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Abstract—Automated fruit grading plays a pivotal role in 

modern agriculture by enabling timely harvesting and 

maintaining quality standards, especially for high-value crops 

such as strawberries. This paper presents an end-to-end 

approach for the real-time detection and classification of 

strawberry ripeness using state-of-the-art YOLO-based models: 

YOLOv7, YOLOv8, and YOLOv11. A comprehensive dataset 

of 3,055 strawberry images is compiled from three distinct 

sources. Each image is meticulously annotated into five classes—

Unripe (UNR), Fully Ripe Grade A (AFR), Fully Ripe Grade B 

(BFR), Half Ripe Grade A (AHR), and Half Ripe Grade B 

(BHR)—with additional complexity introduced by images 

containing multiple strawberries per frame. Data preprocessing 

and augmentation are performed using Roboflow, and model 

training is executed on Google Colab with a uniform protocol to 

ensure a fair comparison among the YOLO variants. 

Experimental results reveal a steady performance improvement 

from YOLOv7 to YOLOv11, with YOLOv11 achieving the 

highest detection accuracy (precision: 0.874, recall: 0.855, 

mAP@50: 0.942, and mAP@50–95: 0.820). The superior 

performance of YOLOv11 is attributed to its incorporation of 

dynamic attention modules and self-adaptive layer-wise fusion, 

which significantly enhance the detection of subtle ripeness 

variations and mitigate occlusion challenges. These findings 

underscore the potential of advanced YOLO architectures for 

deployment in real-time agricultural applications and 

automated harvesting systems. 
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I. INTRODUCTION

Recent years advancements in agriculture have seen the 
use of deep learning for image annotation, which efficiently 
extracts features from rapidly growing image data and enables 
the successful analysis of large datasets [1]. The ability to 
accurately assess fruit ripeness is critical for optimizing 
harvesting processes, ensuring high-quality yields, and 
reducing post-harvest losses [2]. Strawberries, in particular, 
are a high-value crop whose market value is highly dependent 
on the precise determination of ripeness. However, the 
variability in fruit size, color gradation, and occlusions from 
leaves and branches pose significant challenges to reliable 
detection and classification as noted in Guo et al.'s study, cited 
by Chai et al. [3]. 

Several studies have explored the application of YOLO-
based models for fruit ripeness detection, each offering unique 
enhancements to address specific challenges. While the 
individual YOLO models are publicly available, this paper 
uniquely contributes by offering a structured, head-to-head 

comparison of YOLOv7, v8, and v11 using a rigorously 
balanced strawberry dataset under real-time constraints. The 
novelty lies in the practical deployment insights, detailed 
architectural benchmarking, and performance under occlusion 
and lighting variations—elements not previously analyzed in 
one unified study. For instance, a YOLOv7-based model 
demonstrated promising results in accurately classifying grape 
maturity [4]. In another study, Azizah et al. [5] stated that 
combining YOLOv7 with EfficientNetV2S significantly 
improved the classification accuracy of strawberry ripeness, 
achieving up to 99.0% in F1-score, precision, and recall. 
Although the hybrid model required a longer training time, it 
outperformed the standalone YOLOv7 in overall 
performance. These findings highlight the potential of model 
hybridization for improved detection, laying the foundation 
for real-time applications in agriculture, which this study 
further explores. Additionally, in complex agricultural 
environments, accurate object detection remains a challenge 
due to occlusions, lighting variability, and overlapping fruits. 
Zhang et al. [6] addressed pear detection using an improved 
YOLO model, demonstrating its capability to handle orchard-
level complexity effectively. Similarly, this study extends the 
comparison of YOLO variants specifically to strawberry 
ripeness detection under real-time constraints. Furthermore, 
recent advancements in YOLO variants have led to high-
precision models capable of handling agricultural tasks. Xiao 
et al. [7] leveraged YOLOv8 to classify general fruit ripeness, 
achieving 99.5% accuracy while maintaining ultra-fast 
detection speeds, demonstrating the model’s potential for 
lightweight, real-time detection. A notable GitHub project 
also demonstrated the feasibility of using YOLOv7 for 
strawberry counting and ripeness detection, reinforcing the 
practical utility of these models in agricultural settings [8]. 

