOLOv5 with CBAM to detect pomegranates 
in complex orchard scenes, achieving 92.2% mAP with a 115 
ms inference speed, highlighting improvements in small and 
occluded object detection. 

In comparison to these prior works, the YOLOv11 models 
proposed in this study demonstrated competitive or superior 
performance across various metrics. The YOLOv11N variant 
achieved an mAP@0.5 of 94.4% and F1-score of 0.87, with 
an extremely low inference time of 3.6 ms, enabling real-time 
edge deployment. YOLOv11M also performed well with 
mAP up to 96.4% and inference time under 6 ms. These results 
outperform or match prior models in accuracy while offering 
significantly faster detection speeds—up to 30× faster than 
attention-based models such as YOLO-Granada. Moreover, 
unlike Lightning YOLOv4 [16], which was limited to binary 
classification, YOLOv11 supports fine-grained multi-class 
ripeness grading under real-field conditions. These 
comparisons confirm that YOLOv11N and M deliver high 
accuracy and superior speed, making them well-suited for 
real-time fruit quality detection in agricultural automation. 

Beyond data augmentation, various methods have been 
proposed to tackle data scarcity in deep learning. Alzubaidi et 
al. [21] reviewed strategies like transfer learning, self-
supervised learning, GANs, and DeepSMOTE. While this 
study focuses on augmentation, future work could explore 
these approaches to enhance performance under limited data. 
These studies also emphasize YOLO’s adaptability across 
diverse agricultural contexts. 

These studies collectively highlight the adaptability of 
YOLO-based architectures across diverse agricultural 
scenarios. However, comprehensive evaluations of newer 
YOLO variants, such as YOLOv11, in multi-class ripeness 
classification under field conditions were previously 
lacking—this study addresses that gap. 

III. PROPOSED METHOD 

A. Dataset 
The dataset used in this study consists of 3,055 high-

resolution strawberry images collected from both commercial 
farms and controlled environments to ensure variability. Most 
images were captured at Ichigo Farm in Ciwidey, Indonesia, 
using consumer-grade smartphones such as the Redmi Note 9 
Pro, Realme 9 Pro+, and Samsung S21 under diverse natural 
lighting conditions. Each image was annotated with bounding 
boxes to identify strawberries at various ripeness and quality 
levels. The dataset is categorized into five classes—UNR, 
HRB, HRA, FRB, and FRA—with 611 images per class. As 
shown in Fig. 1 and Table I, these labels provide a structured 
basis for learning. The data is evenly divided into training 
(489), validation (61), and testing (61) sets per class, enabling 
balanced model evaluation across categories. 

After applying data augmentation techniques—including 
horizontal and vertical flipping, 90-degree rotations, and 
random rotations between −15° and +15°—the dataset 

expanded to 7,940 images, comprising 7,330 for training and 
305 each for validation and testing. The dataset is categorized 
into five ripeness-quality classes: Unripe (UNR), Half Ripe B 
(HRB), Half Ripe A (HRA), Fully Ripe B (FRB), and Fully 
Ripe A (FRA), with each class containing 1,588 images. Of 
these, 1,466 images per class are used for training and 61 each 
for validation and testing. This consistent allocation and 
labeling strategy ensures a balanced and comprehensive 
dataset for training deep learning models in strawberry quality 
and ripeness classification. 

 

Figure 1 

The strawberry samples are divided into five categories, including 

Unripe (UNR), Half Ripe – Type B (HRB), Half Ripe – Grade A 

(HRA), Fully Ripe – Grade B (FRB), and Fully Ripe – Grade A 

(FRA) (from left to right). 

TABLE I.   
SUMMARY OF STRAWBERRY RIPENESS CLASSES AND QUALITY 

DESCRIPTIONS 

Class Ripeness Category Description 

UNR Unripe 
Green color with minimal red; firm 

texture; not suitable for harvest. 

HRB 
Half Ripe (Grade 

B) 

Partially red with uneven texture; 

visible seeds; lower visual quality; 

early ripening stage. 

HRA 
Half Ripe (Grade 

A) 

More even red coloration; smoother 

surface; less visible seeds; better 

texture and visual appeal. 

FRB Full Ripe (Grade B) 

Deep red color with minor surface 

imperfections; slightly less uniform 

than premium grade. 

FRA Full Ripe (Grade A) 

Uniform deep red color; smooth, high-

grade texture; market-ready 

appearance with optimal quality. 

