BIBLIOGRAPHY

- [1] Z. Kılıç, "The importance of water and conscious use of water," *International Journal of Hydrology*, vol. 4, no. 5, pp. 239–241, Oct. 2020, doi: 10.15406/ijh.2020.04.00250.
- [2] A. N. Obilonu, C. Chijioke, W. E. Igwegbe, O. I. Ibearugbulem, and Y. F. Abubakar, "Water Quality Challenges and Impact," *International Letters of Natural Sciences*, vol. 4, pp. 44–53, Nov. 2013, doi: 10.56431/p-2h3s76.
- [3] N. Singh, Sourabh, P. Kumar, Preeti, and S. Mehta, "Plant responses to water pollution," in *Plants and their Interaction to Environmental Pollution:*Damage Detection, Adaptation, Tolerance, Physiological and Molecular Responses, Elsevier, 2022, pp. 253–264. doi: 10.1016/B978-0-323-99978-6.00003-0.
- [4] M. Selebatso, G. Maude, and R. W. S. Fynn, "Assessment of quality of water provided for wildlife in the Central Kalahari Game Reserve, Botswana," *Physics and Chemistry of the Earth, Parts A/B/C*, vol. 105, pp. 191–195, Jun. 2018, doi: 10.1016/J.PCE.2018.02.012.
- [5] R. Noori *et al.*, "Complex dynamics of water quality mixing in a warm monomictic reservoir," *Science of The Total Environment*, vol. 777, p. 146097, Jul. 2021, doi: 10.1016/j.scitotenv.2021.146097.
- [6] Y. Madrid and Z. P. Zayas, "Water sampling: Traditional methods and new approaches in water sampling strategy," *TrAC Trends in Analytical Chemistry*, vol. 26, no. 4, pp. 293–299, Apr. 2007, doi: 10.1016/J.TRAC.2007.01.002.
- [7] R. B. Wynn *et al.*, "Autonomous Underwater Vehicles (AUVs): Their past, present and future contributions to the advancement of marine geoscience," *Mar Geol*, vol. 352, pp. 451–468, Jun. 2014, doi: 10.1016/j.margeo.2014.03.012.
- [8] K. Mondal, "Autonomous Underwater Vehicles: Recent Developments and Future Prospects," *Int J Res Appl Sci Eng Technol*, vol. 7, no. 11, pp. 215–222, Nov. 2019, doi: 10.22214/ijraset.2019.11036.

- [9] M. A. Adegboye, W.-K. Fung, and A. Karnik, "Recent Advances in Pipelines Monitoring and Oil Leakage Detection Technologies: Principles and Approaches," May 06, 2019. doi: 10.20944/preprints201905.0041.v1.
- [10] M. Mitra, "Advancements in control systems," *International Robotics & Automation Journal*, vol. 4, no. 6, Nov. 2018, doi: 10.15406/iratj.2018.04.00154.
- [11] M. Singh Dhaka and A. Rehalia, "Importance and Scope of Control Systems," *International Journal of Advanced Engineering Research and Applications*, [Online]. Available: www.ijaera.org
- [12] P. C, P. J, and R. E, *Signals, Systems, and Transforms*, 2nd ed. Prentice Hall, 2003.
- [13] S. B, "Closed-form impulse responses of linear time-invariant systems: A unifying approach," *IEEE Signal Process Mag*, vol. 35, no. 4, pp. 42–52, Jul. 2018.
- [14] K. Ogata, *Modern Control Engineering*, 5th ed. Upper Saddle River: Pearson, 2010.
- [15] C. McFarland and L. Whitcomb, "Stable adaptive identification of fully-coupled second-order 6-degree-of-freedom nonlinear plant models for underwater vehicles: theory and experimental evaluation," *Int. J. Adapt. Control Signal Process*, vol. 35, no. 5, pp. 786–810, Mar. 2021.
- [16] A. Sahoo, S. K. Dwivedy, and P. S. Robi, "Adaptive Fuzzy PID Controller for A Compact Autonomous Underwater Vehicle," in *2020 Global Oceans 2020: Singapore U.S. Gulf Coast*, Institute of Electrical and Electronics Engineers Inc., Oct. 2020. doi: 10.1109/IEEECONF38699.2020.9389483.
- [17] D. Bhattacharya and C. Puttamadappa, "PID-FUZZY Control System for Autonomous Underwater Vehicles (AUV): Highly Accurate FPGA Implementation."
- [18] K. H. Ang, G. Chong, and Y. Li, "PID control system analysis, design, and technology," *IEEE Transactions on Control Systems Technology*, vol. 13, no. 4, pp. 559–576, Jul. 2005, doi: 10.1109/TCST.2005.847331.

- [19] H. Om Bansal, H. O. Bansal, R. Sharma, and P. R. Shreeraman, "PID Controller Tuning Techniques: A Review," 2012. [Online]. Available: www.vkingpub.com
- [20] The proceedings of the Twentieth (2010) International Offshore and Polar Engineering Conference: Beijing, China, June 20-25, 2010: ISOPE-2010 Beijing. International Society of Offshore and Polar Engineers, 2010.
- [21] K. Macauley, L. Cai, P. Adamczyk, and Y. Girdhar, "ReefGlider: A highly maneuverable vectored buoyancy engine based underwater robot," May 2024, [Online]. Available: http://arxiv.org/abs/2405.06033
- [22] J. F. Carneiro, J. B. Pinto, F. G. de Almeida, and N. A. Cruz, "Model Identification and Control of a Buoyancy Change Device," *Actuators*, vol. 12, no. 4, Apr. 2023, doi: 10.3390/act12040180.
- [23] F. White and X. Henry, *Fluid Mechanics*, 9th ed. McGraw Hill, 2022.
- [24] D. Young, B. Munson, T. Okiishi, and W. Huebsch, *A Brief Introduction to Fluid Mechanics*, 5th ed. Hoboken, NJ: Wiley, 2011.
- [25] Free Map Tools, "Elevation Finder." Accessed: Jul. 13, 2025. [Online]. Available: https://www.freemaptools.com/elevation-finder.htm
- [26] K. Tanakitkorn, P. A. Wilson, S. R. Turnock, and A. B. Phillips, "Depth control for an over-actuated, hover-capable autonomous underwater vehicle with experimental verification," *Mechatronics*, vol. 41, pp. 67–81, Feb. 2017, doi: 10.1016/j.mechatronics.2016.11.006.