This study aims to evaluate and compare YOLOv7, 
YOLOv8, and YOLOv11 using a robust and diverse 
strawberry dataset compiled from previous study [5], open-
source repositories, and on-site collections at Ichigo Farm in 
Ciwidey, West Java, Indonesia. We intentionally selected the 
three major, publicly-released YOLO versions—v7, v8, and 
v11—for comparison. Versions labeled v9 and v10 were 
internal or incremental updates whose core innovations (e.g., 
improved anchors and attention refinements) were rolled 
directly into the publicly released YOLOv11 [14]. Hence, 
including v9/v10 separately would neither add new insights 
nor be practically reproducible. By systematically analyzing 
performance metrics—including precision, recall, mAP@50, 
and mAP@50–95—under controlled experimental 
conditions, we provide valuable insights into the optimal 
YOLO architecture for real-time strawberry ripeness 
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detection. This work contributes to the advancement of smart 
agricultural solutions by demonstrating the effectiveness of 
advanced architectural features, such as dynamic attention 
modules and self-adaptive layer-wise feature fusion, in 
addressing the inherent challenges of fruit detection in 
complex environments.  

The subsequent sections of this paper are arranged as 
follows. Section II provides a comprehensive review of 
existing literature pertinent to this research. Section III 
describes the proposed method, including a detailed overview 
of the dataset, YOLO architecture variants, and the training 
process implemented on cloud-based platforms. Section IV 
discusses experiments and results, comparing the performance 
of YOLOv7, YOLOv8, and YOLOv11 using key evaluation 
metrics and analyzing confusion matrices to highlight their 
respective strengths and limitations. The final section, Section 
V, offers concluding remarks and proposes prospective 
directions for future scholarly inquiry. 

II. RELATED WORK

The integration of deep learning in agricultural image 

analysis has significantly advanced precision farming, 

particularly in the classification and detection of fruit 

ripeness. Object detection algorithms, especially those in the 

YOLO (You Only Look Once) family, have proven effective 

due to their ability to process images in real time while 

maintaining high accuracy. These capabilities are especially 

crucial in agricultural contexts where timely decisions impact 

yield quality and operational efficiency. As such, numerous 

studies have explored various YOLO architectures and 

hybrid models to address challenges in detecting fruit under 

natural conditions, such as occlusions, lighting variability, 

and overlapping foliage. 

Azizah et al. [5] proposed an integrated approach using 

deep learning techniques that combined YOLOv7 with 

EfficientNetV2S to classify the ripeness of strawberries. 

Their approach achieved high performance, with an F1-score, 

precision, and recall reaching up to 99.0%. The integration of 

EfficientNetV2S as the backbone improved the model's 

ability to differentiate subtle variations in strawberry 

maturity, particularly under complex visual conditions. 

Although the model required longer training time, it 

consistently outperformed the standalone YOLOv7 model, 

indicating that hybrid architectures can significantly enhance 

accuracy and robustness in agricultural applications. 

Xiao et al. [7] proposed a lightweight YOLOv8-based 

architecture to detect general fruit ripeness with high 

precision. The model achieved 99.5% accuracy while 

maintaining low computational latency, making it suitable for 

real-time applications in edge devices. Key improvements 

included the use of decoupled detection heads and an anchor-

free mechanism, which streamlined the model structure and 

reduced detection time. These optimizations position 

YOLOv8 as a strong candidate for mobile and UAV-based 

smart farming systems that require both speed and accuracy 

in diverse environments. 

Y. Chen et al. [9] introduced CES-YOLOv8, an enhanced

YOLOv8 variant, for strawberry ripeness detection under 

challenging field conditions. The model incorporated 

ConvNeXt V2 modules and the Efficient Channel Attention 

(ECA) mechanism to improve feature representation and 

channel weighting. Experimental results showed a precision 

of 88.2% and a mAP@50 of 92.10%, confirming the model's 

effectiveness in identifying strawberries at different maturity 

stages. The added attention mechanisms allowed the network 

to focus on relevant features even when fruits were partially 

occluded or appeared under inconsistent lighting. 

X. Chen [10] presented an advanced YOLOv8-Pose

model for Fast identification of ripe strawberries and 

pinpointing ideal harvest locations in three dimensions. The 

model was enhanced using a Bidirectional Feature Pyramid 

Network (BiFPN) for multi-scale feature fusion and 

MobileViTv3 as the backbone to reduce computational 

complexity. 