B. YOLOV11 models and Evolution Metrics 

This study evaluates YOLOv11, which represent different 
generations of the You Only Look Once (YOLO) object 
detection architecture. 

1) YOLOv11 Variants 

Fig. 2 is the framework of the proposed YOLOv11 based 
object detection models for strawberry quality and ripeness 
classification. YOLOv11 comprises four scalable model 
variants—Nano (N), Small (S), Medium (M), and Large (L)—
each defined by three architectural parameters: 
depth_multiple, width_multiple, and max_channels. These 
parameters adjust the model’s complexity by scaling the 
number of layers and channels, enabling a trade-off between 
detection accuracy and computational efficiency. 
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YOLOv11N is the most lightweight variant with a 
depth_multiple of 0.50 and width_multiple of 0.25, using up 
to 1024 channels. It contains 181 layers, 2.6 million 
parameters, and operates at 6.6 GFLOPs, optimized for edge 
devices and real-time applications. YOLOv11S doubles the 
width (0.50) while retaining the same depth, resulting in 9.4 
million parameters and 21.7 GFLOPs—balancing speed and 
accuracy. YOLOv11M further increases the width to 1.00 
with the same depth (0.50) and a reduced max_channels of 
512, yielding 20.1 million parameters and 68.5 GFLOPs. 
YOLOv11L, the largest model, uses a depth and width of 1.00, 
resulting in 25.3 million parameters, 88.6 GFLOPs, and 357 
layers, providing the highest detection precision at the cost of 
speed. 

 

Figure 2 

Framework of the proposed YOLOv11 Based Object Detection 

Models for Strawberry Quality and Ripeness Classification. 

In terms of architecture, all YOLOv11 variants share the 
same fundamental structure consisting of a Backbone, Neck, 
and Head. The Backbone incorporates a C3K2 block, which 
is an enhanced version of the CSP (Cross Stage Partial) 
module using 3×3 convolutional kernels. This block improves 
feature extraction efficiency by maintaining gradient flow and 
reducing computational overhead. The Neck utilizes a Spatial 
Pyramid Pooling – Fast (SPPF) module that aggregates multi-
scale contextual features, enhancing the model's ability to 
detect objects at different sizes and resolutions. 

The Head adopts a C2PSA (Convolution + Parallel Spatial 
Attention) module, which introduces spatial attention 
mechanisms to focus on the most relevant regions of the 
feature map. This improves both localization and 
classification accuracy, particularly in complex scenes with 
overlapping or occluded objects. The combination of a 
lightweight backbone and attention-guided head allows 
YOLOv11 to maintain a balance between fast inference and 
high precision, making it suitable for deployment across a 
variety of precision agriculture and real-time detection 
applications. 

2) Evaluation Metrics 

To assess the performance of YOLOv11, the following key 
evaluation metrics were used: 

a) Precision 

Precision measures the proportion of correctly detected 
strawberries among all instances that the model predicted as 
strawberries. It is defined by the equation: 

Precision =
TP

TP + FP
 

(1) 

with TP (True Positives) are correctly detected strawberries, 
and FP (False Positives) are incorrectly predicted 
strawberries—instances that were labeled as strawberries by 
the model but were not actual strawberries. A high precision 
value indicates that the model makes few false positive errors, 
which is important in applications where incorrect detection 
can cause unnecessary actions, such as robotic harvesting of 
unripe or non-existent fruits [20]. 

b) Recall 

Recall measures the model’s ability to detect all actual 
strawberries present in the image. It is calculated using the 
formula: 

Recall =
TP

TP + FN
 

(2) 

Where FN (False Negatives) are missed detections—
actual strawberries that were not identified by the model. A 
high recall means the model successfully captures most of the 
objects of interest, which is critical in scenarios where missing 
ripe strawberries may result in yield loss [20]. 

c) F1-score 

The F1-Score is the harmonic mean of precision and recall, 
providing a single metric that balances the trade-off between 
them: 

F1 − score = 2 ×
Precision × Recall

Precision + Recall
 

(3) 

The F1-Score is especially useful when there is an uneven 
class distribution or when both false positives and false 
negatives carry significant consequences. A high F1-Score 
indicates a good balance between precision and recall, making 
it a reliable indicator of the model's overall detection 
performance in realistic agricultural conditions [17]. 

d) Mean Average Precision (mAP) 

The mean Average Precision (mAP) is a standard metric 
for evaluating object detection accuracy, particularly in terms 
of bounding box localization. mAP@0.5 measures precision 
at a single IoU threshold of 0.5, while mAP@0.95 averages 
precision across multiple IoU thresholds (0.5 to 0.95), offering 
a more comprehensive assessment of detection performance. 

