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CHAPTER 1

INTRODUCTION

This chapter highlights the fundamental challenge of identifying novel anticancer drugs
that target the Cyclooxygenase-2 (COX-II) enzyme. It adds context to our research by
highlighting the critical need for more efficient and precise techniques to predicting the
bioactivity of potential drug candidates, which is a key bottleneck in traditional pharma-
ceutical development. The goal of this introduction is to present a computational strategy
that uses Graph Convolutional Networks (GCNs) to overcome the limitations of earlier
approaches. This chapter is broken into sections to provide a detailed case. The Rationale
(Section 1.1) explains the medical necessity and scientific foundation for targeting COX-II.
Sections 1.2 and 1.3 discuss scientific principles and research objectives. The chapter covers
the problem statement, goals, and hypotheses (Sections 1.4 and 1.5) to lead the research.
Finally, the chapter summarizes the study’s assumptions, scope, and significance (Sections
1.6-1.8). In order to provide a more efficient method for computational drug discovery,
this chapter describes the framework for developing and validating the GCN model, which

will be covered in later chapters.

1.1 Rationale

Uncontrolled proliferation of abnormal cells is an indicator of cancer [1]. Globally, cancer
continues to be the leading cause of death. Around 20 million new cases of cancer and 9.7
million deaths from the disease are anticipated globally in 2022, according to the World
Health Organization (WHO) and the International Agency for Research on Cancer (IARC)
[2]. It is estimated that there will be more than 35 million new cases by 2050 [3]. Recent
projections indicate that by 2025, there will be 600,000 cancer-related deaths and two
million new cases in the US [4]. While overall mortality rates are still falling, this progress
is jeopardized by a number of worrying patterns that underscore the critical need for new
therapeutic approaches.

Tumor-promoting inflammation is a biological process that uses the body’s inflamma-
tory pathways to promote tumor development, angiogenesis, and metastasis. The COX-II
enzyme, overexpressed in malignant tissues but low in most normal tissues, plays a critical
role in this process [5]. COX-II's fluctuating expression makes it an intriguing and verified
target for the development of tailored anticancer therapies. However, the traditional drug
development pipeline for identifying novel and effective inhibitors is a famously slow, costly,
and high-risk enterprise, taking over a decade and billions of dollars to bring a single new
medicine to market [6]. This inefficiency is a substantial barrier to translating promising

biological targets like COX-II into therapeutic benefits.
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The significant human and economic burden of cancer, both globally and in Indonesia,
combined with the profound inefficiencies of the traditional drug discovery model, creates
an urgent and unmet need for innovative strategies to accelerate the identification of new
therapies [4]. COX-II expression patterns have been investigated in a variety of human
cancer tissues, and they have been found to be often enhanced in many types of cancer,
particularly colon cancer. Furthermore, the functional role of COX-II has been explored
in encouraging tumor growth through processes such as angiogenesis and the production
of new blood vessels, employing animal models and pharmacological inhibitors to validate
COX-ITI as a therapeutic target for cancer [7]. The well-established role of COX-II in cancer
progression presents a clear and appealing opportunity for targeted treatment.

To accelerate the drug development process, computational tools ranging from molecu-
lar docking to advanced deep learning models were employed. However, all strategies have
limitations. Molecular docking and conventional QSAR typically employ simplified scoring
systems or hand-crafted descriptors [8]. Modern deep learning models, such as Artificial
Neural Networks (ANN) [9, 10] and Long Short-Term Memory (LSTM) [11, 12], still con-
front obstacles. ANNs reduce molecules to flat feature descriptors [13], deleting structural
information, while LSTMs treat molecules as text sequences [14], ignoring their natural
graph topology. This methodological gap, driven by both reliance on manual qualities and
a failure to take advantage of molecules’ inherent graph structure, highlights the critical
need for a better strategy.

