
1

CHAPTER 1.

INTRODUCTION

1.1 Background

Radio Frequency Identification (RFID) is a wireless automatic identification

technology that uses radio waves to transfer data between a data carrier device (such

as a chip on a tag) and a reader device. One of the most commonly used types of RFID

is Ultra-High Frequency (UHF) RFID [1]. Compared to other types of low-frequency

RFID, UHF RFID has a broader reading range and higher data transfer speed. Because

of its ability to automatically identify objects, which can reduce human error and

increase operational efficiency, UHF RFID technology has been widely implemented

in various types of applications and sectors, ranging from logistics [2], manufacturing

[3], retail [4], and sports [5], [6]. Along with the increasing implementation of UHF

RFID technology in various applications and sectors, various research is also being

carried out to improve performance and overcome the limitations of this technology.

It not only focuses on the development of the hardware or the system [7], [8], [9], [10],

[11] but also on developing optimal and efficient data processing algorithms to

overcome problems such as data collision [12], [13], reading inaccuracy/uncertainty

[14], [15], [16], interference, and data redundancy [17]. Conversely, the emergence of

edge computing technology enables data processing on devices proximate to the data

source, hence diminishing latency and bandwidth demands for transmitting data to a

central server [18]. Implementing edge computing in UHF RFID systems enhances

data processing efficiency by transferring some processing tasks to edge or proximate

devices, diminishing data communication burdens on the central server and decreasing

process latency[19].

One of the main challenges of implementing an RFID-based system in a dynamic

environment with high data volume is data redundancy, which occurs when the reader

device repeatedly reads the same tag within a specific time interval. This redundancy

can be spatial, where the same tag is read by multiple readers, or temporal, where the

same tag is read repeatedly by the same reader [17]. The presence of this data

redundancy results in a high processing load, excessive memory usage (inefficient),

and the potential disruption of data accuracy and integrity [20]. To address these

2

issues, several studies with various approaches and methods have been conducted.

Some of them are displayed in Table 1.1.

Rui et al. [21] introduced the use of the sliding window technique with a

temporal-spatial bloom filter to address the data redundancy. In line with that research,

Dihua et al. [22] proposed the use of the dynamic temporal bloom filter (DTBF)

method, which considers the time difference during RFID data reading. Wang et al.

[17] improved upon this by proposing the Time-Distance Bloom Filter (TDBF)

method, which considers both time and distance as filter parameters. A similar

approach was also taken by Cao et al. [23] by introducing the R-TDBF method, which

is adaptive to signal strength and environmental conditions. Meanwhile, Dash et al.

[24] introduced the use of Voronoi diagrams and temporal filters to reduce redundant

data in multi-reader systems with spatial region partitioning. On the other hand, by

analyzing the pattern of duplicate data at 21 RFID stations, Yang et al. [25] proposed

a cleansing method based on statistical analysis. Improvements to the statistical

smoothing for unreliable RFID (SMURF) algorithm for dynamic data cleansing have

also been conducted in the research by Xu et al. [26].

In the context of RFID middleware, He et al. [27] introduced a middleware-

based algorithm to manage reader elimination to address spatial redundancy

efficiently. Similar research was also conducted by Ma et al. [28], who used the

Threshold Selection Algorithm (TSA) in the elimination of excessive reader readings

for energy efficiency. Another approach was taken by Ouadou et al. [29] by dividing

the redundancy problem into intra- and extra-path duplication and suggesting the use

of proactive filtering through network topology. Meanwhile, Li et al. [19] developed

an adaptive sliding window method that operates on edge devices for cleansing single-

tag and multi-tag RFID data.

The bloom filter method is widely used in research related to filtering RFID

redundancy data because it offers good memory space efficiency and operational

speed. However, the use of multiple hash functions in Bloom filters has the potential

to burden devices with limited resources, such as edge devices or embedded devices

[30]. Therefore, several studies have attempted to address this by making

modifications, specifically by using a single hash function, as done by Kamaludin et

al. [20] and Mahdin et al. [31]. Additionally, hash-based solution approaches and

deduplication techniques also have the potential to be implemented to address the

redundancy issue [32], [33]. Ahmed et al. [34] have developed a lightweight

3

deduplication method using triple-level content-based hashing. Meanwhile, Hassan et

al. [35] have developed a 32-bit hash function using genetic programming that is

efficient for embedded systems such as FPGA.