IV. EXPERIMENTS AND RESULTS 

This section presents the experimental results and 
performance analysis of YOLOv11 in real-time multi-object 
strawberry detection. The models were evaluated based on 
Precision, Recall, F1-Score, mean Average Precision (mAP 
0.5 & mAP 0.95), and inference time. Additionally, 
qualitative analysis using test images is provided to visualize 
detection accuracy. 

A. Training Configuration 

To ensure an objective evaluation, all YOLOv11 model 
variants were trained under uniform experimental conditions. 
This consistent setup allows for a fair comparison of 
performance across different model architectures and ensures 
the reproducibility of results. The training parameters of the 
proposed model are presented in Table II. 

B. Training Performance Analysis 

This section compares the training performance of 
YOLOv11N, YOLOv11S, YOLOv11M, and YOLOv11L 
using precision, recall, F1-score, mAP@0.5, mAP@0.95, and 
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inference time. Visual analyses, including confusion matrices 
and per-class performance, further evaluate their effectiveness 
in detecting fruit ripeness and quality. 

TABLE II.   
TRAINING PARAMETERS OF THE PROPOSED MODEL 

Component Description 

Image Processing Resized to 640×640 pixels, normalized values 

Augmentation 

Flip: Horizontal, Vertical, 90° Rotate: Clockwise, 
Counter-Clockwise, Rotation: Between -15° and 

+15° 

Batch Size 16 

Epochs 10 

Optimizer AdamW (momentum=0.9) 

Learning Rate 0.001111 

Training 

Hardware 
Google Colab GPU 

platform utilized 
NVIDIA Tesla T4 GPU with 16 GB of VRAM 

and 25 GB of available RAM 

 

All YOLOv11 variants were trained using Google Colab, 

supported by an NVIDIA Tesla T4 GPU with 16 GB VRAM 

and 25 GB RAM. This configuration provided sufficient 

computing power for processing the augmented dataset 

efficiently using a batch size of 16 and an input resolution of 

640×640 pixels. The use of a cloud-based platform ensured 

accessibility and reproducibility of the experiments while 

maintaining consistent conditions across all model variants. 

This setup also reflects a practical and cost-effective 

environment for deep learning applications in agriculture. 

C. Training Performance Analysis 

This section compares the training performance of 
YOLOv11N, YOLOv11S, YOLOv11M, and YOLOv11L 
using precision, recall, F1-score, mAP@0.5, mAP@0.95, and 
inference time. Visual analyses, including confusion matrices 
and per-class performance, further evaluate their effectiveness 
in detecting fruit ripeness and quality. 

 
(a) 

 
(b) 

 
(c) 

 
(d) 

Figure 3 
Performance training model results (a) YOLOV11N, (b) 

YOLOV11S, (c) YOLOV11M, (d) YOLOV11L 

Fig. 3 and Tables III to VI collectively illustrate the 
comparative performance of the four YOLOv11 variants—
Nano (N), Small (S), Medium (M), and Large (L)—across five 
strawberry ripeness classes. Fig. 3 highlights YOLOv11N and 
YOLOv11M as the top performers in terms of training 
efficiency and final accuracy, showcasing superior metrics 
such as precision, recall, classification loss, and mAP@0.5. 
YOLOv11N stands out with rapid convergence and stable 
performance, making it ideal for low-latency, high-accuracy 
applications, while YOLOv11M offers a well-balanced trade-
off between speed and precision for real-world deployment. In 
contrast, YOLOv11S and YOLOv11L, though still viable, 
showed slightly less training stability or efficiency. Detailed 
evaluation in Tables III–VI further supports these 
observations: YOLOv11L achieved a precision of 0.843, 
recall of 0.835, and mAP@0.5 of 0.928, with FRB and HRB 
leading in precision (0.890) and recall (0.924), respectively. 
YOLOv11M posted nearly identical results, while 
YOLOv11S yielded a higher mAP@0.5 of 0.934 and 
excellent recall (0.861), despite HRB having the lowest 
precision (0.767) but highest recall (0.970). These findings 
demonstrate the nuanced strengths of each variant and affirm 
the effectiveness of YOLOv11 for precise strawberry ripeness 
classification. 