As a result, this study proposes developing a GCN—a cutting-edge artificial intelligence
model—to accurately predict the bioactivity of potential COX-II inhibitors, with the goal
of improving the first, most critical phase of drug discovery and accelerating the path to

novel anti-cancer agents.

1.2 Theoretical Framework

This study follows the QSAR paradigm, which says that a compound’s biological activity
is directly proportional to its molecular structure [15]. Conventional QSAR techniques
translate a molecule’s structure into a fixed set of numerical values called molecular de-
scriptors [16]. QSAR aims to speed up drug discovery by creating a statistical model that
links these properties to known bioactivity.

However, the reliance on built descriptors poses a significant theoretical constraint.
Reducing a complicated molecule, commonly represented as a 1D Simplified Molecular-
Input Line-Entry System (SMILES) string [17], to a predetermined feature vector may
obscure or lose crucial structural information. The model’s prediction power is restricted
by the quality and relevance of manually picked descriptors [18]. This underlying issue
necessitates a more sophisticated technique capable of learning feature representations

directly from the chemical network. This immediately leads to the consideration of GCNs
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as a more appropriate theoretical framework for this task, as they are designed to function

on graph-structured data without the need for defined feature engineering.

1.3 Conceptual Framework

Figure 1.1 depicts the multi-phase development and evaluation of a computational model
to predict the bioactivity of COX-II inhibitors. The paradigm is essentially separated
into three stages: input and foundation, development and evaluation, and output and

contribution.
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Figure 1.1: Research Conceptual Framework

1. Phase 1: Input and Foundation
This initial step lays the scientific and data-driven foundation for the investigation.
It starts with the Biological Premise, which states that COX-II is a scientifically
validated and important target for anti-cancer therapy. This assumption guides the
data collection method and supports the research emphasis. The next step after this
assumption is to get information from the Chemical Database, ChEMBL [19]. Key
raw materials for the model, a carefully selected collection of chemical compounds
and their corresponding molecular structures, and experimentally verified bioactivity

against the COX-2 target are all included in this database.

2. Phase 2: Development and Evaluation
This stage explains the creation and assessment of the computational model, which
is the technical core of the investigation. The first step in the process is Molec-
ular Graph Representation, which preprocesses data from the chemical database.
This crucial stage transforms linear chemical notations into a graph-based structure,
where chemical bonds serve as edges and atoms as nodes. The GCN, a specialized
deep learning architecture designed to learn directly from graph data, is then fed
this graph-structured data. Iterative development of the GCN involves testing, op-

timization, and training. To ascertain the relationship between molecular structure

3



Telkom University 2025 School of Computing

and bioactivity, the model is first trained on a subset of data. After that, the param-
eters are changed to improve the accuracy of the predictions. In order to ascertain
the model’s capacity for generalization, its performance is lastly thoroughly assessed

using a dataset that has been seen before.

3. Phase 3: Output and Contribution

By formally stating the research’s conclusions and contributions, this last stage brings
the study to a close. The final outcome of the GCN testing stage is a binary catego-
rization for every molecule. In particular, the model gives a value that corresponds to
its estimated ability to inhibit COX-II. A comprehensive set of Performance Evalua-
tion Metrics is created based on these predictions in order to statistically assess the
model’s efficacy. This includes measurements such as F1-Score, MCC, AUC-ROC,
recall, accuracy, and precision. The ability of the GCN model to distinguish between
active and inactive inhibitors may be objectively and reliably assessed thanks to these
data. All things considered, this study creates a quantitative benchmark for the ap-
plication of GCNs in drug development and validates a particular computational
methodology.

1.4 Statement of the Problem

The main issues in this study are:

1. Does a GCN-based strategy that learns directly from the molecular graph structure
provide a more accurate depiction of the features necessary for COX-II inhibition

than methods that employ manually created molecular descriptors?

2. Can a GCN-based predictive model correctly and consistently classify compounds
as COX-II inhibitors or non-inhibitors? What is the predictive performance of the
trained GCN model?