Table 1.1 State of The Art

Authors Year Methode Research Field Contribution

Hassan et

al. [35]

2024 Genetic Hashing

32-bit

Hardware Oriented

hashing

Development of lightweight

32-bit hash for resource-

constrained hardware devices

Deore et

al. [33]

2024 AI-driven

Deduplication

AI-Based data

deduplication

AI-based deduplication trends

Cao et al.

[23]

2022 R-TDBF (Threshold

Adaptive) – Bloom

Filter

Environmental

Adaptive RFID

Filtering

Adaptive filtering to the

environment using signal

thresholds

Ahmed et

al. [34]

2022 Triple-level Hash +

Chunking

Leightweight Hash

deduplication

Efficient deduplication with

triple-level hash

Li et al.

[19]

2022 Adaptive Sliding

Window + Double

Estimation

Adaptive data

Filtering

Real-time data cleansing on

edge systems

Dash et al.

[24]

2022 Voronoi +

Temporal Filter

Spatio-Temporal

Filtering

Reducing multiple reading by

multi-reader with spatial

region division

Dabhade

et al. [7]

2021 RFID Tracking UHF RFID System

Applications

RFID applications for event

tracking

Wang et

al. [17]

2020 TDBF (Time-

Distance Bloom

Filter)

Spatio-Temporal

Filtering

Time and distance-based

filtering for dynamic RFID

data

Ouadou et

al. [29]

2019 Intra & Extra Path

Filtering

RFID-Sensor

network filtering

Filtering based on reading

topology paths

Ma et al.

[28]

2018 TSA (Threshold

Selection

Algorithm)

Redundant Reader

Elimination

Elimination of excess readers

in reading tag at the same time

Xu et al.

[26]

2018 SMURF

Improvement

Statistical RFID

Data Cleansing

Redundancy reduction/data

cleaning in dynamic

environments

Zhang et

al. [32]

2017 Deduplication

Techniques

Overview

General

Deduplication

survey

Introduces data deduplication

techniques, principles, and

future recommendations."

HE et al.

[27]

2017 Middleware +

Redundant Reader

Removal

RFID Middleware

Optimization

The algorithm effectively

identifies redundant readers in

RFID systems.

Kamaludin

et al. [20]

2016 Bloom Filter Hash

Tunggal

RFID Middleware

Filtering

Fast and efficient filtering

with low false positives

Yaacob et

al. [30]

2016 kinds of Bloom

Filter

RFID Data Filtering

theory

Providing a theoretical basis

for Bloom Filter-based

filtering

Dihua et

al. [22]

2016 Dynamic Time

Bloom Filter

Temporal Filtering Dynamic time-based hash

filtering

YANG et

al. [25]

2016 Redundancy

analysis

Redundancy

cleansing

characterization

Redundancy analysis based on

duplication and similarity

patterns

Mahdin et

al. [31]

2015 Bloom Filter RFID Supply Chain

Filtering

Effective redundancy data

filtering algorithm in RFID

supply chain systems

Rui et al.

[21]

2014 Sliding Window

(Temporal-Spatial

Bloom Filter)

Spatio-Temporal

Filtering

Dynamic filtering based on

time and location

4

While numerous studies have enhanced the performance of UHF-RFID systems,

especially in redundancy data (as shown in Table 1.1), particular challenges persist

that must be addressed to achieve greater efficiency, especially in the implementation

of edge computing with embedded devices in UHF-RFID-based systems. Although

the spatio-temporal filtering and reader elimination approaches as conducted by Rui et

al. [21] , He et al. [27], Ma et al. [28], Wang et al. [17], dan Dash et al. [24] can reduce

data redundancy and improve energy efficiency, these methods are still focused on

implementation on centralized computing platforms, making them less suitable for

implementation on embedded devices with limited resources, and they also require

complex infrastructure for their implementation. Meanwhile, the research results do

not indicate that the method entirely eliminates data redundancy, suggesting that data

redundancy cannot be entirely eliminated by applying this method.

Bloom Filter, which has been claimed by most previous research to have high

memory usage efficiency and computational speed [23] [17] [20] [22] [31] [21].

However, this algorithm has a weakness, namely the possibility of False Positives.

This condition occurs when the Bloom Filter identifies that a specific RFID tag

"might" have been read before, even though it has not. The occurrence of false

positives in RFID systems indicates the potential loss of valid data/missing data,

reduced tracking accuracy, and difficulties in data diagnostics. All of these effects are

conditions that pose significant risks for applications with minimal tolerance for

missing data, such as those in retail systems, supply chains, manufacturing, and even

sports.