TABLE III.   
PERFORMANCE OFYOLOV11N 

Class Precision Recall Map50 Map50-95 

UNR 0.886 0.772 0.898 0.677 

HRB 0.784 0.936 0.958 0.865 

HRA 0.914 0.848 0.941 0.87 

FRB 0.898 0.896 0.966 0.887 

FRA 0.864 0.939 0.956 0.853 

Average 0.869 0.878 0.944 0.83 

TABLE IV.   
PERFORMANCE OFYOLOV11S 

Class Precision Recall Map50 Map50-95 

UNR 0.863 0.817 0.901 0.685 

HRB 0.767 0.97 0.955 0.857 

HRA 0.873 0.781 0.93 0.842 

FRB 0.893 0.842 0.947 0.868 

FRA 0.78 0.894 0.938 0.825 

Average 0.835 0.861 0.934 0.815 

TABLE V.   
PERFORMANCE OFYOLOV11 M 
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Class Precision Recall Map50 Map50-95 

UNR 0.868 0.794 0.881 0.677 

HRB 0.784 0.955 0.954 0.866 

HRA 0.87 0.761 0.923 0.838 

FRB 0.903 0.826 0.949 0.871 

FRA 0.789 0.85 0.939 0.811 

Average 0.843 0.837 0.929 0.813 

 

TABLE VI.   
PERFORMANCE OFYOLOV11 L 

Class Precision Recall Map50 Map50-95 

UNR 0.862 0.809 0.908 0.684 

HRB 0.822 0.924 0.959 0.852 

HRA 0.818 0.759 0.91 0.829 

FRB 0.89 0.819 0.93 0.836 

FRA 0.825 0.864 0.935 0.823 

Average 0.843 0.835 0.928 0.805 

 
Among all variants, YOLOv11N achieved the best overall 

performance with the highest precision (0.869), recall (0.878), 
and mAP@0.5 (0.944), along with the fastest inference time 
(3.6 ms). It excelled in classification accuracy across multiple 
classes, including HRA (precision 0.914) and FRA (recall 
0.939), although slightly lower results were noted for the UNR 
class. These findings highlight the distinct strengths and trade-

offs of each model: YOLOv11N is most suitable for real-time 
applications due to its speed and accuracy; YOLOv11M offers 
a balanced solution for large-scale deployment; YOLOv11S 
provides efficient performance for semi-real-time 
environments; and YOLOv11L, with the slowest inference, is 
more appropriate for high-accuracy tasks where latency is less 
critical. Each variant thus serves different operational 
requirements within precision agriculture systems.  

TABLE VII.   
COMPARISON OF YOLOV11 VARIANT MODELS 

Model 
Precision 

(%) 

Recall 

(%) 

F1-

Score 

Map 

0.5 

Map 

0.95 

Infere

nce 

Time 

(ms) 

YOLOV11N 0.869 0.878 0.87 0.944 0.83 3.6 

YOLOV11S 0.835 0.861 0.84 0.934 0.815 4.8 

YOLOV11M 0.843 0.837 0.84 0.929 0.813 11.3 

YOLOV11L 0.843 0.835 0.84 0.928 0.805 13.8 

 
Table VII presents a comparative evaluation of four 

YOLOv11 variants—YOLOv11N, YOLOv11S, 
YOLOv11M, and YOLOv11L—based on key performance 
metrics: Precision, Recall, F1-Score, mAP@0.5, mAP@0.95, 
and Inference Time. YOLOv11N achieves the highest 
precision (86.9%) and recall (87.8%), along with the best 
mAP@0.5 (94.4%), while also delivering the fastest inference 
time (3.6 ms), indicating strong performance in both accuracy 
and efficiency. YOLOv11M and YOLOv11L show similar 
F1-scores but trade off speed for slightly lower mAP scores. 
YOLOv11S provides a balance between speed and accuracy, 
making it suitable for lightweight deployments. 