By investigating these issues, the researchers seek to improve the accuracy of bioactivity

predictions, leading in more successful pharmaceutical development.

1.5 Objective and Hypotheses

The goal of this study is to develop a predictive model using GCNs to classify chemical
substances as COX-II inhibitors or non-inhibitors by utilizing graph representations of
COX-II molecules.

The hypotheses of this study include:

1. A graph-based model outperforms a traditional manual feature-engineering

technique in terms of prediction accuracy.
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Traditional Quantitative Structure-Activity Relationship (QSAR) models rely on
manually created molecular descriptors, which might conceal or ignore key structural
information needed for bioactivity prediction. citewang2015quantitative. In contrast,
graph models, which identify atoms as nodes and bonds as edges, are believed to fully
capture the essential information needed for predicting biological activity against a
target like COX-IT [20]. Using this structural approach, a Graph Convolutional
Network (GCN) may learn feature representations directly from molecular graphs,

bypassing the theoretical limits of descriptor-based approaches [21].

2. A GCN methodology outperforms non-graph-based deep learning meth-
ods in terms of prediction accuracy.
Deep learning architectures, such as Artificial Neural Networks (ANNs) and Long
Short-Term Memory (LSTM) networks, face inherent challenges in molecular model-
ing [9-12]. ANNSs remove topological information by reducing molecules to flattened
feature vectors, whereas LSTMs analyze them as linear text sequences (SMILES),
discarding their inherent graph topology [13, 14]. Graph Convolutional Networks
(GCNs) are a theoretical framework meant to operate on graph-structured data, di-

rectly addressing the methodological failure to use a molecule’s inherent structure
[21].

1.6 Assumption
This study is based on the following key assumptions.

e Data Quality and Integrity, the bioactivity data from the public database, ChEMBL
[19], is presumed to be accurate and credible. The experimental procedures utilized
to create the data were valid and yielded consistent results, and any related molecular

structure information accurately represented the tested substances.

e Adequacy of molecular representation, it is assumed that describing molecules
as graphs, where atoms are nodes and bonds are edges, captures the necessary struc-

tural information to predict their biological activity against COX-II [22].

1.7 Scope and Limitation

This study focuses on the creation and deployment of a deep learning system for identifying
potential anti-cancer drugs that target the COX-II enzyme. At the heart of this research is
the creation, training, and validation of a GCN, a customized deep learning model capable
of learning from molecular structures. To train and test this model, the study will use

publicly available biochemical data obtained from an existing chemical database. The key
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goals are to create a reliable and generalizable predictive model, as well as discover novel
compounds with a high anticipated inhibitory potential against COX-2.

Several distinct boundaries have been created to assure the study’s focus and achieve-
ment of its aims. Crucially, this research is totally computational in nature. It will not
include the chemical synthesis and experimental validation of the molecule identified. Fur-
thermore, the investigation is primarily focused on the COX-II target. Finally, the model’s
accuracy and applicability are inextricably linked to the quality and breadth of data avail-
able in the public domain during the study period.

1.8 Significance of the Study

This study has great value since it adds new knowledge at the junction of artificial intelli-
gence and cancer therapy development. The discoveries are intended to benefit numerous
specific groups by providing a more conclusive and efficient method for identifying novel
medicinal drugs. The fundamental contribution of this research is the creation and vali-
dation of a specific GCN model for predicting the bioactivity of COX-II inhibitors. This
makes a novel contribution by bringing cutting-edge deep learning architecture to a vi-
tal and specialized anti-cancer target. This work has significant practical implications for
medicinal chemistry and discovery researchers. By effectively filtering and selecting chemi-
cals, the methodology allows scientists to concentrate their limited resources on producing
and evaluating only the most promising possibilities.

For future researchers and academics, this thesis will serve as a platform for further
research, whether by testing confirming anticipated molecules, refining the GCN design, or
adapting the methodology to various biological challenges. This work advances the long-
term goal of creating new cancer medicines by improving the efficiency of the discovery
phase.