The development of lightweight hash algorithms by Ahmed et al. [34], dan

Hassan et al. [35] has the potential to be a new approach to addressing deterministic

data redundancy on middleware devices with resource limitations. However, the

research has not specifically targeted the deduplication process on RFID data streams.

Additionally, deduplication approaches that directly integrate hash functions into

RFID edge middleware have not been widely encountered.

To address the limitations and gaps in previous research related to RFID data

redundancy, this study proposes a system model for filtering RFID data redundancy

using a lightweight hash-based deduplication algorithm approach optimized for RFID

data streams to run on embedded devices. Unlike the approaches in previous research

that used fixed sliding windows [21] and adaptive sliding windows [19], the system

proposed in this study employs an idle-time-based window mechanism, where the

5

window for deduplication is only opened when an incoming RFID data stream is

detected. It will only be closed when there is no data incoming within a specific time

interval (i.e., an idle condition). The approach proposed in this study combines the

efficiency of hash data structures with an adaptive time mechanism based on data

absence (session-based trigger) optimized for the trade-off between memory usage and

processing speed to be implemented in an RFID middleware device model based on

embedded devices. With this approach, it is expected to minimize the occurrence of

missing data and eliminate data redundancy.

The system developed in this study includes parsing mechanisms, data stream

deduplication using the proposed hash algorithm, time labeling and time

synchronization, as well as data output formatting. In this research, a lightweight hash

function is developed that can efficiently manage RFID datastream duplication in

memory. The system's performance is tested based on four main parameters: accuracy,

latency, throughput, and memory usage. The system's performance will also be fairly

compared with several other deduplication methods to determine which deduplication

algorithm is the most optimal and efficient to integrate with the system model. This

research is expected to provide a practical and efficient solution to address data

redundancy issues in RFID-based systems, particularly within the context of

implementation on embedded devices and small-scale IoT-based applications. These

solutions are low-cost and contribute to research in the field of RFID in general.

1.2 Problem Identification

One of the key challenges in RFID-based systems is data redundancy, which

occurs in two forms: spatial redundancy, when multiple readers simultaneously detect

the same tag within overlapping zones; and temporal redundancy, when a single reader

reads the same tag repeatedly within a short time window. This redundancy not only

increases memory consumption and processing latency, but can also compromise data

integrity, especially in embedded systems with limited computational capacity.

While existing methods such as Bloom filters [23] offer fast and memory-

efficient filtering, they suffer from false positives, where a new or unique tag is

mistakenly identified as a duplicate. This condition poses a significant risk in RFID

applications where data accuracy is critical. Other strategies, including sliding

windows [21] [19], and statistical filters [26], though effective in server-based

architectures, are typically too resource-intensive or complex to be deployed on

6

lightweight platforms like the ESP32. Moreover, despite recent efforts to develop

lightweight hash functions [34], [35], there is a notable lack of approaches that apply

such functions directly to real-time redundancy filtering in streaming RFID data at the

edge.

There is a clear research gap in designing a solution that achieves low memory

usage, high accuracy, and minimal latency, explicitly tailored for resource-constrained

embedded systems. Therefore, this study aims to address this gap by proposing a

lightweight, hash-based deduplication approach optimized for real-time RFID data

filtering on embedded middleware, enabling efficient, accurate, and scalable edge

processing.

1.3 Objective

The objectives of this research are as follows :

1) To design and implement a lightweight deduplication system for RFID data

streams using an idle-time window mechanism, optimized for embedded edge

devices such as the ESP32.

2) To develop and integrate a modified version of the xxHash32 hashing algorithm

that enables high-accuracy, low-latency, and memory-efficient redundancy

filtering.

3) To construct a real-time embedded middleware that supports efficient hash-table-

based duplicate detection, static memory allocation, and chaining for O(1) lookup

performance.

4) To implement a time labeling mechanism using a combination of real-time clock

(RTC) and internal counter, with periodic synchronization via network time

protocol (NTP), ensuring accurate and consistent timestamping of RFID events.

5) To format and output the filtered RFID data into structured, clean formats

compatible with IoT platforms and complex event processing (CEP) systems.

6) To evaluate the proposed system comprehensively across multiple metrics—

accuracy, memory usage, deduplication latency, processing latency, and

throughput—and compare it with other deduplication methods.

1.4 Scope of Work

The limitations of this research are:

7

1) The system was developed using the UHF RFID Reader model Middle Range

Integrated UHF RFID Reader (UHFReader18 / Electron HW-VX6330) and

waterproof wristband UHF RFID tag EPC Gen2 Class-1 (ISO18000-6C) with a

frequency range of 840-960MHz.