 

 

(a) 

 

(b) 
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(c) 

 

(d) 

Figure 4 

Confusion matrix training results in comparison models: (a) YOLOV11N, (b) YOLOV11S, (c) YOLOV11M, (d) YOLOV11L 

 

D. Testing Performance Analysis 

Fig. 4(a) presents the confusion matrix of the YOLOv11N 
model, which achieves the highest overall accuracy with 
minimal misclassification, making it the most accurate among 
the variants. Fig. 4(b) shows the performance of YOLOv11S, 
which demonstrates acceptable results but exhibits a higher 
tendency to misclassify FRB samples. In Figure 4(c), 
YOLOv11L performs reasonably well but shows increased 
background confusion and inter-class errors compared to 
other models. Finally, Fig. 4(d) illustrates the confusion 
matrix of YOLOv11M, which demonstrates strong and 
balanced classification across all strawberry ripeness classes. 
It achieves high accuracy in HRA and HRB with relatively 
low misclassification, particularly in distinguishing between 
visually similar categories like FRB and FRA. Compared to 
other variants, YOLOv11M outperforms YOLOv11L in 
reducing background confusion and inter-class errors, while 
maintaining a favorable trade-off between recall and 
precision. Overall, YOLOv11M offers strong generalization 
and remains a robust alternative for applications requiring 
both accuracy and computational efficiency, making it well-
suited for scalable agricultural systems. 

Fig. 5 demonstrates the real-world performance 
differences of YOLOv11 variants on strawberry detection. 
YOLOv11N and YOLOv11M exhibit superior detection 
accuracy and classification precision, even in non-ideal 
conditions. YOLOv11N stands out for its speed and consistent 
labeling, while YOLOv11M excels in reliability and class 
differentiation. Conversely, YOLOv11S and YOLOv11L 
show slightly lower detection robustness, suggesting they may 
be more suitable for specific controlled environments or 
scenarios where either speed (YOLOv11S) or deep feature 
extraction (YOLOv11L) is prioritized. 

In comparison to previous studies in strawberry and fruit 
detection, the YOLOv11 models proposed in this study 
demonstrated competitive or superior performance across 
various metrics. Azizah et al. [18] implemented a YOLOv7-
EfficientNetV2S hybrid model that achieved exceptional 
precision, recall, and F1-Score values of 99% each; however, 
their detection time was notably longer at 2.392 seconds per 
image. In contrast, the YOLOv11N model in our study 
delivered significantly faster inference time (3.6 ms) while 
maintaining high detection accuracy (mAP@0.5 of 94.4%, 
F1-score of 0.87), making it more viable for real-time 
applications. 

 

 
(a) 

 
(b) 
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(c) 

 
(d) 

Figure 5 

Detection testing results of strawberry model (a) YOLOV11N, (b) YOLOV11S, (c) YOLOV11M, (d) YOLOV11L 

 

V. CONCLUSION 

This study presents a comparative evaluation of four 
YOLOv11 model variants YOLOv11N, YOLOv11S, 
YOLOv11M, and YOLOv11L for multi-class strawberry 
quality and ripeness detection. The results highlight trade-offs 
between detection accuracy and inference speed, which are 
critical considerations for practical deployment in precision 
agriculture. YOLOv11N demonstrated the best overall 
performance, achieving the highest precision (86.9%), recall 
(87.8%), mAP@0.5 (94.4%), mAP@0.95 (83.0%), and the 
fastest inference time (3.6 ms), making it the most suitable 
model for real-time applications such as robotic harvesting 
and edge-based monitoring. YOLOv11M offered a balanced 
trade-off between accuracy and processing speed, achieving 
consistent detection performance (mAP@0.5: 92.9%, 
mAP@0.95: 81.3%) with moderate inference latency (11.3 
ms), making it ideal for large-scale automated sorting and 
grading systems. YOLOv11S provided competitive accuracy 
(mAP@0.5: 93.4%, mAP@0.95: 81.5%) and relatively fast 
inference (4.8 ms), making it a practical option for semi-real-
time applications like greenhouse monitoring. Meanwhile, 
YOLOv11L achieved robust detection accuracy in complex 
scenes (mAP@0.5: 92.8%, mAP@0.95: 80.5%) but exhibited 
the slowest inference speed (13.8 ms), thus better suited for 
post-harvest quality analysis where latency is less critical. 

These findings demonstrate the effectiveness of 
YOLOv11-based models in supporting AI-driven precision 
agriculture, enabling accurate, efficient, and scalable fruit 
classification. Future work will focus on optimizing model 
inference for low-power edge devices, enhancing robustness 
under variable field conditions, and extending evaluation to 
other crop types and agricultural environments. 
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