ABSTRACT

Premature Ventricular Contraction (PVC) is a type of arrhythmia

characterized by a widened QRS complex exceeding 120 ms and the absence of a P

wave. The objective of this research is to develop a system capable of measuring

electrocardiogram (ECG) signals using a portable device and applying the K-

Nearest Neighbors (KNN) algorithm to detect PVC arrhythmias based on ECG

data.

In this study, the system was designed using the ADS1293 ECG sensor

module and an ESP32 microcontroller. The ADS1293 module reads cardiac

electrical signals and performs signal conditioning, while the ESP32 transmits

ECG data wirelessly to a mobile application. The application processes the data

and performs classification using the KNN algorithm, which outputs beat labels as

either normal or PVC and displays the results visually.

The testing results show that the portable ECG device can produce valid

ECG signals with a stable sampling rate of 267 Hz, amplitude within physiological

range, and clearly visible PQRST wave morphology. Heart rate measurements were

also consistent with those from a reference pulse oximeter. The KNN model, trained

using data from the MIT-BIH Arrhythmia Database, achieved an accuracy of

92,85% and an F1-score of 0.93 on the test data. The model was successfully

integrated into a mobile application and tested on ECG signals recorded from real

subjects.

Keywords: Electrocardiogram (ECG), Arrhythmia, Premature Ventricular

Contraction (PVC), K-Nearest Neigbors (KNN)

vi