ABSTRACT

Electric arc faults on trolley wires of electric trains can cause equipment

damage, communication disruptions, and safety risks, making early detection

crucial. However, accurately detecting this phenomenon in operational train

systems remains challenging. This study aims to develop an electric arc detection

system using the Random Forest method. The system is designed with a

microcontroller and PZEM 017 sensor to measure current and voltage.

Data is processed to generate average and standard deviation values, which

are then analyzed using a machine learning algorithm and linked to a mobile

application as a user interface. Based on feature importance, the average voltage

and standard deviation of voltage have the greatest influence on detection.

Testing under static conditions achieved 100% accuracy for Normal, Arc

Flash, and No Contact conditions with 10 trials per condition. The accuracy

classification test on the implemented system yielded an overall accuracy of

95.60%. This system is expected to serve as a solution to enhance the operational

reliability of electric trains through early arc fault detection.

Keywords: Electric Arc Fault, Random Forest, Electric Train, PZEM 017 Sensor.

 \mathbf{v}