Gamani et al. [11] evaluated Various YOLOv8 model 

setups were explored to perform instance segmentation of 

strawberry developmental phases in outdoor agricultural 

settings. Their study identified YOLOv8n as the most 

efficient model, achieving a mean Average Precision (mAP) 

of 80.9% and processing time of only 12.9 milliseconds per 

frame. The segmentation approach allowed for detailed 

analysis of different strawberry development stages, aiding in 

phenological monitoring. This research demonstrates the 

practical benefits of lightweight, high-speed models for 

continuous monitoring in outdoor agricultural settings. 

III. PROPOSED METHOD

A. Dataset

The strawberry image dataset used in this study is
compiled from three distinct sources to ensure a 
comprehensive and balanced representation. First, a subset of 
images was obtained from previous research titled 
“Identifying the Ripeness and Quality Level of Strawberries 
Based on YOLOv7-EfficientNet” [5], which provided a well-
documented benchmark with detailed annotations and a 
rigorous acquisition protocol. Second, additional images were 
collected from open sources to enhance the dataset’s diversity 
and volume. Third, a dedicated on-site collection was carried 
out at our partner strawberry farm, Ichigo Farm, located in 
Ciwidey, West Java, Indonesia, on 6 December 2024 between 
7:00 AM and 9:00 AM under clouded weather conditions, 
using multiple smartphone devices (Realme 9 Pro Plus, 
Samsung S21 5G, and Redmi Note 9 Pro). 

The dataset is meticulously annotated into five classes: 
Unripe (UNR), Fully Ripe Grade A (AFR), Fully Ripe Grade 
B (BFR), Half Ripe Grade A (AHR), and Half Ripe Grade B 
(BHR), Each class comprises exactly 611 images, ensuring 
balanced representation across all categories. Fig. 1 presents 
example images for each class, demonstrating the visual 
distinctions among the different ripeness and quality levels.  

It is important to note that while some images contain a 
single strawberry, others feature multiple strawberries within 
the same frame. This increases the complexity of object 
detection, as models must correctly identify and classify each 
individual instance. Such variability can influence recall and 
precision, particularly in cases where occlusions or 
overlapping objects occur. The data allocation is organized 
with the dataset partitioned into a total of 489 images were 
allocated for model training, while 61 images each were 
reserved for validation and testing purposes. This structured 
approach to data collection and annotation enhances 
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reproducibility and provides a solid foundation to assess how 
effectively the suggested detection systems function. 

FIGURE 1
Example strawberry images for each class, including Unripe (UNR), Grade 

B – Half Ripe   (BHR), Grade A – Half Ripe (AHR), Grade B – Fully Ripe 

(BFR), and Grade A – Fully Ripe (AFR) (from left to right). 

For quick reference on the distinctive visual 
attributes associated with the quality of each 
strawberry class, a simplified in Table I. The quality 
attributes were derived from expert visual assessments and 
complemented by quantitative analysis where applicable.  

TABLE I. 

QUALITY CHARACTERISTICS 

Class Color Texture Size/Shape Blemishes 

UNR Pale green Firm 
Small, 

irregular 
None/Minimal 

BHR 
Red/green 

mix 
Uneven Varying Prominent 

AHR 
Red/green 

mix 

Slightly 

uneven 
Varying Noticeable 

BFR Bright red Smooth Regular Few 

AFR Bright red Smooth Regular Minimal 

Table I provides a detailed breakdown of the strawberry 
dataset allocation, categorizing the images based on ripeness 
and quality. The table classifies strawberries into five 
categories—UNR, AFR, BFR, AHR, and BHR—with 489 
images allocated for training, 61 for validation, and 61 for 
testing in each category, resulting in a total of 611 images per 
class. Overall, the complete dataset comprises 3055 images, 
with 2445 used for training, 305 for validation, and 305 for 
testing purposes. Additionally, the dataset underwent 
augmentation using three methods: horizontal flipping, 90-
degree clockwise and counterclockwise rotations, and random 
rotations within the range of –15° to +15°. This augmentation 
further increases data variability and helps improve model 
robustness. 

B. Architecture

To perform real-time multi-object detection of strawberry
ripeness, we compare three state-of-the-art YOLO variants: 
YOLOv7, YOLOv8, and YOLOv11. Each of these models 
represents successive advancements in object detection 
technology, with improvements in feature extraction, 
computational efficiency, and robustness under challenging 
conditions. YOLOv7 (2022) is recognized for its robust 
feature extraction and fast inference; it employs a deep 
convolutional backbone, an FPN-like neck for multi-scale 
feature fusion, and a detection head that outputs bounding box 

predictions along with class probabilities [12]. This 
architecture is designed to balance accuracy and speed, 
making it highly suitable for real-time applications. 

