ABSTRACT

The development of wireless technologies is increasing. The technology need with a

wideband and can be applied to high mobility also increases. Long Term Evolution is one of

technology that is able to provide wideband and high mobility. In downlink side, LTE uses

OFDM modulation technique. But OFDM method need to know channel condition before

demapping information signal. Channel Estimation is one of solution that can be done

because with channel estimation techniques, channel condition can be predicted by using pilot

signals. Many channel estimation methods that have been done in previous thesis, such as the

Least Square (LS), Maximum likehood (ML), and Minimum Mean Square Error (MMSE).

But thats channel estimation methods have poor performance when be applied high mobility

services like LTE.

The solution that offered in this thesis is channel estimation with parametric channel

modelling. This channel estimation technique is not only estimate the channel coefficients

from the pilot signals received as another channel estimation method. In parametric channel

estimation scheme, channel parameters such as the number of paths and the channel multipath

delays estimated before estimating the channel coefficients so that it has a better accuracy. In

this thesis, channel estimation with parametric channel modeling applied in LTE OFDM

MIMO communication systems. Parameters of simulation using downlink LTE standard for

transmittion bandwidth 10 MHz. This thesis use AWGN and Rayleigh Fading channel to

simulate channel model with parameters according to ITU-R M 1225 standard.

The simulation results in this thesis showed performance improvement of LTE OFDM

system when use parametric channel estimation model. At user mobility 3 kmph, 30 kmph, 60

kmph, and 120 kmph this channel estimation method can improve system performance

0,8 dB, 3,3 dB, 2,3 dB and 1,8 dB than system with spline channel estimation scheme for

BER of 10^{-5} .

Keywords: Channel estimation, Parametric Channel Modeling, LTE, OFDM, MIMO, SFBC

ii