2) The EPC dataset (Unique ID of UHF RFID) is generated randomly according to the

data format output by this type's integrated reader and tag.

3) Edge computing is implemented on an edge device in the form of an embedded

device (controller) ESP32.

4) At this stage, the research focuses only on the issue of temporal redundancy, not

yet optimized to address spatial redundancy.

5) Only one reader device is used as reference for testing.

6) This research focuses on the most optimal and effective parsing algorithm/method

for implementation on edge devices (embedded devices), data filtering (duplicate

removal), time synchronization, and time labeling on the detected unique IDs.

7) Does not include communication between readers or advanced backend.

8) Performance testing simulation focuses on processing input data from the reader,

which is continuously transmitted and processed by the edge device, without

considering non-ideal conditions that may occur during tag reading by the reader.

1.5 Expected Result (Hypothesis)

This research aims to develop an edge computing solution for embedded devices

that can present clean and structured RFID data, ready for further processing, such as

by a Complex Event Processing (CEP) system. The expected outcomes from the

development of this middleware include:

1) Efficient and responsive parsing algorithms

Development of parsing algorithms capable of handling large volumes of UHF-

RFID data in real-time within embedded device environments.

2) Optimal deduplication algorithms for embedded devices

Development of lightweight and efficient deduplication algorithms to eliminate

duplicate data while maintaining memory and power consumption efficiency on

ESP32 devices.

3) Efficient time labeling algorithms

Implementation of time labeling algorithms capable of providing accurate

timestamps, enabling good data integration for subsequent processes.

8

4) Middleware that produces clean and structured data for further processing

RFID middleware that can present data filtered from duplication, equipped with

accurate timestamps, and ready to be used in the subsequent processing pipeline.

This research hypothesizes that modifications to the xxHash32 algorithm, when

integrated into an idle-time window-based deduplication system, will result in more

efficient performance on ESP32-based RFID middleware, particularly in reducing

latency, conserving memory usage, and maintaining high accuracy and optimal

throughput. This proposed system aligns with the needs of modern RFID systems,

which demand not only high accuracy but also resource efficiency at the edge level.

1.6 Novelty and Contribution

This research presents two main novelties that distinguish it from prior studies

in the field of RFID data deduplication for embedded middleware systems:

1) Idle-Time Windowing as a Temporal Boundary for Real-Time Deduplication

Most previous approaches rely on fixed or sliding time windows, which typically

require full buffering of incoming tag data before deduplication is performed. This can

lead to memory inefficiency, increased latency, and the risk of missed tag reads if the

window duration does not align with the dynamics of the data stream.

This study proposes a novel idle-time windowing mechanism, which uses a tag’s

inactivity period as a dynamic temporal boundary for deduplication. Unlike

conventional methods, this approach performs real-time processing—each tag is

immediately evaluated upon arrival, without waiting for buffer accumulation. This

strategy significantly reduces memory usage and improves responsiveness, while

maintaining the integrity of the continuous data stream. The strategy is highly suitable

for edge-based RFID streaming systems, particularly in memory-constrained

embedded environments like the ESP32.

2) Direct Integration of an Optimized Lightweight Hash Algorithm into

Embedded Middleware

While lightweight hash functions such as FNV-1a, Murmur3, and genetic-based

hashing have been explored in earlier studies for reducing memory complexity, they

have not been directly employed as primary deduplication engines within real-time

RFID middleware on embedded platforms.

This research addresses that gap by modifying and optimizing the xxHash32

algorithm specifically for short EPC data, and embedding it directly into a streaming

9

middleware running on the ESP32. The implementation achieved 100% accuracy, with

deduplication latency as low as 1.137 µs, and memory usage of only 404 KB RAM

and 754 KB flash, making it a practical and scalable solution for real-time data

processing in IoT and edge computing applications.

1.7 Structure of Thesis

Here is the thesis structure used:

1) Chapter 1: Introduction, background, problem identification, objectives, scope,

and research hypothesis.

2) Chapter 2: Literature review and basic theory on RFID, deduplication technique,

hash function, and time syncronization.

3) Chapter 3: Research roadmap, data systematic, proposed system model, proposed

deduplication algorithm, performance parameter, and testing scenarios.

4) Chapter 4: Result of testing algorithm and comparative analysis of proposed

algorithm.

5) Chapter 5: Conclusion, limitation, and future work.