Building on YOLOv7, YOLOv8 (2023) streamlines the 
convolutional layers and incorporates dynamic receptive 
fields, which help capture small object details while reducing 
computational overhead. In addition, YOLOv8 utilizes 
improved loss functions that enhance prediction accuracy and 
further optimize the model’s performance in terms of 
precision and recall [13]. These refinements ensure that the 
model is more efficient without compromising its detection 
capabilities, making it an excellent candidate for deployment 
in resource-constrained environments. This version represents 
a significant step forward in both architectural design and 
practical application. 

The most recent iteration, YOLOv11 (2024), incorporates 
dynamic attention modules and self-adaptive layer-wise 
feature fusion to boost detection performance under 
challenging conditions, such as variable lighting and 
occlusion [14]. This enhancement enables YOLOv11 to 
dynamically prioritize salient features at multiple scales, in 
contrast to YOLOv7’s static CSP backbone and YOLOv8’s 
refined CSPDarknet, thereby improving detection robustness 
under complex conditions. YOLOv11 maintains the standard 
three-part structure—comprising the backbone, neck, and 
detection head—while integrating these advanced modules to 
refine feature representation and improve accuracy. The 
dynamic attention mechanisms enable the model to focus on 
salient features across multiple scales, which is critical for 
distinguishing subtle differences in strawberry ripeness. Each 
architecture is systematically evaluated for speed, accuracy, 
and computational efficiency, ensuring that the best-
performing model for strawberry ripeness detection is 
identified. 

Table III provides a comparative summary of the key 
architectural components, including input size, backbone 
type, neck design, detection head configuration, and the 
approximate total number of layers for YOLOv7, YOLOv8, 
and YOLOv11. This detailed comparison not only highlights 
the evolution of design principles across these models but also 
serves as a reference for understanding how each architectural 
enhancement contributes to overall performance. The 
comprehensive evaluation of these architectures forms the 
basis for selecting the optimal model for our specific 
application. 

TABLE 2
SUMMARY OF YOLO ARCHITECTURES 

Component YOLOv7 YOLOv8 YOLOv11 

Input Size 640×640 640×640 640×640 

Backbone 
modules improved small-

object detection 
modules 

Neck 
scale fusion efficient multi-

scale fusion 
with self-

attention 

Detection 
Head 

predefined anchors
and attention-

Layers configuration) (approximate) variant) 
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It is important to note that each YOLO variant introduces 

specific modifications to enhance overall detection 

performance. YOLOv7 leverages an Extended ELAN 

module combined with CSP and SPP components in its 

backbone to ensure robust feature extraction, while the PAN 

neck facilitates effective multi-scale fusion [12]. In contrast, 

YOLOv8 refines the backbone by adopting a streamlined 

CSPDarknet design and replaces the traditional PAN with an 

enhanced PAN++ to capture small objects more efficiently 

and reduce computational load [13]. YOLOv11 takes these 

improvements further by integrating dynamic attention 

modules within a modified CSP backbone and an enhanced 

PAN that incorporates self-adaptive layer-wise fusion and 

attention mechanisms, resulting in an optimized detection 

head with dynamic anchor refinement [14]. These 

incremental advancements are aimed at improving speed, 

accuracy, and robustness, making the architectures highly 

suitable for the real-time detection of strawberry ripeness. 

C. Training Process

The training process is executed on cloud-based platforms

to ensure reproducibility and scalability. The entire dataset is 

pre-processed and augmented using Roboflow [15], which 

standardizes image resizing, normalization, and applies 

various augmentation techniques—such as rotations, scaling, 

and brightness adjustments—to increase data diversity. The 

augmented dataset is then uploaded to Google Colab, which 

provides GPU acceleration for efficient model fine-tuning. A 

uniform training protocol is adopted for all YOLO variants to 

facilitate a fair comparison. 

For YOLOv7 (2022), training was conducted with 8 

workers, a batch size of 8, a 640×640 input image size, and a 

total of 10 epochs. The training configuration included a 

custom YAML file defining the network architecture and 

hyperparameters, along with pre-trained weights to initialize 

the model. Similarly, YOLOv8 (2023) and YOLOv11 (2024) 

were trained on the same dataset with identical input sizes 

and epoch counts, using their respective lightweight pre-

trained models (yolov8n.pt and yolov11n.pt). Both models 

leverage refined loss functions and architectural 

improvements—such as dynamic receptive fields in 

YOLOv8 and integrated attention modules in YOLOv11—to 

enhance prediction accuracy and computational efficiency. 

