CONTENTS

APPROVAL PAGE	ii
SELF DECLARATION AGAINST PLAGIARISM	iii
ABSTRACT	iv
ACKNOWLEDGEMENTS	V
PREFACE	vi
CONTENTS	vii
LIST OF TABLES	X
LIST OF FIGURES	xi
LIST OF ABBREVIATIONS	xii
1 INTRODUCTION	1
1.1 Background	1
1.2 Statement of Problem	2
1.3 Research Objectives	3
1.4 Scope of the Research	3
1.5 Hypothesis	5
1.6 Research Methodology	5
2 REVIEW OF LITERATURE AND STUDIES	9
2.1 Related Literature	9
2.2 Justification for Focusing on AWS and Azure	10
2.3 Previous Study	11
2.4 Disaster Recovery	14
2.5 Cloud Computing	16
2.5.1 Cloud Computing Service Model	17
2.6 Microsoft Azure	17
2.6.1 Business Continuity and Disaster Recovery	18
2.6.2 Azure Site Recovery	20
2.7 Amazon Web Service DRaaS	20
2.7.1 AWS Elastic Disaster Recovery (AWS EDR)	21
2.8 Business Impact Analysis (BIA) and Risk Assessment	22

	2.9 Quality of Service (QoS) in Cloud-Based Disaster Recovery	22
	2.10 Class of Service (CoS) in Cloud-Based Disaster Recovery	23
	2.11 Business Impact Analysis (BIA) and Financial Risk Modelling	24
	2.12 Risk Assessment Frameworks in Cloud Disaster Recovery	25
	2.13 Cloud Requirements and Constraints for Small and Medium Enterprises (SMEs)	26
	2.14 Cost Analysis in Cloud-Based Disaster Recovery for SMEs	28
	2.15 Small and Medium Enterprise Specific Requirements for Cloud-Based Disaster Recovery	28
	2.15.1 AWS and Azure Alignment	29
	2.15.2 Regional Context: Cloud DR Considerations for Indonesian SMEs	30
	2.15.3 Illustrative Cases of Indonesian SMEs Adopting Cloud-Based DR	31
	2.15.4 Prioritization of DR Threats in Indonesian SMEs: A Risk Scoring Approach	33
	2.15.5 Risk Control Strategy Selection Based on Risk Priorities	35
3	SYSTEM DESIGN AND MODELS	37
	3.1 System Model and Scenario	39
	3.1.1 System Model	39
	3.1.2 System Design	42
	3.1.3 Disaster Recovery Scenarios	46
	3.1.4 Evaluation Metrics	46
	3.2 Experimental Scenario	48
	3.2.1 Scenario 1: Implementing Disaster Recovery for Azure Virtual Machine using Azure Site Recovery (ASR)	48
	3.2.2 Scenario 2: Implementing Disaster Recovery for an AWS Virtual Machine usin Elastic Disaster Recovery (EDR)	ng 50
	3.2.3 Disaster Event Testing	53
	3.3 Data Retrieval Scenario	54
	3.3.1 Data Integrity and Recovery Point Objective (RPO)	54
	3.3.2 System Performance and Resource Utilization	55
	3.3.3 Recovery Time Objective (RTO) and Recovery Point Objective (RPO)	56
	3.3.4 Risk Analysis and Business Impact Analysis (BIA)	61
	3.3.5 Quality of Service (QoS) Evaluation	63
	3.3.6 Cost and Total Cost of Ownership (TCO) Evaluation	64
	3.4 Analysis Scenario	66
	3.4.1 Data Integrity and RPO Analysis	66
	3.4.2 System Performance and Resource Utilization Analysis	67
	3.4.3 Recovery Time and RTO Analysis	67
	3.4.4 Risk Analysis and Business Impact Analysis (BIA)	68

3.4.5 Quality of Service (QoS) Evaluation	69
3.4.6 Cost and Total Cost of Ownership (TCO) Evaluation	69
4 RESULT AND ANALYSIS	71
4.1 Performance Evaluation	71
4.1.1 Experimental Design and Metrics	71
4.1.2 Results and Comparative Analysis	72
4.1.3 Performance Trade-Off and Interpretation	77
4.2 Cost Efficiency Analysis	79
4.2.1 Importance of TCO in Disaster Recovery Platform Selection	79
4.2.2 Cost Components and Methodology	79
4.2.3 Presentation of Cost Results	80
4.2.4 Cost Comparison, Interpretation, and Implications for SMEs	83
4.3 Quality of Service (QoS) Analysis for Cloud-Based Disaster Recovery	89
4.3.1 Contextual Interpretation of QoS for Indonesian SMEs	95
4.3.2 Cross-Analysis of RTO and QoS Delay	96
4.4 Risk Evaluation and Business Impact Analysis of Cloud-Based DR Platforms	98
4.4.1 Qualitative and Quantitative Risk Assessment by Failure Scenario	98
4.4.2 VM Crash Scenario (Single VM Failure)	102
4.4.3 Region Outage Scenario (Regional Disaster)	102
4.4.4 Network Disruption Scenario (Connectivity Loss)	103
4.4.5 Integrated Risk Analysis and Platform Comparison	105
4.5 Architectural and Topological Recommendations	107
4.5.1 Underlying Architectural Differences Between AWS and Azure	109
4.5.2 Proposed Warm-Standby Architecture Design, Performance, & Cost Efficiency111	
4.5.3 Recommended Topology Design	112
4.5.4 Strategic Considerations for SME Implementation	114
4.5.5 Relevance of Cloud Specifications and Costs for SMEs	115
4.6 Strategic DR Platform Evaluation for Indonesian SMEs	116
4.6.1 Alignment with SME Requirements	116
4.6.2 Platform Selection Recommendation per SME Use Case	117
5 CONCLUSIONS	119
5.1 Conclusions	119
5.2 Future Work	122
REFERENCES	123