Validation checkpoints are regularly monitored throughout 

training to prevent overfitting, and final model performance 

is evaluated on a held-out test set. Detailed training scripts 

and commands are provided in the supplementary material 

and our associated GitHub repository.  

Fig. 2 provides an overview of the proposed real-time 

multi-object strawberry ripeness detection system based on 

the YOLO model. The process includes image annotation and 

augmentation using Roboflow, data export, and fine-tuning 

on Google Colab with pre-trained YOLOv7, YOLOv8, and 

YOLOv11 models. 

D. Evaluation Matrix

To assess how well the model performs, commonly used
evaluation indicators include precision, recall, and the mean 
Average Precision (mAP) metric. The formulas for precision 
and recall are provided in Eqs. (1) and (2), respectively [16-
18]. 

Precision = 
��

�����
(1) 

Recall = 
��

�����
 (2) 

Here, TP denotes true positives, FP stands for false positives, 
and FN refers to false negatives.  

Fig. 2. 
Overview of the proposed real-time multi-object detection of 

strawberry ripeness based on the YOLO model. 

The mean Average Precision (mAP) is calculated 
by averaging the Average Precision (AP) across all 
classes, where AP corresponds to the area under the 
precision-recall curve. In this study, we report mAP at an 
Intersection over Union (IoU) threshold of 0.50 (mAP@50) 
and also averaged over IoU thresholds from 0.50 to 0.95 in 
increments of 0.05 (mAP@50–95), as standardized in 
modern evaluation protocols. These metrics offer 
an all-encompassing assessment of a model’s performance 
in terms of both object localization and classification 
accuracy. Such metrics are well-established and have 
been widely adopted in recent literature for benchmarking 
object detection models [19]. 

IV. EXPERIMENTS AND RESULTS

This section presents a comparative evaluation of 
the YOLOv7, YOLOv8, and YOLOv11 models based on 
key performance metrics: precision, recall, mAP@50, 
and mAP@50–95. First, the final performance of each 
model is summarized, followed by an analysis of the 
training and validation curves. Finally, the confusion 
matrices are discussed to highlight areas of 
misclassification and opportunities for further 
improvement.  

A. Experiment Setup

The experiments were carried out on the Google Colab 
platform, utilizing hardware that included a 16 GB memory 

setup with an AMD Ryzen 5 4600H CPU, NVIDIA GeForce 

GTX 1650 Ti GPU. Each YOLO model (YOLOv7, 

YOLOv8, YOLOv11) was trained for 10 epochs using 

PyTorch and Ultralytics libraries. The dataset, sourced from 

Roboflow, includes annotated strawberry images across five 

classes, including UNR, AFR, BFR, AHR, BHR). 

B. Comparative Evaluation Based on Final Metrics

Tables III to V show the performance of the YOLOv7, 
YOLOv8, and YOLOv11 baseline models. The YOLOv7 

baseline model, summarized in Table III, achieved an average 

precision of 0.833, a recall of 0.794, a mAP@50 of 0.898, 

and a mAP@50-95 of 0.769. It demonstrated strong precision 

in classifying ripe strawberries, particularly in the AHR class 

(0.981).  
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However, it showed a lower recall for AHR (0.668), 
indicating a higher rate of false negatives. The highest recall 
was observed in the BFR class (0.904), reflecting effective 
detection of fully ripe strawberries. Overall, YOLOv7 
delivered solid precision but struggled with recall, especially 
for certain classes, leading to missed detections. 

TABLE 3
PERFORMANCE OF YOLOV7 BASELINE MODEL TRAINING 

Class Precision Recall mAP50 mAP50-95 

UNR 0.807 0.794 0.846 0.641 

AFR 0.674 0.848 0.904 0.791 

BFR 0.796 0.904 0.915 0.807 

AHR 0.981 0.668 0.905 0.809 

BHR 0.908 0.758 0.917 0.799 

Average 0.833 0.794 0.898 0.769 

The YOLOv8 model, presented in Table IV, improved 
across all metrics, with an average precision of 0.883, recall 
of 0.834, mAP@50 of 0.938, and mAP@50-95 of 0.813. 
Precision for unripe strawberries (UNR) rose to 0.92, up from 
YOLOv7’s 0.807, indicating better class differentiation. BHR 
achieved the highest recall at 0.924, demonstrating better 
detection of ripe berries. YOLOv8 offered a more balanced 
trade-off between precision and recall, reducing 
misclassification and false negatives. 

TABLE 4
PERFORMANCE OF YOLOV8 BASELINE MODEL TRAINING 

Class Precision Recall mAP50 mAP50-95 

UNR 0.92 0.795 0.902 0.679 

AFR 0.851 0.833 0.942 0.837 

BFR 0.878 0.832 0.947 0.851 

AHR 0.917 0.785 0.937 0.838 

BHR 0.848 0.924 0.964 0.858 

Average 0.883 0.834 0.938 0.813 

TABLE 5
PERFORMANCE OF YOLOV11 BASELINE MODEL TRAINING 

TABLE 6
COMPARISON OF OVERALL PERFORMANCE 

Model Precision Recall mAP50 mAP50-95 

YOLOv7 0.833 0.794 0.898 0.769 

YOLOv8 0.883 0.834 0.938 0.813 

YOLOv11 0.874 0.855 0.942 0.82 

(a) 

(b) 

(c) 

FIGURE 3
Confusion matrices (a) YOLOv7 (b) YOLOv8, and (c) YOLOv11. 

Illustrating classification performance across six classes: UNR, AFR, BFR, 

AHR, BHR, and background. 

The YOLOv11 model, shown in Table V, 
further enhanced performance, achieving an average 
precision of 0.874, recall of 0.855, mAP@50 of 0.942, and 
mAP@50-95 of 0.820. Although its precision was 
slightly lower than YOLOv8’s, it had the highest 
recall, showing improved sensitivity to object presence. 
UNR had the highest precision (0.926) and BHR had the 
highest recall (0.934), indicating strong classification and 
detection across stages. YOLOv11 

Class Precision Recall mAP50 mAP50-95 

UNR 0.926 0.77 0.899 0.675 

AFR 0.876 0.924 0.954 0.834 

BFR 0.877 0.826 0.961 0.861 

AHR 0.909 0.823 0.939 0.853 

BHR 0.784 0.934 0.958 0.874 

Average 0.874 0.855 0.942 0.82 
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also achieved the best mAP@50-95, confirming its robustness 
across confidence thresholds. 

As summarized in Table VI, YOLOv7 performed 
moderately well but lagged in recall and mAP@50-95. 
YOLOv8 delivered the highest average precision and showed 
a balanced improvement in all metrics. YOLOv11 slightly 
trailed in precision but led in recall and mAP@50-95, making 
it the most effective at minimizing missed detections. Overall, 
YOLOv11 offered the best generalization and detection 
performance, especially in real-world scenarios requiring 
fewer false negatives. 

C. Confusion Matrix

Confusion matrices were generated by counting true
positives (TP), false positives (FP), and false negatives (FN) 
for each class. For example, if TP = 90, FP = 10, FN = 15 for 

the UNR class, precision = TP/(TP+FP) = 0.900 and recall = 
TP/(TP+FN) ≈ 0.857. Mean Average Precision at IoU=0.50 
(mAP@50) and averaged across IoU=0.50–0.95 (mAP@50–
95) were computed by integrating the precision–recall curve
at the respective thresholds.

To assess classification performance in greater detail, 
confusion matrices for YOLOv7, YOLOv8, and YOLOv11 
are presented in Fig. 3. The YOLOv7 confusion matrix (Fig. 
3(a)) reveals frequent misclassifications between AFR and 
BFR, as well as between AFR and UNR. This observation is 
consistent with the lower precision of AFR shown in Table III, 
indicating challenges in distinguishing early ripeness stages. 
Misclassifications in BHR further suggest that the model 
struggles with high-ripeness boundaries, highlighting the need 
for improved feature separation.  

(a) (b) 

(c) 

FIGURE 4 
Prediction result image for each YOLO version  (a) YOLOv7,  (b) YOLOv8, (c) YOLOv11. 
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The confusion matrix for YOLOv8 (see Fig. 3(b) 
demonstrates improved class distinction, particularly reducing 
confusion between AFR and BFR. This improvement reflects 
the higher recall values seen in Table IV, with fewer false 
negatives across most classes. Nonetheless, some 
misclassifications persist, especially between BHR and 
background elements. These indicate that while the model is 
more accurate, background variation still poses a challenge. 

The confusion matrix for YOLOv8 (see Fig. 3(b) 
demonstrates improved class distinction, particularly reducing 
confusion between AFR and BFR. This improvement reflects 
the higher recall values seen in Table IV, with fewer false 
negatives across most classes. Nonetheless, some 
misclassifications persist, especially between BHR and 
background elements. These indicate that while the model is 
more accurate, background variation still poses a challenge. 

The confusion matrix of YOLOv11 (see Fig. 3(c)) 
demonstrates the most distinct class separation among all 
three models. Misclassifications between AFR and BFR are 
notably reduced, contributing to YOLOv11’s improved recall 
and mAP scores. This enhanced performance is likely 
attributed to advanced features such as attention mechanisms 
and adaptive receptive fields. Although some 
misclassifications persist in the BHR class, they are fewer and 
more localized, aligning with the model’s slightly lower 
precision as reported in Table V. These matrices underscore 
the improvement in classification accuracy and the reduction 
of errors, particularly between challenging class pairs like 
AFR–BFR and BHR–background. The advancements in 
YOLOv11 reflect the effectiveness of enhanced attention and 
receptive field strategies. 

The confusion matrix for YOLOv8 (see Fig. 3(b) 
demonstrates improved class distinction, particularly reducing 
confusion between AFR and BFR. This improvement reflects 
the higher recall values seen in Table IV, with fewer false 
negatives across most classes. Nonetheless, some 
misclassifications persist, especially between BHR and 
background elements. These indicate that while the model is 
more accurate, background variation still poses a challenge. 

The confusion matrix of YOLOv11 (see Fig. 3(c)) 
demonstrates the most distinct class separation among all 
three models. Misclassifications between AFR and BFR are 
notably reduced, contributing to YOLOv11’s improved recall 
and mAP scores. This enhanced performance is likely 
attributed to advanced features such as attention mechanisms 
and adaptive receptive fields. Although some 
misclassifications persist in the BHR class, they are fewer and 
more localized, aligning with the model’s slightly lower 
precision as reported in Table V. These matrices underscore 
the improvement in classification accuracy and the reduction 
of errors, particularly between challenging class pairs like 
AFR–BFR and BHR–background. The advancements in 
YOLOv11 reflect the effectiveness of enhanced attention and 
receptive field strategies. 

Overall, the confusion matrices illustrate a clear 
progression from YOLOv7 to YOLOv11, with each 
successive model reducing error rates and improving class 
differentiation. However, further refinement in background 
detection and high-ripeness classes such as BHR could lead to 
even greater accuracy. These findings support the quantitative 
performance gains observed in the evaluation metrics. 

Fig. 4 shows the predicted output images from each 
YOLO version. The image compares the performance of three 
versions of the YOLO object detection models—YOLOv7 
(a), YOLOv8 (b), and YOLOv11 (c)—on the task of detecting 
strawberries. Each subfigure shows a grid of test images, some 
annotated with bounding boxes and class predictions, 
providing a visual comparison of model accuracy and 
confidence. YOLOv7 underperforms significantly and may 
require retraining or hyperparameter tuning. YOLOv8 
performs adequately but has room for improvement. 
YOLOv11 is clearly the most effective for this task, showing 
robust detection and accurate class labeling. 

V. CONCLUSION

In this study, we presented a framework for real-time 
strawberry ripeness detection using three YOLO-based 
models—YOLOv7, YOLOv8, and YOLOv11. Our 
experiments showed that YOLOv7 achieved moderate results 
(AP=0.833, recall=0.794, mAP@50–95=0.769), while 
YOLOv8 improved overall performance (AP=0.883, 
recall=0.834, mAP@50=0.938). Notably, YOLOv11, which 
incorporates dynamic attention modules and self-adaptive 
layer-wise feature fusion, delivered the highest recall (0.855) 
and mAP@50–95 (0.820) despite a slight drop in precision 
(0.874), demonstrating enhanced sensitivity and robustness in 
complex agricultural conditions. Real-world deployment 
challenges such as lighting variability and resource-limited 
hardware constraints have also been considered, necessitating 
adaptive preprocessing and model quantization strategies for 
practical implementation. These findings indicate that further 
fine-tuning and additional data augmentation could address 
the precision trade-offs, and future work will focus on 
integrating these models into automated harvesting systems to 
optimize crop yield and quality control. 
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